
134 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2022

Intrusion Detection for Secure Social Internet of
Things Based on Collaborative Edge Computing:

A Generative Adversarial Network-Based Approach
Laisen Nie , Member, IEEE, Yixuan Wu , Xiaojie Wang, Lei Guo, Member, IEEE,

Guoyin Wang , Senior Member, IEEE, Xinbo Gao , Senior Member, IEEE, and Shengtao Li

Abstract— The Social Internet of Things (SIoT) now penetrates
our daily lives. As a strategy to alleviate the escalation of
resource congestion, collaborative edge computing (CEC) has
become a new paradigm for solving the needs of the Internet
of Things (IoT). CEC can provide computing, storage, and
network connection resources for remote devices. Because the
edge network is closer to the connected devices, it involves a
large amount of users’ privacy. This also makes edge networks
face more and more security issues, such as Denial-of-Service
(DoS) attacks, unauthorized access, packet sniffing, and man-in-
the-middle attacks. To combat these issues and enhance the secu-
rity of edge networks, we propose a deep learning-based intrusion
detection algorithm. Based on the generative adversarial network
(GAN), we designed a powerful intrusion detection method. Our
intrusion detection method includes three phases. First, we use
the feature selection module to process the collaborative edge
network traffic. Second, a deep learning architecture based on
GAN is designed for intrusion detection aiming at a single attack.
Finally, we propose a new intrusion detection model by combining
several intrusion detection models that aim at a single attack.
Intrusion detection aiming at multiple attacks is realized through
the designed GAN-based deep learning architecture. Besides,
we provide a comprehensive evaluation to verify the effectiveness
of the proposed method.

Index Terms— Collaborative edge computing (CEC), gener-
ative adversarial network (GAN), intrusion detection, social
internet of things (SIoT).

Manuscript received November 30, 2020; revised February 14, 2021;
accepted February 20, 2021. Date of publication March 22, 2021; date of
current version January 31, 2022. This work was supported in part by the
National Key Research and Development Program of China under Grant
2018YFE0206800; in part by the National Natural Science Foundation of
China under Grant 61936001, Grant 61971084, Grant 62001073, Grant
61803238, and Grant 61701406; in part by the National Natural Science
Foundation of Chongqing under Grant cstc2019jcyj-cxttX0002; and in part
by the Seed Foundation of Innovation and Creation for Graduate Students
in Northwestern Polytechnical University under Grant CX2020153. (Corre-
sponding author: Xiaojie Wang.)

Laisen Nie and Yixuan Wu are with the School of Electronics and Infor-
mation, Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
nielaisen@nwpu.edu.cn; wuyixuan1@mail.nwpu.edu.cn).

Xiaojie Wang and Lei Guo are with the School of Communication and
Information Engineering, Chongqing University of Posts and Telecommu-
nications, Chongqing 400065, China (e-mail: xiaojie.kara.wang@ieee.org;
guolei@cqupt.eddu.cn).

Guoyin Wang is with the Chongqing Key Laboratory of Computa-
tional Intelligence, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China (e-mail: wanggy@cqupt.edu.cn).

Xinbo Gao is with the Chongqing Key Laboratory of Image Cognition,
Chongqing University of Posts and Telecommunications, Chongqing 400065,
China (e-mail: gaoxb@cqupt.edu.cn).

Shengtao Li is with the School of Information Science and Engi-
neering, Shandong Normal University, Jinan 250014, China (e-mail:
saintaolee@sdnu.edu.cn).

Digital Object Identifier 10.1109/TCSS.2021.3063538

I. INTRODUCTION

W ITH the continuous development of the Internet, a large
number of devices are connected to the Internet and

communicated with each other in real time. The Social Internet
of Things (SIoT) [1], [2], combining users’ social behaviors
and physical Internet of Things (IoT) [3], can provide ubiqui-
tous Internet access for users. Because of the widespread appli-
cations of SIoT, millions of sensors and devices continue to
generate data and exchange important information [4]. In order
to alleviate the problem of resource congestion, more and
more service providers choose collaborative edge computing
(CEC) [5], [6], which migrates data computation and storage
to the network edge near the users [7]. Therefore, various
nodes distributed on the network can offload computation
away from the centralized data center, which can significantly
reduce the waiting time of the message exchange. Meanwhile,
CEC can collaboratively handle tasks, such as computation
offloading through social networks and connections among
users. CEC is a crucial technique for SIoT based on edge
computing, which provides connections for users with low
latency, high bandwidth, and high reliability [8], [9]. For
instance, it can support high-quality communications for vehi-
cles to implement unmanned driving [10], [11] and intelligent
transportation system [12], [13]. However, CEC migrates the
users’ private information to network edge from data centers.
In this case, it is much easier for attackers to steal the privacy
of users by taking advantage of the vulnerability of edge
nodes [8], [14]. The general environment of SIoTs based on
collaborative edge networks is shown in Fig. 1. Sensors can
capture and transmit network data via long term evolution
(LTE), WiMAX, Wi-Fi, and satellites for SIoT services.

