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Abstract— The Social Internet of Things (SIoT) now penetrates
our daily lives. As a strategy to alleviate the escalation of
resource congestion, collaborative edge computing (CEC) has
become a new paradigm for solving the needs of the Internet
of Things (IoT). CEC can provide computing, storage, and
network connection resources for remote devices. Because the
edge network is closer to the connected devices, it involves a
large amount of users’ privacy. This also makes edge networks
face more and more security issues, such as Denial-of-Service
(DoS) attacks, unauthorized access, packet sniffing, and man-in-
the-middle attacks. To combat these issues and enhance the secu-
rity of edge networks, we propose a deep learning-based intrusion
detection algorithm. Based on the generative adversarial network
(GAN), we designed a powerful intrusion detection method. Our
intrusion detection method includes three phases. First, we use
the feature selection module to process the collaborative edge
network traffic. Second, a deep learning architecture based on
GAN is designed for intrusion detection aiming at a single attack.
Finally, we propose a new intrusion detection model by combining
several intrusion detection models that aim at a single attack.
Intrusion detection aiming at multiple attacks is realized through
the designed GAN-based deep learning architecture. Besides,
we provide a comprehensive evaluation to verify the effectiveness
of the proposed method.

Index Terms— Collaborative edge computing (CEC), gener-
ative adversarial network (GAN), intrusion detection, social
internet of things (SIoT).
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I. INTRODUCTION

number of devices are connected to the Internet and
communicated with each other in real time. The Social Internet
of Things (SIoT) [1], [2], combining users’ social behaviors
and physical Internet of Things (IoT) [3], can provide ubiqui-
tous Internet access for users. Because of the widespread appli-
cations of SIoT, millions of sensors and devices continue to
generate data and exchange important information [4]. In order
to alleviate the problem of resource congestion, more and
more service providers choose collaborative edge computing
(CECQ) [5], [6], which migrates data computation and storage
to the network edge near the users [7]. Therefore, various
nodes distributed on the network can offload computation
away from the centralized data center, which can significantly
reduce the waiting time of the message exchange. Meanwhile,
CEC can collaboratively handle tasks, such as computation
offloading through social networks and connections among
users. CEC is a crucial technique for SIoT based on edge
computing, which provides connections for users with low
latency, high bandwidth, and high reliability [8], [9]. For
instance, it can support high-quality communications for vehi-
cles to implement unmanned driving [10], [11] and intelligent
transportation system [12], [13]. However, CEC migrates the
users’ private information to network edge from data centers.
In this case, it is much easier for attackers to steal the privacy
of users by taking advantage of the vulnerability of edge
nodes [8], [14]. The general environment of SIoTs based on
collaborative edge networks is shown in Fig. 1. Sensors can
capture and transmit network data via long term evolution
(LTE), WiMAX, Wi-Fi, and satellites for SIoT services.

To ensure the security of CEC, it is crucial to use an
intrusion detection mechanism in SIoTs. Intrusion detection
is a good way to prevent jumped-up attacks and protect
users’ privacy. Currently, many works have used deep learning
techniques to implement intrusion detection accuracy. For
instance, the work in [15] uses edge network traffic as training
data and trains convolutional neural networks to implement
intrusion detection. It uses an auxiliary classifier generative
adversarial network (AC-GAN) to expand abnormal data. The
work in [16] uses the auto-encoder (AE) to reduce the data
dimensionality and then realizes intrusion detection through
AE-AlexNet based on deep learning. Using deep learning
algorithms to train huge data sets in the CEC environment

W ITH the continuous development of the Internet, a large
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Fig. 1. Tlustration of SIoTs based on CEC.

will make the overall process of computing more effective
with low latency [17], [18].

Despite that intrusion detection technologies have been
developing rapidly, existing intrusion detection algorithms for
the security of CEC-based SIoT systems are still in their
infancy. The main challenges of the current CEC-based SIoT
system are summarized as follows [19]-[22].

1) In the edge network of SloTs, a great number of
network devices interact with each other, which makes
the dimension of network data larger. Existing intrusion
detection methods cannot achieve high accuracy when
facing high-dimensional data.

2) In CEC-based SIoT, due to the complex network
environment (e.g., interactions of human-to-human,
human-to-thing, and thing-to-thing), our networks will
be threatened by many types of attacks, such as brute
force, Denial of Service (DoS), and Distributed Denial
of Service (DDoS). Hence, it is difficult for existing
intrusion detection methods to find various types of
attacks from massive data.

3) Edge networks will often face a lot of new attacks. Exist-
ing intrusion detection technologies cannot accurately
detect these attacks.

The unique and ubiquitous characteristics of CEC arise the
main challenges for intrusion detection [23]. Motivated by
that, we propose a generative adversarial network (GAN)-
based mechanism to implement intrusion detection [24]. GAN
consists of two networks, i.e., a discriminator and a generator.
The task of the discriminator is to distinguish whether the data
is extracted from the data set or generated by the generator.
Besides, the task of the generator is to generate realistic data
that the discriminator cannot distinguish whether the data
are real. Over time, under careful supervision, two oppo-
nents compete with each other to successfully improve each
other. The final result is that the well-trained generator can
generate realistic results, and the well-trained discriminator
can effectively distinguish between true and false. In deep
learning, a large number of samples are needed to train the
deep architecture. If the number of samples is too small,
it often leads to insufficient network training. However, GAN
can solve the problem of insufficient samples. The generator
in GAN can theoretically generate data, which can greatly
expand the diversity of samples.

Based on GAN, we designed a powerful intrusion detection
method. Our intrusion detection method includes three phases.

First, the collection of network data sets is mainly to collect
various types of information generated via network nodes.
After that, we carry out feature extraction from the original
data set. Second, we designed an intrusion detection algorithm
aiming at a single attack based on GAN. Finally, we optimized
the intrusion detection models aiming at a single attack so that
they can detect various attacks at the same time.
The main contributions of our work are as follows.

1) We designed a novel intrusion detection method
based on GAN. The GAN-based method can extract
low-dimensional features from original network flows
for feature learning.

2) Existing intrusion detection does not have high accuracy
for detecting multiple attacks. We design a GAN-based
algorithm that can be used to capture different types of
attacks with high accuracy.

3) We design a multiple intrusion detection algorithms
based on GAN. The designed algorithm can detect a
variety of new types of attacks by training and learning
existing attack types.

The following sections of this article are organized as fol-
lows. In Section II, we briefly introduce the existing intrusion
detection methods. In Section III, we propose the approach
put forward in this article. Besides, in Section IV, we use the
CIC-DD0S2019 and CSE-CIC-IDS2018 data sets to evaluate
the proposed method. Finally, we summarize our research and
future works in Section V.

