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ABSTRACT This article presents the flipped (F)-2T2R resistive random access memory (RRAM) compute
cell enhancing the performance of RRAM-based mixed-signal accelerators for deep neural networks (DNNs)
in machine-learning (ML) applications. The F-2T2R cell is designed to exploit the features of the FD-SOI
technology and it achieves a large increase in cell output impedance, compared to the standard 1-transistor
1-resistor (1T1R) cell. The article also describes the modeling of an F-2T2R-based accelerator and its
transistor-level implementation in a 22-nm FD-SOI technology. The modeling results and the accelerator
performance are validated by simulation. The proposed design can achieve an energy efficiency of up to
1260 1 bit-TOPS/W, with a memory array of 256 rows and columns. From the results of our analytical
framework, a ResNet18, mapped on the accelerator, can obtain an accuracy reduction below 2%, with respect
to the floating-point baseline, on the CIFAR-10 dataset.

INDEX TERMS Analog in-memory computing, convolutional neural networks, FD-SOI, mixed-signal
accelerators, resistive random access memory (RRAM).

I. INTRODUCTION
Deep neural networks (DNNs) have achieved large success in
a wide variety of machine-learning (ML) applications, from
image classification to object detection and speech recog-
nition [1]. In recent years, mixed-signal accelerators have
emerged as a valuable solution to maximize throughput and
energy efficiency, in DNN algorithm execution. These pro-
cessing units operate with low-precision operands, obtaining
high classification accuracy, with a great reduction of energy
consumption [2]. Accelerators exploit the concept of analog
in-memory computation (AiMC) to reduce data movement
between memory and processor [3]. Matrix–vector multipli-
cations (MVMs) for DNN inference are realized directly in
computing memory cores, where multiplications and accu-
mulations (MACs) of weights w and input activations a are
realized in the analog domain. The memory cells, used to
store the pretrained wi,j, are arranged in crossbar arrays, and
the activations ai, representing the input data of each layer,
are transmitted along the crossbar rows, as shown in Fig. 1.
The MVM results Yj are stored as analog quantities on the
array columns, called summation lines (SLs), and digitized by
means of analog to digital converters (ADCs), for nonlinear

FIGURE 1. Block diagram of the memory accelerator for DNN
with I/O interfaces.

operation in the digital domain. In the last years, several
nonstandard memory devices have been exploited for weight
storage [1]. By the inclusion of these memories, mixed-
signal accelerators can outperform the standard SRAM-based
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implementations, at the cost of additional challenges in
process integration and circuit design [2]. Among nonstan-
dard devices, resistive random access memory (RRAM) is
nonvolatile, with potential high memory density, and can
offer multibit weight capability [4]. Mixed-signal accelera-
tors embedding RRAM are often based on the 1-transistor
1-resistor (1T1R) cell, which integrates the resistive memory
and a selector for the write. Several challenges, related to the
relatively low RRAM resistance values, the small program-
ming range, and the variability of the resistance levels, affect
this compute cell [5], [6]. The low value of the programmable
resistance is particularly critical for the computation linearity,
making the MVM result severely affected by the IR drop
along the column. This forces countermeasures in hard-
ware, including integrator circuit or transimpedance ampli-
fier (TIA) to clamp SL, with penalties for accelerator area
and energy consumption [2]. Reducing the number of cells in
computation can also alleviate this issue, but it also reduces
the energy efficiency [7]. A compute cell, based on the posi-
tion switching of the RRAM device and the access transistor
to increase the cell output impedance, was recently proposed
in [8]. Despite the significant reduction of the cell current, the
accelerator proposed for this cell still exploits the clamp on
the SL, operating in the continuous time domain. This leads
to high values of energy per computation and penalizes the
computation accuracy, due to low resolution of the activations
and the integration of the compute-cell output noise over the
whole clamp bandwidth.

In this article, we describe and analyze an accelerator for
DNNs, based on the novel flipped (F)-2T2R compute cell.
By design, the F-2T2R has high output impedance in process-
ing, allowing the removal of costly clamping circuits and acti-
vation in parallel of a large number of cells, without penalty
for the MVM linearity. Moreover, it enables multibit activa-
tions and accelerators operating in the discrete-time domain,
with large benefits in terms of computation efficiency. The
F-2T2R compute cell, exploiting the features of the FD-SOI
technology for the RRAM writing tasks, is described and
analyzed in Section II. In Section III, we propose the design
in 22-nm technology of a memory accelerator, integrating
the new F-2T2R. A MATLAB model of the accelerator,
including the most significant circuits nonidealities, has been
developed for a system-level optimization and it is described
in Section IV. The model and the accelerator hardware met-
rics are verified with simulations at the transistor level, repor-
ted in Section V. The F-2T2R accelerator performance has
been also validated on an ML benchmark, with an in-house
analytical framework. The results are reported in Section VI.

