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ABSTRACT The transistor celebrated its 75th birthday in 2022. The continued scaling of the transistor
defined by Moore’s law continues, albeit at a slower pace. Meanwhile, computing demands and energy
consumption required by modern artificial intelligence (AI) algorithms have skyrocketed. As an alternative
to scaling transistors for general-purpose computing, the integration of transistors with unconventional
technologies has emerged as a promising path for domain-specific computing. In this article, we provide
a full-stack review of probabilistic computing with p-bits as a representative example of the energy-efficient
and domain-specific computing movement. We argue that p-bits could be used to build energy-efficient
probabilistic systems, tailored for probabilistic algorithms and applications. From hardware, architecture,
and algorithmic perspectives, we outline the main applications of probabilistic computers ranging from prob-
abilistic machine learning (ML) and AI to combinatorial optimization and quantum simulation. Combining
emerging nanodevices with the existing CMOS ecosystem will lead to probabilistic computers with orders of
magnitude improvements in energy efficiency and probabilistic sampling, potentially unlocking previously
unexplored regimes for powerful probabilistic algorithms.

INDEX TERMS Artificial intelligence (AI), combinatorial optimization, domain-specific hardware,
machine learning (ML), p-bits, p-computers, quantum simulation, sampling, spintronics, stochastic magnetic
tunnel junctions (sMTJs).

I. INTRODUCTION

THE slowing down of the Moore era of electronics has
coincidedwith the recent revolution inmachine-learning

(ML) and artificial intelligence (AI) algorithms. In the
absence of steady transistor scaling and energy improve-
ments, training and maintaining large-scale ML models in
data centers have become a significant energy concern [1].

The widespread implementation of AI, particularly in indus-
tries such as autonomous vehicles [2], is an indication that
the energy crisis caused by large-scale ML models is not just
a data center problem, but a global concern.

Efforts of extending the Moore era of electron-
ics by improving conventional transistor technology
continue vigorously. Examples of this approach include
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3-D heterogeneous integration, 2-D materials for transis-
tors and interconnects [3], new transistor physics via neg-
ative capacitance [4], [5], or entirely new approaches
using spintronic and magnetoelectric phenomena to build
energy-efficient switches [6], [7].

A complementary approach to extending Moore’s law is
to augment the existing CMOS ecosystem with emerging,
nonsilicon nanotechnologies [8], [9]. One way to achieve
this goal is through heterogeneous CMOS + X architectures,
where X stands for a CMOS-compatible nanotechnology.
For example, X can be magnetic, ferroelectric, memristive,
or photonic systems. We also discuss an example of this
complementary approach, the combination of CMOS with
magnetic memory technology, purposefully modified to build
probabilistic computers.

FIGURE 1. Bit, p-bit, and qubit. Each column shows a schematic
representation of the basic computational units of classical
computing (left), probabilistic computing (middle), and quantum
computing (right). These are, respectively, the bit, the p-bit, and
the qubit.

II. FULL-STACK VIEW AND ORGANIZATION
Research on probabilistic computing with p-bits originated
at the device and physics level, first with stable nanomag-
nets [10], followed by low-barrier nanomagnets [11], [12].
In [12], the p-bit was formally defined as a binary stochastic
neuron realized in hardware. In both approaches with sta-
ble and unstable nanomagnets, the basic idea is to exploit
the natural mapping between the intrinsically noisy physics
of nanomagnets to the mathematics of general probabilistic
algorithms [e.g., Monte Carlo, Markov Chain Monte Carlo
(MCMC)]. Such a notion of natural computingwhere physics
is matched to computation was clearly laid out by Feynman
[13] in his celebrated Simulating Physics with Computers
talk. Subsequent work on p-bits defined it as an abstrac-
tion between bits and qubits (see Fig. 1) with the possi-
bility of different physical implementations. In addition to
searching for energy-efficient realizations of single devices,
p-bit research has extended to finding efficient architec-
tures (through massive parallelization, sparsification [14],
and pipelining [15]) along with the identification of promis-
ing application domains. This full-stack research program
covering hardware, architecture, algorithms, and applications
is similar to the related field of quantum computation where
a large degree of interdisciplinary expertise is required to
move the field forward (see the related reviews [16], [17]).
The purpose of this article is to serve as a consolidated sum-
mary of recent developments with new results in hardware,
architectures, and algorithms. We provide concrete and pre-
viously unpublished examples of ML and AI, combinatorial
optimization, and quantum simulationwith p-bits (see Fig. 2).

