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ABSTRACT Resistive random access memory (RRAM) is considered to be a promising compute-in-
memory (CIM) platform; however, they tend to lose energy efficiency quickly in high-throughput and high-
resolution cases. Instead of using access transistors as switches, this work explores their analog characteristics
as common-gate current buffers. So the cell current can be minimized and the output impedance is boosted.
The idea of In-ADC Computing (IAC) is also proposed to further decrease the complexity of the peripheral
circuits. Benefiting from the proposed ideas, a pretrained VGG-8 network based on the CIFAR-10 dataset can
be implemented, and an accuracy of 87.2% is achievedwith 8.9 TOPS/Wenergy efficiency (for 8-bit multiply-
and-accumulate (MAC) operation), demonstrating that the proposed techniques enable low-distortion partial
sum results while still being able to operate in a power-efficient way.

INDEX TERMS High parallelism, In-ADC Computing (IAC), in-memory computing, intrinsic impedance
boosting (IIB), resistive random access memory (RRAM).

I. INTRODUCTION

COMPUTE-IN-MEMORY (CIM) is a fast-rising
paradigm of neural network hardware accelerators

for their potential of overcoming the ‘‘memory wall’’ bot-
tleneck [1], [2], [3], [4]. Among them, resistive random
access memory (RRAM)-based CIM has deemed a promis-
ing direction, thanks to several advantages [5]. Compared
to other eDRAM or SRAM CIM counterparts, the non-
volatile characteristic of RRAM allows fast and low-power
systems to wake up. The wide programmable range and
inherent voltage–current (V–I ) conversion of the RRAM
cell naturally facilitate parallel multiply-and-accumulate
(MAC) operation, which improves the computation through-
put [6]. Moreover, the RRAM cell is highly compact and
can be designed in high density, indicating a low-cost
production [7], [8].

On the other hand, due to its intense analog nature, it is
highly nontrivial for RRAM-CIM to implement large deep
neural network (DNN) models, especially with both high
parallelism and high energy efficiency. The critical bottle-
neck lies in the design of the ‘‘read circuits’’ (RCs), which

typically consists of the RRAM interface circuit, multiplexer,
and the analog-to-digital converter (ADC), as shown in Fig. 1.
There are several stringent requirements that the RC needs to
address to unlock higher computing capability. First, it needs
to handle large subarray output current variation with little
distortion and provide relatively fine quantization to preserve
computation accuracy [9], [10]. Second, it must be com-
pact in area, ideally matching the RRAM subarray column
pitch, as full ‘‘column-parallel’’ operation is essential for
achieving high throughput. Last but not least, the RC should
maintain low power and low read latency, so as to ensure
RRAM’s suitability for edge computing. These requirements
are tightly coupled with the fundamental tradeoff in analog
circuit design and, thus, highly challenging to optimize simul-
taneously.

Recently reported RRAM-based CIM works have shown a
growing focus on the RC design to address these limitations.
Xue et al. [11] leverage a current-mode ADC and a current-
mirror network for pre-ADC signal processing, which helps
reduce the number of read and ADC operations. However,
the large offset nature of current mode circuits restricts the
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FIGURE 1. Comparison between (a) conventional RRAM-based
CIM macro and (b) proposed RRAM CIM macro.

parallelism to only nine rows. In addition, the RC consumes a
large area and requires 32:1 timemultiplexing to share among
columns, which significantly limits the throughput. Yin et al.
[12] and He et al. [13] demonstrate a read scheme using
a simple voltage-divider-based network with voltage-mode
flash ADC that can reduce the multiplex ratio. These designs,
nevertheless, suffer from large read power issues and are
prone to read disturbance. Input-aware current control [10]
and sparsity-aware clamping [14] are later developed to
improve the voltage-mode read performance, but they come
at the expense of reduced parallelism. In another work [15],
a single-slope ADC is directly used as the RC through its
embedded V–I conversion. While it achieves good paral-
lelism with high A/D resolution, the throughput and chip area
are severely undermined. In addition to the above limitations,
most existing RRAM-CIM macros also share a common
drawback that the analog MAC results suffer from consider-
able distortion. To compensate for this, they rely on externally
generated and calibrated ADC reference levels, which are
impractical for compact and energy-constraint applications,
such as sensor nodes. Therefore, further research is expected
to solve the tradeoffs between power, speed, and area.