To ensure the security of CEC, it is crucial to use an
intrusion detection mechanism in SIoTs. Intrusion detection
is a good way to prevent jumped-up attacks and protect
users’ privacy. Currently, many works have used deep learning
techniques to implement intrusion detection accuracy. For
instance, the work in [15] uses edge network traffic as training
data and trains convolutional neural networks to implement
intrusion detection. It uses an auxiliary classifier generative
adversarial network (AC-GAN) to expand abnormal data. The
work in [16] uses the auto-encoder (AE) to reduce the data
dimensionality and then realizes intrusion detection through
AE-AlexNet based on deep learning. Using deep learning
algorithms to train huge data sets in the CEC environment

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8813-7738
https://orcid.org/0000-0002-9317-8769
https://orcid.org/0000-0002-8521-5232
https://orcid.org/0000-0003-1443-0776

NIE et al.: INTRUSION DETECTION FOR SECURE SIoT BASED ON COLLABORATIVE EDGE COMPUTING 135

Fig. 1. Illustration of SIoTs based on CEC.

will make the overall process of computing more effective
with low latency [17], [18].

Despite that intrusion detection technologies have been
developing rapidly, existing intrusion detection algorithms for
the security of CEC-based SIoT systems are still in their
infancy. The main challenges of the current CEC-based SIoT
system are summarized as follows [19]–[22].

1) In the edge network of SIoTs, a great number of
network devices interact with each other, which makes
the dimension of network data larger. Existing intrusion
detection methods cannot achieve high accuracy when
facing high-dimensional data.

2) In CEC-based SIoT, due to the complex network
environment (e.g., interactions of human-to-human,
human-to-thing, and thing-to-thing), our networks will
be threatened by many types of attacks, such as brute
force, Denial of Service (DoS), and Distributed Denial
of Service (DDoS). Hence, it is difficult for existing
intrusion detection methods to find various types of
attacks from massive data.

3) Edge networks will often face a lot of new attacks. Exist-
ing intrusion detection technologies cannot accurately
detect these attacks.

The unique and ubiquitous characteristics of CEC arise the
main challenges for intrusion detection [23]. Motivated by
that, we propose a generative adversarial network (GAN)-
based mechanism to implement intrusion detection [24]. GAN
consists of two networks, i.e., a discriminator and a generator.
The task of the discriminator is to distinguish whether the data
is extracted from the data set or generated by the generator.
Besides, the task of the generator is to generate realistic data
that the discriminator cannot distinguish whether the data
are real. Over time, under careful supervision, two oppo-
nents compete with each other to successfully improve each
other. The final result is that the well-trained generator can
generate realistic results, and the well-trained discriminator
can effectively distinguish between true and false. In deep
learning, a large number of samples are needed to train the
deep architecture. If the number of samples is too small,
it often leads to insufficient network training. However, GAN
can solve the problem of insufficient samples. The generator
in GAN can theoretically generate data, which can greatly
expand the diversity of samples.

Based on GAN, we designed a powerful intrusion detection
method. Our intrusion detection method includes three phases.

First, the collection of network data sets is mainly to collect
various types of information generated via network nodes.
After that, we carry out feature extraction from the original
data set. Second, we designed an intrusion detection algorithm
aiming at a single attack based on GAN. Finally, we optimized
the intrusion detection models aiming at a single attack so that
they can detect various attacks at the same time.

The main contributions of our work are as follows.

1) We designed a novel intrusion detection method
based on GAN. The GAN-based method can extract
low-dimensional features from original network flows
for feature learning.

2) Existing intrusion detection does not have high accuracy
for detecting multiple attacks. We design a GAN-based
algorithm that can be used to capture different types of
attacks with high accuracy.

3) We design a multiple intrusion detection algorithms
based on GAN. The designed algorithm can detect a
variety of new types of attacks by training and learning
existing attack types.

The following sections of this article are organized as fol-
lows. In Section II, we briefly introduce the existing intrusion
detection methods. In Section III, we propose the approach
put forward in this article. Besides, in Section IV, we use the
CIC-DDoS2019 and CSE-CIC-IDS2018 data sets to evaluate
the proposed method. Finally, we summarize our research and
future works in Section V.

II. RELATED WORK

Currently, many works apply machine learning techniques
to address network security issues. For instance, Yang
et al. [25], [26] proposed a deep post-decision state and
prioritized experience replay schemes that can improve the
communication systems. However, the application of intrusion
detection technology is more extensive.

A. Traditional Intrusion Detection Algorithms

As a novel network security technique, intrusion detection is
a crucial defense solution for our networks behind the firewall.
Intrusion detection systems collect network traffic, security
logs, and other data sets at first. Through analyzing these
measures, intrusion detection systems can detect whether the
network is intruded or not.

The concept of intrusion detection was first pro-
posed by Anderson in [27]. Denning first proposed
the intrusion detection expert system [28]. Furthermore,
Conforti et al. [29] proposed a network-based intrusion detec-
tion system. Moustafa et al. [30] used machine learning
methods for intrusion detection for the first time. After that,
a great number of works using machine learning for intrusion
detection had appeared, which can achieve very good results.
Ambusaidi et al. [31] used the deep belief network for
intrusion detection, and they verified the feasibility of deep
learning in this field.

