
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

Received 18 April 2023; revised 14 July 2023 and 30 August 2023; accepted 8 September 2023.
Date of publication 13 September 2023; date of current version 5 December 2023.

Digital Object Identifier 10.1109/JXCDC.2023.3315134

The Impact of Analog-to-Digital Converter
Architecture and Variability on Analog Neural

Network Accuracy

MATTHEW SPEAR 1,2 (Member, IEEE), JOSHUA E. KIM 1,
CHRISTOPHER H. BENNETT 2 (Member, IEEE), SAPAN AGARWAL 2 (Member, IEEE),

MATTHEW J. MARINELLA 1 (Senior Member, IEEE),
and T. PATRICK XIAO 2 (Member, IEEE)

1School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 USA
2Sandia National Laboratories, Albuquerque, NM 87123 USA

CORRESPONDING AUTHOR: M. SPEAR (j.b.mspear@gmail.com)

This work was supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories, a multimission
laboratory managed and operated by the National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of

Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-NA0003525.

This article has supplementary downloadable material available at https://doi.org/10.1109/JXCDC.2023.3315134, provided by the authors.

ABSTRACT The analog-to-digital converter (ADC) is not only a key component in analog in-memory
computing (IMC) accelerators but also a bottleneck for the efficiency and accuracy of these systems. While
the tradeoffs between power consumption, latency, and area in ADC design are well studied, it is relatively
unknown which ADC implementations are optimal for algorithmic accuracy, particularly for neural network
inference. We explore the design space of the ADC with a focus on accuracy, investigating the sensitivity
of neural network outputs to component variability inside the ADC and how this sensitivity depends on
the ADC architecture. The compact models of the pipeline, cyclic, successive-approximation-register (SAR)
and ramp ADCs are developed, and these models are used in a system-level accuracy simulation of analog
neural network inference. Our results show how the accuracy on a complex image recognition benchmark
(ResNet50 on ImageNet) depends on the capacitance mismatch, comparator offset, and effective number of
bits (ENOB) for each of the four ADC architectures.We find that robustness to component variations depends
strongly on the ADC design and that inference accuracy is particularly sensitive to the value-dependent error
characteristics of the ADC, which cannot be captured by the conventional ENOB precision metric.

INDEX TERMS Analog computing, analog-to-digital conversion, in-memory computing (IMC), machine
learning, neural network, process variations.

I. INTRODUCTION
Machine learning is increasingly being integrated into mod-
ern life. It is being used to defeat humans at chess and go,
target ads at consumers, and produce realistic writing and
art [1]. As these algorithms become more complex to meet
new demands, they also demand more computing power.
Neural network processing is dominated by linear algebra,
and inference workloads are dominated in particular by
matrix–matrix multiplication and matrix-vector multiplica-
tion (MVM) [2]. Improved efficiency in theMVMkernel over
current digital hardware would therefore enable significant
reduction in the power consumption of machine learning
systems.

Analog in-memory computing (IMC) is an alternative
approach to compute an MVM that allows for significant
energy savings, potentially by orders of magnitude [3], [4].
Fig. 1 shows a diagram of an analog MVM. The inputs are
applied as voltages on the rows. The weight matrix is mapped
to the conductances in an array of programmable resistive
memory devices (e.g., resistive RAM, flash memory, electro-
chemical RAM, and others) [5], [6], [7]. Ohm’s law is used
to multiply the inputs and weights, and Kirchoff’s law down
the columns sums the products to compute a dot product.
These currents are typically converted to a voltage using a
transimpedance amplifier (TIA) or integrator. AnalogMVMs
can also be computed inside an array of SRAM or DRAM
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FIGURE 1. Analog MVM using a resistive memory array.

memory [8], [9]. In either case, the analog outputs are passed
into an analog-to-digital converter (ADC) to interface with
digital components, such as the on-chip network. In addition
to the intrinsic efficiency and parallelism of analog computa-
tion, this scheme eliminates the energy cost of moving weight
data between the processor and memory.