II. RELATED WORK

Currently, many works apply machine learning techniques
to address network security issues. For instance, Yang
et al. [25], [26] proposed a deep post-decision state and
prioritized experience replay schemes that can improve the
communication systems. However, the application of intrusion
detection technology is more extensive.

A. Traditional Intrusion Detection Algorithms

As a novel network security technique, intrusion detection is
a crucial defense solution for our networks behind the firewall.
Intrusion detection systems collect network traffic, security
logs, and other data sets at first. Through analyzing these
measures, intrusion detection systems can detect whether the
network is intruded or not.

The concept of intrusion detection was first pro-
posed by Anderson in [27]. Denning first proposed
the intrusion detection expert system [28]. Furthermore,
Conforti et al. [29] proposed a network-based intrusion detec-
tion system. Moustafa et al. [30] used machine learning
methods for intrusion detection for the first time. After that,
a great number of works using machine learning for intrusion
detection had appeared, which can achieve very good results.
Ambusaidi et al. [31] used the deep belief network for
intrusion detection, and they verified the feasibility of deep
learning in this field.

B. Deep Learning-Based Intrusion Detection

With the rapid development of deep learning, a set of
neural network architectures has been proposed to solve the
intrusion detection problem. For instance, Garg et al. [32]
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proposed the Improved-Gray Wolf Optimization algorithm
(Im-GWO) and the Improved-Convolution Neural Network
(Im-CNN). Due to the complexity of cloud data and the
huge amount of data, by combining Im-GWO and Im-CNN,
they proposed a hybrid data processing model for intrusion
detection. In this model, the Im-GWO algorithm was used
to extract data features, and a certain tradeoff was made
between the exploration of unknown features and the usage
of known features. Then, the Im-CNN algorithm used the
extracted features to implement intrusion detection. Besides,
Saharkhizan et al. [33] proposed a method that integrated
an ensemble of long short-term memory (LSTM) models
to construct the detector to implement enhanced robustness.
Specifically, they integrated a set of LSTM models. After that,
they merged the decision tree method and the LSTM model
to achieve intrusion detection. Unlike the previous methods,
Tian et al. [17] took a different approach by using a distributed
deep learning system to detect Web attacks. Multiple deep
learning models were trained at the same time, and they
were deployed in different servers. By using multiple parallel
systems, the stability of this system can be enhanced.

At the same time, in terms of feature extraction using deep
learning, Shone er al. [34] proposed an intrusion detection
method that used the S-NDAE method for feature extraction
and passed the extracted features to the random forest for
classification. The algorithm has two phases, i.e., encoder and
decoder. To express high-dimensional data in low dimensions,
the decoder process reexpresses low-dimensional data in high
dimensions. The nonsymmetric deep AE that they proposed
has a certain effect on intrusion detection. Meanwhile, through
the meta-learning framework, Xu er al. [35] proposed a
new deep learning method based on feature extraction. The
method that they proposed was to realize intrusion detection by
distinguishing normal network traffic and abnormal network
traffic. They designed a deep neural network called feature
extraction and comparison network (FC-Net), which consists
of a feature extraction network and a comparison network.
FC-Net can realize network traffic intrusion detection by
extracting network features.

As mentioned above, although many techniques are pro-
posed for intrusion detection, there are few intrusion detection
techniques aiming at CEC-based SIoTs. Using deep learn-
ing algorithms to train huge data sets in collaborative edge
networks can greatly improve the efficiency of the comput-
ing process. Therefore, to solve the security problems of
collaborative edge networks, this article takes advantage of
GAN to realize intrusion detection. For CEC-based SloTs,
real-time intrusion detection is necessary. Thereby, GAN is
used in this article to deal with the problem of insufficient
data volume, which can improve the complexity of intrusion
detection algorithm.

III. OUR METHODOLOGY

Our intrusion detection method includes three phases.
In detail, as shown in Fig. 2, we first use the feature selection
model to preprocess the collaborative edge network data, and
we select the required features for intrusion detection. Second,

we designed an intrusion detection algorithm aiming at a
single attack based on GAN. After that, by combining several
intrusion detection models aiming at a single attack, we design
an intrusion detection algorithm aiming at multiple attacks
based on GAN.

A. Feature Selection

The collection of network data is mainly to record vari-
ous types of information generated by network nodes. Then,
the collected initial information is encapsulated in a standard
format after analysis. After that, we extract features from the
original data sets. In our method, we use the CICFlowMeter
tool to process the data set [36]. CICFlowMeter is a network
traffic generator written by Java, and it provides greater
flexibility in selecting features to be calculated. CICFlowMe-
ter can extract features of original data, such as quantity,
the number of bytes, and packet length [20]. The output of the
CICFlowMeter consists of more than 80 network traffic fea-
tures, such as destination port, protocol, flow duration, the total
number of packets in the forward direction, the number of
packets per second of traffic flows, and the average size of the
packet. A feature should be a unique characteristic of a data
packet, through which the attack data can be found without
affecting the normal network traffic.

In view of the increasing amount of data to be processed,
preprocessing feature identification can be used before clas-
sification. The purpose of feature selection is to reduce the
number of training and ensure the accuracy of training by
extracting important features. Therefore, in this article, we use
an ensemble-based multi-filter feature selection (EMFFS)
method [37], which combines information gain (IG) to select
important features. The feature selection method is a pre-
processing phase toward selecting important features from a
data set, and it is independent of the classification algorithm.
The feature analysis method is based on the internal statistical
test of the original training data set, and it takes the feature
analysis scheme as the main standard for feature analysis
by sorting. Then, the method selects features based on a
specific threshold. As shown in Fig. 2, after receiving new
flow, our method first preprocesses the flow, and it performs
feature extraction. Then, we select specific features. Finally,
the preprocessed features are input into the intrusion detection
module.