B. Deep Learning-Based Intrusion Detection

With the rapid development of deep learning, a set of
neural network architectures has been proposed to solve the
intrusion detection problem. For instance, Garg et al. [32]

136 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2022

proposed the Improved-Gray Wolf Optimization algorithm
(Im-GWO) and the Improved-Convolution Neural Network
(Im-CNN). Due to the complexity of cloud data and the
huge amount of data, by combining Im-GWO and Im-CNN,
they proposed a hybrid data processing model for intrusion
detection. In this model, the Im-GWO algorithm was used
to extract data features, and a certain tradeoff was made
between the exploration of unknown features and the usage
of known features. Then, the Im-CNN algorithm used the
extracted features to implement intrusion detection. Besides,
Saharkhizan et al. [33] proposed a method that integrated
an ensemble of long short-term memory (LSTM) models
to construct the detector to implement enhanced robustness.
Specifically, they integrated a set of LSTM models. After that,
they merged the decision tree method and the LSTM model
to achieve intrusion detection. Unlike the previous methods,
Tian et al. [17] took a different approach by using a distributed
deep learning system to detect Web attacks. Multiple deep
learning models were trained at the same time, and they
were deployed in different servers. By using multiple parallel
systems, the stability of this system can be enhanced.

At the same time, in terms of feature extraction using deep
learning, Shone et al. [34] proposed an intrusion detection
method that used the S-NDAE method for feature extraction
and passed the extracted features to the random forest for
classification. The algorithm has two phases, i.e., encoder and
decoder. To express high-dimensional data in low dimensions,
the decoder process reexpresses low-dimensional data in high
dimensions. The nonsymmetric deep AE that they proposed
has a certain effect on intrusion detection. Meanwhile, through
the meta-learning framework, Xu et al. [35] proposed a
new deep learning method based on feature extraction. The
method that they proposed was to realize intrusion detection by
distinguishing normal network traffic and abnormal network
traffic. They designed a deep neural network called feature
extraction and comparison network (FC-Net), which consists
of a feature extraction network and a comparison network.
FC-Net can realize network traffic intrusion detection by
extracting network features.

As mentioned above, although many techniques are pro-
posed for intrusion detection, there are few intrusion detection
techniques aiming at CEC-based SIoTs. Using deep learn-
ing algorithms to train huge data sets in collaborative edge
networks can greatly improve the efficiency of the comput-
ing process. Therefore, to solve the security problems of
collaborative edge networks, this article takes advantage of
GAN to realize intrusion detection. For CEC-based SIoTs,
real-time intrusion detection is necessary. Thereby, GAN is
used in this article to deal with the problem of insufficient
data volume, which can improve the complexity of intrusion
detection algorithm.

III. OUR METHODOLOGY

Our intrusion detection method includes three phases.
In detail, as shown in Fig. 2, we first use the feature selection
model to preprocess the collaborative edge network data, and
we select the required features for intrusion detection. Second,

we designed an intrusion detection algorithm aiming at a
single attack based on GAN. After that, by combining several
intrusion detection models aiming at a single attack, we design
an intrusion detection algorithm aiming at multiple attacks
based on GAN.

A. Feature Selection

The collection of network data is mainly to record vari-
ous types of information generated by network nodes. Then,
the collected initial information is encapsulated in a standard
format after analysis. After that, we extract features from the
original data sets. In our method, we use the CICFlowMeter
tool to process the data set [36]. CICFlowMeter is a network
traffic generator written by Java, and it provides greater
flexibility in selecting features to be calculated. CICFlowMe-
ter can extract features of original data, such as quantity,
the number of bytes, and packet length [20]. The output of the
CICFlowMeter consists of more than 80 network traffic fea-
tures, such as destination port, protocol, flow duration, the total
number of packets in the forward direction, the number of
packets per second of traffic flows, and the average size of the
packet. A feature should be a unique characteristic of a data
packet, through which the attack data can be found without
affecting the normal network traffic.

In view of the increasing amount of data to be processed,
preprocessing feature identification can be used before clas-
sification. The purpose of feature selection is to reduce the
number of training and ensure the accuracy of training by
extracting important features. Therefore, in this article, we use
an ensemble-based multi-filter feature selection (EMFFS)
method [37], which combines information gain (IG) to select
important features. The feature selection method is a pre-
processing phase toward selecting important features from a
data set, and it is independent of the classification algorithm.
The feature analysis method is based on the internal statistical
test of the original training data set, and it takes the feature
analysis scheme as the main standard for feature analysis
by sorting. Then, the method selects features based on a
specific threshold. As shown in Fig. 2, after receiving new
flow, our method first preprocesses the flow, and it performs
feature extraction. Then, we select specific features. Finally,
the preprocessed features are input into the intrusion detection
module.

B. Intrusion Detection Based on GAN Aiming at Single
Attack

We use GAN to implement intrusion detection by using
network traffic features of SIoTs. The main idea of GAN
comes from the Nash equilibrium. In a game model with two
parties, it is composed of a generator and a discriminator. The
generator will capture the potential distribution of real data
samples, and then, it generates novel data samples. Meanwhile,
the discriminator is two classifiers that distinguish the input
data from the generated data. In order to win the competition,
two-game players need to continuously optimize and improve
their own generation and discrimination abilities. This learning
optimization process is to find a Nash equilibrium between

NIE et al.: INTRUSION DETECTION FOR SECURE SIoT BASED ON COLLABORATIVE EDGE COMPUTING 137

Fig. 2. Illustration of our method.

Fig. 3. GAN.