III. FUNDAMENTALS OF p-COMPUTING
A large family of problems (see Fig. 2) can be encoded
to coupled p-bits evolving according to the following
equations [12]:

mi = sign
[
tanh(β Ii) − r[−1,+1]

]
(1)

Ii =

∑
j

Wijmj + hi (2)

where mi is defined as a bipolar variable (mi ∈ {−1,+1}),
r is a uniform random number drawn from the interval
[−1, 1], [W ] is the coupling matrix between the p-bits, β is
the inverse temperature, and {h} is the bias vector. In physical
implementations, it is often more convenient to represent
p-bits as binary variables, si ∈ {0, 1}. A straightforward
conversion of (1) and (2) is possible using the standard trans-
formation, m → 2 s − 1 [18].
As stated, (1) and (2) do not place any restrictions on

[W ], which may be a symmetric or asymmetric matrix. If an
updated order of p-bits is specified, these equations take the
coupled p-bit system to a well-defined steady-state distri-
bution defined by the eigenvector (with eigenvalue +1) of
the corresponding Markov matrix [12]. Indeed, in the case
of Bayesian (belief) networks defined by a directed graph,
updating the p-bits from parent nodes to child nodes takes
the system to a steady-state distribution corresponding to that
obtained from Bayes’ theorem [19].

If the [W ] matrix is symmetric, one can define an energy,
E , whose negated partial derivative with respect to p-bit mi
gives rise to (2)

E(m1,m2, . . . , ) = −

∑
i<j

Wijmimj +
∑
i

himi

 . (3)

In this case, the steady-state distribution of the network is
described by [20]

pi =
1
Z
exp (−βEi) (4)

also known as the Boltzmann law. As such, iterating a net-
work of p-bits described by (1) and (2) eventually approx-
imates the Boltzmann distribution which can be useful for
probabilistic sampling and optimization. The approximate
sampling avoids the intractable problem of exactly calcu-
lating Z . Remarkably, for such undirected networks, the
steady-state distribution is invariant with respect to the update
order of p-bits, as long as connected p-bits are not updated
at the same time (more on this later). This feature is highly
reminiscent of natural systems where asynchronous dynam-
ics make parallel updates highly unlikely and the update
order does not change the equilibrium distribution. Indeed,
this gives the hardware implementation of asynchronous net-
works of p-bits massive parallelism and flexibility in design.

The energy functional defined by (3) is often the starting
point of discussions in the related field of Isingmachines [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43]
with different implementations (see [44] for a comprehensive
review). In the case of p-bits, however, we view (1) and (2)
more fundamental than (3) because the former can also be
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FIGURE 2. Applications of probabilistic computing. Potential applications of p-bits are illustrated. The list broadly includes problems
in combinatorial optimization, probabilistic ML, and quantum simulation.

used to approximate hard inference on directed networks,
while the latter always relies on undirected networks. Com-
pared to undirected networks using Ising machines, work on
directed neural networks for Bayesian inference has been
relatively scarce, although there are exciting developments
[19], [45], [46], [47], [48], [49], [50].

Finally, the form of (3) restricts the type of interac-
tions between p-bits to a linear one since the energy is
quadratic. Even though higher-order interactions (k-local)
between p-bits are possible [18] (also discussed in the
context of Ising machines [51], [52]), such higher-order
interactions can always be constructed by combining a stan-
dard probabilistic gate set at the cost of extra p-bits. In our
view, in the case of electronic implementation with scalable
p-bits, trading an increased number of p-bits for simplified
interconnect complexity is almost always favorable. That
being said, algorithmic advantages and the better represen-
tative capabilities of higher-order interactions are actively
being explored [51], [53].

IV. HARDWARE: PHYSICAL IMPLEMENTATION OF
p-BITS
A. p-BITS
The p-bit defined in (1) describes a tunable and discrete ran-
dom number generator. Its physical implementation includes
a broad range of options from noisy materials to ana-
log and digital CMOS (see Fig. 3). The digital CMOS
implementations of p-bits often consist of a pseudoran-
dom number generator (PRNG) (r), a lookup table for the
activation function (tanh), and a threshold to generate a one-
bit output. Digital input with a specified fixed point precision
(e.g., ten bits with one sign, six integers, and three fractional)
provides tunability through the activation function. Digital
p-bits have been very useful in prototyping probabilistic
computers up to tens of thousands of p-bits [14], [54], [55].

