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ABSTRACT This article presents a modified compact model of resistive random access memory (RRAM)
with a tunneling barrier. The bilayer modulated RRAM can be integrated into a higher density array, reducing
leakage current in standby mode. The model demonstrates current transition behavior from low- to high-
bias regions by considering both bulk-limited and electrode-limited transport mechanisms. This model can
evaluate RRAM array performance under various pulsing conditions and device parameter variations with
calibrated model cards. The compute-in-memory application requires precise current sum results hindered by
the wire resistance loading effect. This study also evaluates various sizes of arrays suitable for performance
improvement.

INDEX TERMS Bilayer resistive random access memory (RRAM), compact model, computing-in-memory,
interconnect resistance, RRAM.

I. INTRODUCTION
As the semiconductor industry continues to push the scaling
of MOS transistors, information technology has proliferated,
mainly improving the application of artificial intelligence
(AI) through artificial neural networks (ANNs). However,
the limitations of traditional von Neumann machines have
reached a bottleneck in terms of data transfer between mem-
ory and arithmetic units. Additionally, power consumption
per chip area has become increasingly challenging to scale
down. Moreover, due to their high computational require-
ments, AI applications are often associated with high energy
consumption and heat generation, which can limit their
performance. Emerging memories have shown their potential
to solve these problems by mimicking the neuron operation
in the human brain. Therefore, studying memory cell charac-
teristics and array performance, also known as device-circuit
interaction (DCI), is crucial for technological development.

In recent years, there has been extensive research on the
bilayer transition metal oxide (TMO) structure of resistive
random access memory (RRAM), including HfOx/AlOx,
HfOx/TiOx, and TiOx/TaOx. These bilayer RRAMs, with
different material combinations, show promising results as
they increase the nonlinearity of current, making them
advantageous for large-array applications due to their low
standby leakage current. Several studies have reported
that the inserted dielectric layer significantly increases the
nonlinear factor at read voltage compared to devices with
only switching oxide [1], [2], [3].

This article introduces a novel 2-D material, hexagonal
boron nitride (h-BN), which acts as an ultrathin tunneling
barrier (TB) for bilayer modulated RRAM and is an excellent
insulating layer for RRAM applications [4]. By combining
transport mechanisms, the characteristics of bilayer RRAM
can be captured and applied to DCI studies, further improving
AI applications.

II. EXPERIMENT
To maintain the original function of the hBN layer, a
150-nm-thick titanium nitride (TiN) layer was sputtered onto
a SiO2/Si substrate as the bottom electrode (BE). TiN, with a
proper work function (WF) of 4.45 eV, formed an appropriate
barrier height with the conduction band minimum (CBM) of
the hBN layer, achieving better nonlinearity. A thinmultilayer
hBN was transferred onto TiN via bubbling transfer, with a
thermal release tape as the supporting layer [5]. A 5-nm-thick
HfO2 layer was deposited via thermal atomic layer deposition
to serve as the switching layer. The device was fabricated
by depositing the oxygen-exchange layer and top electrode
(TE)-Ti and Al via e-gun evaporation. The device structure
was Al(TE)/Ti/HfO2/hBN/TiN(BE). DC measurements of
the bilayer RRAM devices were performed using the
Cascade/Agilent B1500A.

III. MODELING METHODOLOGY
This proposed model is built by the SPICE-compatible
language, Verilog-AMS, widely used in the semiconductor
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industry. To simulate the characteristics of RRAM cells, the
model mainly comprises a current calculation module, a gap
(filament) formation module, and a temperature calculation
module. The transport mechanisms in the insulator have
been extensively discussed throughout the development of
the semiconductor industry. The main categories of transport
mechanisms are bulk-limited current and electrode-limited
current. Many RRAM studies have focused on a single
transport mechanism.

Therefore, this article proposes a compact model that
includes both bulk-limited and electrode-limited mechanisms
with a smooth transition that can be applied to various
fabricated RRAM devices. To achieve this, we introduce
Fowler–Nordheim tunneling (FNT), space charge limited
current (SCLC), and ohmic conduction, consistent with the
experimental extraction results. Many studies have shown
that the bilayer structure that creates high-nonlinearity
RRAM demonstrates FNT behavior [6], [7], [8]. The trans-
port mechanism in the insulator shows multiple possibilities.
This is caused by the fabrication method. By observing
the extracted data and some other similarly fabricated
bilayer RRAM studies, the coexistence of SCLC and FNT
mechanisms is suitable for this experimental result. Hopping
is indeed one of the leading transport mechanisms in reported
studies of RRAM, but in this study, we found it not as
significant as SCLC and FNT. In the high-resistance state
(HRS), one of the benefits of the double layer is that the
second dielectric layer creates filament seeds that improve
cycle-to-cycle uniformity [9].