Despite the advantages of analog IMC, ensuring the accu-
rate computation of MVMs remains a challenge. Notably, all
nonvolatile memories have some variability in their conduc-
tance states. In analog IMC, this directly affects the result
of the MVM computation and can lead to a reduction in the
accuracy of the target algorithm. Other nonidealities such as
the series resistance of the metal wires and errors induced by
variability in peripheral circuits can also affect accuracy [10].

To date, the ADC’s effect on neural network accuracy
has only been analyzed through the lens of generic mod-
els for ADC quantization, clipping, and output noise [10],
[11], [12], [13], [14], [15], [16], [17]. While this analysis is
useful for optimizing the resolution and range of the ADC,
it abstracts away the additional sources of error that are
inside the ADC circuitry and offers little practical guidance
on how to improve its design. A more detailed sensitivity
analysis of errors that account for the ADC implementation
has not yet been conducted. This detailed analysis is needed
to set the circuit or process-level requirements on the ADC
components, as well as to determine what type of ADC is
best suited for an analog IMC application. This work investi-
gates how the accuracy of analog neural network inference is
affected by capacitancemismatch, insufficient amplifier gain,
and comparator offset inside the ADC, and how these effects
depend on the ADC circuit architecture.

II. ADC ARCHITECTURES
There are a variety of ADC architectures that implement dif-
ferent approaches to analog-to-digital conversion. Four ADC
architectures are evaluated in this work: a pipeline ADC,
a cyclic ADC, a ramp ADC, and a successive approximation
register (SAR) ADC [18], [19], [20]. The pipeline and cyclic
ADCs chain several low-resolution ADC stages together to
produce a higher resolution ADC. The ramp and SAR ADCs

FIGURE 2. (a) N-stage pipeline ADC. (b) Cyclic ADC both with
1.5-bit stages.

compare the analog input against reference voltages that are
generated by a digital-to-analog converter (DAC). All four
architectures are suitable for use with an analog MVM but
differ in their sensitivity to component variability.

There are design tradeoffs between speed, energy, and area
for the four architectures. The exact tradeoffs are dependent
on the implementation of the ADCs and will not be ana-
lyzed in detail in this work, which will mainly compare their
sensitivity to component errors and their effect on neural net-
work accuracy. The pipeline ADC has the highest conversion
throughput but has a large area cost. The ramp ADC has
a long latency but can efficiently convert all of the array’s
outputs in parallel using a global DAC and has the smallest
per-column area cost. The SAR ADC is an intermediate case.
It has a much shorter latency than a ramp ADC but has larger
area and is harder to parallelize because the DAC cannot be
used for multiple conversions simultaneously. Compared to
the pipeline ADC, the SAR ADC has lower throughput but
uses less area [18], [19], [20].

A. PIPELINE ADC
The pipeline ADC [shown in Fig. 2(a)] is a multistage
ADC that uses a succession of 1.5-bit stages to enable
high-resolution digitization of the analog input [18]. For
example, in an 8-bit ADC, there are seven 1.5-bit stages and a
final 1-bit stage. Each 1.5-bit stage decides whether an input
voltage is high (h2), low (l2), or medium (m2) relative to two
reference voltages (subscript denotes that these signals are in
phase with 82). The redundancy of using three output levels
rather than two ensures that the ADC’s output is resilient
to offsets in the comparators. Each stage then applies an
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interstage gain (ideally equal to 2) and a shift that depends
on the 1.5-bit output. The resulting residual voltage is then
passed as the input to the next stage. The digital correction
logic reduces the three redundant options from each stage
down to two, using the results from the less significant
stages. A pipeline ADC is a popular choice for medium- to
high-resolution ADCs with high accuracy and throughput,
owing to its robustness to comparator offsets and the ability to
process multiple samples simultaneously in different stages.