They also serve a useful purpose to illustrate why analog
or mixed-signal implementations of p-bits with nanodevices
are necessary. Even using some of the most advanced field
programmable gate arrays (FPGAs), the footprint of a digi-
tal p-bit is very large: Synthesizing such digital p-bits with
PRNGs of varying quality of randomness results in tens of
thousands of individual transistors. In single FPGAs that do
not use time-division multiplexing of p-bits or off-chip mem-
ory, only about 10 000–20 000 p-bits with 100 000 weights
(sparse graphs with degree 5–10) fit, even within high-end
devices [14].

On the other hand, using nanodevices such as CMOS-
compatible stochastic magnetic tunnel junctions (sMTJs),
millions of p-bits can be accommodated in single cores
due to the scalability achieved by the magnetoresistive
random access memory (MRAM) technology, exceeding
1-Gb MRAM chips [56], [57]. However, before the stable
MTJs can be controllably made stochastic, challenges at
the material and device level must be addressed [58], [59]
with careful magnet designs [60], [61], [62]. Different fla-
vors of magnetic p-bits exist [63], [64], [65], [66], for a
recent review (see [67]). Unlike synchronous or trial-based
stochasticity (see [68]) that requires continuous resetting,
the temporal noise of low-barrier nanomagnets makes them
ideally suited to build autonomous, physics-inspired prob-
abilistic computers, providing a constant stream of tunably
random bits [69]. Following earlier theoretical predictions
[70], [71], [72], recent breakthroughs in low-barrier mag-
nets have shown great promise, using stochastic MTJs with
in-plane anisotropy where fluctuations can be of the order
of nanoseconds [73], [74], [75]. Such near-zero barrier nano-
magnets should be more tolerant to device variations because
when the energy-barrier 1 is low, the usual exponential
dependence of fluctuations is much less pronounced. These
stochastic MTJs may be used in electrical circuits with a few
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FIGURE 3. Different hardware options for building a probabilistic
computer. Top: Various magnetic implementations of a p-bit.
These include both digital (CMOS) and mixed-signal
implementations (based on, e.g., sMTJ with low-barrier
magnets). Bottom: Hybrid of classical and probabilistic
computing schemes is shown where the classical computer
generates weights and programs the probabilistic computer.
The probabilistic computer then generates samples accordingly
with high throughput and sends them back to the classical
computer for further processing. Like the building blocks of
p-bits, the synapse of the probabilistic computer can be
designed in several ways, including digital, analog, and a mix of
both techniques.

additional transistors (see Fig. 3) to build hardware p-bits.
Two flavors of stochastic MTJ-based p-bits were proposed
in [12] (spin orbit torque (SOT)-based) and in [70] (spin
transfer torque (STT)-based). Both these p-bits have now
been experimentally demonstrated in [18], [76], and [77]
(STT) and in [78] (SOT). While many other implementations
of p-bits are possible, from molecular nanomagnets [79] to
diffusive memristors [80], resistive random access memory
(RRAM) [81], perovskite nickelates [82], and others, two
additional advantages of the MRAM-based p-bits are the
proven manufacturability (up to billion-bit densities) and
the amplification of room-temperature noise. Even with the
thermal energy of kT in the environment, magnetic switching
causes large resistance fluctuations in MTJs, creating hun-
dreds of millivolts of change in resistive dividers [70]. Typical
noise on resistors (or memristors) is limited by the (kT/C)1/2

limit which is far lower (millivolts) even at extremely low
capacitances (C). This feature of stochastic MTJs ensures
that they do not require explicit amplifiers [83] at each p-bit,
which can become prohibitively expensive in terms of area
and power consumption. Estimates of sMTJs-based p-bits
suggest that they can create a random bit using 2 fJ per
operation [18]. Recently, a CMOS-compatible single-photon
avalanche diode-based implementation of p-bits showed sim-
ilar, amplifier-free operation [84] and the search for the most
scalable, energy-efficient hardware p-bit using alternative
phenomena continues.