FIGURE 1. Schematic of tunneling gap and filament formation.
(a) RRAM cell is composed of TE, switching layer, TB, and BE,
and the conductive filament is formed or ruptured during the
set/reset process under forward-/reverse-bias condition. In the
actual measurement, the RRAM conductance shows the
distribution in a group of devices. In terms of model, only some
devices grow to full switching layer. This is an assumption
made by the authors that the filament formed in switching layer
until blocked by TB. (b) Description of current flow is mainly
calculated by SCLC, ohmic, and FNT. If the RRAM device is
fabricated with only a single layer of switching oxide, it is
simulated with ohmic and SCLC. If the device is fabricated with
a bilayer structure, the simulation includes both SCLC and FNT.

As shown in Fig. 1, the gap formation model calculates the
movement of filaments, which determines the tunneling gap.

The electric field across the dielectric layers can be defined
as the tunneling gap changes. Since the tunneling current is
highly dependent on the electric field, the thickness of the
tunneling gap determines the current level. A conducting path
responsible for SCLC and ohmic current is formed as the
filament grows. The time and thermal energy-related positive
feedback behavior are shown in Fig. 1.

A. CURRENT CALCULATION
Regarding high field, the FNT becomes the predominant
output current. Thus, the TB creates a high selectivity of
RRAM devices. The tunneling current can be expressed as
follows [10]:

JFN =

(
q2/8πhϕ

)
E2exp

(
−8π

√
2m∗qϕ3/3hE

)
(1)

where h is the Plank constant, ϕ is the band offset between
electrode and tunneling oxide, d is the direct tunneling
distance, m∗ is the effective mass, and E is the electric field
across the tunneling gap. The tunneling current could be
lumped into

JFN =

(
AE2/ϕ

)
exp

(
−Bϕ1.5/E

)
(2)

where A and B represent (q2/8πh) and (8π (2m∗q)1/2/3h),
respectively, which can be extracted from the experiment
data.

The typical SCLC and ohmic conduction behavior is
described as follows [10]:

Jsclc = (9/8) µε
(
V 2/d3

)
(3)

and

Johm = qµn (V/d) (4)

where µ is the mobility in the dielectric, ε is the dielectric
constant, and d is the dielectric thickness. Finally, the total
current is calculated by multiplying J and the filament
contact area. The tunneling current at a high electric field is
determined by FNT.

The above mechanisms are smoothed with the window
function, which can be constructed from tanh functions [11],
such as

F (x) = f0 (x) [1 − tanh (x − x0)] /2

+ f 1 (x) [tanh (x−x0) + 1) /2 (5)

where f0 (x) and f1(x) represent different equations used here.

B. GAP FORMATION
The tunneling gap changes with the filament movement,
whose range is defined between the maximum gap (Gapmax)
and minimum gap (Gapmin), as indicated in Fig. 1(a). The
process occurs when the oxygen vacancies start to generate.
It could quickly form a conductive path that leads to a
low-resistance state (LRS) ohmic current and reduces the
tunneling gap distance. The time and the thermal-related
positive feedback behavior are expressed as [12]

dg
dt

= v0exp
(

−Ua

kT

)
sinh

(
qaγE
kT

)
(6)
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where g is the gap between electrode and filament, Ua is
the activation energy, and a is the oxide lattice constant.
v0 and γ represent the escape attempt frequency and
local enhancement factor that considers high-k dielectrics’
polarizability and the device structure’s nonuniform potential
distribution, respectively [13].E is the electric field across the
oxide.

C. TEMPERATURE CALCULATION
The gap evolution would increase the current and the
temperature due to Joule heating. Then, the increased
temperature would accelerate the gap formation. A compact
temperature calculation model helps the evaluation of this
thermal run-away process. The temperature in the active
region (TRRAM) is evaluated with Joule heating (Wj) and
thermal dissipation (Wd) as

TRRAM =

∫ t1

t0

(
Wj −Wd

)
/CVdt. (7)

The above equation is further derived into a closed-form 1-D
case as [8]

TRRAM =
dhdWj

kA

(
1 − exp

(
−kA
dhdCV

t
))

+ Troom. (8)

C is thematerial’s heat capacity,V is the device’s volume, and
k is the heat transfer coefficient.A is the filament contact area.
dhd is the heat dissipation distance assumed to be the same as
total device thickness.Wj and Wd are defined as follows:

Wj = IpnVpn (9)

and

Wd = ∂Q/∂t = −k∇T . (10)

The temperature factors accelerate the time, and the
thermal-related positive feedback formation of conductive
filament is described in (7).