Each 1.5-bit stage is composed of two subcircuits: the
analog components producing the residual to be passed to the
next stage and the digital logic producing the 1.5-bit output.
The residual is given by

Vresidual =

Vin
(
1 +

C1
C2

)
− Vdig

(
C1
C2

)
1 + 1/Avβp

(1)

where Av is the operational amplifier gain, Vin is the input
voltage, Vdig is one of the three reference voltages [Vrefp,
Vrefm, 0] that is chosen by the digital logic, and βp =

C1/(C1 + C2 + Cpar). Cpar is the parasitic capacitance at
the negative input to the operational amplifier. In this case,
Vrefp = −Vrefm = VREF, and the range is 2VREF. In an ideal
pipeline 1.5-bit stage, the following conditions are met: 1)
C1 = C2 and 2) the operational amplifier has large enough
gain Av to accurately compute the residual based on the
capacitance ratio.

B. CYCLIC ADC
A cyclic ADC is built using the same 1.5-bit stage as the
pipeline, but instead of having N unique stages, it cycles
through the same stage N − 1 times and then has a com-
parator for the final stage. The advantage of the cyclic ADC
compared to the pipeline ADC is a significant reduction in
area due to the reuse of a single stage. The disadvantage is
conversion throughput. The cyclic ADC has a throughput of
one input perN clock cycles, compared to the pipeline ADC’s
throughput of one input per one clock cycle.

C. RAMP ADC
A ramp ADC uses a comparator to compare the input voltage
to a reference voltage ramp signal that is synchronized to
an N -bit digital counter [19]. When the comparator flips,
the value of the N -bit counter at that moment is latched to
an N -bit register, and this value is the digital output. In the
implementation shown in Fig. 3, an N -bit counter is passed
into a DAC to produce the reference signal. A ramp ADC is
well suited for analog IMC because the counter and DAC can
be shared across the whole array, and only a comparator and
an N -bit latch are needed per column [21]. This allows the
analog outputs from the entire array to be digitized in parallel,
thus reducing the energy and area footprint per column.

D. SAR ADC
An SAR ADC works similar to a ramp ADC. It uses a
comparator and a DAC to find the N -bit digital value that

FIGURE 3. (a) N-bit ramp ADC. (b) N-bit SAR ADC.

most closely approximates the analog input signal. However,
while the rampADC checks every possibleN -bit digital value
in ascending order until it reaches one that matches the analog
input, the SAR ADC successively refines the digital value
one bit at a time, effectively implementing a binary search
algorithm [20]. An SAR ADC is desirable because it is rela-
tively fast, with a latency of only N cycles (verusu 2N cycles
for the ramp ADC), with similar accuracy to the ramp. The
downside of the SAR ADC is that it cannot simultaneously
share the DAC across all the columns like a ramp ADC can,
but it still consumes less area than the pipeline ADC.

E. DAC DESIGN
We consider three different switched-capacitor DACs in our
analysis, shown in Fig. 4, which are similar in principle but
are different in their implementation [22], [23]. All three use
a radix-2 array of capacitors, where C1 is the minimum-sized
unit capacitor. The most commonly used capacitive DAC
design is shown in Fig. 4(a). During the first half cycle, each
bit of the digital input to the DAC controls whether each of the
N capacitors is charged. In the second half cycle, the charge
is transferred to the output capacitor to produce an output
voltage given by

Vout =

1
2NC1

(
Vrefp − Vrefm

) ∑N
i bi2

N−iC1 + Vrefm

1 + 1/Avβ1
(2)

where b1, . . . , bN are the input bits from most significant
bit (MSB) to least significant bit (LSB), N is the number of
bits, Vrefp and Vrefm are the positive and negative reference
voltages, and β1 = 2NC1/[2NC1 + 6i(bi2N−iC1)]. For the
pipeline ADC, Vrefp = −Vrefm = VREF, and the range is
2VREF. The 2N digital levels are ordered by treating the N -bit
digital value as an unsigned integer. The capacitance match-
ing and the amplifier gain are the two main considerations
to produce an accurate DAC. Fig. 5 (blue) shows how errors
induced by capacitance mismatch vary as a function of the
analog output value. The error increases monotonically with
the output value because larger inputs cause more capacitors
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FIGURE 4. (a) N-bit switched-capacitor asymmetric DAC.
(b) Symmetric DAC. (c) Split capacitor DAC. Red/blue
components on the left are shorthand for the subcircuits on the
right.