B. SYNAPSE
The second central part of the p-computer architecture is the
synapse, denoted by (2). Much like the hardware p-bit, there
are several different implementations of synapses ranging
from digital CMOS, analog/mixed-signal CMOS, as well as
resistive [85] or capacitors crossbars [86], [87]. The synap-
tic equation looks like the traditional matrix–vector prod-
uct (MVP) commonly used in ML models today, however,
there is a crucial difference, thanks to the discrete p-bit
output (0 or 1), the MVP operation is simply an addi-
tion over the active neighbors of a given p-bit. This makes
the synaptic operation simpler than continuous multiplica-
tion and significantly simplifies digital synapses. In ana-
log implementations, the use of in-memory computing
techniques through charge accumulation could be useful
with the added simplification of digital outputs of p-bits
[88], [89].

It is important to note how the p-bit and the neuron for
eventually integrated p-bit applications can be mixed and
matched, as an example of creatively combining these pieces
(see the FPGA-stochasticMTJ combination reported in [77]).
The best combination of scalable p-bits and synapses may
lead to energy-efficient and large-scale p-computers. At this
time, various possibilities exist with different technological
maturity.

V. ARCHITECTURE CONSIDERATIONS
A. GIBBS SAMPLING WITH p-BITS
The dynamical evolution of (1) and (2) relies on an iterated
updating scheme where each p-bit is updated one after the
other based on a predefined (or random) update order. This
iterative scheme is called Gibbs sampling [90], [91]. Virtually
all applications discussed in Fig. 2 benefit from accelerating
Gibbs sampling, attesting to its generality.

In a standard implementation of Gibbs sampling in a syn-
chronous system, p-bits will be updated one by one at every
clock cycle as shown in Fig. 4(a). It is crucial to ensure that
the effective input each p-bit receives through (2) is computed
before the p-bit updates. As such, Tclk has to be longer than
the time it takes to compute (2). In this setting, a graph with
N p-bits will require N clock cycles (NTclk) to perform a
complete sweep, where Tclk is the clock period. This require-
ment makes Gibbs sampling a fundamentally serial and slow
process.

A much more effective approach is possible by the fol-
lowing observation: even though updates between connected
p-bits need to be sequential, if two p-bits are not directly
connected, updating one of them does not directly change the
input of the other through (2). Such p-bits can be updated
in parallel without any approximation. Indeed, one motiva-
tion of designing restricted Boltzmann machines (RBMs;
see [92]) over unrestricted BMs is to exploit this paral-
lelism: RBMs consist of separate layers (bipartite) that can be
updated in parallel. However, this idea can be taken further.
If the underlying graph is sparse, it is often easy to split it into
disconnected chunks by coloring the graph using a few colors.
Even though finding the minimum number of colors is an
NP-hard problem [93], heuristic coloring algorithms (such as
Dsatur [94]) with polynomial complexity can color the graph
very quickly, without necessarily finding a minimum. In this
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FIGURE 4. Architectures of p-computer. (a) Synchronous Gibbs: all p-bits are updated sequentially. N p-bits need N clock cycles
(NTclk) to perform a complete sweep, Tclk being the clock period. (b) Pseudo-asynchronous Gibbs: a sparse network can be colored
into a few disjoint blocks where connected p-bits are assigned a different color. Phase-shifted clocks update the color blocks one
after the other. N p-bits need ≈ one clock cycle Tclk to perform a complete sweep, reducing O(N) complexity of a sweep to O(1), where
we assume the number of colors c ≪ N. (c) Truly asynchronous Gibbs: a hardware p-bit (e.g., a stochastic MTJ-based p-bit) provides
an asynchronous and random clock with period ⟨Tp-bit⟩. N p-bits need approximately one clock to perform a complete sweep, as long
as synapse time is less than the clock on average. No graph coloring or engineered phase shifting is required.

context, obtaining the minimum coloring is not critical, and
sparse graphs typically require a few colors.

Such an approach was taken on sparse graphs (with no
regular structure) to design a massively parallel implemen-
tation of Gibbs sampling in [14] [see Fig. 4(b)]. Connected
p-bits are assigned a different color, and unconnected p-bits
are assigned the same color. Equally phase-shifted and same-
frequency clocks update the p-bits in each color block one
by one. In this approach, a graph with N p-bits requires
only one clock cycle (Tclk) to perform a complete sweep,
reducing O(N ) complexity for a full sweep to O(1), assuming
the number of colors is much less than N . Therefore, the key
advantage of this approach is that the p-computer becomes
faster with larger graphs since probabilistic ‘‘flips per sec-
ond,’’ a key metric measured by tensor processing unit (TPU)
and GPU implementations [95], [96] linearly increases with
the number of p-bits. It is important to note that these TPU
andGPU implementations also solve Ising problems in sparse
graphs, however, their graph degrees are usually restricted
to 4 or 6, unlike more irregular and higher degree graphs
implemented in [14].

