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ABSTRACT Dynamical systems can offer a novel non-Boolean approach to computing. Specifically, the
natural minimization of energy in the system is a valuable property for minimizing the objective functions
of combinatorial optimization problems, many of which are still challenging to solve using conventional
digital solvers. In this work, we design two oscillator-inspired dynamical systems to solve quintessential
computationally intractable problems in Boolean satisfiability (SAT). The system dynamics are engineered
such that they facilitate solutions to two different flavors of the SAT problem.We formulate the first dynamical
system to compute the solution to the 3-SAT problem, while for the second system, we show that its dynamics
map to the solution of the Max-not-all-equal (NAE)-3-SAT problem. Our work advances our understanding
of how this physics-inspired approach can be used to address challenging problems in computing.

INDEX TERMS Boolean satisfiability (SAT), combinatorial optimization, dynamical system, Max-not-all-
equal (NAE)-SAT, oscillator.

I. INTRODUCTION

DYNAMICAL systems offer a unique ‘‘toolbox’’ for
solving combinatorial optimization problems [1], [2],

[3], [4]. The intrinsic energy minimization in such systems
provides a natural analog to the minimization of an objective
function associated with combinatorial optimization prob-
lems [5]. The exploration of new computing paradigms for
solving such problems, as in the dynamical system-based
approach considered here, is motivated by the fact that
computing the solutions to such problems using traditional
digital algorithms continues to present a significant chal-
lenge [6], [7]. As a case in point, solving Boolean satis-
fiability (SAT) is an archetypal combinatorial optimization
problem that is still considered fundamentally intractable for
conventional digital hardware. The SAT problem is defined as
the challenge of evaluating if there exists a Boolean assign-
ment for the variables in a given Boolean expression (in the
conjunctive normal form) that would make the expression
TRUE. Besides being the first known NP-complete prob-
lem [8], the SAT problem is considered particularly relevant
since many practical combinatorial optimization problems

can be easily reduced to the solution of the SAT problem.
Here, we specifically consider the case of the 3-SAT problem,
a constrained but NP-complete version of SAT, where each
clause contains no more than three literals.

In this work, we design and analyze two oscillator-inspired
dynamical systems and show that their dynamics can be
directly used to compute solutions to the 3-SAT (System I)
and the Max-NAE-3-SAT (System II) problems. The Not-all-
Equal (NAE)-SAT problem is an NP-complete variant of the
SAT problem, which imposes the additional constraint that
every clause must contain a literal that is true and another
literal that is false. The Max-NAE-SAT problem is the opti-
mization version of the problem where the objective is to
maximize the number of clauses that meet this constraint.
We note that Ercsey-Ravasz et al. [9] proposed an analog
computational model for solving the SAT problemwhich was
formulated using nonoscillating (analog) variables; further-
more, in our prior work, we have also proposed computa-
tional models for many combinatorial problems (e.g., NAE-
SAT, integer factorization among others) with nonoscillating
analog variable [10]. While we drawmany important insights
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from these works, our effort here is fundamentally different
in that our dynamical systems use oscillating (analog) vari-
ables and consequently exhibits a different set of dynamics.
We would also like to point out that there have been multiple
prior works that have explored the formulation of oscillator-
based computational models for solving combinatorial opti-
mization problems such as Maximum Cut [11], [12], [13],
[14], [15], Maximum Independent Set [16], [17], Graph
coloring [18], [19], [20], [21], and Max-K-Cut [22] among
others. However, all these problems, unlike Boolean SAT,
have objective functions with a quadratic degree [23]. Sub-
sequently, the oscillator-based computational models can be
developed using the Kuramoto framework that cannot be
directly applied here.