TABLE I

NOTATIONS

two players. GAN is a two-player zero-sum game. The sum
of the interests of both players is a constant [24]. Some of the
notations used in this section are summarized in Table I.

GAN uses adversarial methods to generate data, and the
basic illustration is shown in Fig. 3. Generating an adversarial
network is playing a fighting game. The learning process is to
constantly find other opponents to fight against and accumulate
experience in the confrontation in order to improve your skills.
GAN can be described as follows:
min

G
max

D
V (G, D) = Ex∈pdata(x)[log(D(x))]

+Ez∈pz(z)[log(1− D(G(z))] (1)

where E denotes the expectation. D and G are both differ-
ential functions represented by a multilayer perceptron. D

and G represent a discriminator and a generator, respectively.
pdata(x) and pz(z) represent input data and noise variables,
respectively. Accordingly, x and z are input and noise vec-
tors, respectively. Meanwhile, V (G, D) represents the value
function.

According to the loss functions of discriminant and gen-
erative models, the back-propagation (BP) algorithm can be
used to update the parameters of GAN. The parameters of
GAN can be calculated effectively through the gradient BP
algorithm. Therefore, we use the method based on GAN to
handle the problem of intrusion detection.

As mentioned above, we use the CICFlowMeter tool to
process the original data set, and then, we preprocess the data
to get the training data pdata(x) we need. Then, we use this
data set to train the proposed model.

The generator G selects the example z from random noise
pz(z). Hence, G(z) denotes the fake data generated by the
generator. G is the differential functions represented by a
multilayer perceptron.

Meanwhile, the discriminator D recognizes the example x
from the input pdata(x), and then

Ex∈pdata(x) log(F(D(x))). (2)

F(D(x)) is the output result of the discriminator model, which
is a real value in the range of 0 − 1. It is used to judge the
probability of data accuracy. Maximizing 2 means that D can
predict normal values accurately, i.e., F(D(x)) = 1 when
x ∈ pdata(x).

Then, we verify the data generated by the generator, which
is

Ez∈pz(z) log(1− F(D(G(z)))). (3)

Maximizing 3 means that F(D(G(z))) ≈ 0, and so G cannot
generate excellent fraud data. The purpose of the generator is
to generate data that can fool the discriminator.

During network training, the objective function of the dis-
criminator can be defined as

max
D

Ez∈pz(z)[log(1− D(G(z))] + Ex∈pdata(x)[log(D(x))].
(4)

It can be seen that the purpose of the objective function is to
find the discriminator function D that can maximize the sum
of the following two expressions. Hence, we can define the
value function as

V (G, D) = Ex∈pdata(x)[log(F(D(x)))]
+Ez∈pz(z)[log(1− F(D(G(z))))]. (5)

When G remains unchanged, then D∗G = arg maxD V (G, D)
can be expressed as the best discriminator. Correspondingly,
when D is constant, to obtain the optimal generator G, G
should satisfy G∗D = arg minG V (G, D∗G). After a certain
amount of training, we can get the desired optimal discrimi-
nator D∗G , which satisfies D∗G = arg maxD V (G∗D, D).

The deep feedforward network is so-called multilayer per-
ceptron, which is a classical deep-learning method. The des-
tination of a multilayer perceptron is to approximate a certain
function f ∗. For instance, classifier y = f ∗(x) maps x,

138 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2022

Fig. 4. Intrusion detection structure diagram aiming at single attack.

which is the input data to a certain category y. The multilayer
perceptron defines a mapping y = f ∗(x; θ) and learns the
value of the parameter θ so that it can get the best function
approximation.

GAN is composed of a generator and a discriminator. The
generator and discriminator are composed of several hidden
layers, respectively. The output of each layer is used as the
input of the subsequent layer. Fig. 4 shows the architecture
of intrusion detection aiming at an attack based on GAN for
SIoTs. Here, the superscript number indicates the identity of
the hidden layer, and the subscript number indicates the size
of the layer.

In the generator phase, the generator G selects the example
z from random noise pz(z), where z and pz(z) are j × l and
j × L matrices. Meanwhile, l and L represent the number of
samples of z and pz(z), respectively. Both z and pz(z) have j
features. Then, the generator G generates fake data xz , where
xz = G(z). It is obvious that xz is a r × l matrix, and r
represents the number of features of the input data x. In the
generator, the kth layer of the generator can train itself by
using the result of the (k − 1)th layer. Hence, the generator
can be expressed as

xk
z=gk(wk

G xk−1
z + bk

G), k = 1, . . . , m (6)

where x0
z represents the input data z. xk

z denotes the output
of the kth layer, and xm

z represents the output data xz . xz is
the fraud data generated by the generator. Meanwhile, m is
the number of layers. We use θ k

G = {wk
G, bk

G} to represent the
parameters corresponding to the kth layer of the generator.
The notation gk represents the operation of the rectified linear
unit (ReLU) function or the tanh function, and the last layer
gm represents the tanh function.

For the generator model, we choose mean square
error (MSE) as the loss function. In our method, MSE for
anomaly based intrusion detection in CEC-based SIoTs can
be defined as

MSE(q, q ′) =
∑p

k=1 (qk − q ′
k)

2

p
(7)

where q ′
k is the correct answer of the kth data in a batch, and

q is the predicted value given by the neural network. MSE is
a function to find the average error of a batch. p represents

the number of samples. We use BP and adaptive moment
estimation (ADAM) optimizer to determine the minimum loss
value of the generator network so that the corresponding
learning parameters can be derived and optimized model.