In this article, we present an innovative RRAM-based
CIM macro that unifies accuracy, compactness, and energy
efficiency. We propose an intrinsic impedance boosting (IIB)
technique, which exploits the access switch’s analog prop-
erty and turns it into a common-gate (CG) current buffer.
This technique enables accessing a large number of rows
and computing large MAC values with little distortion using
simple interface circuits. The idea of the In-ADC Com-
puting (IAC) technique is also proposed, which reuses the
successive-approximation-register (SAR)ADC’s capacitor to
rebuild multibit-weight MAC results in the charge domain
within the sampling process. This not only effectively reduces
both the total A/D conversions number and digital shit-and-
add overhead but also achieves column parallel A/D without
time multiplexing and an extremely compact layout. Fig. 1
provides a high-level comparison between the conventional

RRAMCIMmacro with the proposed one.With the proposed
techniques, an accuracy of 87.2% is achieved based on the
VGG-8 network for CIFAR-10 applications. The simulated
energy efficiency is 8.9 TOPS/W (for 8 × 8 bit MAC),
and the throughput is 256 GOPS, which indicates that the
proposed techniques enable low-distortion, high-parallelism,
and power-efficient RRAM-based CIM macro.

The rest of this article is organized as follows. Section II
provides background. In Section III, the idea of RRAM IIB
is introduced, and its design considerations are analyzed.
In Section IV, the idea of IAC is proposed. Section V presents
the system-level simulation results, and Section VI concludes
this article.

II. RRAM-BASED CIM BACKGROUNDS
The core idea behind CIM is to leverage a crossbar structure
to conduct massive parallel MAC operations. In the context
of RRAM-CIM, the weights are represented by the resis-
tance/conductance of the crossbar cells. Ideally, the inputs
can be applied across the resistors, and the generated currents
represent the computation result. Such implementation needs
only resistors and can support input and weight with arbitrary
resolution. Nonetheless, to avoid the sneak-path current issue
and maintain better retention/reliability, practical RRAM-
CIM macros are commonly implemented using a 1T1R array
with binary cellwise computation [10], [11], [12], [13], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], as illustrated in Fig. 2(a). In this scheme, RRAM
resistances are programmed between only two states, where
the high-resistance state (HRS) represents logic ‘‘0’’ and
the low-resistance state (LRS) represents logic ‘‘1’’. Binary
wordline (WL) voltages serve as inputs to turn on/off the
access transistor. Only when RRAM is in LRS and the access
transistor is turned on, a substantial cell current can be gen-
erated, which maps the binary multiplication. To implement
multibit MAC under this scheme, the inputs and weights
need to be decomposed to perform bitwise multiplications,
as depicted in Fig. 2(b). The input bits follow a bit-serial
manner, applied one by one to the WL sequentially, while
the weight bits are parallelly programmed across adjacent
columns (and unweighted). The complete MAC results are
rebuilt via weighted-summing the partial results across the
columns and cycles, which is typically done using digital
shift-and-add (S&A) after the A/D.

On the other hand, despite providing good robustness, the
binary computing RRAM scheme is subject to several short-
comings in terms of energy efficiency. The first issue is the
large number of ADC operations required. It can be seen that
the number of ADC firings grows proportionally to both the
input and weight resolution. For example, if 4-bit inputs and
4-bit weights are utilized, a full MAC result requires 16 ADC
firings. The second challenge lies in the power consumption
of the RRAM array itself and the I–V interface. The low
LRS resistance of RRAM is typically in the range of a few
k�. With high parallelism (i.e., the number of simultaneously
accessed rows), the output current can be as large as tens
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FIGURE 2. (a) Conventional serial input parallel weight RRAM
macro schematic. (b) Flow diagram of the operation.

of mA, and the lumped output resistance can be down to tens
of �. Assuming that no distortion correction is employed,
the I–V circuit must provide very low input impedance to
guarantee low distortion during read-out, leading to several
mW power consumption per column. While this can be
relaxed by utilizing the ADC reference levels to compensate
for the distortion, the overhead is just moved to the ADC end.
Large currents can also bring an extra source of errors due
to the IR drop along the long array lines. In essence, these
drawbacks impose a steep tradeoff between energy efficiency,
parallelism, and throughput for RRAM CIM design, limiting
the scalability of RRAM CIM to high-resolution DNN appli-
cations. This motivates us to develop solutions to improve
both the array-level design (see Section III) and interface
design (see Section IV).