FIGURE 5. Average error for 100 8-bit DACs with 16% standard
deviation of capacitance mismatch as a function of a perfect
8-bit DAC output.

to be switched on, and thus, a larger error accumulates from
the individual capacitor errors.

As we will explain in Section IV, for neural network appli-
cations, it is highly desirable for the error to be minimized for
analog values in the middle of the DAC’s range. To achieve
this, we use the modified DAC design in Fig. 4(b), which

we will refer to as the ‘‘symmetric’’ DAC. First, the N -bit
digital input is treated as a two’s complement signed value
rather than an unsigned value. Second, instead of always
referencing Vrefp during the input period and Vrefm during the
output period, either Vrefp or Vrefm is used during the input
period (depending on the signed bit) and 0 V is used as a
reference during the output period. Finally, logic is used to
take the magnitude of the digital input and use those bits
to control the capacitors. This results in minimum errors
for inputs close to 0 V due to no capacitors being switched
on, and errors increasing with the magnitude of the input
in either direction as additional capacitors are switched on.
This can be seen in Fig. 5 (orange), where the errors for the
symmetric DAC are perfectly symmetric around a 0-V analog
value.

The output voltage of this DAC is given by

Vout =

1
2N−1C1

∑N
i bi2

N−iC1Vdig

1 + 1/Avβ2
(3)

where b1, . . . , bN are the input bits from MSB to LSB in a
two’s complement representation, N is the number of bits,
Vdig is one of the reference voltages [Vrefp, Vrefm] chosen
by the MSB, and β2 = 2N−1C1/[2N−1C1 + 6i(bi2N−iC1)].
Notice that if each of the bits is zero, then none of the
capacitors affect the output and the output is 0 V.

The split capacitor DAC [Fig. 4(c)] significantly reduces
the size of the capacitors needed [23]. This has a large impact
for the SAR ADC, though less important for the ramp ADC,
which shares one DAC across all columns. The capacitance
reduction is done by splitting the capacitors into two groups:
an LSB half and an MSB half. These two groups are joined
by an attenuation capacitor, which allows the LSB and MSB
halves to use similarly sized capacitors, despite the difference
in their bit significance.

This DAC takes a two’s complement digital input, similar
to the DAC in Fig. 4(b). The output voltage is governed by

Vout =

ClsbsCa+Cmsbs(CLSB+Ca)
(CLSB+Ca)(CMSB+Ca)−C2

a
Vdig

1 + 1/Av
(4)

where Clsbs (Cmsbs) is the sum of the capacitances selected in
the LSB (MSB) group, CLSB (CMSB) is the total capacitance
in the LSB (MSB) group, Ca is the attenuation capacitor, and
Vdig is one of the reference voltages [Vrefp, Vrefm] chosen
by the MSB. There is one exception that is handled by the
switch controlled by e1, when the minimum code is passed.
The attenuation capacitor is set by the following:

Ca =
2
floor

(
N
2

)

2
floor

(
N
2

)
− 1

C1. (5)

III. ADC SIMULATION
For all four ADC topologies analyzed in this work, the accu-
racy is affected by capacitance mismatch, finite operational
amplifier gain, and input offset voltage in the comparator.
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FIGURE 6. ENOB versus standard deviation of capacitance for
(a) pipeline ADC, (b) cyclical ADC, (c) ramp ADC with symmetric
DAC, (d) ramp ADC with asymmetric DAC, (e) SAR ADC with
symmetric DAC, and (f) SAR ADC with split capacitor DAC. Box
shows median, lower, and upper quantile. Whiskers show range
excluding outliers (circles).