In the discriminator phase, the input of the discriminator D
is the combined data xD , where xD is composed of x and
xz . xD is a r × (l + p) matrix, and x is a r × p matrix.
Here, x is a sampling from the input data set pdata(x)�, where
the input data pdata(x)� are preprocessed. The input data set
only contains an attack. pdata(x)� is a r × P matrix, where
p and P represent the number of samples of x and pdata(x)�,
respectively. Then, the discriminator generates data yD , where
yD = D(x D) and yD is a 2 × (l + p) matrix. Here, yz =
D(xz) and y = D(x). yD represents the abnormal situation
of the overall combined data, and y is the abnormal situation
of the real input data. Meanwhile, yz represents the abnormal
situation of the generated data.

In the discriminator, the kth layer of the discriminator can
train itself by using the result of the (k − 1)th layer. Hence,
the discriminator can be expressed as

xk
D = f k(wk

D xk−1
D + bk

D), k = 1, . . . , n (8)

where x0
D represents the input data xD , and xk

D denotes the
output of the kth layer. xn

D represents the output data yD ,
where n is the number of the discriminator layers. We use
θ k

D = {wk
D, bk

D} to represent the parameters corresponding to
the kth layer discriminator. The notation f k represents the
operation of the tanh function, and the last layer f n represents
the softmax function.

In the discriminator phase, we use the cross-entropy loss
function. In the case of two classifications, the cross-entropy
loss function can optimize the model very well. By minimizing
the loss function, the model can reach a state of convergence
and reduce the error of the model’s predicted value. The
cross-entropy loss function can be described as follows:

L(q, q ′) = 1

p

p∑
k

−[q ′
k log(qk)+ (1− q ′

k) log(1− qk)]
(9)

where q ′ is the correct answer, and q is the predicted value
given by the neural network. p represents the number of sam-
ples. The cross-entropy loss function is used as a loss function
to determine the minimum loss value of the discriminator
network. Similarly, we also use BP and ADAM to update the
discriminator.

Before entering the judgment phase, we need to process the
data. To judge the abnormal situation directly, the processing
conditions are as follows:

Y (yD) =
{

y1k = 0, y2k = 1 i f y1k < y2k

y1k = 1, y2k = 0 i f y1k ≥ y2k
(10)

where y1k and y2k are the discrimination results of the kth data,
respectively. In the judgment phase, we define the accuracy
function F , which can reflect the accuracy of the discriminator
and the effect of the generator. The accuracy function F can

NIE et al.: INTRUSION DETECTION FOR SECURE SIoT BASED ON COLLABORATIVE EDGE COMPUTING 139

Fig. 5. Intrusion detection for various attacks.

be shown by

F = T P + T N

T P + F N + F P + T N
. (11)

The four parameters are described as follows.
1) T P—The forecast is a positive example, and the actual

is a positive example.
2) F P—The forecast is a positive example, and the actual

is a negative example.
3) T N—The forecast is a negative example, and the actual

is a negative example.
4) F N—The forecast is a negative example, and the actual

is a positive example.
Finally, we train the network by judging the size of

F(Y (y), Y y) and F(Y (yz), Yz), where Y y and Yz are the actual
label of the real data set and the actual label of the generated
data, respectively. If F(Y (y), Y y) is greater than F(Y (yz), Yz),
we train the generator; otherwise, we train the discriminator.
The details of our intrusion detectiom method for an attack
are shown in Algorithm 1.

C. Intrusion Detection Aiming at Multiple Attacks

Our intrusion detection method aiming at multiple attacks
is a combination of several GAN model discriminators.
We train I discriminators in advance, and the discriminators
D1, D2, . . . , DI come from the intrusion detection models
aiming at an attack. The types of attacks trained by these
models are different. The specific model of intrusion detection
aiming at multiple attacks is shown in Fig. 5. We adjust
the number of discriminators from intrusion detection aiming
at an attack according to the number of attack types. The
destination of network is to obtain the optimal discriminator
D∗G = arg maxD V (G∗D, D).

In the generator phase of intrusion detection aiming at
multiple attacks, we select the input sample x from the
input data set pdata(x), where the input data pdata(x) are
preprocessed, and it contains various attacks types. pdata(x)
also is a r × P � matrix. After that, the input x will first be
processed by discriminators D1, D2, . . . , DI . Therefore, for
the input x, it will pass through I discriminators to form the
feature quantity xi , where i = 1, 2, . . . , I . Then, we combine
I feature quantities into a new feature matrix xG , where xG is
a R× p matrix, and R = 2I . Thus, xi and xG can be denoted
by {

xi = Di (x), i = 1, 2, 3, . . . , I

xG = [x1; x2; . . . ; x I] . (12)

The generated feature matrix xG will pass the generator G �
to generate the fake data x ′

z that can deceive the discriminator,

Algorithm 1 Intrusion Detection Network Training Aiming at
Single Attack
Require: input data pdata(x)�; number of iterations T ; real data

label Y y; corresponding label of generate data Yz

Ensure: generator G; discriminator D
1: pz(z) is randomly generated L numbers from 1 to 0
2: t ← 1
3: while t ≤ T do
4: Samples minibatch of l noise samples {z(1), . . . , z(l)}

from noise prior pz(z)
5: xz = G(z)
6: Samples minibatch of p examples {x(1), . . . , x(p)} from

data generating distribution pdata(x)�
7: xD = [x, xz]
8: yD = D(xD)

9: Y (yD) =
{

y1k = 0, y2k = 1 i f y1k < y2k

y1k = 1, y2k = 0 i f y1k ≥ y2k

10: yD = [y, yz]
11: F = T P+T N

T P+F N+F P+T N
12: if F(Y (y), Y y) > F(Y (yz), Yz) then
13: Generator update: The mean squared error is used as

a loss function to determine the minimum loss value
of the discriminator network. And the network uses BP
and Adam to optimize.