We term this graph-colored architecture the pseudo-
asynchronous Gibbs because while it is technically syn-
chronized to out-of-phase clocks, it embodies elements of
the truly asynchronous architecture we discuss next. While
graph coloring algorithmically increases sampling rates by
a factor of N , it still requires a careful design of out-of-
phase clocks. A much more radical approach is to design
a truly asynchronous Gibbs sampler as shown in Fig. 4(c).
Here, the idea is to have hardware building blocks with
naturally asynchronous dynamics, such as an sMTJ-based
p-bit. In such a p-bit, there exists a natural ‘‘clock,’’ ⟨Tp-bit⟩,
defined by the average lifetime of a Poisson process [97].
As long as ⟨Tp-bit⟩ is not faster than the average synapse time
(tsynapse) to calculate (2), the network still updates N spins in
a single ⟨Tp-bit⟩ timescale. This is because the probability of
simultaneous updates is extremely low in a Poisson process
and further reduced in highly sparse graphs.

In fact, preliminary experiments implementing such truly
asynchronous p-bits with ring-oscillator activated clocks
show that despite making occasional parallel updates, the
asynchronous p-computer performs similarly compared to
the pseudo-asynchronous system where incorrect updates are

avoided with careful phase-shifting [98]. The main appeal
of the truly asynchronous Gibbs sampling is the lack of any
graph coloring and phase shift engineering while retaining
the same massive parallelism as N p-bits requires approx-
imately a single ⟨Tp-bit⟩ to complete a sweep. Given that
the FPGA-based p-computers already provide about a 10×
improvement in sampling throughput to optimized TPU and
GPUs [14], such asynchronous systems are promising in
terms of scalability. Stochastic MTJ-based p-bits should be
able to reach high densities on a single chip. Around 20 W
of projected power consumption can be reached considering
20-µW p-bit/synapse combinations at 1M p-bit density [54],
[60], [99]. The ultimate scalability of magnetic p-bits is a
significant advantage over alternative approaches based on
electronic or photonic devices.

B. SPARSIFICATION
Both the pseudo-asynchronous and the truly asynchronous
parallelisms require sparse graphs to work well. The first
problem is the number of colors: if the graph is dense,
it requires a lot of colors, making the architecture very similar
to the standard serial Gibbs sampling.

The second problemwith a dense graph is the synapse time
tsynapse. If many p-bits have a lot of neighbors, the synapse
unit needs to compute a large sum before the next update.
If the time between two consecutive updates is ⟨Tp-bit⟩,
it requires tsynapse ≪ ⟨Tp-bit⟩ to avoid information loss and
reach the correct steady-state distribution [54], [101].

However, if the graph is sparse, each p-bit has fewer con-
nections, and the updates can be faster without any dropped
messages. Any graph can be sparsified using the tech-
nique proposed in [14], similar in spirit to the minor-graph
embedding (MGE) approach pioneered by D-Wave [102],
even though the objective here is to not find an embedding
but to sparsify an existing graph. The key idea is to split p-bits
into different copies, using ferromagnetic COPY gates. These
p-bits distribute the original connections among them, result-
ing in identical copies with fewer connections. An important
point is that the ground state of the original graph remains
unchanged [14], so the method does not involve approxi-
mations, unlike other sparsification techniques, for example,
based on low-rank approximations [103].
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FIGURE 5. (a) Original graph of a 3SAT instance uf20-01.cnf [100]
having 112 p-bits and a graph density of 6.99%. (Graph density,
ρ = 2|E|/(|V |

2
− |V |), where |E| is the number of edges and |V |

is the number of vertices in the graph.) Some of the p-bits have
many local neighbors up to 101 neighbors as shown in the
histogram that slows down the synapse and the p-bits need to
update slowly. (b) Sparsified graph of the same instance having
410 p-bits. COPY gates are inserted between each pair of copies
of the same p-bits (COPY edges are highlighted in orange). The
graph has a density of 0.95% and the maximum number of
neighbors is limited to 4. The synapse operations are now
faster and hence the p-bits can be updated faster. Even though
the example shown here starts from a low-density graph, the
sparsification algorithm we give is general and applicable to
any graph.