II. F-2T2R: A NOVEL CELL FOR TIA-LESS AND HIGHLY
PARALLEL RRAM-BASED ACCELERATOR
Mixed-signal accelerators in CMOS technology, with embed-
ded RRAM, are typically based on the 1T1R compute cell
scheme, where a MOS transistor is used as a switch for
cell selection, during the write and the computation phases,
and the weight is stored as the resistance value Rr of a
RRAM memory device [7]. This approach is common in
literature, and Fig. 2(a) shows an example array column
of a charge-domain RRAM accelerator based on the 1T1R
compute cell. Rr can be programed over Lr values, from

FIGURE 2. (a) 1T1R cell RRAM accelerator column, (b) proposed
F-1T1R compute cell column, and (c) timing diagrams of the two
architectures.

the minimum RL to the maximum RH , to obtain equally
spaced resistance values. At constant SL voltage, this corre-
sponds to equally spaced current levels in the compute cell.
Typically, Lr ranges from 2 to 8 values [9]. The scheme
in Fig. 2(a) includes a digital-to-time D/A converter (DAC)
to drive the gates of the MOS switches of the 1T1R cells,
on the same row, with the pulsewidth modulated (PWM)
signal VDD · acti(t)1 [2]. The length of the pulse is propor-
tional to the activation value, that is, TMAC · ai with ai ∈

[0, 1]. The voltage of the SL is clamped by means of a TIA,
implementing the charge-to-voltage conversion [10]. Thus,
the current sunk by the ith cell Ic(i) in the MAC phase is,
in first approximation, proportional to the conductance of the
RRAM device and enabled for a duration equal to TMAC · ai.
The voltage VMAC at the output of the TIA represents the
MAC result. Despite the good computation linearity, this
architecture is severely penalized by the high power con-
sumption and the large silicon area of the TIA. Both of them
are noticeably dependent on the current on SL, which is
proportional to the number of rows in the array. Additionally,
the TIA should not be a computation speed bottleneck, but
the bandwidth of the amplifier and its power consumption are
directly related.

Fig. 2(b) shows a novel structure to exploit the RRAM
memory in AiMC. In the column, the flipped (F)-1T1R
compute cell replaces the conventional 1T1R. The NMOS
device, acting here as a current generator, is biased in satu-
ration, when on-state. To this aim, the amplitude of the PWM
signal, VB, sets the bias of the transistor during the activation
pulse, that is, with acti = 1. Thus, the cell current Ic is set
by the programed RRAM resistance value and by VB. The
new configuration of the NMOS device guarantees a much
larger output resistance than the 1T1R cell. This allows the
removal of the TIA for a drastic circuit simplification and
area reduction, with additional benefits in terms of energy
consumption and computation speed. This column scheme is
now based on the precharge–discharge approach, where SL

1acti(t) is a PWM-modulated signal with normalized unitary amplitude.
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FIGURE 3. F-1T1R compute cell. (a) Ic versus Rr with Mc in W.I.
(green diamonds) and in M.I. (red line), and Ic from (1) (black
dashed line). (b) Green line: 1I/IL versus IL with RL = 10 k�,
RH = 30 k�, Mc in W.I. region; diamond: F-1T1R design point
for a 256-row accelerator from our analytical framework.

is first precharged and then discharged by the analog MAC.
The SL capacitanceCSL is used to integrate the output current
while computing and the SL voltage represents the MAC
result.

In the F-1T1R of Fig. 2(b), with the transistor biased
in weak inversion (W.I.) and saturation region, the cell
current Ic is

Ic =
n · vth
Rr

·W
(
Ic0 · Rr
n · vth

)
(1)

where W (x) is the Lambert W function solving the equation
y · exp(y) = x [11], vth the thermal voltage, n the slope
factor, and Ic0 the equivalent current of MC with its source
connected to ground. At the end of the MAC computation,
the SL voltage (corresponding to VMAC) is

VSL(k) = VDD −
1I · TMAC

CSL

N∑
i=1

(
ai · wi,k

)
+ Ka (2)

Ka ≡ −
N · IL · TMAC

CSL
· µ (a) (3)

where 1I ≡ IH − IL is the maximum current step, with
IL ≡ Ic(RH ) and IH ≡ Ic(RL), µ(a) is the mean value of
the activations, and CSL = N · CC , with CC the load capac-
itance, embedded in the compute cell. The RRAM device is
programed to obtain Lr equally spaced cell current Ic = IL +

1I · wi, where wi is the normalized unipolar weight, that is,
wi ∈ [0, 1]. Starting from these equations, the plots in Fig. 3
were obtained, using a 1.5-V SOIMOS transistor, available in
the 22-nm technology, with a gate area of 0.7 µm2. Moderate
inversion (M.I.) and W.I. regions were considered for the
transistor, with gM/ID of 26 V−1 and 16 V−1, respectively,
at Ic = 1 µA. Fig. 3(a) shows the simulated Ic versus Rr ,
while Fig. 3(b), the F-1T1R normalized current variation
1I /IL versus IL . A large 1I corresponds to a larger signal
on the SL, which relaxes the ADC specifications [2]. From
the simulations, 1I /IL is maximized in the W.I. regime and
increases with IL .