II. RESULTS
A. SYSTEM I
To formulate System I, we represent every variable xi in
the Boolean expression using an analog variable αi, where
xi = ((1 + cos(t + αi))/2), which can be considered as a
level-shifted oscillator; the oscillator’s angular frequency (ω)
is assumed to be ω = 1 in this theoretical analysis. The
relationship between xi and αi (xi = ((1 + cos(t + αi))/2))
is defined such that the maximum (or minimum) value of the
analog variable equals the Boolean assignment for xi ∈ {0, 1},
respectively. For each clause Cm, we define Km,osc(t, α) =∏N

i=1(1 − ((1 + cmi cos(t + αi))/2)), where cmi = 1(−1),
if the ith variable appears in the mth clause in the normal
(negated) form; cmi = 0, if the variable is absent from themth
clause; α = [α1, α2, . . . , αN ]; N is the number of variables
in the SAT problem. It can be observed that Km,osc(t, α) = 0,
if and only if the clause is satisfied. We define the dynamical
system: (−∇αV )i = 1 + (dαi/dt). The energy function for
the system is defined as

V =

M∑
m=1

A
(
Km,osc (t, α)

)2
. (1)

Here, M is the total number of clauses in the problem. V =

0 when all the clauses are satisfied and consequently corre-
sponds to the solution of the SAT problem (if the problem is
satisfiable). To evaluate the temporal evolution of the system
energy, we calculate (dV/dt), which is given by

dV
dt

=

N∑
i=1

(
∂V
∂αi

)(
dαi

dt

)
+

∂V
∂t

. (2)

Using (1) and the definition of Km,osc(t, α), we can calculate
(∂V/∂t) as

∂V
∂t

=

M∑
m=1

(
2AKm,osc (t, α)

∂
(
Km,osc (t, α)

)
∂t

)

=

M∑
m=1

(
2AKm,osc (t, α)

(
N∑
i=1

cmiKm,osc (t, α)

1 − cmi cos (t + αi)

× sin (t + αi)

))

=

N∑
i=1

M∑
m=1

(
2AKm,osc (t, α)

cmiKm,osc (t, α)

1 − cmi cos (t + αi)

× sin (t + αi)

)
. (3)

Furthermore, (∂V/∂αi) can be calculated as

∂V
∂αi

=

M∑
m=1

(
2AKm,osc (t, α)

∂
(
Km,osc (t, α)

)
∂αi

)

=

M∑
m=1

(
2AKm,osc (t, α)

cmiKm,osc (t, α)

1 − cmi cos (t + αi)

sin (t + αi)

)
. (4)

Substituting (4) into (3), (∂V/∂t) can be expressed as

∂V
∂t

=

N∑
i=1

∂V
∂αi

. (5)

By substituting the expression for (∂V/∂t) from (5) into (2),
(dV/dt) can be calculated as

dV
dt

=

N∑
i=1

(
∂V
∂αi

)(
dαi

dt

)
+

∂V
∂t

=

N∑
i=1

(
∂V
∂αi

)(
dαi

dt

)
+

N∑
i=1

∂V
∂αi

=

N∑
i=1

(
∂V
∂αi

)(
1 +

dαi

dt

)
. (6a)

Furthermore, utilizing the system dynamics (−∇αV )i =

1 + (dαi/dt) (defined above), (6a) can be expressed as

dV
dt

=

N∑
i=1

(
∂V
∂αi

)(
1 +

dαi

dt

)

= −

N∑
i=1

(
1 +

dαi

dt

)(
1 +

dαi

dt

)

= −

N∑
i=1

(
1 +

dαi

dt

)2

. (6b)

It can be observed from the above equation that V is a
decreasing function with time since (dV/dt) ≤ 0. Conse-
quently, this implies that the corresponding system dynamics
will evolve to reduce the system energy (V ).
To formulate the system dynamics (dαi/dt), we express

(dV/dt) as

dV
dt

=

M∑
m=1

(
2AKm,osc (t, α)

d
(
Km,osc (t, α)

)
dt

)
(7a)
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FIGURE 1. Evolution of (a) V , (b) xi , (c) km, and (d) number of clauses satisfied with time for an illustrative 3-SAT problem with six
variables and ten clauses that is computed using the System I dynamics. Here, ω = 2π is used such that T = 1. The simulation is
performed using a stochastic differential equation framework (details in Supplement 1).