Fig. 5(a) shows an example of this process where the
original graph of a satisfiability (3SAT) instance has been
sparsified as shown in Fig. 5(b). Irrespective of the input
graph size, a sparsified graph has fewer connections locally
and thus the neurons hardly ever need to be slowed down.
One disadvantage of this technique is the increased number of
p-bits; however, the reduced synapse complexity and the pos-
sibility of massive parallelization outweigh the costs incurred
by additional p-bits, which we consider to be cheap in scaled,
nanodevice-based implementations.

VI. ALGORITHMS AND APPLICATIONS
A. COMBINATORIAL OPTIMIZATION VIA INVERTIBLE
LOGIC
When using the Ising model to solve an optimization prob-
lem, the first step is to provide a mapping between the Ising
model and the problem to be solved. Early work on quantum
annealing stimulated by D-Wave’s quantum annealers gen-
erated a significant amount of useful research in this area
[104], some of which are being adopted by quantum-inspired
classical annealers. There are usually many different ways to
find a mapping, for example, some strategies may employ
more nodes than others to encode the same instance, while
others might result in graphs with topology unsuited to the
computational architecture of choice. In this context, the
invertible logic approach introduced in [12] stands out for its
flexibility and sparse encodings.

The process of mapping an instance into an Ising model
can be broadly summarized into three steps, as illustrated by

Fig. 6. In Fig. 6, the steps of the invertible logic encoding of
three combinatorial optimization problems, maximum satis-
fiability (left column), number partitioning (middle column),
and knapsack (right column), are shown. First, each problem
is formalized into a tight mathematical formulation (top row).
Next, the problem is mapped into an invertible Boolean logic
circuit (central row), meaning that each logic gate can be
operated using any terminals as input–output nodes (similar
to those discussed in the context of quantum annealing [105],
[106] and memcomputing [107], [108]). Finally, the proba-
bilistic circuit is algorithmically encoded into an Ising model
(bottom row). Each logic gate has several Ising encodings
that map the energy landscape of its logic operator. After
the Boolean logic formulation of a problem, this step can
be automated in standardized synthesis tools. The overall
approach results in relatively sparse circuits, as illustrated
in the bottom row of Fig. 6, where all three problems show
similarly sparse matrices [W ], with bias vectors {h} shown
under.

The key advantage of this approach, compared to heuristic
and dense formulations of [104], is due to the generality of
Boolean logic, quite similar to how present-day digital VLSI
circuits are constructed in sparse, hardware-aware networks
using billions of transistors. As such, much of the existing
ecosystem of high-level synthesis can be directly used to
find invertible logic-based encodings for general optimiza-
tion problems.

B. MACHINE LEARNING: ENERGY-BASED MODELS
Energy-efficient ML with BMs is a promising application for
probabilistic computers with a recent experimental demon-
stration in [76]. MainstreamML algorithms are designed and
chosen with CPU implementation in mind and hence some
models are heavily preferred over others even though they are
often less powerful. For example, the use of RBMs over the
more powerful unrestricted or deep BMs is motivated by the
former’s efficient software implementation in synchronous
systems. However, by exploiting the technique of sparsity
and massively parallel architecture described earlier, fast
Gibbs sampling with deep Boltzmann machines (DBMs) can
dramatically improve state-of-the-art ML applications like
visual object recognition and generation, speech recognition,
autonomous driving, and many more [109]. Here, we present
an example where a sparse DBM is trained with MNIST
handwritten digits (see Fig. 7). We randomly distribute the
visible and hidden units on the sparse DBM with massively
parallel pseudo-asynchronous architecture that yields multi-
ple hidden layers as shown in Fig. 7(c).