14: else {F(Y (y), Y y) ≤ F(Y (yz), Yz)}
15: Discriminator update: The cross entropy loss function

is used as a loss function to determine the minimum
loss value of the discriminator network. And the net-
work uses BP and Adam to optimize.

16: end if
17: end while
18: return discriminator D

where x ′
z = G �(xG). Thereby, the generator can be expressed

as

x ′k
z=g�k(w′k

G x ′k−1
z + b′k

G), k = 1, . . . , m (13)

where x ′0
z represents the input data xG , and x ′k

z denotes
the output of the kth layer. Meanwhile, x ′m

z represents the
output data x ′

z , where m is the number of layers. We use
θ ′k

G = {w′k
G, b′k

G} to represent the parameters corresponding
to the kth layer generator. The notation g�k represents the
operation of the ReLU function or the tanh function, and the
last layer g�m represents the tanh function. For the generator,
the MSE is used as a loss function to determine the minimum
loss value of the discriminator network.

In the discriminator, the input of the intrusion detection
discriminator D� is the combined data x ′

D , where x ′
D consists

of data xG and x ′
z . Then, the discriminator generates the data

y′
D , where y′

D = D�(x ′
D) and y′

D is a 2× 2 p matrix. Here,
y′

z = D�(x ′
z) and y′ = D�(xG). y′

D represents the abnormal
situation of the overall combined data, and y′ represents
the abnormal situation of the real input data. Besides, y′

z
represents the abnormal situation of the generated data.

The discriminator can be expressed as

x ′k
D= f �k(w′k

D x ′k−1
D + b′k

D), k = 1, . . . , n (14)

140 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2022

where x ′0
D represents the input data x ′

D , and x ′k
D denotes

the output of the kth layer. x ′n
D represents the output data y′

D ,
where n is the number of the discriminator layers. We utilize
θ ′k

D = {w′k
D, b′k

D} to represent the parameters corresponding
to the kth layer discriminator. Similarly, f �k represents the
operation of the ReLU function or the tanh function, and the
last layer f �n represents the softmax function.

In the discriminator of intrusion detection for various
attacks, we also use the cross-entropy loss function. Besides,
BP and ADAM optimizers are used in our intrusion detection
method for various attacks to determine the minimum loss
value of the generator network so that the corresponding
learning parameters can be derived and optimized model.

Similarly, in the judgment phase, we judge the abnormal
situation by

Y �(y′
D) =

{
y �1k = 0, y �2k = 1 i f y �1k < y �2k

y �1k = 1, y �2k = 0 i f y �1k ≥ y �2k

(15)

where y �1k and y �2k are the discrimination results of the kth
data, respectively. Furthermore, we use the same way to train
the proposed architecture. The details of our intrusion detec-
tion method for multiple attacks are shown in Algorithm 2.

After training the intrusion detection model aiming at mul-
tiple attacks, we use the trained all discriminators to detect the
network data. Namely, the network data are preprocessed by
the discriminators D1, D2, . . . , DI to build the combined data
xG , and then, the data xG pass the discriminator D�. Finally,
D� will output the data y′ to judge whether the input data x
are normal or abnormal.

IV. EXPERIMENTS

A. Data Set

In our simulation, we use CSE-CIC-IDS2018 and
CIC-DDoS2019 [20], [38] to evaluate our method.
CICFlowMeter is utilized to preprocess the CSE-CIC-
IDS2018 data set and CIC-DDoS2019 data set, which
consists of 83 features. Here, we select a certain amount
of data to evaluate the intrusion detection mechanism for
various attacks. The CSE-CIC-IDS2018 data set contains
seven different attack scenarios, namely Botnet, DoS, DDoS,
Brute-Force, Heartbleed, infiltration of the network from
inside, and Web attacks. At the same time, these seven
attack scenarios are included 14 different intrusion attacks.
We take advantage of seven attacks as the training data set
and 14 attacks as the testing data set. There are different
attacks in the training data set, such as Botnet attack, DoS
attacks-Hulk, DoS attacks-slow hypertext transfer protocol
test (SlowHTTPTest), Brute Force-Web, Infilteration, file
transfer protocol (FTP)-BruteForce, and DDOS attack-High
Orbit Ion Canon (HOIC). The attacks in the testing data
set consist of a Botnet attack, DoS attacks-Hulk, DoS
attacks-SlowHTTPTest, Brute Force-Web, Brute Force-Cross
Site Scripting (XSS), Structured Query Language (SQL)
Injection, DDoS attacks-Low Orbit Ion Canon (LOIC)-Hyper
Text Transfer Protocol (HTTP), Infilteration, DoS attacks-
GoldenEye, DoS attacks-Slowloris, FTP-BruteForce, Secure
Shell (SSH)-Bruteforce, DDOS attack-HOIC, and DDOS
attack-LOIC-user datagram protocol (UDP).