Fig. 6 shows how each ADC’s effective number of bits
(ENOB) depends on capacitance mismatch, while Fig. 7 plots
the ENOB versus comparator offset. The effect of gain is
shown in the supplementary information. A gain larger than
50 dB provides good accuracy for all 8-bit topologies. ENOB
is the number of bits the ADC can resolve above the noise
floor; for example, if an 8-bit ADC has an ENOB of 7 bits, the
LSB can be treated as noise. To calculate ENOB, the signal-
to-noise-and-distortion ratio (SNDR) was calculated for each
ADC and converted to ENOB using the following equation
[24]:

ENOB =
SNDR (dB) − 1.76

6.02
. (6)

Notably, the ENOB is an aggregate metric over the entire
input range, and it does not resolve the dependence of ADC
errors on the input voltage.

A. CAPACITANCE MISMATCH
To simulate the sensitivity of each ADC to capacitance mis-
match, the values of the component capacitors were randomly
sampled from a normal distribution, whose standard deviation
was varied. In a typical foundry process, the capacitance

FIGURE 7. ENOB versus standard deviation of comparator offset
for (a) pipeline ADC with 1.5-bit stages, (b) pipeline ADC with
1-bit stages, (c) ramp ADC with symmetric DAC, and (d) SAR
ADC with symmetric DAC, for both 8-bit and 6-bit designs.

mismatch scales inversely with the square root of width times
length [25]

σmismatch(%) ≈ σ0(%) ×

√
W0 ∗ L0

√
W ∗ L

(7)

where σ0 is the standard deviation of mismatch for the mini-
mum capacitor with dimensions W0 and L0. In the following
results, we refer to the value of σ0 as the capacitance mis-
match and this mismatch is scaled for larger capacitors in the
DAC according to (7). While the standard deviation of capac-
itance mismatch was swept, the gain was held constant at
70 dB and the comparator offset was 0V. EachADCwas eval-
uated at 6-bit and 8-bit resolution, which were chosen based
on the evaluation neural network in Section IV (ResNet50
on ImageNet). Previous work has shown that the accuracy
of ResNet50 is nearly unaffected by output quantization to
8-bits, and it remains within a few percentage points of ideal
at 6-bits, as long as the ADC’s range is optimized [4].
As shown in Fig. 6, the SAR ADC with the symmetrical

DAC and the two ramp ADCs are the least sensitive to capac-
itance mismatch. The pipeline, cyclic, and SAR with the split
capacitor DAC are the most sensitive. This is due to the size
of the capacitors used in each ADC. The three that perform
well all have large capacitors (that scale exponentially with
N ). The pipeline and cyclic ADCs only use minimum sized
capacitors, and the SAR with the split capacitor DAC uses
an attenuation capacitor that is very close to minimum size.
Equation (7) shows that the capacitance mismatch decreases
for the larger capacitors. Therefore, the ADCs with larger
capacitors experience a smaller loss of precision for a given
level of capacitance mismatch σ0.

There is no difference in sensitivity between the SAR and
ramp ADCs with the symmetric DACs. All the capacitance
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error in these ADCs is from the DACs, so because they use
the same DAC, they have the same ENOB. The pipeline
and cyclic ADCs also have very little difference, because
they have the same fundamental stages. The variability of the
cyclic is higher than the pipeline as the cyclic ADC only has
one set of capacitors, while the pipeline has N − 1 sets of
capacitors. The additional capacitors help reduce the variabil-
ity in the pipeline ADC.