B. Intrusion Detection Based on GAN Aiming at Single
Attack

We use GAN to implement intrusion detection by using
network traffic features of SloTs. The main idea of GAN
comes from the Nash equilibrium. In a game model with two
parties, it is composed of a generator and a discriminator. The
generator will capture the potential distribution of real data
samples, and then, it generates novel data samples. Meanwhile,
the discriminator is two classifiers that distinguish the input
data from the generated data. In order to win the competition,
two-game players need to continuously optimize and improve
their own generation and discrimination abilities. This learning
optimization process is to find a Nash equilibrium between
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TABLE I
NOTATIONS
Symbol Meaning
E Expectation
Differential functions represented by a multilayer
D RN .. .
perceptron used for discriminator aiming at single attack
Differential functions represented by a multilayer
G . .
perceptron used for generator aiming at single attack
Pdata () Input data
pz(2) Noise variables
x Input vector
z Noise vector
V(G,D) Value function
[ Represent the number of samples of z
L Represent the number of samples of and p_ (2)
J Represent the number of features
r Represents the number of features of input data x
Fake data generated by a generator
T g .
aiming at single attack
Tp xp is composed of « and x,
Pdata (x) Input data set only contains an attack
P Represent the number of samples of @
P Represent the number of samples of pggrq ()’
The discriminator aiming at
yp single attack generates data
F Accuracy function

two players. GAN is a two-player zero-sum game. The sum
of the interests of both players is a constant [24]. Some of the
notations used in this section are summarized in Table I.

GAN uses adversarial methods to generate data, and the
basic illustration is shown in Fig. 3. Generating an adversarial
network is playing a fighting game. The learning process is to
constantly find other opponents to fight against and accumulate
experience in the confrontation in order to improve your skills.
GAN can be described as follows:

min max V(G, D) = Exepyxlog(D(x))]
+Ezep.ollog(l — D(G(z))] (1)

where E denotes the expectation. D and G are both differ-
ential functions represented by a multilayer perceptron. D

and G represent a discriminator and a generator, respectively.
Pdata(x) and p.(z) represent input data and noise variables,
respectively. Accordingly, x and z are input and noise vec-
tors, respectively. Meanwhile, V (G, D) represents the value
function.

According to the loss functions of discriminant and gen-
erative models, the back-propagation (BP) algorithm can be
used to update the parameters of GAN. The parameters of
GAN can be calculated effectively through the gradient BP
algorithm. Therefore, we use the method based on GAN to
handle the problem of intrusion detection.

As mentioned above, we use the CICFlowMeter tool to
process the original data set, and then, we preprocess the data
to get the training data pgu,(x) we need. Then, we use this
data set to train the proposed model.

The generator G selects the example z from random noise
pz(z). Hence, G(z) denotes the fake data generated by the
generator. G is the differential functions represented by a
multilayer perceptron.

Meanwhile, the discriminator D recognizes the example x
from the input pgu,(x), and then

Exepdam(x) IOg(F(D(x))) (2)

F(D(x)) is the output result of the discriminator model, which
is a real value in the range of O — 1. It is used to judge the
probability of data accuracy. Maximizing 2 means that D can
predict normal values accurately, i.e., F(D(x)) = 1 when
X € pdata(x )

Then, we verify the data generated by the generator, which
is

Ezcp,z) log(1 — F(D(G(2)))). (3)

Maximizing 3 means that F(D(G(z))) ~ 0, and so G cannot
generate excellent fraud data. The purpose of the generator is
to generate data that can fool the discriminator.

During network training, the objective function of the dis-
criminator can be defined as

mgx Ezep.z) [log(1 — D(G(z))] + Excpua(x) [log(D(x))].
4)

It can be seen that the purpose of the objective function is to
find the discriminator function D that can maximize the sum
of the following two expressions. Hence, we can define the
value function as

V(G, D) = Exepdm(x)[IOg(F(D(x)))]
+Ezep.(ollog(l — F(D(G(2)))].  (5)

When G remains unchanged, then D} = argmaxp V (G, D)
can be expressed as the best discriminator. Correspondingly,
when D is constant, to obtain the optimal generator G, G
should satisfy G}, = argming V (G, D). After a certain
amount of training, we can get the desired optimal discrimi-
nator Df;, which satisfies D}, = argmaxp V(G7,, D).

The deep feedforward network is so-called multilayer per-
ceptron, which is a classical deep-learning method. The des-
tination of a multilayer perceptron is to approximate a certain
function f*. For instance, classifier y = f*(x) maps x,
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Fig. 4. Intrusion detection structure diagram aiming at single attack.
which is the input data to a certain category y. The multilayer
perceptron defines a mapping y = f*(x;6) and learns the
value of the parameter @ so that it can get the best function
approximation.

GAN is composed of a generator and a discriminator. The
generator and discriminator are composed of several hidden
layers, respectively. The output of each layer is used as the
input of the subsequent layer. Fig. 4 shows the architecture
of intrusion detection aiming at an attack based on GAN for
SIoTs. Here, the superscript number indicates the identity of
the hidden layer, and the subscript number indicates the size
of the layer.

In the generator phase, the generator G selects the example
z from random noise p;(z), where z and p.(z) are j x [ and
J x L matrices. Meanwhile, / and L represent the number of
samples of z and p,(z), respectively. Both z and p,(z) have j
features. Then, the generator G generates fake data x,, where
x; = G(z). It is obvious that x, is a r x [ matrix, and r
represents the number of features of the input data x. In the
generator, the kth layer of the generator can train itself by
using the result of the (k — 1)th layer. Hence, the generator
can be expressed as

=g Wit ) k=1,...,m (6)

where x(z’ represents the input data z. x’z‘ denotes the output
of the kth layer, and x]' represents the output data x,. x; is
the fraud data generated by the generator. Meanwhile, m is
the number of layers. We use 0’(‘; = {wk,, b’(‘;} to represent the
parameters corresponding to the kth layer of the generator.
The notation g* represents the operation of the rectified linear
unit (ReLU) function or the tanh function, and the last layer
g™ represents the tanh function.

For the generator model, we choose mean square
error (MSE) as the loss function. In our method, MSE for
anomaly based intrusion detection in CEC-based SIoTs can
be defined as

2113:1 (g — ‘I'k)z
p

where ¢, is the correct answer of the kth data in a batch, and
q is the predicted value given by the neural network. MSE is
a function to find the average error of a batch. p represents

MSE(q, ¢") = (7

the number of samples. We use BP and adaptive moment
estimation (ADAM) optimizer to determine the minimum loss
value of the generator network so that the corresponding
learning parameters can be derived and optimized model.

In the discriminator phase, the input of the discriminator D
is the combined data xp, where xp is composed of x and
X;. Xp is a r X (I + p) matrix, and x is a r X p matrix.
Here, x is a sampling from the input data set pg,(x)’, where
the input data pga.(x)’ are preprocessed. The input data set
only contains an attack. pgua(x)’ is a r x P matrix, where
p and P represent the number of samples of x and pgau(x)’,
respectively. Then, the discriminator generates data y ,,, where
Yp = D(xp) and yp is a 2 x (I + p) matrix. Here, y, =
D(x;) and y = D(x). y represents the abnormal situation
of the overall combined data, and y is the abnormal situation
of the real input data. Meanwhile, y, represents the abnormal
situation of the generated data.