III. PROPOSED IMPEDANCE BOOSTED RRAM
SUBARRAY
In existing RRAM CIM macros, the access transistors are
always fully turned on in the triode mode as simple switches.
While this is helpful for fast current development when
the RRAM works as memory, it loses the impedance and
current regulation capability in the saturation mode that
can be useful for analog computing. Motivated by this,
we propose the IIB technique, which exploits the access
transistor’s saturation-mode properties to solve the steep
tradeoff between power and parallelism.

A. CIRCUITS AND OPERATIONS
The schematic of the proposed IIB-RRAM is shown in
Fig. 3(a). Note that this idea retains the WL-input 1T1R
scheme; hence, it is fully compatible with the current RRAM

FIGURE 3. (a) IIB-based RRAM macro and RCs. (b) Comparison
between conventional RRAM cell and proposed IIB-based
RRAM cell.

array. In contrast to the common approach in Fig. 3(b), which
uses the bit-lines (BLs) for output with the source-lines (SLs)
grounded, the proposed design adopts a swapped connection
(using the SLs as output and BLs as ground). On top of this,
instead of being driven all the way to VDD, the WLs are
connected to a bias voltage (VB), which is slightly above the
threshold voltage. This arrangement brings two key benefits.
First, the access transistors in the RRAM array are designed
as CG current buffers that amplify the output impedance.
Second, the saturation mode of the access transistor isolates
the SL voltage from the RRAM cell voltage, enabling the
current reduction of each cell.

Without loss of generality, we can use the square-law
model to gain intuition. Despite being inaccurate for exact
current calculation, it can well represent the trend. Assuming
that an RRAM cell is programmed to LRS and logic ‘‘1’’ is
applied to WL (WL voltage is VB), the value of cell current
and the cell output resistance observed from the SL (Ro,cell)
can be expressed as

Icell ≈
1

R2LKn
−

1
RL

√(
1

RLKn

)2

− (VB − VTH)2 (1)

Ro,cell ≈ RRRAM · gmro (2)

where VTH and Kn are the threshold voltage and the lumped
process coefficient of the access transistor, RL is the LRS
resistance, gm denotes the transistor transconductance, and ro
is the small-signal output resistance of the access transistor.
From (1), the drain and source voltages are isolated in the sat-
uration mode. By making VB close to and only slightly above
VTH, the voltage drop across the RRAM cell is kept very
small, thus facilitating a much lower cell current. The choice
of VB is discussed in Section III-B. From (2), it can be known
that the equivalent output impedance from drain to source is
amplified by a gmro term, which is usually called ‘‘intrinsic
gain.’’ Typically, the intrinsic gain of access transistors can
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reach a few tens to hundreds due to the extra channel length
to support high-voltage programming. In short, the IIB tech-
nique transforms the RRAM array into a small-value high
impedance current mode digital-to-analog converter (DAC)
with computation capability. It simplifies the interface design,
making the simultaneous design of high parallelism and low
power possible.

Taking advantage of the optimized array current and
impedance, this work employs a structure resembling a gm-
boosted CG amplifier to collect the columnMAC current and
convert it to voltage, as illustrated in Fig. 3(a). Note that,
though this transimpedance stage may share similarities with
the current interfaces in some existing works [11], the pro-
posed IIB technique makes their specifications less demand-
ing. In traditional designs without IIB, the read voltage at
VSL must be clamped very stably through a strong auxiliary
amplifier to prevent creating nonlinear current (by boosting
the gm to reduce input impedance of CG amplifier). Thanks
to IIB boosting the array impedance and reducing the cell
current, VSL can be easily stabilized. Therefore, we are able
to use a small CG transistor M1 and a five-transistor OTA to
guarantee robust operation.