Algorithm 2 Intrusion Detection Network Training Aiming at
Multiple Attacks
Require: input data pdata(x); number of iterations T ; real

data label Y �y′ ; corresponding label of generate data Y �z ;
discriminators D1, D2, . . . , DI

Ensure: generator G �; discriminator D�
1: t ← 1
2: while t ≤ T do
3: Samples minibatch of p examples {x(1), . . . , x(p)} from

data generating distribution pdata(x)

4:

{
xi = Di (x), i = 1, 2, 3, . . . , I

xG = [x1; x2; . . . ; xI]
5: x ′

z = G �(xG)
6: x ′

D = [xG, x ′
z]

7: y′
D = D�(x ′

D)

8: Y �(y′
D) =

{
y �1k = 0, y �2k = 1 i f y �1k < y �2k

y �1k = 1, y �2k = 0 i f y �1k ≥ y �2k

9: y′
D = [y′, y′

z]
10: F = T P+T N

T P+F N+F P+T N
11: if F(Y �(y′), Y �y′) > F(Y �(y′

z), Y �z) then
12: Generator update: The mean squared error is used as

a loss function to determine the minimum loss value
of the discriminator network. And the network uses BP
and Adam to optimize.

13: else {F(Y �(y′), Y �y′) ≤ F(Y �(y′
z), Y �z)}

14: Discriminator update: The cross entropy loss function
is used as a loss function to determine the minimum
loss value of the discriminator network. And the net-
work uses BP and Adam to optimize.

15: end if
16: end while
17: return discriminator D�; generator G �

At the same time, we take advantage of the data on the first
day of the CIC-DDoS2019 data set as the training data set and
the data on the second day as the testing data set. The training
and testing data sets consist of seven and 12 anomalies,
respectively. There are different DDoS attacks in the training
data set, such as PortMap, network basic input/output system
(NetBIOS), lightweight directory access protocol (LDAP),
Microsoft Structured Query Language (MSSQL), UDP, UDP-
Lag, and synchronize sequence numbers (SYN). The DDoS
attacks in the testing data set consist of network time pro-
tocol (NTP), domain name system (DNS), LDAP, MSSQL,
NetBIOS, simple network management protocol (SNMP),
simple service discovery protocol (SSDP), UDP, UDP-Lag,
WebDDoS, SYN, and trivial file transfer protocol (TFTP).

We select a certain amount of data from the data set
for experimentation, and the specific conditions are shown
in Table II. We set up low-flow attacks in the training data
set, and we also set up a variety of new types of attacks and
new low-flow attacks in the testing data set. Here, in order
to verify the performance of the proposed GAN-based model,
we conducted two data sets for evaluation. The first experiment
is to evaluate the performance of the GAN-based model

NIE et al.: INTRUSION DETECTION FOR SECURE SIoT BASED ON COLLABORATIVE EDGE COMPUTING 141

TABLE II

SAMPLE DISTRIBUTION

for intrusion detection aiming at an attack. The second is
implementing our method to detect various attacks.

In this article, we use five performance metrics to evaluate
detection performance, and they are

Accuracy = T P + T N

T P + T N + F P + F N
. (16)

Accuracy means that our model predicts the correct sample as
a percentage of all the samples involved

Precision = T P

T P + F P
. (17)

Precision indicates the proportion of positive examples that
are classified as positive examples in fact

Recall = T P

T P + F N
. (18)

The recall rate is related to the original sample, which indicates
that the predicted number of positive cases in the sample is

TABLE III

INTRUSION DETECTION PARAMETERS AIMING AT SINGLE ATTACK

correct

FalseAlarm = F P

F P + T N
. (19)

False alarm is the proportion of correct samples that are
wrongly classified as wrong

F_Measures = 2 · Precision · Recall

Precision+ Recall
. (20)

The F_Measures value is the harmonic average of precision
and recall.

The proposed GAN-based model is implemented using
MATLAB running on a machine with the configuration of
an Intel Core processor (3.2 GHz) with 8-GB RAM. The
hyperparameter settings of the GAN-based intrusion detection
model aiming at single and various attacks are shown by
Table IV, respectively. In this work, we use an EMFFS method
that combines the output of IG, gain ratio, and chi-squared
to extract important features. In this article, to reduce the
amount of calculation, based on the IG, we select ten features
related to attacks. For instance, we select ten features related
to the attack, namely, Flow inter arrival time (IAT) Mean,
Subflow Bwd Byts, Flow Byts/s, Flow IAT Std, Init Win
bytes backward, Subflow Bwd Pkts, Idle Std, Idle Mean, Fwd
IAT Mean, and Flow Pkts/s. The selected features are shown
in Table V.
B. Performance Evaluation

We use five performance metrics to evaluate the detec-
tion performance, namely, Accuracy, Precision, Recall, False
Alarm, and F-Measures. Besides, we compare the perfor-
mance of the proposed GAN-based intrusion detection frame-
work with existing deep learning models, namely, vec-
tor convolutional deep learning (VCDL) [39], stacked non-
symmetric deep auto-encoders (S-NDAE) [34], self-taught
learning (STL) [40], and stacked contractive auto encoder
and support vector machine (SCAE+SVM) [19]. VCDL is the
VCDL approach, which comprises two modules, i.e., the fully