dV
dt

=

M∑
m=1

(
2AKm,osc

N∑
i=1

(
cmi

Km,osc

1 − cmicos (t + αi)

× sin (t + αi)

(
1 +

dαi

dt

)))
(7b)

dV
dt

=

N∑
i=1

(
M∑
m=1

(
2AKm,osccmi

Km,osc

1 − cmicos (t + αi)

))

× sin (t + αi)

(
1 +

dαi

dt

)
. (7c)

Equating (6b) and (7c), we get

−

(
1 +

dαi

dt

)
=

M∑
m=1

(
2AKm,osc (t, α)

cmiKm,osc (t, α)

1 − cmi cos (t + αi)

× sin (t + αi)

)
. (8a)
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The above equation can be rewritten as

dαi

dt
= −

(
M∑
m=1

(
2AKm,osc (t, α)

cmiKm,osc (t, α)

1 − cmi cos (t + αi)

sin (t + αi)

)
+ 1

)
. (8b)

The above equation describes the phase dynamics of the
system, which compute the SAT solutions. The first term on
the right-hand side (RHS) in (8b) represents the dissipative
component of the system dynamics. The RHS in (8b) is 2π
periodic in time. At a steady state, V = 0; (dαi/dt) = −1,
which implies that αi = −t + ci, with ci being a constant
offset in the time-varying phase that assumes a value in {0, π}

in a way that minimizes the total system energy and solves
the SAT problem. A node i (defined by ((1 + cos(t + αi))/2))
will eventually settle to 1 (when ci = 0) or 0 (when ci =

π ). Thus, the system is designed such that the out-of-phase
feedback essentially ‘‘cancels’’ out the oscillations when the
system achieves the ground-state energy. This corresponds to
all the clauses being satisfied (if the problem is satisfiable).
Fig. 1 illustrates the system dynamics for a representative
SAT problem. Details of the simulation framework have been
discussed in Supplement 1.

B. SYSTEM II
For this implementation, we formulate the system dynamics
as (−∇αE)i = (dαi/dt), where E is the potential energy
function of the system. In contrast to the prior approach, here,
we will first define the system dynamics and subsequently
aim to show that there exists a Lyapunov (energy) function
which can directly be mapped to the solution to the Max-
NAE-3-SAT problem.We consider a systemwhose dynamics
are defined by

dαi

dt
= sin (t + αi)

×

(
−

M∑
m=1

(
2AKm,osc (t, α)

cmiKm,osc (t, α)

1 − cmi cos (t + αi)

))
− sin (2t + 2αi)As cos (2t)

≡ χ (t + αi (t))Bi (t) + χ (2t + 2αi (t))B(2) (t) . (9)

The above equation can be interpreted as a (sinusoidal) oscil-
lator under perturbation [Bi(t)], and second harmonic signal
injection B(2)(t) ≡ As cos(2t) which helps binarize the phases
to (0, π) [24], [25], as illustrated further on. χ (t + αi) and
χ (2t+ 2αi) are the first and the second harmonics of the per-
turbation projection vectors (PPVs) of the oscillator, respec-
tively. A and As are positive constants. It can be observed that
the dynamics described in (9) are a modified version of the
dynamics derived in (8b) for System I and essentially help
us formulate the dynamics of System II. However, it must
be emphasized here that we do not use the potential energy
function V defined for System I since it does not decrease
monotonically for the System II dynamics. Instead, using the

dynamics described above, we will formulate a new energy
function E whose ground state maps to the solution to the
Max-NAE-3-SAT problem.