TABLE 1. Model card of the simulated RRAM.

Using the model discussed above, the simulated I–V
characteristics of the RRAM cell with an embedded TB are
shown in Fig. 2, where the case without the embedded barrier
is included for comparison. The simulated parameters are
listed in Table 1. The not well-fit LRS at 1.1–1.5 V is due
to an internal numerical calculation. To capture the current

FIGURE 2. Measured device and simulated result. (a) Result of
the device with TB and the result of RRAM without TB. The
simulated quasi-dc is under the ramp rate of 0.5 V/s. (b) FNT
extraction from (a). (c) Extraction of SCLC and ohmic
conduction from (a).

suppression effect at low-voltage region in LRS, which
increases the nonlinearity of RRAM, two kinds of transport
mechanisms are smoothed together to make it continuous. At
present, the nonlinearity and low-current value at LRS are
well-fitted. More fitting parameters could be introduced into
the model to improve the accuracy at higher bias regions.

To predict the reliability of RRAM, the Arrhenius
equation Aexp(Ea/KT ) may be utilized [14]. This equation
corresponds to the retention degradation and the redox
reaction involved in the process. Typically, the temperature
dependence of the reaction rate adheres to the Arrhenius
law. The prediction of temperature could be introduced here.
This equation signifies the self-diffusion of the mobile ion
within the device. Since the generation of oxygen ion or
oxygen vacancy pairs dictates the conductivity of RRAM,
the associated resistance drift can be described using this
self-diffusion term. Such a drift is linked to the reliability of
RRAM, enabling the prediction of temperature to evaluate the
retention of RRAM.

Although this study focuses on the interconnect issue of
computer integrated manufacturing (CIM) applications and
does not consider the interface defect, the impact of the trap
must be considered in further studies. The trap’s influence
on memory variation and failure is a critical aspect that must
not be overlooked. The defect/trap would cause variation
issues like random telegram noise (RTN) that would cause
read errors [15], [16]. Due to the device being under a
smaller read current, the variational effect would be even
higher. The trap impacts the HRS/LRS failure because the
resistance window shifts toward HRS or LRS after the
Set/Reset cycles. This would affect the device application
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for online learning and offline learning. For online learning,
the device is under continuous weight update, which means
hundreds or thousands of Set/Reset (Program/Erase in other
memories) processes depending on the choice of algorithm
(NN model and hyperparameters). As for offline learning,
the model is trained on CPU/GPU and once programmed
to RRAM array. To avoid the HRS/LRS failure caused
by the trap and the device Set/Reset asymmetry in weight
update (asymmetry Set/Reset IV behavior), RRAM in this
study assumes an offline learning scenario, mainly focusing
on the benefits of IV nonlinearity that bilayer RRAM
brings.

IV. APPLICATION FOR COMPUTING-IN-MEMORY
A. SINGLE-CELL COMPARISON
This section discusses two types of RRAM with the
same switching oxide, HfO2, which is commonly used in
RRAMs. The nonlinearity difference between the two types
is increased by the TB, which is commonly determined
by [6], [17]

η = (I@Vref) / (I@1/2Vref) or (I@1/3Vref) .

In this study, Vref is defined as 1.5 V. The higher the
nonlinearity is, the higher the selectivity is for RRAM
devices. Resistive switching with and without a capping layer
exhibits significant differences in characteristics, especially
in the mid- and low-biasing regions. Different transport
mechanisms can be extracted in different bias regions for
bilayer devices.

As shown in Fig. 2(a), the device without a TB can be well-
fit with a simple ohmic conduction mechanism. In contrast,
the device with a TB shows a dramatically decreased read
current in the low-bias region. This observation is consistent
with the findings of [10], which demonstrated that in the
bulk-limited transport mechanism of RRAM operation, the
LRS primarily exhibits ohmic conduction, while the HRS
exhibits both space-charge-limited conduction and ohmic
conduction.

In Fig. 2(b) and (c), the extracted characteristics from
measurement data in the highly biased region transport
mechanism show FNT behavior. However, looking at the
right-hand side of the FNT extraction plot, the slope
difference suggests that compared to a purely tunneling
mechanism, the current could not cover the entire transition.
Thus, the extraction in themid- and low-bias regions is shown
in Fig. 2(c).