A. F-2T2R DIFFERENTIAL COMPUTE CELL
The F-2T2R compute cell, made with two F-1T1R cells in a
differential scheme, is shown in Fig. 4. This configuration can

FIGURE 4. F-2T2R differential cell. (a) Schematic and (b) layout
floorplan.

provide several benefits in the MAC computation. In fact, the
MAC output voltage in (2) is not proportional to the MAC
result, due to the term Ka depending on IL . Ka cannot be
neglected due to the limited ratio RH /RL , achievable by the
current RRAM technologies. Hence, this issue is intrinsic in
every RRAM compute cell. The correct MAC value could
be restored either by digital postprocessing or by setting the
center of the ADC range at VDD + Ka, but both options
exhibit major drawbacks. As a matter of fact, the former
requires a larger ADC range and a higher converter resolu-
tion, whereas the latter requires the ADC range to track Ka
value in every column of the array. The F-2T2R compute cell
with differential output overcomes this problem. As shown
in Fig. 4, two memristors are used to store the weight in
bipolar format, increasing the resolution to Lw = 2 · Lr − 1.
The weight wi, ranging over [−1, 1], is split between the
memristors, as wpi and w

n
i , with wi = wpi − wni

wpi =
sgn(wi) + 1

2
· wi, wni =

sgn(wi) − 1
2

· wi. (4)

With the cell in computation, the values of the positive and
negative output currents are

Icp = IL + 1I · wpi , Icn = IL + 1I · wni . (5)
The single-ended voltage of the two SLs, VSLp and VSLn,
is given by (2), whereas the differential voltage is propor-
tional to the MAC result

VMAC(k) =
1I · TMAC

CSL

N∑
i=1

(
ai · wi,k

)
. (6)

With the F-2T2R cell, a differential ADC, with a symmetric
conversion range can be used, thereby resulting in another
major design simplification [12]. At the cell level, the pro-
posed F-2T2R clearly requires a larger area, when compared
with the 1T1R cell. However, as explained in Section IV,
this penalty becomes almost negligible if the whole memory
accelerator is considered.

B. RRAM PROGRAMMING
The writing procedure of the RRAM memories severely
impacts the integration of this technology with scaled
CMOS processes. RRAM devices are programed through
the forming, set, and reset operations [13]. Forming is
performed to change the RRAM device from the pristine
condition to a low resistance state (LRS). The resistance
value is then programed by iterating between set and reset
phases. Currently, RRAMdevices embedded in CMOS nodes
require a forming voltage higher than 3 V, exceeding the
safe operating area (SOA) of core devices in sub-100-nm
technologies [4], [14]. The voltage required in the other oper-
ations is lower, but still not compatible with devices of scaled

VOLUME 9, NO. 2, DECEMBER 2023 161



IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

FIGURE 5. RRAM accelerator under forming/set (a) and reset (b),
with a cell in the k-column addressed (a subsection with only
two cells in the same row is considered). Devices in orange are
subject to the maximum voltage stress.

CMOS technologies [13], [15]. The current is another key
aspect in the writing phase since it must be limited to avoid
damaging the RRAM device during forming and constrained
to set the resistance value in the set-programming procedure.
These issues are typically addressed with dedicated writing
circuits, based on I/O transistors. Considering the small sizes
of the RRAM tiles, the additional area usually turns out to
be very large [7]. For safe writing of each F-1T1R in the
differential cell, our design exploits the four voltage levels
(from 0.8 to 1.8 V) available in the 22-nmFD-SOI technology
and threshold voltage control, through the back-gate, of the
MOS transistor Mi. The proposed implementations of the
forming/set and reset operations for a differential cell are
shown in Fig. 5(a) and (b), respectively, with the program-
ming voltage waveforms. In the forming phase, the transis-
tor M1 is configured in a common-source configuration to
maximize the voltage drop across the RRAM device. Hence,
WL is driven with a voltage pulse at VWFS, the SL is tied
to the ground, and a pulse with a voltage up to 3.3 V drives
BTL. The other cells are excluded from the programming
operation, by setting the corresponding SLs to 1.5 V and their
BTL and WL to ground. A 1.5-V SOI device, featuring an
SOA rating voltage of 2 V, is used in the compute cell, to be
compliant with a BTL voltage of 3.3 V and a WL voltage in
the 1.3- to 1.7-V range. The set phase of the programming
procedure is similar to the forming phase, but with lower
RRAM voltage and current bounds, thus the BTL and WL
voltages are reduced accordingly.