In the discriminator, the kth layer of the discriminator can
train itself by using the result of the (k — 1)th layer. Hence,
the discriminator can be expressed as

Xl = fAWpxly !t +bp). k=1, ®

where x% represents the input data xp, and ka denotes the
output of the kth layer. x', represents the output data y,
where n is the number of the discriminator layers. We use
01;) = {wh), ka} to represent the parameters corresponding to
the kth layer discriminator. The notation f* represents the
operation of the tanh function, and the last layer f" represents
the softmax function.

In the discriminator phase, we use the cross-entropy loss
function. In the case of two classifications, the cross-entropy
loss function can optimize the model very well. By minimizing
the loss function, the model can reach a state of convergence
and reduce the error of the model’s predicted value. The
cross-entropy loss function can be described as follows:

14

1
Lg.q) =" > —lqiloglgy) + (1 — ¢') log(1 — g,)]
k

©)

where ¢’ is the correct answer, and ¢ is the predicted value
given by the neural network. p represents the number of sam-
ples. The cross-entropy loss function is used as a loss function
to determine the minimum loss value of the discriminator
network. Similarly, we also use BP and ADAM to update the
discriminator.

Before entering the judgment phase, we need to process the
data. To judge the abnormal situation directly, the processing
conditions are as follows:

yie =0,y =1 if yu < yx

. (10)
yie=Lyn=0 if yu>yx

Y()’D):[

where y; and yy are the discrimination results of the kth data,
respectively. In the judgment phase, we define the accuracy
function F, which can reflect the accuracy of the discriminator
and the effect of the generator. The accuracy function F' can
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be shown by
o TP+TN
TP+FN+FP+TN
The four parameters are described as follows.

(1)

1) T P—The forecast is a positive example, and the actual
is a positive example.

2) FP—The forecast is a positive example, and the actual
is a negative example.

3) T N—The forecast is a negative example, and the actual
is a negative example.

4) F N—The forecast is a negative example, and the actual
is a positive example.

Finally, we train the network by judging the size of
F(Y(y),Yy)and F(Y(y,),Y;), where Y, and Y; are the actual
label of the real data set and the actual label of the generated
data, respectively. If F(Y (y), Yy) is greater than F (Y (y,), Y>),
we train the generator; otherwise, we train the discriminator.
The details of our intrusion detectiom method for an attack
are shown in Algorithm 1.

C. Intrusion Detection Aiming at Multiple Attacks

Our intrusion detection method aiming at multiple attacks
is a combination of several GAN model discriminators.
We train [ discriminators in advance, and the discriminators
Dy, D;,...,D; come from the intrusion detection models
aiming at an attack. The types of attacks trained by these
models are different. The specific model of intrusion detection
aiming at multiple attacks is shown in Fig. 5. We adjust
the number of discriminators from intrusion detection aiming
at an attack according to the number of attack types. The
destination of network is to obtain the optimal discriminator
D}, = argmaxp V(G7},, D).

In the generator phase of intrusion detection aiming at
multiple attacks, we select the input sample x from the
input data set pgua(x), where the input data pg,.(x) are
preprocessed, and it contains various attacks types. pgaa(x)
also is a r x P’ matrix. After that, the input x will first be
processed by discriminators Dy, Dy, ..., D;. Therefore, for
the input x, it will pass through / discriminators to form the
feature quantity x;, where i = 1,2, ..., I. Then, we combine
I feature quantities into a new feature matrix x, where x¢ is
a R x p matrix, and R = 2/. Thus, x; and xs can be denoted
by
i=1,2,3,...,1

(12)

Xg = [x1;%2;...;%/]

[xi = D;(x),

The generated feature matrix x will pass the generator G’
to generate the fake data x’; that can deceive the discriminator,

Algorithm 1 Intrusion Detection Network Training Aiming at

Single Attack

Require: input data pg.,(x)’; number of iterations T'; real data
label Y,; corresponding label of generate data Y,

Ensure: generator G; discriminator D

1: p,(z) is randomly generated L numbers from 1 to 0

2.1t <« 1

3: while r < T do

4:  Samples minibatch of ! noise samples {z(", ... z"}
from noise prior p,(z)
50 X; = G(Z)
. Samples minibatch of p examples {xV, ..., x(} from

data generating distribution pgy,(x)’
7. xp=[x,x,]
8 yp=D(xp)

yik =0,y =1 if yu < yx
9 Y(yp) = .
yik =Lyu =0 if yi = yu
10: yp =1yl
11 _ TP+TN
: TP+FN+FP+TN
12 if F(Y(y),Y,) > F(Y(y,), Y;) then
13: Generator update: The mean squared error is used as

a loss function to determine the minimum loss value
of the discriminator network. And the network uses BP
and Adam to optimize.

14 else (F(Y(),Yy) < F(Y(3,), Y,))

15: Discriminator update: The cross entropy loss function
is used as a loss function to determine the minimum
loss value of the discriminator network. And the net-
work uses BP and Adam to optimize.

16:  end if

17: end while

18: return discriminator D

where x’; = G'(x¢). Thereby, the generator can be expressed
as

rk

koo gk pk—
x',=g" (w';x

zZ

b k=1,....m (13)

where x’g represents the input data xg, and x’]; denotes
the output of the kth layer. Meanwhile, x"' represents the
output data x’;, where m is the number of layers. We use
0'kG = {w'lé, b'lé} to represent the parameters corresponding
to the kth layer generator. The notation g/k represents the
operation of the ReLLU function or the tanh function, and the
last layer g’ represents the tanh function. For the generator,
the MSE is used as a loss function to determine the minimum
loss value of the discriminator network.

In the discriminator, the input of the intrusion detection
discriminator D’ is the combined data x’p, where x"p consists
of data x and x’;. Then, the discriminator generates the data
y'p, where y', = D'(x'p) and y’[, is a 2 x 2p matrix. Here,
Y .=D'(x';) and y' = D'(xg). y', represents the abnormal
situation of the overall combined data, and y’ represents
the abnormal situation of the real input data. Besides, y’,
represents the abnormal situation of the generated data.

The discriminator can be expressed as

=Rt ) k=1, 0 (14)
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where x’% represents the input data x’p, and x’]z) denotes
the output of the kth layer. x", represents the output data y’,
where n is the number of the discriminator layers. We utilize
0’15 = {w'lz), b ]b} to represent the parameters corresponding
to the kth layer discriminator. Similarly, f * represents the
operation of the ReLLU function or the tanh function, and the
last layer f" represents the softmax function.