B. NEUROMORPHIC APPLICATION
The operation of deep NNs can be accelerated by using
memory arrays. In an ANN, the weight connecting neurons
with different weights can be represented, as shown in Fig. 3.
The input signal sent from input neurons goes through a
synapsewith a certain weight. For a fully connectedANN, the
operation between two layers of neurons can be represented
as a vector multiplication. The input voltage multiplied by the
conductance generates current. The sum of currents in each

FIGURE 3. Schematic of NN and memory array. The signal
transfer between the layers of NN could be emulated by vector
matrix multiplication (VMM) of memory array by Ohm’s law.

column represents the final input to the next layer of hidden
neurons.

TABLE 2. Tested RRAM characteristics with technology
assumption [18], [19] for transient simulation.

To simulate the circuit-level behavior in the NN appli-
cation, Table 2 lists the assumptions and parameter values
used in the array simulation. The fabricated device was
assumed to be scaled to the current level that fits within the
operation range of a 0.18-µm transistor. The nonlinearity
ratio remained the same for both the single-layer and bilayer
devices. The bilayer RRAM, which has a higher nonlinearity,
was set at the same voltage amplitude as that for the
single-layer device. Consequently, the bilayer RRAM shows
reduced current at Vread, relieving the loading effect issue.
The comparison results are presented in Section IV-C. When
the application is used for offline learning, the whole ANN is
trained in CPU/GPU, and the result is then programmed into
the RRAM array. In this case, the array mainly performs the
inference task.

The inference accuracy of the NN is highly depending on
the result of the output neuron, which collects the output
signal from the previous layer. Even if the weight/synapse is
ideal, the output signal inevitably shifts due to the loading
effect on the interconnect resistance. Although the actual
connection of Rwire might be parallel or serial depending on
the weight-input combination, which would be described in
Section IV-C.1), one can qualitatively describe the effect as
Rsynapse in series with Rwire. The impact from Rwire is higher,
and the value of Rsynapse is less recognizable. The loading
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FIGURE 4. Schematic of memory array structure considering the
parasitic Rwire loading effect on: (a) cell without parasitic Rwire
would be compared with: (b) BL with Rwire; (c) SL with Rwire;
and (d) both BL and SL with Rwire. The WL would determine
whether to read or write the memory cell. The total current-sum
error rate is compared with that of the memory cell array
without considering Rwire. The circuit simulation calculates the
current sum of a single column from 1 to 256 cells.

effect is caused by the IR drop on the wire resistance; the
actual current sum is reduced.

C. LOADING EFFECT ON BACKEND INTERCONNECT
1) INPUT-WEIGHT COMBINATION SCENARIOS
Performing this type of operation requires a significant
amount of current summing, but the loading effect on the
wordline (WL), bitline (BL), and source line (SL) takes place.

FIGURE 5. (a) Single RRAM cell and (b) RRAM cell selected from
one of the columns in a 256 × 256 array. The block in red
means the corresponding pulse condition cannot let the device
reach MRS. The Rwire loading leads to the increase in minimum
write voltage.

When the SL is charged to Vdd, the state of WL determines
whether the input would affect the synapses. The result of the
current sum is then observed by examining the node Vload.
Hence, the WL voltage represents the input of 1 or 0. On the
other hand, the resistance state of the selected synapse itself is
either HRS or LRS, which means 0 or 1 of weight. As shown
in Fig. 4, there will be four kinds of conditions for each
neuron cell.

Note that the WL resistance is not in the current path,
so this study does not consider the resistance impact from
WL. Also, considering the whole circuit, the driver/sink
resistance would share the loading effect. Depending on the
array size and input-weight scenarios, the impact of wire
resistance would vastly vary at this stage. This work focuses
on the Rwire impact, and the driver/sink effect could be
included in the overall power, performance, area, and cost
(PPAC) evaluation in further studies.

Without considering the wire resistance, the current sum is
multiplied by the number of each case in (a) and summed
together. As for cases considering Rwire on BL and SL,
there are several combinations that the cell with input-weight
condition 1-1 (1-1 cell) would be connected to Rwire both
in series and parallel in the whole circuit. Note that the 1-1
cell contributes most of the current while the 0-0, 0-1, and
1-0 cells contribute much less current than the 1-1 case. The
1-0 and 0-1 cells represent the same digital output, but the
currents differ. By utilizing bilayer RRAM, the difference
could be suppressed. In the following discussion, all the cells
are first programmed to the LRS and controlled byWL,which
means the cell state is either 1-1 or 0-1.