B. COMPARATOR OFFSET
To evaluate the effect of comparator offset, each comparator’s
input offset voltage was assigned a random value from a nor-
mal distributionwith zeromean. The standard deviation of the
offset voltage for all comparators was varied to produce the
results in Fig. 7. Based on the offset, the comparators would
then switch at a voltage that is lower or higher than the correct
value. For the ramp and SAR ADCs, this directly impacts
ENOB as the output is directly shifted by this offset. The
1.5-bit stage pipeline ADC is designed to mitigate the effect
of significant comparator offsets. To illustrate this advantage,
a 1-bit stage pipeline ADC, which has smaller area but lacks
the redundancy provided by the 1.5-bit stage, was included
for comparison.

The effects of comparator offset on the 1-bit stage pipeline,
ramp, and SAR ADCs are all very similar, as seen in Fig. 7.
Comparator offsets directly impact the outputs of these
ADCs, as explained above. The 1.5-bit stage pipeline ADC
is the outlier as it is largely unaffected by the comparator
offset. The reason is that the 1.5-bit stages resolve each bit
into three categories: high, middle, and low. The high and low
categories correspond to one and zero, respectively, while the
middle category corresponds to an uncertain state. The uncer-
tain state is resolved using digital correction, which considers
the lower bits. This benefits from the lower stages’ higher
total gain. The only way for comparator offset to affect the
1.5-bit stage would be if the offset was larger than the range
of the middle category. In other words, the comparator offset
needs to be large enough to switch a zero to a one or vice
versa, completely skipping the uncertain category. The 1-bit
stage pipeline ADC lacks this critical resilience to comparator
offset. Therefore, for the pipeline ADC, we consider only the
design with 1.5-bit stages in Section III-B.

IV. NEURAL NETWORK SIMULATION
We now investigate the effect of the nonidealities in
Section III on neural network inference using an analog accel-
erator. The accuracy simulations of analog IMC hardware
were conducted using CrossSim [26]. The compact models
for the ADCs, based on the equations in Section II, were
integrated into CrossSim as behavioral models and were
used to digitize every intermediate MVM result in the neural
network.

The ResNet50 network on the ImageNet dataset, shown
in Fig. 8(a), was used as a benchmark [27], [28]. Two
other datasets (MNIST and CIFAR-10) were compared in
the supplementary information, and ImageNet was the most

FIGURE 8. (a) ResNet50 architecture for ImageNet classification.
Mean ImageNet accuracy (ten runs) versus capacitance
mismatch with (b) pipeline ADC, (c) cyclic ADC, (d) ramp ADC
with asymmetric DAC, (e) ramp ADC with symmetric DAC,
(f) SAR ADC with symmetric DAC, and (g) SAR ADC with a split
capacitor DAC.

susceptible to component variation in the ADC. For com-
putational tractability, the following studies considered the
classification of 1000 images from the ImageNet test set.

In order to isolate the effect of ADC errors, we assumed
that weights are quantized to 8 bits and then mapped without
error to memory device conductance values.We also assumed
that positive and negative weights are encoded using a dif-
ference of two conductances and that these contributions are
subtracted in analog prior to the ADC. The ADC input range
(or equivalently, level spacing) for each layer was optimized
via calibration [4]. Each array was limited to 1152 rows,
with larger matrices being partitioned across multiple arrays
with separate ADCs that produce digitized partial sums. The
partial sums are then summed digitally. For ResNet50, this
mapping results in a total of 1.2 × 107 ADC conversions
simulated per input image.

Notably, our simulations include only the nonidealities in
the ADC described in Section III and assume that no errors
are introduced by adjacent components in the signal path,
such as switches and column multiplexers, whose properties
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are highly implementation dependent. The amplifier gain is
held at 70 dB for all of the following results, which ensures
that the accuracy is unaffected by the gain, as shown in the
supplementary information.

It may be possible to digitally correct for ADC errors if
the data dependence of the error in each fabricated ADC is
characterized and stored in a lookup table. Our work did not
assume that any digital correction was done, but additional
work on digital correction schemes may help to reduce the
effect of ADC component errors. The overhead of digital
correction may be significant, so the improved accuracy may
come at the cost of area, power, and speed.