To define E , we first reformulate (9) in terms of the relative
phase difference. Substituting the definition of Km,osc(t, α),
(9) can be rewritten as
dαi

dt
= −A sin (t + αi)

×

M∑
m=1

cmi
 N∏
j=1;j̸=i

(
1 − cmj cos

(
t + αj

)
2

)2

×

(
1 − cmi cos (t + αi)

2

)
− sin (2t + 2αi)As cos (2t) . (10)

Expanding the above equation, we obtain

dαi

dt
= −

A
2

 M∑
m=1

cmi sin (t + αi)

×

 N∏
j=1;j̸=i

(
1 − cmj cos

(
t + αj

)
2

)2


−

M∑
m=1

1
2
c2misin (2 (t + αi))

×

 N∏
j=1;j̸=i

(
1 − cmj cos

(
t + αj

)
2

)2



− sin (2t + 2αi)As cos (2t) . (11)

Furthermore, using trigonometric identities to express all the
product terms in (

∏N
j=1;j̸=i(((1 − cmj cos(t + αj))/2)))2 as the

sum of cos(·) terms, we rewrite the expression as
2∑

µN=−2

. . .

2∑
µ2=−2

2∑
µ1=−2

Cµ1,µ2,...,µN ;̸=µi

× cos

 N∑
j=1;j̸=i

∣∣cmj∣∣µj

 t +

N∑
j=1;j̸=i

∣∣cmj∣∣µjαj

.

Using the approach described by Wang and Roychowd-
hury [26], a differential equation such as equation (11) can
be formulated as a Multitime Partial Differential Equation
(MPDE), wherein the fundamental oscillation is assumed to
happen in fast time t1 while the phases evolve in slow time t2.
Subsequently, (11) can then be approximated as

dαi

dt

= −A
M∑
m=1

 2∑
µN=−2

. . .

2∑
µ2=−2

2∑
µ1=−2

cmiQ1C1
µ1,µ2,...,µN ;̸=µi
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× sin

αi −

N∑
j=1;j̸=i

∣∣cmj∣∣µjαj (t)

∣∣∣∣∣∣
Q1


+A

M∑
m=1

 2∑
µN=−2

. . .

2∑
µ2=−2

2∑
µ1=−2

c2miQ2C
2
µ1,µ2,...,µN ;̸=µi

× sin

2αi −
N∑

j=1;j̸=i

∣∣cmj∣∣µjαj (t)

∣∣∣∣∣∣
Q2


−As1sin (2αi) . (12)

Here,Q1 = 1 when
∑N

j=1;j̸=i |cmj|µj = 1, elseQ1 = 0;Q2 =

1 when
∑N

j=1;j̸=i |cmj|µj = 2, elseQ2 = 0. Additional details
regarding the derivation of (12) can be found in Supplement
2. Remarkably, there is a Lyapunov function E(α(t)) which
can be defined for these dynamics as

E (α (t))

=

N∑
i=1

− A
M∑
m=1

2∑
µN=−2

. . .

2∑
µ2=−2

2∑
µ1=−2

cmiQ1

×C1
µ1,µ2,...,µN ;̸=µi

cos

αi (t)−
N∑

j=1;j̸=i

∣∣cmj∣∣µjαj (t)

∣∣∣∣∣∣∑N
j=1;j̸=i |cmj|µj=1




+

N∑
i=1

A
2

M∑
m=1

2∑
µN=−2

. . .

2∑
µ2=−2

2∑
µ1=−2

c2miQ2

×C2
µ1,µ2,...,µN ;̸=µi

cos

2αi (t)− N∑
j=1;j̸=i

∣∣cmj∣∣µjαj (t)

∣∣∣∣∣∣∑N
j=1;j̸=i |cmj|µj=2




−
As1
2

cos (2αi (t)) . (13)

Unlike V (defined for System I), E(α(t)) is defined in terms
of relative phase difference (and not in terms of the abso-
lute phase). To show that E(α(t)) is a decreasing func-
tion in time, that is, ((dE(α(t)))/dt) ≤ 0, we express
((dE(α(t)))/dt) =

∑N
i=1[((∂E(α(t)))/(∂αi(t)))((dαi(t))/dt)],

where ((∂E(α(t)))/(∂αi(t))) can be calculated as

∂E (α (t))
∂αi (t)

= A
M∑
m=1

2∑
µN=−2

. . .