In the discriminator of intrusion detection for various
attacks, we also use the cross-entropy loss function. Besides,
BP and ADAM optimizers are used in our intrusion detection
method for various attacks to determine the minimum loss
value of the generator network so that the corresponding
learning parameters can be derived and optimized model.

Similarly, in the judgment phase, we judge the abnormal
situation by

Yie=0,yu=1if yy <yxu
Yu=LYu=0 if Yu=yxu
where y’;; and y’,, are the discrimination results of the kth
data, respectively. Furthermore, we use the same way to train
the proposed architecture. The details of our intrusion detec-
tion method for multiple attacks are shown in Algorithm 2.

After training the intrusion detection model aiming at mul-
tiple attacks, we use the trained all discriminators to detect the
network data. Namely, the network data are preprocessed by
the discriminators Dy, D, ..., D; to build the combined data
Xx¢, and then, the data xs pass the discriminator D’. Finally,
D’ will output the data y’ to judge whether the input data x
are normal or abnormal.

Y'(y'p) = 5)

IV. EXPERIMENTS

A. Data Set
In our simulation, we use CSE-CIC-IDS2018 and
CIC-DD0S2019 [20], [38] to evaluate our method.

CICFlowMeter is utilized to preprocess the CSE-CIC-
IDS2018 data set and CIC-DDoS2019 data set, which
consists of 83 features. Here, we select a certain amount
of data to evaluate the intrusion detection mechanism for
various attacks. The CSE-CIC-IDS2018 data set contains
seven different attack scenarios, namely Botnet, DoS, DDoS,
Brute-Force, Heartbleed, infiltration of the network from
inside, and Web attacks. At the same time, these seven
attack scenarios are included 14 different intrusion attacks.
We take advantage of seven attacks as the training data set
and 14 attacks as the testing data set. There are different
attacks in the training data set, such as Botnet attack, DoS
attacks-Hulk, DoS attacks-slow hypertext transfer protocol
test (SlowHTTPTest), Brute Force-Web, Infilteration, file
transfer protocol (FTP)-BruteForce, and DDOS attack-High
Orbit Ion Canon (HOIC). The attacks in the testing data
set consist of a Botnet attack, DoS attacks-Hulk, DoS
attacks-SlowHTTPTest, Brute Force-Web, Brute Force-Cross
Site Scripting (XSS), Structured Query Language (SQL)
Injection, DDoS attacks-Low Orbit Ion Canon (LOIC)-Hyper
Text Transfer Protocol (HTTP), Infilteration, DoS attacks-
GoldenEye, DoS attacks-Slowloris, FTP-BruteForce, Secure
Shell (SSH)-Bruteforce, DDOS attack-HOIC, and DDOS
attack-LOIC-user datagram protocol (UDP).

Algorithm 2 Intrusion Detection Network Training Aiming at
Multiple Attacks
Require: input data pgu,(x); number of iterations 7'; real
data label Yy/,; corresponding label of generate data Y/;
discriminators Dy, D, ..., Dy
Ensure: generator G'; discriminator D’
1t <1
2: while r < T do
3. Samples minibatch of p examples {x(, ... x} from
data generating distribution pg,e,(x)
xi:D,-(x), i=1,2,3,...,1
Xg = [x1;%2; ...
50 x', =G'(xp)
. x'p =I[xg, x,z]
7 y'p=D'(x'p)
YViu=0,yu=11if Yy <yx

; X1l

s V()= .
YVie=Lyy=0 if Y =yxu
r o=y,
. _ +
0: F= TP+FNLFP+TN
1 if FY'(y), Yy/,) > F(Y'(y',),Y]) then
12: Generator update: The mean squared error is used as

a loss function to determine the minimum loss value
of the discriminator network. And the network uses BP
and Adam to optimize.

13 else (F(Y'(y),Y}) < F(Y'(y',), Y))

14: Discriminator update: The cross entropy loss function
is used as a loss function to determine the minimum
loss value of the discriminator network. And the net-
work uses BP and Adam to optimize.

15:  end if

16: end while

17: return discriminator D’; generator G’

At the same time, we take advantage of the data on the first
day of the CIC-DDo0S2019 data set as the training data set and
the data on the second day as the testing data set. The training
and testing data sets consist of seven and 12 anomalies,
respectively. There are different DDoS attacks in the training
data set, such as PortMap, network basic input/output system
(NetBIOS), lightweight directory access protocol (LDAP),
Microsoft Structured Query Language (MSSQL), UDP, UDP-
Lag, and synchronize sequence numbers (SYN). The DDoS
attacks in the testing data set consist of network time pro-
tocol (NTP), domain name system (DNS), LDAP, MSSQL,
NetBIOS, simple network management protocol (SNMP),
simple service discovery protocol (SSDP), UDP, UDP-Lag,
WebDDoS, SYN, and trivial file transfer protocol (TFTP).

We select a certain amount of data from the data set
for experimentation, and the specific conditions are shown
in Table II. We set up low-flow attacks in the training data
set, and we also set up a variety of new types of attacks and
new low-flow attacks in the testing data set. Here, in order
to verify the performance of the proposed GAN-based model,
we conducted two data sets for evaluation. The first experiment
is to evaluate the performance of the GAN-based model
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TABLE 11
SAMPLE DISTRIBUTION

Attack Abnormal Normal
Data set Class Type Data Data
Infilteration 3500 2500
DoS attacks-Hulk 3500 2500
DoS attacks-SlowHTTPTest 3500 2500
Training Brute Force-Web 150 100
Botnet attack 3500 2500
FTP-BruteForce 3500 2500
DDoS attacks-HOIC 3500 2500
Overall data 36250
Infilteration 40000 5000
DoS attacks-Hulk 40000 5000
DoS attacks-SlowHTTPTest 40000 5000
CSE_Z%Il(;;_IDS Brute Force-Web 611 100
Brute Force-XSS 230 50
SQL Injection 87 20
DDosS attacks-LOIC-HTTP 40000 5000
Testing Botnet attack 40000 5000
DoS attacks-GoldenEye 40000 5000
DoS attacks-Slowloris 10990 1000
FTP-BruteForce 40000 5000
SSH-Bruteforce 40000 5000
DDoS attacks-HOIC 40000 5000
DDoS attacks-LOIC-UDP 1730 250
Overall data 420068
PortMap 3500 2500
NetBIOS 3500 2500
LDAP 3500 2500
Training MSSQL 3500 2500
UDP 3500 2500
UDP-Lag 180 100
SYN 3500 2500
Overall data 36280
NTP 40000 5000
DNS 40000 5000
e LDAP 40000 5000
MSSQL 40000 5000
NetBIOS 40000 5000
SNMP 40000 5000
Testing SSDP 40000 5000
UDP 40000 5000
UDP-Lag 40000 5000
WebDDoS 439 100
SYN 40000 5000
TFTP 40000 5000
Overall data 495539

for intrusion detection aiming at an attack. The second is
implementing our method to detect various attacks.
In this article, we use five performance metrics to evaluate
detection performance, and they are
TP+TN