Contrasting with earlier unconventional computing
approaches where the MNIST dataset is reduced to much
smaller sizes [110], [111], we show how the full MNIST
dataset (60 000 images and no downsampling) can be trained
using p-computers in FPGAs. We use 1200 mini-batches
having 50 images in each batch to train the network using
the contrastive divergence (CD) algorithm. The process
of learning is accomplished using a hybrid probabilistic
and classical computer setup. The classical computer com-
putes the gradients and generates new weights, while the
p-computer generates samples according to those weights
[see Fig. 7(b)]. During the positive phase of sampling, the
p-computer operates in its clamped condition under the direct
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FIGURE 6. Invertible logic encoding. The encoding process of three optimization problems—(a) maximum satisfiability problem, (b)
number partitioning, and (c) knapsack problem—is streamlined and visually summarized into three steps: (1) problem first has to be
condensed into a concise mathematical formulation; then, (2) invertible Boolean circuit that topologically maps the problem is
conceived; finally, (3) invertible Boolean circuit is converted into an Ising model using probabilistic and/or/not gates [14].

influence of the training samples. In the negative phase, the
p-computer is allowed to run freely without any environ-
mental input. After training, the deep network not only can
classify images, but also generate images. For any given
label, the network can create a new sample (not present in
the training set) [see Fig. 7(d)]. This is an important feature
of energy-based models and is commonly demonstrated with
diffusion models [112].

C. QUANTUM SIMULATION
One primary motivation for building quantum computers is
to simulate large quantum many-body systems and under-
stand the exotic physics offered by them [113]. Two major
challenges with quantum computers are the necessity of
using cryogenic operating temperatures and the vulnera-
bility to noise, rendering quantum computers impractical,
especially considering practical overheads [114]. Simu-
lating these systems with classical computers is often
extremely time-consuming and mostly limited to small sys-
tems. One potential application of p-bits is to provide a
room-temperature solution to boost the simulation speed and
potentially enable the simulation of large-scale quantum sys-
tems. Significant progress has been made toward this end in
recent years.

1) SIMULATING QUANTUM SYSTEMS WITH
TROTTERIZATION
One approach is to build a p-computer enabling the scal-
able simulation of sign-problem-free quantum systems by
accelerating standard Quantum Monte Carlo (QMC) tech-
niques [115]. The basic idea is to replace the qubits in the
original lattice with hardware p-bits and replicate the new
lattice according to the Suzuki–Trotter transformation [116].
Recently, the convergence time of a 2-D square-octagonal
qubit lattice initially prepared in a topologically obstructed
state was compared among a CPU, a physical quantum
annealer [117], and a p-computer (both digital and analog)
[118]. For this particular problem, it was shown that an
FPGA-based p-computer emulator can be around 1000 times
faster than an optimized C++ (CPU) program. Based on
SPICE simulations of a small p-computer, we project that
significant further acceleration should be possible with a
truly asynchronous implementation. Probabilistic computers

FIGURE 7. Generative neural networks with p-bits. (a) Hybrid
computing scheme with a probabilistic computer and a
classical computer is demonstrated where the probabilistic
computer generates samples according to the weights given by
the CPU with a sampling speed of around 100 flips/ns.
(b) Overview of the learning procedure for the hybrid setup.
Receiving the samples from the probabilistic computer, the
CPU computes the gradient, updates the weights and biases,
and sends them back to the probabilistic computer until
converged. (c) Sparse DBM is utilized here as a hardware-aware
graph that can be represented with multiple hidden layers of
p-bits. Both interlayer and intralayer connections are allowed
between visible and hidden units. (d) Images shown here are
generated with a sparse DBM of 4264 p-bits after training the
network with full MNIST. The label p-bits are clamped to a
specific image and the network evolves to that image by
annealing the system from β = 0 to β = 5 with a step size
of 0.125.
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FIGURE 8. ML quantum systems with p-bits. (a) Heisenberg Hamiltonian with a transverse field (0 = + 1) is applied to an FM coupled
(JZ = + 1 and Jxy = + 0.5) linear chain of 12 qubits with periodic boundary. (b) To obtain the ground state of this quantum system,
an RBM is employed with 12 visible and 48 hidden nodes, where all nodes in the visible layer are connected to all nodes in the hidden
layer. (c) This ML model is then embedded into a hardware-amenable sparse p-bit network arranged in a chimera graph using MGE.
We use a coupling strength of 1.0 among the replicated visible and hidden nodes in the embedded p-bit network. (d) Overview of the
ML algorithm and the division of workload between the probabilistic and classical computers in a hybrid setting is shown. (e) FPGA
emulation of this probabilistic computer performs variational ML in tandem with a classical computer, converging to the
quantum (exact) result as shown.

can be used for quantum Hamiltonians beyond the usual
Transverse Field Ising Model, such as the antiferromagnetic
Heisenberg Hamiltonian [119] and even for the emulation of
gate-based quantum computers [120]. However, for generic
Hamiltonians (e.g., random circuit sampling), the number of
samples required in naive implementations seems to grow
exponentially [120] due to the notorious sign-problem [121].
However, clever basis transformations [122] might mitigate
or cure the sign problem [123] in the future.