2∑
µ2=−2

2∑
µ1=−2

cmiQ1C
1
µ1,µ2,...,µN ;̸=µi

× sin

αi −

N∑
j=1;j̸=i

∣∣cmj∣∣µjαj (t)

∣∣∣∣∣∣
Q1


−

2A
2

M∑
m=1

2∑
µN=−2

. . .

2∑
µ2=−2

2∑
µ1=−2

c2miQ2C
2
µ1,µ2,...,µN ;̸=µi

× sin

2αi −
N∑

j=1;j̸=i

∣∣cmj∣∣µjαj (t)

∣∣∣∣∣∣
Q2

+ As1sin (2αi)

≡ −
dαi (t)
dt

. (14)

Thus,

∂E (α (t))
∂αi (t)

= −
dαi (t)
dt

. (15)

It can be observed that (15) represents the system dynamics
described earlier. Subsequently,

dE (α (t))
dt

=

N∑
i=1

[(
∂E (α (t))

∂αi (t)

)(
dαi (t)
dt

)]
(16)

= −

N∑
i=1

[(
dαi (t)
dt

)2
]

≤ 0. (17)

Equation (17) reveals that E(α(t)) is decreasing in time.
While (13) represents a general form, we will specifically

define the energy E for the case when each clause contains
exactly three literals and subsequently show that its ground
state can be used to find the solution of the NAE-3-SAT
problem.When a clause contains three literals (corresponding
to variables i, j, k), E can be expressed as

E (α)

=

N∑
i=1

πA2−2N+1
M∑

m=1;i̸=j̸=k;cmi ̸=0
cmj ̸=0,cmk ̸=0

(
2cmicmj

(
1+

1
2
c2mk

)

× cos
(
αi − αj

)
+ 2cmicmk

(
1 +

1
2
c2mj

)
cos (αi − αk)

+
1
2
cmicmjc2mk cos

(
αi + αj − 2αk

)
+

1
2
cmicmkc2mj cos

(
αi + αk − 2αj

)
+

1
8
c2mic

2
mk

(
1 +

1
2
c2mj

)
cos (2αi − 2αk)

+
1
2
c2micmjcmk cos

(
2αi − αj − αk

)
+
1
8
c2mic

2
mj

(
1 +

1
2
c2mk

)
cos

(
2αi − 2αj

))
−

N∑
i=1

πAs
2

cos (2αi). (18)

The details of this derivation are shown in Supplement 3.
The output variables are defined by the oscillator phases α

which settle to {0, π} owing to the second harmonic injection.
We note that if a clause contains literals corresponding to only
one or two distinct variables, i ̸= j ̸= k constraint will not be
imposed for that specific clause in (18). The specific nature
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FIGURE 2. E(αi , αj , αk ) for a single NAE-3-SAT clause computed for different combinations of the literals. It can be observed that the
energy is minimum only when the NAE-SAT clause is satisfied. Only selected combinations have been shown here; a detailed table
considering all combinations has been shown in Supplement 4.

of the arguments of the cos(·) functions shown in (18) arise
from the characteristics of the cross-correlation operation
performed in (12). The corresponding dynamics associated
with (18) can be defined as

dαi

dt
= πA2−2N+1

M∑
m=1;i̸=j̸=k;cmi ̸=0
cmj ̸=0,cmk ̸=0(

2cmicmj

(
1 +

1
2
c2mk

)
sin
(
αi − αj

)
+ 2cmicmk

(
1 +

1
2
c2mj

)
sin (αi − αk)

+
1
2
cmicmjc2mk sin

(
αi + αj − 2αk

)
+

1
2
cmicmkc2mj sin

(
αi + αk − 2αj

)
+

1
4
c2mic

2
mk

(
1 +

1
2
c2mj

)
sin (2αi − 2αk)