Here, we discuss the possible scenarios that would result
in different current sum values with the loading effect. For
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FIGURE 6. Simulated errors versus the size of the array. (a) Error
rate is evaluated either with SL loading effect, BL loading effect,
or source line and bit line (SLBL) loading effect. Regardless of
the scenario, the error rate increases quickly as the size of the
array increases. (b) With lowered output current by bilayer
RRAM (with barrier), the error rate would be reduced on both
worst-case scenario and average errors.

instance, half of the WLs could be pulled up at the upper part
of the column, and another half remains off at the lower part.

In contrast, half of the WLs could also be pulled up at the
lower part of the column. In the following discussion, both
cases account for 50% of the total column number.

The scenario described from the top column to the
bottom column would be (50%, 1-1)–(50%, 0-1) (case A).
Another case for the same level of the current sum would
be (25%, 1-1)–(25%, 0-1)–(25%, 1-1)–(25%, 0-1) (case
B). Although these two cases represent the same level
of input-weight multiplication, the actual output would be
affected by the Rwire. In case A, the half side of SL/BL
is connected with Rwire in series since WL turns off the
adjacent cells. As for case B, 25% of Rwire on SL/BL is
connected in series, and the mid column is connected in
parallel with WL being pulled up. The combination could
be further expanded into like (25%, 0-1)–(25%, 1-1)–(25%,
1-1)–(25%, 0-1) and (25%, 1-1)–(25%, 0-1)–(25%,
0-1)–(25%, 1-1).

In the application of ANN, the TB reduces the error rate
and the total current sum value at the output end. Each RRAM

FIGURE 7. Average error rate improved by applying bilayer RRAM
for the NN application. (a) Current sum error rate of bilayer
RRAM with SLBL, SL-only, and BL-only loading effects.
(b) Current sum error rate of single-layer RRAM with SLBL,
SL-only, and BL-only loading effects. The IR drop effect
increases with the size of the array, which contains more Rwire
in the whole circuit. Thus, the overall average loading effect is
significantly reduced by applying bilayer RRAM, which reduces
the LRS current leading to less IR drop in the circuit.

cell’s conductance in the NN application represents the
synapse’s weight. However, not all neurons receive signals
during actual operation, and not all weights are in high
conducting states. As a result, the loading effect can vary
depending on the distribution of weight and input signals.

Connecting the devices can significantly impact the actual
current sum due to the nature of utilizing Kirchhoff’s law. The
loading effect is evaluated by the ratio of the array’s current
sum without considering the wire resistance over the array’s
current sum considering the wire resistance. The current sum
is calculated at the output of BL by the nature of Ohm’s law.
The loading effect on BL and the impact on the SL are the first
things to be considered. If this effect is considered for SL, the
phenomenon mentioned earlier would become the opposite:
the top RRAMwould be series connected with the least Rwire
component. The combination of case A- and case B-like
scenarios is then averaged together and evaluated in different
array sizes in the following section. The worst-case scenario
would happen at, for example, case B-like (25%, 1-1)–(25%,
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0-1)–(25%, 0-1)–(25%, 0-1). Only the top 25% side of the
column cell is enabled. The BL side is series connected
with Rwire on BL reset of the 75% column cell. If the case
is 5%–95%, the result would be more extreme. However,
to cover up most of the input-weight distribution, the column
combination discussed in this article is divided into four parts
as case B.

2) CURRENT SUM ERROR EVALUATION
To write RRAM, WL is enabled and SET voltage pulse with
various amplitudes and widths is applied to BL. As shown in
Fig. 5, the write shmoo plot shows the switching condition
under various pulsewidths and amplitude. Due to the more
connectedRwire in a larger array, there will be a higher voltage
drop along the SL and BL. Thus, the voltage across the
RRAMwould be less than expected, leading to the write error
in the device. The write error case is defined as the device
not reaching the mid-resistive state (MRS), which means
the current would be less than half of the LRS current. The
minimum pulse voltage or width needs to be increased to
switch RRAM.

To study the impact of the loading effect with wire
resistance and avoid the write error condition, the following
cases are simulated by assuming a higher local enhancement
factor γ for the filament change in which the state 1 of
weight is ensured. Only the enabled WL determines the
combination of the Rwire connection. The value of the current
sum impacted by the wire resistance is compared with the
cases without wire resistance. As the size of the array
increases, so does the ratio.