In reset, the polarity of the voltage across the RRAM
device is reversed by setting both SL and WL at 2 V and
BTL to ground. To mitigate the effect of the gate–source
voltage of M1 on the effective voltage across the RRAM,
the back-gate of the flipped-well SOI device is exploited,
by raising the BGL line voltage of the specific cell to 2 V.
With this solution, a reset voltage VR of 1.5 V, at 30 µA
can be obtained, with a leakage current well below 1 nA,
for the other cells in the column. It is worth noting that,
differently from standard writing procedures for 1T1R cells,
this programming technique guarantees a maximum SL volt-
age much lower than the 3-V forming voltage. This allows
the design of the ADC front-end with SOI devices, avoiding
high-voltage transmission gates at the converter input, with a
substantial saving in silicon area per column.

III. F-2T2R-BASED MEMORY ACCELERATOR
This section describes the design of a mixed-signal acceler-
ator, tailored for the F-2T2R cell computing memory, and
exploiting the features of the SOI technology. The block

diagram, including the I/O interfaces and the SL driving
circuits, is shown in the red dashed box of Fig. 6(a). The
circuit in Fig. 6(b) is the row-interface for input activations,
including a PWMDAC [16] and an analog multiplexer, based
on the NMOSMB3 and the transmission gate TGB1, convert-
ing the output signal of the DAC from logic levels to the 0-VB
range. SOI devices, with 1.8-V nominal voltage supply (and
2-V strength) and compliant with the programming procedure
in Fig. 5, drive the WLs. TGB1 is also driven with 1.8-V
signals for low on-resistance in MVM mode and the full
PMOS switch-off in write mode. A level shifter is used to
convert the DAC output signal from 0.85 to 1.8 V. Only
SOI devices are used in the block, keeping the cell height
within the vertical pitch of the memory array, for a compact
layout. The SL driver of each differential column is imple-
mented with a pair of PMOS transistors, connected to the
precharge voltage VPC, rail, and with the common-mode con-
trol (CMC) circuit. The PMOS device of each SL in Fig. 6(a)
is switched on, for a short time interval before the MAC
phase, to precharge the SL to VPC. On the other hand, the
CMC is activated only during the MAC phase to reduce the
spread and drop of the common-mode voltage of the SL. This
circuit is designed to reduce the operand Ka in (2) and ensure
the maximum values of IL and of 1I in Fig. 3, compati-
ble with the lower bound of VSLp,n. Indeed, the minimum
VSL in the MAC is lower bounded by the minimum ADC
common-mode input voltage and by the requirements for the
saturation regime of the M transistors in the compute cells.
In short, the CMC enables a larger swing of VMAC, a larger
MAC LSB, and relaxes the specifications for the column
ADC. Moreover, combined with the large output impedance
of the F-2T2R, allows the simultaneous exploitation of all
the cells in the column, practically removing the limit on the
maximum number of cells enabled, common in the 1T1R
implementations [7]. The schematic of the CMC circuit is
shown in Fig. 6(c). The current generator, made with the
transistors MC1-MC2, injects the current ICM into each SL,
introducing an additive term in (2), to partially cancel the
term Ka.MC3 andMC4 are used as cascode devices when the
CMC circuit is activated, and as switches when the current
generators are switched off. This compensation circuit is
driven by a PWM DAC, as those used for the acti signals.
We propose two common-mode compensation strategies,
both technology-agnostic. In Type-1 CMC, the length of the
CM current pulse, always within the TMAC phase, is digitally
calibrated to reduce the µ(a)/CSL-dependent term of VSL
and kept constant over all the MAC periods. With Type-2
CMC, the pulselength is adjusted at each MAC period and
held proportional to the sample mean of µ(a) in each input
frame. Thus, the compensating CM current, injected by the
pulsed current generator, in Fig. 6(c), is highly correlated
with the CM charge removed from the SL capacitance by the
activated cells. This causes, a narrower probability density
function (pdf) distribution for type-2 CMC, and a generally
better performance, but it requires the samplemeanµ(a) to be
computed in real-time in the digital domain. The performance
boost, provided by the CMC, is discussed in Section IV
and assessed with simulations. VB in MVM and writing is
provided by the reference generator in Fig. 6(d), based on a
replica of the F-1T1R cell biased with IL or the maximum
current in forming/set, IW .
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FIGURE 6. (a) Accelerator block diagram (core supply voltage VDD = 0.85 V, VPC = VDD, VDDM = 1.8 V). (b) CM control. (c) DAC with
interface circuit to the crossbar array. (d) VB reference generator. (e) Truth table for WR, WFS, and S1 switch for VB setting.