+
1
4
c2mic

2
mj

(
1 +

1
2
c2mk

)
sin
(
2αi − 2αj

)
+ c2micmjcmk sin

(
2αi − αj − αk

))
− πAssin (2αi) . (19)

The above equation describes the phase dynamics of
the system which compute the solution to the NAE-
3-SAT Problem. The second harmonic injection sig-
nal −

∑N
i=1 (πAs/2) cos(2αi) (for an appropriate injection

strength As) essentially lowers the energy of the system
corresponding to α ∈ {0, π}, since the minimization
of −

∑N
i=1 (πAs/2) cos(2αi) to −

∑N
i=1(πAs/2) forces the

oscillators to take these binary phase values; this con-
cept was also exploited in designing oscillator-based Ising
machines [26]. Thus, when the system achieves ground state,
each 2α term in (18) induces a phase difference of 0 or 2π ,
and hence the corresponding cos(αi + αj − 2αk ) term can
be simplified to cos(αi + αj). Furthermore, cos(2αi − 2αj)
will take constant values at these specific phase points (rep-
resented as C). Additionally, c2mi = c2mj = c2mk = 1. Thus,
at these discrete phase points, E(α) for a problem in which
each clause consists of three literals can be reduced to

E (α) = πA2−2N+1
N∑
i=1

M∑
m=1;i̸=j̸=k;cmi ̸=0
cmj ̸=0,cmk ̸=0(

3cmicmj cos
(
αi − αj

)
+ 3cmicmk cos (αi − αk)
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FIGURE 3. Evolution of (a) E, (b) ωαi , and (c) number of satisfied clauses with time, for an illustrative NAE-3-SAT problem with six
variables and ten clauses that is solved using the System II dynamics. The dynamics are obtained by simulating (10). In this
simulation, ω = 2π is used such that T = 1. Details of the SDE simulation are described in Supplement 1.

+
1
2
cmicmj cos

(
αi + αj

)
+
1
2
cmicmk cos (αi + αk)

+
1
2
cmjcmk cos

(
αj + αk

))
+C −

N∑
i=1

πAs
2

cos (2αi). (20)

Rearranging the above equation, we obtain

E (α) = πA2−2N+1
M∑

m=1;i̸=j̸=k;cmi ̸=0
cmj ̸=0,cmk ̸=0

N∑
i=1(

3cmicmj cos
(
αi − αj

)

+ 3cmicmk cos (αi − αk)

+
1
2
cmicmj cos

(
αi + αj

)
+

1
2
cmicmk cos (αi + αk)

+
1
2
cmjcmk cos

(
αj + αk

))
+ C

−

N∑
i=1

πAs
2

cos (2αi)

=

M∑
m=1

βm
(
αi, αj, αk

)
+ C −

N∑
i=1

πAs
2

cos (2αi)

=

M∑
m=1

βm
(
αi, αj, αk

)
+ C − Cs. (21)

18 VOLUME 9, NO. 1, JUNE 2023



Bashar et al.: Oscillator-Inspired Dynamical Systems to Solve Boolean Satisfiability

BothC andCs(=
∑N

i=1 (πAs/2) cos(2αi)) are constants at the
phase points, α ∈ {0, π}. Consequently, E(α) is minimized
when

∑M
m=1 βm(αi, αj, αk ) is minimum. Now, for a single

clause consisting of three literals corresponding to three vari-
ables xi, xj, xk (here, xi, xj, xk can appear in normal or negated
form in the clause), βm(αi, αj, αk ) can be written as

βm
(
αi, αj, αk

)
= πA2−2N+1

×

(
cmicmj

(
6 cos

(
αi − αj

)
+

3
2
cos

(
αi + αj

))
+ cmjcmk

(
6 cos

(
αj − αk

)
+

3
2
cos

(
αj + αk

))
+ cmkcmi

(
6 cos (αk − αi) +

3
2
cos (αk + αi)

))
+ C − Cs (22a)

βm
(
αi, αj, αk

)
= πA2−2N+1 (Tij + Tjk + Tki

)
+ C − Cs (22b)

where

Tij = cmicmj

(
6 cos

(
αi − αj

)
+

3
2
cos

(
αi + αj

))
. (23)

Equation (22b) reveals that βm(αi, αj, αk ) is minimum when
Tij + Tjk + Tki is minimum.