TP+TN+FP+FN’
Accuracy means that our model predicts the correct sample as
a percentage of all the samples involved

TP
TP+ FP
Precision indicates the proportion of positive examples that
are classified as positive examples in fact

TP
TP+ FN’
The recall rate is related to the original sample, which indicates
that the predicted number of positive cases in the sample is

Accuracy = (16)

Precision = (17)

Recall = (18)

TABLE III
INTRUSION DETECTION PARAMETERS AIMING AT SINGLE ATTACK
Parameter Value
Number of generator layers 7
Number of generator input layer units 1
Number of hidden layer units of generator 1280
Number of generator output layer units 10
Generator single layer activation function Tanh
Generator even layer activation function ReLU
Generator loss function MSE
Generator gradient optimizer Adam
Generator learning rate 0.0001
Number of discriminator layers 5
Number of discriminator input layer units 10
Number of units in the first hidden layer 28
Number of units in the second hidden layer 16
Number of units in the third hidden layer 8
Number of discriminator output layer units 2
Discriminator hidden layer activation function Tanh
Discriminator output layer activation function Softmax
Discriminator loss function gross Entrqpy
oss Function
Discriminator gradient optimizer Adam
Discriminator learning rate 0.0001
Network training times per cycle 200
Overall training times 5000
correct
FP
FalseAlarm = —————. (19)
FP+TN

False alarm is the proportion of correct samples that are
wrongly classified as wrong

Precision - Recall
(20)

F_Measures = 2 - — .
Precision + Recall

The F_Measures value is the harmonic average of precision
and recall.

The proposed GAN-based model is implemented using
MATLAB running on a machine with the configuration of
an Intel Core processor (3.2 GHz) with 8-GB RAM. The
hyperparameter settings of the GAN-based intrusion detection
model aiming at single and various attacks are shown by
Table IV, respectively. In this work, we use an EMFFS method
that combines the output of IG, gain ratio, and chi-squared
to extract important features. In this article, to reduce the
amount of calculation, based on the IG, we select ten features
related to attacks. For instance, we select ten features related
to the attack, namely, Flow inter arrival time (IAT) Mean,
Subflow Bwd Byts, Flow Byts/s, Flow IAT Std, Init Win
bytes backward, Subflow Bwd Pkts, Idle Std, Idle Mean, Fwd
IAT Mean, and Flow Pkts/s. The selected features are shown
in Table V.

B. Performance Evaluation

We use five performance metrics to evaluate the detec-
tion performance, namely, Accuracy, Precision, Recall, False
Alarm, and F-Measures. Besides, we compare the perfor-
mance of the proposed GAN-based intrusion detection frame-
work with existing deep learning models, namely, vec-
tor convolutional deep learning (VCDL) [39], stacked non-
symmetric deep auto-encoders (S-NDAE) [34], self-taught
learning (STL) [40], and stacked contractive auto encoder
and support vector machine (SCAE+SVM) [19]. VCDL is the
VCDL approach, which comprises two modules, i.e., the fully
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TABLE IV
INTRUSION DETECTION PARAMETERS AIMING AT VARIOUS ATTACKS

Parameter Value
Number of generator layers 16
Number of generator input layer units 14
Number of hidden layer units of generator 1400
Number of generator output layer units 14
Generator single layer activation function ReLU
Generator even layer activation function Tanh
Generator loss function MSE
Generator gradient optimizer Adam
Generator learning rate 0.0001
Number of discriminator layers 54
Number of discriminator input layer units 14
Number of hidden layer units of discriminator 1104
Number of discriminator output layer units 2
Discriminator single layer activation function ReLU
Discriminator even layer activation function Tanh
Discriminator output layer activation function Softmax
Discriminator loss function Eross Entrqpy
oss Function
Discriminator gradient optimizer Adam
Discriminator learning rate 0.0001
Network training times per cycle 200
Overall training times 5000

TABLE V
SELECTED FEATURES

Feature Name
Flow IAT Mean

Subflow Bwd Byts

Flow Byts/s
Flow IAT Std

Description
Average time between two flows
The average number of bytes in a
sub flow in the backward direction
Flow byte rate
Standard deviation time between two flows
Number of bytes sent in initial
window in the backward direction
The average number of packets in a
sub flow in the backward direction
Standard deviation time a
flow was idle before becoming active
Mean time a flow was
idle before becoming active
Mean time between two packets
sent in the forward direction
Flow packets rate

Init Win bytes backward

Subflow Bwd Pkts

Idle Std

Idle Mean

Fwd IAT Mean
Flow Pkts/s

connected network and the vector convolutional network. The
vector convolutional network is involved to extract the fea-
tures, and the fully connected network learns these extracted
features. S-NDAE comprises two modules, i.e., S-NDAE and
random forest. This method uses S-NDAE for feature learning,
and the random forest is used for classification. STL is a
combination method consisting of unsupervised feature learn-
ing and classification models. SCAE+SVM is a combination
method consisting of a stacked contractive AE and a support
vector machine. This method uses the stacked contractive AE
for feature extraction, and it classifies the trained data by using
a support vector machine.