FIGURE 7. (a) CM waveforms. (b) VSLp,n average trajectory
(orange) and pdf at TMAC, with type-1 (blue) and type-2 (green)
CMC. PDF of Ic including MOS mismatch w/o (c) and with
(d) mismatch cancellation (Lr = 4).

IV. MIXED-SIGNAL ACCELERATOR MODEL
A MATLAB model has been developed to optimize the
design of the F-2T2R-basedmixed-signal accelerator, consid-
ering for the analysis the multilevel RRAM device described
in [9]. For accurate modeling, it includes the main sources
of error affecting the computation of VMAC in the analog
domain: the over-range clipping of VSLp,n, the mismatch of
the current-source MOS transistor in the compute cell, the
quantization noise and the clipping errors introduced by the
ADC, and the finite output resistance of the compute cell.
To assess the impact of these error sources, they must be
compared to the MAC error baseline eawQ, derived by the
digital quantization

eawQ = V ∗

MAC − VMAC (7)

σawQ ≡ σ
(
eawQ

)
(8)

where V ∗

MAC is the MAC result computed with floating-point
activations and weights, and σawQ is the standard devia-
tion of eawQ. The SL voltage should not exceed the lower-
bound V L

SL, set by the ADC and by the saturation limits
of MCp,n, and the upper-bound VH

SL = VPC set by the
precharge PMOS device on the top of each SL in Fig. 6(a).
The waveform of the CM signal with both types of CMC is
depicted in Fig. 7(a). The plot in Fig. 7(b) shows the mean
trajectory of VSLp,n, obtained with random extractions of
activations and weights, and its distribution after the analog
computation. Type-2 CMC results in a narrower distribution

at the same IL , leading to a lower occurrence of out-of-range
errors.

Local mismatch variations affect MCp,n, and they lead
to random shifts of Ic, from the nominal value. Fig. 7(c)
shows the pdf of Ic for a four-level RRAM case. This error
source can be reduced by calibrating the RRAM value to
compensate for the mismatch affecting the cell current. The
calibration range is limited by the maximum RRAM vari-
ation [RMIN, RMAX] and by the resistance spread, setting
the minimum achievable resistance step 1R in the mismatch
calibration. The plot in Fig. 7(d) shows the results of an
example Ic calibration, obtained with the developed MAT-
LAB framework, with [RMIN, RMAX] = [8, 35] k�, [RL ,
RH ] = [10, 30] k�, and 1R = 400 �, extracted from [7],
a gate area of 0.77 µm2 for the MOS transistor, and the
mismatch Pelgrom coefficient of a 22-nm technology. The
calibration reshapes Ic pdf of the inner levels to narrow
uniform distributions, but for the lowest and highest levels,
due to the saturation occurring in the resistance calibration.
The normalized weight variability is defined as ϵc = δI /1I ,
where δI is the residual spread of the cell current after mis-
match cancellation. It is worth noticing that a tradeoff stands
between the programming range and the headroom left for
mismatch calibration, that is, RMAX-RH and RL-RMIN: the
larger the programming range, the higher 1I and the lower
the calibration range for the errors affecting the first and last
cell-current level. The mismatch-induced current variation
leads to MAC error eM , with standard deviation σM .

The quantization noise and the clipping errors introduced
by the ADC are considered in the model of the accelerator.
To keep these errors conveniently below the σawQ baseline,
the ADC LSB and conversion range are sized as

LSB =
σawQ

αQ
·
√
12 (9)

σOV(VR) = σawQ/αOV (10)

where σOV is the rms value of the ADC clipping error, and
αQ and αOV are design optimization coefficients, setting
the ratio of σawQ to the quantization and overrange errors,
respectively [17]. The adverse effect of the finite-cell output
resistance can be reduced below the ADC LSB by increasing
the length of the transistor McP,N , in the compute cell. In a
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FIGURE 8. ADC and accelerator performance versus N. Blue,
orange, and green lines: no CMC, type-1 CMC, and type-2 CMC.
Dashed line: weights with normal pdf. (a) and (b) ADC LSB and
conversion range. (c) Energy consumption per column.
(d) SOER (solid lines) and ideal SawQR (black dotted-dashed).