At the phase points αi, αj, αk ∈ {0, π}, Tij, Tjk , Tki, and
Tij + Tjk + Tki are binary in nature and exhibit the property
that Tij + Tjk + Tki, and thus βm(αi, αj, αk ), is minimized
when (xi ⊕ xj) ∨ (xj ⊕ xk ) ∨ (xk ⊕ xi) = 1. This is illustrated
in the following paragraph. However, first, we simplify (xi ⊕
xj) ∨ (xj ⊕ xk ) ∨ (xk ⊕ xi) as(

xi ⊕ xj
)
∨
(
xj ⊕ xk

)
∨ (xk ⊕ xi)

=
(
xix j ∨ x ixj

)
∨
(
xjxk ∨ x jxk

)
∨ (xkx i ∨ xkxi)

=
(
xi ∨ xj ∨ xk

)
.
(
x i ∨ x j ∨ xk

)
. (24)

Remarkably, the above equation corresponds to a clause of the
NAE-3-SAT problem. The terms within the first parentheses
in (24) implement the standard SAT constraint, while the
terms in the second parentheses implement the constraint that
at least one literal must be false. Here, we again emphasize
that xi can appear in both normal or negated form; for exam-
ple, if the clause is (xi∨x j∨xk ), the corresponding NAE-SAT
clause will be (xi ∨ x j ∨ xk ).(x i ∨ xj ∨ xk ).
To show that the energy corresponding to a clause, Tij +

Tjk + Tki, is minimized when an NAE-3-SAT clause is sat-
isfied, we consider the table in Fig. 2. It can be observed
from the table that an NAE-SAT clause is satisfied only when
Tij + Tjk + Tki assumes the minimum value. Considering the
inherent symmetry in the expression, only selected cases have
been presented here. However, the complete table has been
shown in Supplement 4.

Consequently, as the system evolves toward the global
minimum of E =

∑M
m=1 βm(αi, αj, αk ) + C − Cs, it aims

to maximize the number of satisfied NAE-3-SAT clauses
(defined by (xi ∨ xj ∨ xk ).(x i ∨ x j ∨ xk )). In other words,
it computes the solution to the Max-NAE-3-SAT problem.
Fig. 3 shows the solution for an illustrative NAE-3-SAT
problem having six variables and ten clauses. The oscillator
dynamics are simulated using (10). However, (19) can also be
used to compute the solution, as shown in Supplement 5.

III. CONCLUSION
In summary, we proposed two oscillator-inspired dynami-
cal systems and demonstrated their ability to compute two
different categories of the Boolean SAT problem. Our work
helps advance the understanding of how oscillator-inspired
computational approaches can be designed and evaluated,
specifically, for solving combinatorial optimization problems
that have objective functions with degrees greater than two.

Our oscillator-based formulation complements the level-
based analog dynamical systems that have been proposed for
solving SAT [9]. We note that in the Ising machine/Hopfield
networks, there are well-known formulations that lead to an
oscillatory version of a level-based analog dynamical sys-
tem. Exploring such relationships between the level-based
and oscillator formulations for the above SAT solvers is an
interesting challenge.

We also emphasize that the present work focuses on devel-
oping computational models, inspired by the principles of
oscillator-based dynamical systems, and results in algorithms
to solve multiple forms of Boolean SAT. The physical imple-
mentation of such models in hardware, where the system
‘‘naturally computes’’ the dynamics, can provide additional
performance benefits and presents a potential future direction
for this work.

The results presented here help expand the application of
oscillator-based dynamical systems and the physics-inspired
computing approach to a larger class of combinatorial opti-
mization problems.
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