A. CAPACITANCE MISMATCH
Fig. 8(b)–(g) shows the ImageNet accuracy using the pipeline
ADC, cyclic ADC, ramp ADC (with symmetric and asym-
metric DAC), and the SAR ADC (with symmetric DAC and
split capacitor DAC) under varying degrees of capacitance
mismatch. The value of all capacitances is randomly drawn,
separately for every ADC in every array used to imple-
ment ResNet50, at the start of each inference simulation on
1000 images. To obtain the variability in accuracy due to
capacitance mismatch, the simulation was repeated ten times
per value of mismatch (σ0), where all the capacitances were
resampled on each run. We assumed that each pipeline or
SAR ADC is shared across ten columns via time multiplex-
ing. For these results, the comparator offset was set to 0 V.

For the pipeline ADC, there is very little difference in
error sensitivity between the 6-bit implementation and the 8-
bit implementation. Both start out at ∼75% accuracy before
gradually decreasing with increasing capacitance mismatch.
The two implementations have significantly different ENOBs
only at small capacitance mismatch when the ENOB> 5 bits,
as shown in Fig. 6(a). In this regime, the ImageNet accuracy
is not strongly sensitive to ENOB. This is consistent with
prior studies, which showed that the accuracy of ResNet50
is relatively insensitive to a quantization resolution of 5 bits
or more [4]. Then, when the capacitance mismatch is large
enough to affect the accuracy, the two implementations have
converged to the same ENOB [as shown in Fig. 6(a)], thus
causing the similarities in accuracy in Fig. 8(b). The cyclic
ADC is slightly more resilient than the pipeline ADC but is
overall very similar.

The accuracy of the 8-bit pipeline ADC and the 8-bit
ramp ADC with the asymmetric DAC responds similar to
capacitance mismatch. This is surprising, since over the same
range of mismatch, the 8-bit ramp ADC’s ENOB drops much
less than the 8-bit pipeline ADC’s ENOB. This is due to
the difference in the input value dependence of the errors in
the two ADCs, which is not captured by the ENOB metric.
Fig. 9 shows the mean error of the output of the ADCs as a
function of the input voltage. As mentioned in Section II-D,
the distribution of activation values in many neural networks
follows a heavily skewed distribution with most of the values
close to zero [29]. During inference, this means that the inputs
to eachADC are also heavily clustered around zero volts [10].

FIGURE 9. Output error for 8-bit ADCs with 16% standard
deviation of capacitance mismatch as a function of the input
voltage. The error is a mean of 100 runs with randomized
capacitance values.

The ramp ADCwith the asymmetric DAC has a lower overall
error than the pipeline ADC (as expected from Fig. 6), but
close to zero, the pipeline ADC actually has less error.

When a symmetric DAC is used, both the ramp ADC and
the SAR ADC are minimally affected by the capacitance
mismatch. There is still a difference between the 6-bit and 8-
bit implementations, but the overall tolerance to capacitance
mismatch has increased, so the difference is less. The reason
for this improvement is explained by Fig. 9, where the use
of the symmetric DAC with the error profile shown in Fig. 5
leads to a minimum in the ADC error around a 0-V input.

The SAR ADC with the split capacitor DAC is more
strongly affected by the capacitance mismatch than the SAR
ADC with the symmetric DAC. This is due to the reduction
in capacitance size of the split capacitor DAC and sensitivity
to the value of the small attenuation capacitor. The cost
of reducing the area is decreased resilience to capacitance
mismatch, which can also be seen in the larger errors in Fig. 9
compared to the other DAC designs.

B. COMPARATOR OFFSET
We investigated the effect of comparator offset on the Ima-
geNet accuracy for the 8-bit implementations of the pipeline
ADC, ramp ADC with symmetric DAC, and the SAR
ADC with symmetric DAC, using the method described in
Section III-B. The capacitor mismatch standard deviation
was held constant at 1% for these tests. These results are
shown in Fig. 10.