fixed-area design, this leads to a smaller 1I /IL in Fig. 3, due
to the lower gM/ID value ofMcP,N .
Design Optimization: From the previous analysis,

we developed a MATLAB framework [17] for the optimized
design of the accelerator in Fig. 6(a), with the F-2T2R
cell. The optimization loop operates on the CMC, the A/D
interface, and the parameters IL and gM/ID of MCn,p. The
plots in Fig. 8 show the result of a design optimization,
with Lr = 8 and 7-bit activations, sweeping the number of
memory rows N [9]. Mismatch calibration is enabled with
αQ = 10 dB and αOV = 20 dB. IL is optimized for the maxi-
mum VMAC swing, but constrained within 1.2µA, and the SL
precharge voltage is set to VPC = 0.85 V, at the core voltage
supply. The simulation results reported in Fig. 8(a) and (b)
demonstrate that the proposed common-mode compensation
is beneficial for maintaining large ADC conversion range
and LSB, relaxing the converter design and shrinking the
area. Type-2 compensation provides better performance with
respect to Type-1, resulting in the largest LSB value and the
lowest loss of the signal-to-overall error ratio (SOER), with
respect to the baseline, SawQR = σ (VMAC)/σawQ

SOER ≡
σ (VMAC)√

σ 2
awQ + σ 2

M + σ 2
ADC

(11)

where σADC is the ADC quantization noise including clip-
ping. Fig. 8(c) also reports the energy consumption per
column EC , excluding the A/D and D/A interfaces. From
the graphs, the CM compensation leads to a higher energy
consumption, due to the additional CM current ICM and the
larger compute cell current. This penalty is mitigated by the
benefits derived by a larger ADC LSB [2]. Without the CM
compensation, SOER is almost 15 dB below the baseline.
This performance can be understood by looking at the graphs
in Fig. 9, showing the distributions of VMAC and VSL, for
N = 128, and IL optimized without the CM compensation.
Fig. 9(c) shows the SNR metrics of the accelerator, where
SMER and SQNR are defined as the signal-to-mismatch-only
error and the signal-to-ADC quantization noise: SMER ≡

σ (VMAC)/σM and SQNR ≡ σ (VMAC)/σADC, respectively.
From the comparison, SMER achieves the lowest SNR, being
penalized by the low IL , required to limit the under-range

FIGURE 9. Accelerator without CM compensation for N = 128.
(a) and (b) Distribution of VMAC and VSLp,n, (c) SNR metrics,
and (d) ADC range optimization.

FIGURE 10. Comparison of 1T1R and F-2T2R memory
accelerators versus N at Lr = 2 and VCL = VLSL = 0.3 V.
(a) Energy consumption per column and MAC operation
and (b) estimated area of one column, without A/D and D/A
converters.

clipping occurrence of VSLp,n, when CMC is not enabled.
As shown in Fig. 3, this leads to a small1I and, consequently,
to larger overlap of the Ic pdfs, in Fig. 7(c). The design point
of VR, at the target over-range error σOV(VR) = σawQ/αOV is
shown in Fig. 9(d).

Fig. 10 shows the comparison, in terms of energy and area,
of an accelerator based on the F-2T2R with type-2 CMC,
against an F-1T1R accelerator with SL clamp. IL = 1.25µA,
returned by the optimization framework and shown in Fig. 3,
is one order of magnitude lower than the typical current of
1T1R cells in accelerators operating in the continuous-time
domain [5], and more than three times lower than IL of
the compute cell proposed in [8]. This allows the proposed
accelerator to significantly reduce the energy consumption
metric, with respect to conventional 1T1R designs, as shown
in Fig. 3(a). The F-2T2R accelerator outperforms also on the
areametric, due to the use of a TIA per column in the standard
approach. For the area of the 1T1R, we used 0.07 µm2,
reported in [18].