To verify the effectiveness of the IIB, we simulate
a 128-parallelism XNOR-based [12] RRAM array using
Cadence Spectre. The RRAMs are implemented using the
ASU RRAM model [29], [30], with the transistor model
from TSMC 28-nm CMOS. Based on simulation results,
an output voltage versus MAC value transfer curve can be
obtained, as shown in Fig. 4(a). To facilitate comparison,
we also simulate two baseline RRAM read schemes and plot
the results alongside in Fig. 4(a). The first baseline is current-
mode-based RCs [11], and we convert the output current to
voltage through linear mapping. The second one is divider-
based RCs [12]. Note that both two baselines did not use
the IIB-based technique, so the cell current is relatively high
compared to our work, which results in nonlinearity. The
output voltage range is normalized to [0, 1] for a fair com-
parison. It can be seen that our proposed technique produces
a transfer curve that exhibits minimum distortion over a large
MAC range compared to the baselines. We further quantify
the linearity by calculating the code distance versus MAC
value, as shown in Fig. 4(b). It proves that the code distance
in our work keeps a constant, and DNN computational error
due to distortion will be minimized.We also examine the read
voltage on the SLwith IIB enabled and disabled, respectively,
as shown in Fig. 4(c). Without IIB, the SL voltage fluctuates
with the partial sum results, and voltage variation can reach
up to 0.46 V, leading to large second-order effects on cell
current. However, with the help of IIB, the SL voltage is
stable over a large range (variation is less than 60 mV).
Thus, the channel-length modulation effect of each cell can
be minimized. In conclusion, compared to prior switch-based
CIMmacros, our work keeps a linear transfer curve even with
large parallelism. To explore the linearity performance of the
proposed IIB technique, the output voltage is tested under
different parallelism of 128, 256, 512, and 1024, as shown in

FIGURE 4. (a) Comparison of output voltage between our work
and other works. (b) Comparison of code distance. (c) SL
voltage comparison with/without IIB. (d) Output linearity under
different parallelisms.

Fig. 4(d). The nonlinearity has a minor effect on the output
voltage even if 512 parallelisms are applied, indicating that
IIB makes large parallelism possible.

To eliminate the effect of the process, voltage, and tempera-
ture (PVT) variations, instead of using a fixed VB, we propose
a replica bias voltage generation circuit, as shown in Fig. 5(a).
This structure ensures the similarity of working conditions
between the bias generation branch and the RRAM cells,
thus allowing the RRAM cell current to be well defined by
the reference (Iref) regardless of PVT variation. Based on a
1000-point simulation across different PVT conditions, the
standard deviation of cell current is less than 0.05% of the
mean value, which proves the robustness of the proposed
circuits. It is worthwhile to mention that this bias genera-
tion scheme can be extended to support a multibit-per-cycle
input scheme. For example, Fig. 5(b) shows a 2-bit-per-cycle
example, where four different bias voltages (including GND)
are generated by current sources with power-of-two weighted
strength. Each 2-bit input serves as a control signal to choose
from GND to VB1−3. Note that the bias generation circuit can
be shared by all rows, so the bias overhead is negligible.

B. DESIGN CONSIDERATIONS AND TRADEOFFS
The key design consideration of the proposed technique lies
in the choice of the access transistor turn-on voltage VB
or, equivalently, the cell reference current Iref. In the ideal
case, Iref can be arbitrarily small, as the access transistor will
always operate in either the saturation or subthreshold mode,
keeping the IIB effective. In practice, a lower bound for Iref
is limited by the following three factors: 1) thermal noise;
2) random mismatch; and 3) output swing and latency.

To illustrate the tradeoff between Iref and thermal noise,
we, hereby, introduce the concept of peak SNR (SNRpeak),
defined as

SNRpeak = Imax[k]2/(Pn[k] + E2
Q) (3)
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FIGURE 5. (a) Bias voltage generation circuit for binary inputs.
(b) Bias voltage generation circuit for multibit inputs (2-bit for
example).

where Imax[k] and Pn[k] are the maximum column current
and electrical noise power under parallelism k , respectively.
EQ represents the quantization noise of ADC in the current
domain [31]. SNRpeak can be viewed as a measurement
matrix of the accuracy for reading out and digitizing the
analog MAC value from the RRAM array. Without loss of
generality, we assume the on-state cell current equals to Iref,
and the OFF-state current is zero. In addition, we also assume
that the ADC’s resolution is log2(k) bits such that the current-
referred quantization step is also Iref. Then, the following
expression can be obtained:

Imax[k] = kIref (4)

Pn[k] ≈ k × BW

×

[
4KTγ gm

(
gm

1 + gmRLRS

)2

+
4KT
RLRS

(
gmRLRS

1 + gmRLRS

)2
]

(5)

E2
Q = I2ref/12 (6)

where BW denotes the bandwidth of the RCs. K is Boltz-
mann’s constant, and T is the temperature in Kelvin. γ is the
‘‘excess noise coefficient’’ [32], gm is the transconductance of
access transistor, and RLRS is the LRS resistance of RRAM.