The single attack intrusion detection situation based on
GAN is shown in Table VI. For each type of attack, we select
6000 samples as training data set, in which 2500 samples are
normal data, and the other 3500 samples are abnormal. For the
CSE-CIC-IDS2018 data set, we set the Brute Force-Web
attack as a low traffic attack. At the same time, we select
45000 corresponding abnormal types of samples as the testing
data set, where 40000 samples are abnormal and the others

TABLE VI
INTRUSION DETECTION RESULT AIMING AT SINGLE ATTACK

Data Set Attack Accura Pfem Recall
Type cy sion

0.9804 0.9986 0.9793 0.0106 0.9889

0.9952 0.9971 0.9975 0.0234 0.9973

0.9997 0.9997 0.9999 0.0024 0.9999

0.9999 0.9999 0.9999 0.0001 0.9999
Botnet attack ~ 0.9758 0.9994 0.9734 0.005 0.9862
FTP-BruteForce  0.9988 0.9998 0.9989 0.0016 0.9993
DDoS attacks-HOIC 0.9974 0.9971 0.9999 0.0232 0.9986

False F_Meas
Alarm  ures

Infilteration
DoS attacks-Hulk
DoS attacks
SlowHTTPTest
Brute Force-Web

CSE-CIC-IDS
2018

PortMap 0.9834 0.986 0.9954 0.113 0.9907

NetBIOS 0.9976 0.9987 0.9985 0.01 0.9986

CIC-DDoS LDAP 0.9987 0.9985 0.999 0.0038 0.9993
2019 MSSQL 0.9966 0.9976 0.9986 0.0194 0.9981
UDP 0.9594 0.9941 0.9599 0.0454 0.9767

UDP-Lag 0.9162 0.9139 0.9999 0.7532 0.9549

SYN 0.9674 0.9901 0.9731 0.0782 0.9815

TABLE VII

INTRUSION DETECTION RESULT AIMING AT MULTIPLE ATTACKS BASED
ON THE CSE-CIC-IDS2018 DATA SET

e ok s P gy Tabe i
GAN 01‘3’22“ 0.9532 0.9988 0.9485 0.0089 0.9730
SCAE+SVM Og;gu 0.9504 0.9963 0.9478 0.0279 0.9715
VCDL O]‘)’;:” 0.8821 0.9988 0.8685 0.0084 0.9291
STL ngzu 0.8695 0.9983 0.8547 0.0114 0.9209
s-NDAE OVl 9399 0.9961 0.9362 0.0296 0.9652

Data

TABLE VIII

INTRUSION DETECTION RESULT AIMING AT MULTIPLE ATTACKS BASED
ON THE CIC-DD0S2019 DATA SET

e
GAN 03;:11 0.9853 0.9959 0.9876 0.0326 0.9917
SCAE+SVM 0]‘)";2” 0.9371 0.9897 0.939 0.078 0.9637
VCDL ng;:u 0.9685 0.9955 0.9689 0.0352 0.9821
STL 0]‘3";2“ 0.9503 0.9951 0.9487 0.0369 0.9714
S-NDAE 0]‘3";2“ 0.9027 0.9836 0.9056 0.1209 0.9429

are normal. We select 611 Brute Force-Web attacks samples
as the testing data set, where 100 are abnormal. For the
CIC-DDo0S2019 data set, we set the UDP-Lag attack as a
low traffic attack. Similarly, we select 45000 corresponding
abnormal types of samples as the testing data set, where 40 000
samples are abnormal.

According to these simulation results, we can find that the
proposed intrusion detection model aiming at a single attack
can obtain excellent intrusion detection accuracy. Our method
also has high accuracy for known low-flow attacks.

In intrusion detection aiming at multiple attacks, we select
the data in Table II as the testing data set. In the
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TABLE IX