V. ACCELERATOR TRANSISTOR-LEVEL
IMPLEMENTATION
In this section, we propose the transistor-level design of an
F-2T2R accelerator, in an FDSOI 22-nm technology node,
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based on the information collected with the optimization
framework. By comparison with the transistor-level accu-
rate modeling, it is possible to verify the quality of our
high-level accelerator model and assess its practical feasibil-
ity, when peripheral circuits are included. The design targets
the minimum area occupation and it considers the memory
accelerator in Fig. 6(a), with a number of rows N = 256,
one input DAC per array row, and one output ADC per
column. At the state of the technology, peripheral circuits
based on silicon cannot scale at the size of the memory
devices, due to fabrication imperfections, which penalize
their performance with aggressive scaling [2]. Therefore, the
area optimization of the accelerator starts from the mini-
mum pitch that the I/O interfaces (PWM-DAC and ADC)
can sustain, in the technology node used for the design, and
following the floor plan proposed in Fig. 4(b). A PWM-
DAC, based on a digital delay line, with a resolution in
the 5-to-7-bit range, can be laid out on two rows of digital
standard cells [16]. In 22-nm FD-SOI, this approximately
corresponds to a vertical array pitch Hc = 1.2 µm. The
width of the column ADC sets the width of the column Wc
and the horizontal memory pitch. Usually, SAR and Flash
A/D converters are common choices in mixed-signal accel-
erators [12]. These ADCs use logic gates, and at least one
D flip-flop (D-FF) is embedded in both converters. In scaled
technology nodes, the digital cells must be laid out with
homogeneous poly-gate orientation across all the die. There-
fore, the minimum ADC width is set by the width of the
D-FF, which is approximately 2.3 µm. From the vertical
and horizontal pitches dictated by the peripheral circuits is
obtained the upper bound of the gate area of MCp,n. The
F-2T2R cell floor plan proposed in Fig. 4(b) is implemented
with almost the whole cell area used for the current-source
transistor since the RRAM device is implemented at the
BEOL step, and Cc = 2.2 fF is a metal–oxide–metal (MOM)
capacitor, involving the highest metal layers. The aspect ratio
of MCp,n is obtained from the minimum gM/ID bias, pro-
viding the current ratio 1I /IL optimized with the MATLAB
framework. The device length is set by the output resis-
tance specification. Considering the vertical poly orientation,
MCp,n is arranged as a dual-finger device, with a finger width
close to Hc and a length of 350 nm. The CM compensation
circuit shown in Fig. 6(c) is laid out with MC1-to-MC4 as
four-finger devices fitting the horizontal memory pitch. The
area of the devices for the column precharge is 3% of the
memory column area, while the CM-compensation cascode
mirror requires an equivalent area from 3% to 2.2%, with N
increasing from 64 to 256. The F-2T2R allows the imple-
mentation of the SL precharge–discharge. This makes the
overall area of the SL driving circuits no larger than 6%
of the whole accelerator area, with a massive area saving
with respect to the conventional TIA-based column driving.
Fig. 11 reports the results of the Spectre transistor-level
simulations with type-2 CMC and without CMC. In our
implementation, the computation latency is dictated by the
PWM DAC, considering 7-bit activations less than 13 ns are
required to generate theMVM results [16]. The system period
for the precharge, the MAC computation, and the output
quantization is 50 ns. The plot in Fig. 11(a) shows VMAC,
with 256 input activations set at the same value, normal-
ized in the range [0; 1], and increased at each MAC step.

FIGURE 11. Transistor-level simulation results with N = 256,
Lr = 8, without CMC and with type-2 CMC. (a) Simulated VMAC
(diamonds) and fit line versus MAC =

∑
ai ·wi . (b) Relative

linearity errors. (c) Energy consumption per column.

The weights, normalized in the range [−1; 1], were ran-
domly extracted with a nonnull average value, to have VMAC
spanning the ADC range shown in Fig. 8(b). Given that
the MAC signal range decreases with

√
N , simulations are

carried out for covering three standard deviations of the nor-
malized VMAC output distribution [19]. The results highlight
the need for the CMC circuit to boost the dynamic range
of VMAC. The linear fitting of the simulated point returns a
linearity error below 2%, as shown in Fig. 11(b), which is
expected not to affect the DNN inference accuracy, beingwell
below the equivalent noise floor of a 256-row accelerator,
as shown in the SawQR plot of Fig. 8(d). The bar chart
in Fig. 11(c) reports the breakdown of the energy consump-
tion in the MAC phase, per single column, excluding the
PWM-DAC. Themain contributors are the precharge devices,
EPC, the CMC, ECMC, and the DAC-to-memory interface
of Fig. 6(b), EWL-DRV. Fig. 12 compares the computation
efficiency of an F-2T2R accelerator with state-of-the-art
RRAM accelerators [6], [7], [8], [20], [21], including only
the consumption of the memory array and the interfaces,
for a fair comparison. In our implementation, we consider
the energy consumption of the DAC and of the ADC for
mixed-signal accelerators, both in 22 nm, reported in [16]
and [12]. An accelerator combining the F-2T2R cell with
CMC type-2 is expected to achieve an energy efficiency, nor-
malized to 1-bit MAC, of 1260 1 bit-TOPS/W [22], at Lr = 8,
corresponding to 3.9-bit weight resolution, and 7-bit acti-
vations. This value is approximately ten times larger than
the efficiency reported for the state-of-the-art 1T1R accelera-
tors [5], [7], [10]. The result derives from the increased output
impedance of the F-2T2R compute cell, which allows the
precharge–discharge operation, the reduction of IL compared
to the 1T1R cell, and the simultaneous activation of hun-
dreds of cells in parallel. Type-1 CMC achieves an efficiency
comparable with type-2, whereas up to 4500 1 bit-TOPS/W
could, in principle, be achieved without CMC. However,
the almost complete loss of VMAC range makes this option
impracticable.
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FIGURE 12. Computation efficiency of the F-2T2R RRAM
accelerator with type-2 CMC versus state-of-the-art RRAM
accelerators. Only energy consumption of the MVM array,
interfaces, and SL driving was considered, and TOPS/W data
are normalized at 1-bit MAC. Blue bars: measurements; green
bars: simulations.