Hence, the current sum error would be inevitably high
at a larger array scale. However, the bilayer RRAM that
operates at the same voltage range with a smaller current
would decrease its error rate, as shown in Fig. 6. In Fig. 7,
more Rwire values are considered by including both SL and
BL. In most severe error cases, the bilayer RRAM could
decrease its error rate by almost 50%.

As described earlier, the loading effect can significantly
impact the analog-to-digital converter (ADC) output for the
input of the next neuron layer. The current sum error would
affect the ADC that converts the current sum into a digital
value due to the wire resistance loading effect. When it is sent
to the next layer of NN, the current sum error rate is directly
converted into the error rate of the output bit.

The resolution of ADC is defined as the smallest incremen-
tal voltage that can be recognized and thus causes a change
in the digital output. It is expressed as the number of bits
output by the ADC. Therefore, an ADC converts the analog
signal to a digitized value. For example, if the tested cases
have 256 rows, choose an ADC with a resolution of 8 bits.
Assume that a voltage ADC with current-to-voltage (I /V )
conversion is used. The current sum is converted into voltage
for digitalization steps with a reference voltage Vref. The
output would be Vref/256 for each digital step.
Also, the simulation data indicate that the current sum error

rate increases dramatically with the array size after n = 32.
An error rate below 10% is more acceptable, considering the

FIGURE 8. Comparison of different current sum with thickness
variation. The total variation drops slightly as the size of arrays
increases due to the total current sum increases. The variation
of each of the switching layer and barrier layer is set up with:
(a) 0.5- and (b) 1-nm variation, respectively. The variation would
arise during the deposition process. The Monte Carlo
simulation is done by using Gaussian distribution with three
standard deviations.

array size and ADC resolution. Take a 5 -V 8-bit ADC as an
example, and the resolution would be about 0.0195 V, which
is about 0.4% for each case. Thus, the current sum error is
significant for this application. If the design chooses a 6-bit
ADC, the resolution is about 1.5% for each case, and the error
rate of the bilayer structure is close to this range, which is
more acceptable than that in the 8-bit case. For a more robust
design, a size n = 256 current sum array could be replaced
by four size n = 64 current sum arrays.
The resistance variation of RRAM also needs to be taken

into consideration. A significant drawback hinders RRAM
from applications and mass production in the industry.
Because the resistance switching phenomenon is dominated
by the change of conduction filaments, its physical dimension
would directly affect the resistance distribution of every
RRAM resistance state. Since the current calculation is
mainly determined by the electric field within the device, it is
sensitive to the variation of dielectric layer thickness during
the thin-film deposition process. The presented model with
Gapmin and Gapmax could be helpful in the study of process
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variation. The variation of Gapmax and Gapmin might vary
the set voltage Vset from HRS to LRS and LRS current,
respectively. As predicted in Fig. 8, the overall variation of the
current sum is more minor as the array size becomes larger.
Because the value of the current sum is higher as the array
size gets larger, the variation per array is more minor due to
the nature of the NN algorithm.

FIGURE 9. Comparison of different Rwire according to different
technology nodes. Rwire values of 20, 10, and 3 � correspond to
the 10-, 14-, and 22-nm technology nodes [20], respectively.
As Rwire increases with the technology node, the error rate for
the current sum becomes even more severe.

As technology nodes advance, critical dimensions (CDs)
are pushed to smaller sizes, increasing wire resistance. This,
in turn, can negatively impact the current sum, as shown
in Fig. 9. Enlarging the array size can also raise the
error rate. Developing advanced technology nodes further
exacerbates this problem by contributing to the rising
wire resistance. Although scaling CD can enhance circuit
density and performance, it also results in larger interconnect
parasites, which must be carefully evaluated for further CIM
performance in following-generation applications.

V. CONCLUSION
This study presents a novel model that combines the
bulk-limited and electrode-limited transport mechanisms for
bilayer RRAM. This model enables predictive evaluation of
the device current in NN applications, where each RRAM
cell’s conductance represents the synapse’s weight. However,
the loading effect can impact the evaluation of device current,
as neuron/weight combination would vary the final current
sum during operation. To overcome this issue, we propose
using bilayer modulated RRAM, which significantly reduces
the impact of the loading effect. By leveraging the unique
properties of bilayer RRAM, we can achieve a more reliable
and accurate evaluation of device current, improving the
overall performance of NN applications. Our findings pave
the way for developing more advanced and efficient NN
models with a wide range of potential applications in areas
such as image and speech recognition, natural language
processing, and autonomous driving.
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