Based on (4)–(6), since Imax[k] and E2
Q are proportional to

Iref, reducing Iref causesmore thermal noise contribution, thus
causing SNRpeak degradation. To visualize it, Fig. 6(a) plots
the simulated SNR of our testbench design at the maximum
MAC value (where the SNR drop is the largest) as a function

of Iref. Therefore, cell current needs to be large enough to
reduce thermal noise effects.

In addition to thermal noise, random mismatch also plays
an important role in determining Iref. Although the proposed
bias generation circuit in Fig. 5 mitigates PVT variation
issues, random mismatch effects between the bias branch
and RRAM cells, such as threshold voltage mismatch and
size mismatch, still induce deviations in the RRAM cell
current. In Fig. 6(b), a 1000-point Monte Carlo simulation
with mismatch is performed, and the current mismatch statis-
tic is collected as a function of Iref. It shows that the cell
current standard deviation can reach up to 5.21% of Iref with
a 1-µA reference current, and increasing Iref has the benefit
of reducing the ratio of cell current standard deviation to Iref.
The reason is that the higher Iref results in a higher overdrive
voltage, which suppresses the current deviation.

Finally, the output swing and latency are also affected by
Iref. A larger output swing is desired not only because it has
better noise rejection characteristics, but also it relaxes the
ADC requirements and makes ADC easy to design. A low Iref
with a high RL are expected to generate a high output swing
and keep a low power consumption. However, the intrinsic
tradeoff between output swing and latency limits RL to be
too large. In Fig. 6(c), the output voltage swing versus Iref
is plotted under different load resistances. When Iref is low,
the output swing is mainly limited by insufficient voltage
drop over RL . For a high Iref, the output swing is undermined
by distortion from nonlinearity. Thus, we need to choose a
moderate Iref to provide enough output swing and prevent
distortion.

Based on the discussions above, we select Iref to be 3.9 µA
for the balance of SNR, random mismatch, and output swing.
In this case, the SNRpeak reaches 52.6 dB, which means the
signal power is almost 160k times larger than the noise power,
so thermal noise will not interfere with signals. To maximize
the output swing and reduce the latency, a load resistance
of 1800 � is chosen, so a 0.63-V output swing of the RC
can be obtained, which is efficient to drive ADC and keeps
output voltage with good linearity. In addition, the output
latency is also determined by the load resistance and cell
current. As shown in Fig. 6(a), as long as Iref is not too
small, the SNR is dominated by quantization error instead
of the RC noise. In this region, we do not necessarily need
to trade the sampling BW, so sub-ns latency can still be
achieved. In this work, 0.43-ns latency is obtained if 3 fF
is used as unit capacitance in CDAC, which enables a high-
throughput design. The cell current variation attributed to
transistor mismatch and PVT variations is limited within 3%,
which is negligible compared to RRAMdevice variation [22],
[33]. The comparison of the operating cell current is illus-
trated in Table 1. Compared to the conventional RRAM cell,
the proposed IIB-based cell reduces the ON-state and OFF-
state currents by 10.3× and 2.6×, respectively. Our proposed
IIB-based RRAMcell helps to reduce ION and IHRS; however,
the ON–OFF ratio becomes smaller, indicating a more severe
ambiguity issue. Fortunately, this problem can be solved by
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FIGURE 6. (a) SNR simulation under different Iref’s. (b) 1000-point simulation for current deviation under different reference currents.
(c) Simulation result of output swing under different Iref’s and RL’s.

TABLE 1. Operating current comparison.

implementing XNOR RRAM cells, which encode two cells as
one weight [12].

IV. PROPOSED ADC DESIGN WITH IN-ADC COMPUTING
In most existing RRAM-based CIM macros, flash ADCs are
commonly employed [10], [11], [12], [13], [17], [18], [19]
for their flexibility in individual transition level tuning to
compensate for the readout distortion (more details in the
Supplementary Material). With the read-out linearity greatly
improved through the IIB technique, such distortion compen-
sation can be obviated. This allows us to employ energy- and
area-efficient ADC options, the voltage-mode SAR architec-
ture. It saves the large overhead for tunable transition voltage
generation and consumes less energy compared to the flash
ADC at 5 b and beyond [34].