FIGURE 13. Accuracy of the model as the ADC/DAC and weights
resolutions vary, considering a constant normalized weight
variability of 2%. In red is the accelerator design point in the
transistor-level implementation.

VI. F-2T2R ACCELERATOR PERFORMANCE ON
BENCHMARK APPLICATIONS
To simulate the deployment of a DNN on a memory accel-
erator and evaluate the hardware impact on the software
performance, an analytical framework was developed, based
on the popular deep-learning library PyTorch [23]. This
framework implements discretization, variability, and bounds
management for model weights and activations that can
be applied differently for each DNN parameter or module.
More in detail, to emulate the writing process of weights
into memory, values are mapped into a finite number of
levels distributed linearly in a given interval, corresponding
to the linearly spaced IL levels, in the F-2T2R compute
cell. Additive Gaussian noise is applied, whose standard
deviation represents the mismatch current error and it is
related to the whole discretization interval. Similarly, before
and after each module, discretization, bounds, and noise
can be applied to the activations to emulate the nonideal-
ities derived from hardware implementation of digital-to-
analog and analog-to-digital conversions. The framework
assumes time-independent weight variability and that each
layer can be fully contained in a single tile. The framework
was tested using the ResNet-18 model [24] on the CIFAR-
10 dataset [25], which consists of 50 000 training images
and 10 000 test images classified into ten classes. After the
hyperparameter tuning phase, the ResNet-18 achieved an
accuracy of 88.4% on the test set, by training the model for
up to 300 epochs using stochastic gradient descent (SGD),
with 0.01 as the initial learning rate, 0.9 as momentum,
0.001 as weight decay, and cosine learning rate schedule.

FIGURE 14. Accuracy of the model versus normalized weight
variability and number of levels per weight. ADC/DAC
resolution: 7 bits.

Several data augmentation techniques were applied to mit-
igate model over-fitting during the training phase. Trained
weight distributions were studied to define the bounds of
discretization intervals for each layer, which appeared to be
critical for the model performance. In Fig. 13, the accuracy
of the model is reported versus weight, ADC, and DAC
resolutions, for ϵc = 2%. On the left, the complete DNN
is mapped on the accelerator and so it is entirely affected
by the analog nonidealities. On the right, Fig. 13 shows the
results of a partial mapping scenario, where only the fourth
ResNet-18 convolutional block, made of four layers, contain-
ing approximately 75% of the model parameters, is mapped
onto the accelerator. For the full mapping, with w above
seven levels of resolution, the algorithm already achieves a
good classification accuracy, while 128 levels, corresponding
to 7 bits of data resolution, seem to be the minimum for the
peripheral circuits. For partial mapping, the hardware speci-
fications can be drastically relaxed. The comparison between
the two scenarios is shown also in Fig. 14, which reports the
classification accuracy versus the weight resolution and ϵc,
for ADC and DAC resolutions set at 7 bits. The results show
the heavy impact of the weight variations on the network
performance and the need for accurate weight writing, as the
RRAM calibration procedure, reported in [7]. The partial
mapping approach can achieve accuracy close to the baseline,
still mapping the layers that contain most of the parameters.
With ResNet-18, this approach should be preferred when
the target is the best classification performance. It is worth
underlining that the largest portion of the algorithm would
still benefit from the high computation efficiency ensured
by the AiMC approach. On the other hand, a full mapping
guarantees the most efficient use of the F-2T2R accelerator,
at the cost of a limited accuracy reduction. This approach
should be preferred in computing systems targeting the best
TOPS/W performance.

VII. CONCLUSION
This article has presented the F-2T2R compute cell, con-
ceived for boosting the performance of RRAM-based mixed-
signal accelerators. The cell exploits the FD-SOI technology
to ease the RRAM programming and exhibits a large value
of output impedance. A mixed-signal accelerator, embedding
the F-2T2R compute cell, could obtain up to 1260 1 bit-
TOPS/W and a classification accuracy of 86% on CIFAR-10,
with a partial mapping of ResNet-18.
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