INTRUSION DETECTION RESULT AIMING AT MULTIPLE ATTACKS BASED
ON THE CSE-CIC-IDS2018 DATA SET

TABLE X

INTRUSION DETECTION RESULT AIMING AT MULTIPLE
ATTACKS BASED ON THE CIC-DD0S2019 DATA SET

Method Attack Accura PFec1 Recall False F_Meas Method Attack  Accura Pfec1 Recall False F_Meas
Type cy sion Alarm  ures Type cy sion Alarm ures
052211 0.9532 0.9988 0.9485 0.0089 0.9730 0]‘3’32“ 0.9853 0.9959 0.9876 0.0326 0.9917
Infilteration 0.9776 0.999 0.9758 0.0076 0.9873 NTP  0.9517 0.9957 0.9498 0.0326 0.9722
DoS attacks-Hulk ~ 0.9933  0.999 0.9934 0.0076 0.9962 DNS  0.9879 0.9959 0.9905 0.0326 0.9932
DoS attacks- LDAP  0.9962 0.9959 0.9998 0.0326 0.9978
SlowHTTPTest ~ 0-9992 0.9991 0.9999 0.0076 0.9995 MSSQL  0.995 0.996 0.998 0.0326 0.9972
Brute Force-Web  0.8678 0.9999 0.8646 0.0001 0.9167 Gan  NetBIOS 0.9963 0.9959 0.9999 0.0326 0.9979
Gan  Brute Foree-XSS  0.6107 0.9999 0.5261 0.0001 0.6895 SNMP  0.9963 0.9959 0.9999 0.0326 0.9979
SQL Injection  0.8131 0.9999 0.7701 0.0001 0.8701 SSDP  0.991 0.9959 0.994 0.0326 0.9949
DDoS attacks- UDP  0.9964 0.9959 0.9999 0.0326 0.998
Loic-HTTp  0-9992 0.9991 0.9999 0.0076 0.9995 UDP-Lag 0.9963 0.9959 0.9999 0.0326 0.9979
Botnet attack 0.9991 0.9991 0.9999 0.0076 0.9995 WebDDoS 0.3766 0.9725 0.2415  0.03  0.3869
DoS attacks-GoldenEye 0.6709 0.9985 0.6307 0.0076 0.7731 SYN  0.9763 0.9958 0.9774 0.0326 0.9866
DoS attacks-Slowloris 0.7463 0.9954 0.7266 0.0037 0.84 TFTP  0.9624 0.9958 0.9618 0.0326 0.9785
FTP-BruteForce ~ 0.9992 0.9991 0.9999 0.0076 0.9995 Overall
SSH-Bruteforce ~ 0.9992 0.9991 0.9999 0.0076 0.9995 Data  0-9371 0.9897 0.939 0.078 0.9637
DDoS attacks-HOIC  0.9992 0.9991 0.9999 0.0076 0.9995 NTP  0.7019 0.9857 0.6743 0.078  0.8008
DDoS attacks- DNS  0.7464 0.9867 0.7245 0.078 0.8355
LOIC-UDP 0.9828 0.9807 0.9999 0.136 0.9903 LDAP 09866 0.9903 0.9947 0.078 0.9925
Overall MSSQL  0.9881 0.9903 0.9964 0.078 0.9933
Data 0.9504 0.9963 0.9478 0.0279 0.9715 SCAEssyp NEBIOS 09911 0.9903 09998  0.078  0.995
Infilteration 0.9723 0.9969 0.9719 0.0238 0.9842 SNMP  0.9907 0.9903 0.9993 0.078 0.9948
DoS attacks-Hulk ~ 0.9951 0.997 0.9975 0.0238 0.9973 SSDP  0.9775 0.9902 0.9844 0.078 0.9873
DoS attacks- UDP  0.9912 0.9903 0.9999 0.078 0.9951
SIowHTTPTest ~ 0-9974 0.997 0.9999 0.0238 0.9985 UDP-Lag 0.9908 0.9903 0.9994 0.078 0.9949
Brute Force-Web  0.879 0.9999 0.8592 0.0001 0.9243 WebDDoS 0.3469 0.9223 0.2164 0.08  0.3506
SCAE+ Brute Force-XSS ~ 0.9999 0.9999 0.9999 0.0001 0.9999 SYN  0.9849 0.9903 0.9928 0.078 0.9915
SVM SQL Injection  0.8318 0.9999 0.7931 0.0001 0.8846 TFTP  0.966 0.9901 0.9715 0.078 0.9807
DDoS attacks- Overall
LOIC-HTTP 0.9974 0.997 0.9999 0.0238 0.9985 Dota 09685 0.9955 0.9689 0.0352 0.9821
Botnet attack 0.9974 0.997 0.9999 0.0238 0.9985 NTP  0.8763 0.9949 0.8653 0.0352 0.9256
DoS attacks-GoldenEye 0.6526 0.9952 0.6121 0.0238 0.758 DNS  0.9244 0.9952 0.9193 0.0352 0.9558
DoS attacks-Slowloris 0.7675 0.986 0.7571 0.118 0.8565 LDAP  0.9958 0.9956 0.9997 0.0352 0.9977
FTP-BruteForce ~ 0.9974 0.997 0.9999 0.0238 0.9985 MSSQL  0.9939 0.9956 0.9976 0.0352 0.9966
SSH-Bruteforce ~ 0.9974 0.997 0.9999 0.0238 0.9985 yepr  NeBIOS 0.9958 0.9956 0.9997 0.0352 0.9977
DDoS attacks-HOIC  0.9974 0.997 0.9999 0.0238 0.9985 SNMP  0.9959 0.9956 0.9998 0.0352 0.9977
DDoS attacks- SSDP  0.9817 0.9955 0.9838 0.0352 0.9896
LOIC-UDP 0.9449 0.3407 0.9999 0.436 0.9695 UDP  0.9959 0.9956 0.9999 0.0352 0.9977
Overall UDP-Lag 0.9956 0.9956 0.9995 0.0352 0.9975
Data 0.8821 0.9988 0.8685 0.0084 0.9291 WebDDoS  0.23  0.9286 0.0592 0.02 0.1113
Infilteration 0.9656 0.9991 0.9623 0.0072 0.9803 SYN  0.9723 0.9955 0.9733 0.0352 0.9842
DoS attacks-Hulk ~ 0.9934 0.9991 0.9934 0.0072 0.9963 TFTP  0.9348 0.9953 0.9311 0.0352 0.9621
DoS attacks-
SIowHTTPTost  0-9992 0.9991 0.9999 0.0072 0.9996
Brute Force-Web  0.872  0.9999 0.8511 0.0001 0.9195
vepL,  Brute Foree-XSS  0.6071 0.9999 0.5217 0.0001 0.6857 In the overall intrusion detection task, the GAN-based
SQL Injection 08505 0.9999 0.8161 0.0001 0.8987 1y de] that we designed has higher accuracy, precision, recall,
DDoS attacks- g
LOIC-HTTP 0.9906 0.9991 0.9903 0.0072 0.9947  fa]se alarm, and F_measures. Compared with other methods,
Botnet attack 0.9992 0.9991 0.9999 0.0072 0.9995  our method has higher accuracy and lower false alarms in the
DoS attacks-GoldenEye 0.6213 0.9984 0.5749 0.0072 0.7297 ; B
Do attacks-Slowlors 0.7714 0.9958 0.7538 0.0035 0.858 two. data sets and also has hlgher performance in dlffe:rent
FTP-BruteForce 0.9992 0.9991 0.9999 0.0072 0.9996 environments. At the same time, we select the two optimal
SSH-Bruteforce 0.398 0.9972 0.3237 0.0072 0.4887  models for detailed comparison with our method, and the
DDDo]S) a;tactlfs'kHOIC 0.9992° 0.9991 0.9999 0.0072 0.9995  qjmylation results are shown in Tables IX and X.
0> BUACKS™ ) 9838 0.9824 0.9994 0.124 0.9908

LOIC-UDP

CSE-CIC-IDS2018 data set, we set the Brute Force-Web
attack as a low-flow attack for training. In the CIC-
DDo0S2019 data set, we set the UDP-Lag attack as a low-flow
attack for training. In the testing data set, we add various
attacks and set various new low-flow attacks. The simulation
results of intrusion detection for multiple attacks are shown
in Tables VII and VIII.

Compared with other methods, our method has higher
accuracy and lower false alarms in the two data sets. For new
attacks, our method also has a better performance. For multiple
types of attacks, our method has high stability and accuracy.
However, for the new low-flow attack, i.e., WebDDoS and
Brute Force-XSS, our method has low detection accuracy, and
there is no significant improvement comparing with the other
two methods. On the whole, the GAN-based method designed
in this article has better detection performance comparing with
the other two methods. Our GAN-based algorithm can be
used to capture different types of attacks with high accuracy.
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Moreover, our method can detect a variety of new types
of attacks by training and learning existing attack types.
In summary, our method reduces the amount of calculation
and data dimension through feature selection. At the same
time, our method can well identify the network environment
of multiple types of attacks, and it also has high accuracy for
emerging attacks.

V. CONCLUSION AND FUTURE WORKS

This article studies the intrusion detection problem in
CEC-based SIoT. We propose a GAN-based intrusion detec-
tion method. By extracting the features of network data,
the proposed method can be used to detect various attacks.
The proposed method includes three phases. They are fea-
ture extraction, an intrusion detection model aiming at a
single attack, and an intrusion detection model with various
discriminators aiming at multiple attacks. Our method first
preprocesses the flow and performs feature extraction. Then,
we design an intrusion detection algorithm aiming at a single
attack based on GAN. By combining several intrusion detec-
tion models aiming at a single attack, we design an intrusion
detection algorithm aiming at multiple attacks based on GAN.
In addition, we also evaluate our method by implementing
it over the CSE-CIC-IDS2018 and CIC-DDo0S2019 data sets.
From the simulation results, our method can significantly
improve the accuracy of intrusion detection comparing with
the other two methods.

To improve the accuracy of our method further, we will
combine the convolutional neural network and the GAN
method for extracting the spatiotemporal features of network
data. At the same time, a feature extraction algorithm is
necessary to improve the real-time performance of our method.
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