We observe that the CDAC capacitors are binary-weighted
in SAR ADCs, which inherently turns the voltage across
each capacitor into a weighted charge and adds up natu-
rally during the SAR conversion. This characteristic allows
weight reconstruction to be done inside the ADC, named
IAC. Fig. 7(a) demonstrates one possible mode of IAC (Mode
A), which performs a one-shot weighted summation of a
1-b-I-4-b-W MAC operation on a 5-b SAR ADC. When the
first input signal X [0] drives theWL, it multiplies with binary
weights: W[0], W[1], W[2], and W[3], respectively. Then,
the readout voltages of V3, V2, V1, and V0 can be sampled to
different capacitors with a capacitance ratio of 2, while other
capacitors are connected to a fixed dc voltage VCM. Note
that this configuration is generally referred to as bottom-plate
sampling (BPS) in ADC design terminology. Following the
sampling, the comparator side of the CDAC will be floated,
while the input side merges to VCM. This will initiate charge

redistribution and create the weighted sum of V3, V2, V1, and
V0 as Vx0, which can be expressed as

Vx0 =
31
16
VCM −

1
2
V3 −

1
4
V2 −

1
8
V1 −

1
16
V0 (7)

where Vx0 is the initial comparator input voltage (Vx) after
BPS. Note that the equation suggests a negative weighted
sum. This, in fact, is useful because V0–V3 have a negative
slope over MAC value (see Fig. 4). The negative weighted
sum allows the ADC output to be proportional to the MAC
value. In addition, the comparator negative input voltage
Vcenter is chosen to be the average voltage of the largest and
smallest Vx0, which removes the dc offset due to VCM and
the I–V ’s inherent dc-level. With Mode A, only one ADC is
required for four columns, so the ADC area and power over-
head are reduced by 4× compared to the conventional A-D
method. It also avoids the use of multiplexers, which elimi-
nates the tradeoff between latency and area consumption.

To further increase the throughput, we propose Mode B
IAC, as shown in Fig. 7(b). In this scheme, the DAC is divided
into two parts, where the size ratio is 2:1. When X [0] is
connected to the array, its MAC results will be sampled by
the smaller part of the DAC. Then, the top plate (i.e., the
input side) of the DAC will be kept floating. Then, X [1]
is fed into the array, and its MAC result will be sampled
to 2× capacitance DAC, constructing a 2× weight of data
reconstruction. With Mode B, a 4 b × 4 b MAC requires only
four samplings and two conversions of a 6-bit SAR ADC.

The operation of different modes of IAC is shown and
compared in Fig. 7(c). TheMode A scheme collects theMAC
results from every column and conducts S&A operation by
utilizing the DAC capacitance ratio. For Mode B, an extra
2×DAC is implemented to help reconstruct the input weight.
The advantages of Mode B are given as follows: 1) since only
two 6-bit results are obtained for the subsequent process, less
digital calculation is needed and 2) Mode B also reduces the
latency of the CIM macro, as shown in Fig. 7(d). For Mode
A, since each A-D conversion time is 4 ns, a total of 16 ns is
needed to finish a 4-bit MAC operation. Note that, since the
read-out circuits are disconnected with ADC after sampling,
the next input can be fed to the array at the beginning of
the ADC conversion phase, as shown in Fig. 7(d). In other
words, the next MAC result can be calculated simultaneously
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FIGURE 7. (a) Schematic of RRAM array with IAC-based data reconstruction (Mode A). (b) High throughput IAC schematic (Mode B).
(c) Operation of 4-bit MAC operation with IAC. (d) Timing diagram of 4-bit MAC operation with IAC (Mode A and Mode B).

FIGURE 8. (a) Schematic 5-bit ADC with 4-bit IAC with
latch-based fast SAR logic. (b) Layout of proposed SAR ADC.

with the ADC conversion phase. For Mode B, since the SAR
conversion time is reduced by half, the total latency is only
11 ns, which means the throughput is improved by 45%.

In essence, the IAC-SAR approach allows ADC shar-
ing across columns without the cost of time multiplexing.
This not only retains throughput but also relaxes the area
constraint on the ADC design. Still, because state-of-the-
art RRAM technology can produce an array pitch to be as
small as approximately 0.25 µm [36], careful design practice
is needed to ensure a small ADC area. The detailed ADC
schematic andwaveform are shown in Fig. 8, wherewe devise
the following strategies.