For the ramp and SAR ADCs, the ImageNet accuracy is
strongly affected by the comparator offset. Both the ramp
and the SARADCs utilize the comparators to directly resolve
the digital level, so any offset in the comparator will directly
impact the resolution of the ADC. For a standard deviation
of comparator offset of 3.5% VREF, the ImageNet accuracy
falls to only 10%. By comparison, the ImageNet accuracy for
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FIGURE 10. Mean accuracy of ten runs of ImageNet with an 8-bit
pipeline ADC, ramp ADC with symmetric DAC, and SAR ADC
with symmetric DAC at different comparator offsets.

FIGURE 11. Mean accuracy of ten runs of ImageNet compared to
the ENOB for all the ADC topologies in Fig. 8. For each of the
six topologies, the upper label in the legend is 8-bit and the
lower label is 6-bit.

the pipeline ADC is unaffected by comparator offset up to a
standard deviation of comparator offset of 10% VREF. This is
due to the robustness to comparator offsets provided by the
1.5-bit pipeline stages, as discussed in Section III-C.

C. ENOB AS A PREDICTOR OF INFERENCE ACCURACY
Fig. 11 shows the relationship between the ENOB of the
ADC and the ImageNet accuracy, by combining the results in
Figs. 6 and 8(b)–(g). The pipeline ADC, cyclic ADC, ramp
ADCwith symmetricDAC, and both SARADCs have similar
accuracy as a function of ENOB, and the dependence is sim-
ilar to what has been shown in previous work that quantified
ImageNet accuracy versus the number of ADC quantization
bits [4]. The accuracy for these five ADC topologies is not
significantly affected above an ENOB of 5 bits and then
rapidly decreases with a projected <1% accuracy at 3 bits.
The ImageNet accuracy as a function of ENOB for the

two ramp ADCs with an asymmetric DAC, however, is very
different. These have a lower accuracy for the same ENOB
compared to the other cases. Both the 8-bit and 6-bit version
have low accuracy at 5 bits of ENOB. This deviation from
the trend is due to the fact that unlike the other topologies,
the ramp ADC with an asymmetric DAC does not have an
error minimum at 0 V. This can be seen in Fig. 9. More
generally, these examples show that the ENOB can be a poor
metric to predict the effect of ADC errors on the accuracy

of neural network inference. This is because the ENOB is a
measure of the average error across the entire range of analog
inputs, while the ImageNet accuracy depends critically on the
distribution of these errors over the input values. Specifically,
neural networks more heavily weigh errors around zero, due
to the statistics of the intermediate data values present inside
the algorithm. The ENOB is only useful as a predictor of
neural network accuracy when comparing ADCs that are
known to have a similar distribution of errors across input
values. In the supplementary information, we propose the
Gaussian weighted error, an alternative figure-of-merit that
better accounts for the typical distribution of errors in a neural
network and has a stronger correlation with accuracy.

V. CONCLUSION
The choice of the ADC implementation in analog IMC sys-
tems should consider not only speed, power consumption, and
area but also the effect of the ADC on the accuracy of the
algorithm. There are tradeoffs between accuracy and the other
metrics, and how they should be weighted in the design of the
ADC is highly dependent on the use case.

Our results showed that when considering the end-to-end
neural network inference accuracy, accelerators built from
different ADC architectures have different sensitivities to
component mismatch inside the ADCs. For most other appli-
cations, the precision of an ADC can be adequately described
using the widely known ENOB metric. However, as shown
by our results, the ENOB is not generally a good predic-
tor of the accuracy of neural network inference, because it
gives equal weight to all the possible input values to the
ADC. For neural network inference applications, the ADCs
in an analog IMC system should preferentially minimize the
error in the middle of its input range, which provides better
matching to the statistics of intermediate data inside these
algorithms. With a suitable DAC design, the ramp ADC and
SAR ADC can both provide this key property. The pipeline
and cyclic ADCs also intrinsically have this characteristic,
while also offering superior robustness to comparator voltage
offsets.
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