2) MACHINE-LEARNING QUANTUM MANY-BODY
SYSTEMS
With the great success of ML and AI algorithms, training
stochastic neural networks (such as BMs) to approximately
solve the quantum many-body problem starting from a vari-
ational guess has generated great excitement [124], [125],
[126] and is considered to be a fruitful combination of quan-
tum physics and ML [127]. These algorithms are typically
implemented in high-level software programs, allowing users
to choose from various network models and sizes according
to their needs. However, as with classical ML, the difficulty
of training strongly hinders the use of deeper and more
general models. With scaled p-computers using millions of
magnetic p-bits, massively parallel and energy-efficient hard-
ware implementations of the more general unrestricted/deep
BMs may become feasible, paving the way to simulate prac-
tical quantum systems.

To demonstrate one such example of this approach,
we show how p-bits laid out in sparse, hardware-aware graphs
can be used for ML quantum systems (see Fig. 8). The objec-
tive of this problem is to find the ground state of a many-body
quantum system, in this case, a 1-D FM Heisenberg Hamil-
tonian with an external transverse field. We start with an
RBM, which is one of the simplest neural network models,
and use its functional form as the variational guess for the
ground state probabilities (the wave function is obtained by
taking the square root of probabilities according to the Born
rule). A combination of probabilistic sampling and weight
updates gradually adjusts the variational guess such that
the final guess points to the ground state of the quantum

Hamiltonian. Emulating this variational ML approach with
p-bits requires a few more steps. An RBM network contains
all-to-all connections between the visible and hidden layers
which are not conducive for scalable p-computers because
of the large fan-out demanded by the all-to-all connectivity.
An alternative is to map the RBM onto a sparse graph through
MGE [102]. Using a hybrid setup with fast sampling in a
probabilistic computer coupled with a classical computer, the
iterative process of sampling and weight updating can then be
performed. The key advantage of having a massively parallel
and fast sampler is the selection of higher-quality states of
the wave function to update the variational guess. Fig. 8
shows an example simulation of how a p-computer learns the
ground state of a 1-D FM Heisenberg model. The scaling of
p-computers using magnetic p-bits may allow much larger
implementations of quantum systems in the future.

D. OUTLOOK: ALGORITHMS AND APPLICATIONS
BEYOND
Despite the large range of applications we discussed in the
context of p-bits, much of the sampling algorithms have been
either standard MCMC or generic simulated annealing-based
approaches. Future possibilities involve more sophisticated
sampling and annealing algorithms such as parallel tempering
(PT) (see [128], [129] for some initial investigations). Further
improvements to hardware implementation include adaptive
versions of PT [130] as well as sophisticated nonequilibrium
Monte Carlo (NMC) algorithms [131]. Ideas involving over-
clocking p-bits such that they violate the tsynapse ≪ ⟨Tp-bit⟩
requirement for further improvement [14] or sharing synaptic
operations between p-bits [82] could also be useful. A com-
bination of these ideas with algorithm-architecture-device
codesigns may lead to orders of magnitude improvement
in sampling speeds and quality. In this context, as a sam-
pling throughput metric, increasing flips/ns is an important
goal. In addition, solution quality, the possibility of cluster
updates or algorithmic techniques also need to be considered
carefully. Given the plethora of approaches from multiple
communities, we also hope that model problems, benchmark-
ing studies comparing different Ising machines, probabilistic
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accelerators, physical annealers, and dynamical solvers will
be performed in the near future by all practitioners, including
ourselves.

We believe that the codesign of algorithms, architec-
tures, and devices for probabilistic computing may not
only help mitigate the looming energy crisis of ML and
AI, but also lead to systems that may unlock previously
inaccessible regimes using powerful probabilistic (random-
ized) algorithms [132]. Just as the emergence of power-
ful GPUs made the well-known backpropagation algorithm
flourish, probabilistic computers could lead us to previously
unknown territory of energy-based AI models, combinatorial
optimization, and quantum simulation. This research pro-
gram requires a concerted effort and interdisciplinary exper-
tise from all across the stack and ties into the larger vision of
unconventional computing forming in the community [133].
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