1) Synchronous timing is adopted for this design so that
the clocking generation circuits can be shared by all
ADCs.

2) We apply the Vcm-based switching technique [37] to
eliminate the MSB capacitor and its control logic.

3) Fast SAR logic is utilized, which is based on latch
instead of D-FFs, so the SAR logic circuits can be
simplified [38].

4) A compact CDAC layout reported in [39] is imple-
mented. Furthermore, the CDAC capacitors, made on
the metal layers, are overlappingly placed with transis-
tors to further reduce area consumption. In this work,
the ADC’s total length is 48.5 µm, and the width is
only 3µm, which makes it easily match the pitch width
of the RRAM array.

V. SYSTEM-LEVEL SIMULATION RESULTS
The performances of our work and other state-of-the-
art works are summarized and compared in this section.
We benchmark our performance through SPICE simulation
and NeuroSim simulator [42], [43]. We first train a VGG-8
network based on the CIFAR-10 dataset on 8-bit precision
and get 90.8% accuracy as the baseline. Then, we use an
RRAM-based CIM macro for inference. For the circuit sim-
ulation, we use Cadence Virtuoso EDA software and test the
performances under TSMC 28-nm CMOS technology.

First, we compare the energy performance of proposed
ideas with different configurations, as shown in Table 2. For
the simulation setup, the array size of 256 × 128 (with XNOR

RRAM cells) and the multiplexing ratio of 1:1 are chosen as
macro structure. The ADC resolution is chosen to be 5 bit to
provide enough inference accuracy and avoid consuming too
much area and power. With Mode-A IAC, the ADC energy
to finish 128 8 × 8 MAC is 81 pJ, and the area consumption
is only 1164 µm2, which is reduced by 4× compared to the
conventional method. Mode B further reduces the latency by
31.25% compared to no IAC and Mode A cases. However,
the tradeoff that it needs is a 3× sized CDAC, which burns
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TABLE 2. Simulated performance for different configurations.

FIGURE 9. Power breakdown of different configurations.

3× CDAC power. In addition, the ADC resolution should
be extended to maintain the same inference accuracy with
2-bit input and 4-bit Mode B IAC, which results in an expo-
nentially increased CDAC power. The detailed normalized
power breakdown under different configurations is compared
in Fig. 9. In this work, we adopt a 2-bit input scheme with
a 4-bit IAC (Mode A) to achieve a balance between energy
efficiency, area, and accuracy.

Then, we compare our work with other state-of-the-art
works [12], [17], [18], as shown in Table 3. In our work,
we adopt 2-bit input and 1-bit weight; then, we use 5-bit ADC
to digitize the result. A voltage-mode SAR ADC with IAC
is proposed for A-D conversion and data reconstruction. Just
as discussed in Section III, the output swing can be adjusted
by changing RL resistance, and 128 cells can be turned on
simultaneously. Benefiting from the IIB technique, the cell
operating current can be saved by 90%, and thus, the array
energy can be minimized. The latency in our work comes
from input digital delay, read delay, and analog-to-digital
conversion delay. However, these delays can be implemented
in a pipeline way (the SAR conversion can be processed
simultaneously with RRAM array computing), so the final
read delay will be 4 ns. For energy efficiency, we normalize
all the work to 8-bit MAC. According to the simulation
result, the energy efficiency of the proposed CIM macro is
8.9 TOPS/W due to power-efficient RRAM design and IAC,

TABLE 3. Performance comparison of different works.

which is the highest among all the state-of-the-art works.
Benefiting from the low distortion RRAM array and RCs’
design techniques, the accuracy of 87.2% is achieved on the
CIFAR-10 dataset.

VI. CONCLUSION
This article presents an intrinsic impedance-boosted RRAM
array and its peripheral circuit design. This design reuses
the access transistors as CG current buffers, which reduces
the cell current and enables a linear read voltage with low
complexity. In addition, a compact voltage mode SAR ADC
with IAC further reduces the complexity of peripheral circuits
and saves power. The proposed ideas make our RRAMmacro
achieve 87.2% inference accuracy while operating under
8.9 TOPS/W energy efficiency for 8-bit MAC operation.
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