142 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2022

TABLE IV

INTRUSION DETECTION PARAMETERS AIMING AT VARIOUS ATTACKS

TABLE V

SELECTED FEATURES

connected network and the vector convolutional network. The
vector convolutional network is involved to extract the fea-
tures, and the fully connected network learns these extracted
features. S-NDAE comprises two modules, i.e., S-NDAE and
random forest. This method uses S-NDAE for feature learning,
and the random forest is used for classification. STL is a
combination method consisting of unsupervised feature learn-
ing and classification models. SCAE+SVM is a combination
method consisting of a stacked contractive AE and a support
vector machine. This method uses the stacked contractive AE
for feature extraction, and it classifies the trained data by using
a support vector machine.

The single attack intrusion detection situation based on
GAN is shown in Table VI. For each type of attack, we select
6000 samples as training data set, in which 2500 samples are
normal data, and the other 3500 samples are abnormal. For the
CSE-CIC-IDS2018 data set, we set the Brute Force-Web
attack as a low traffic attack. At the same time, we select
45 000 corresponding abnormal types of samples as the testing
data set, where 40 000 samples are abnormal and the others

TABLE VI

INTRUSION DETECTION RESULT AIMING AT SINGLE ATTACK

TABLE VII

INTRUSION DETECTION RESULT AIMING AT MULTIPLE ATTACKS BASED

ON THE CSE-CIC-IDS2018 DATA SET

TABLE VIII

INTRUSION DETECTION RESULT AIMING AT MULTIPLE ATTACKS BASED
ON THE CIC-DDOS2019 DATA SET

are normal. We select 611 Brute Force-Web attacks samples
as the testing data set, where 100 are abnormal. For the
CIC-DDoS2019 data set, we set the UDP-Lag attack as a
low traffic attack. Similarly, we select 45 000 corresponding
abnormal types of samples as the testing data set, where 40 000
samples are abnormal.

According to these simulation results, we can find that the
proposed intrusion detection model aiming at a single attack
can obtain excellent intrusion detection accuracy. Our method
also has high accuracy for known low-flow attacks.

In intrusion detection aiming at multiple attacks, we select
the data in Table II as the testing data set. In the

NIE et al.: INTRUSION DETECTION FOR SECURE SIoT BASED ON COLLABORATIVE EDGE COMPUTING 143

TABLE IX

INTRUSION DETECTION RESULT AIMING AT MULTIPLE ATTACKS BASED
ON THE CSE-CIC-IDS2018 DATA SET

CSE-CIC-IDS2018 data set, we set the Brute Force-Web
attack as a low-flow attack for training. In the CIC-
DDoS2019 data set, we set the UDP-Lag attack as a low-flow
attack for training. In the testing data set, we add various
attacks and set various new low-flow attacks. The simulation
results of intrusion detection for multiple attacks are shown
in Tables VII and VIII.

TABLE X

INTRUSION DETECTION RESULT AIMING AT MULTIPLE
ATTACKS BASED ON THE CIC-DDOS2019 DATA SET

In the overall intrusion detection task, the GAN-based
model that we designed has higher accuracy, precision, recall,
false alarm, and F_measures. Compared with other methods,
our method has higher accuracy and lower false alarms in the
two data sets and also has higher performance in different
environments. At the same time, we select the two optimal
models for detailed comparison with our method, and the
simulation results are shown in Tables IX and X.

Compared with other methods, our method has higher
accuracy and lower false alarms in the two data sets. For new
attacks, our method also has a better performance. For multiple
types of attacks, our method has high stability and accuracy.
However, for the new low-flow attack, i.e., WebDDoS and
Brute Force-XSS, our method has low detection accuracy, and
there is no significant improvement comparing with the other
two methods. On the whole, the GAN-based method designed
in this article has better detection performance comparing with
the other two methods. Our GAN-based algorithm can be
used to capture different types of attacks with high accuracy.

144 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 9, NO. 1, FEBRUARY 2022

Moreover, our method can detect a variety of new types
of attacks by training and learning existing attack types.
In summary, our method reduces the amount of calculation
and data dimension through feature selection. At the same
time, our method can well identify the network environment
of multiple types of attacks, and it also has high accuracy for
emerging attacks.

V. CONCLUSION AND FUTURE WORKS

This article studies the intrusion detection problem in
CEC-based SIoT. We propose a GAN-based intrusion detec-
tion method. By extracting the features of network data,
the proposed method can be used to detect various attacks.
The proposed method includes three phases. They are fea-
ture extraction, an intrusion detection model aiming at a
single attack, and an intrusion detection model with various
discriminators aiming at multiple attacks. Our method first
preprocesses the flow and performs feature extraction. Then,
we design an intrusion detection algorithm aiming at a single
attack based on GAN. By combining several intrusion detec-
tion models aiming at a single attack, we design an intrusion
detection algorithm aiming at multiple attacks based on GAN.
In addition, we also evaluate our method by implementing
it over the CSE-CIC-IDS2018 and CIC-DDoS2019 data sets.
From the simulation results, our method can significantly
improve the accuracy of intrusion detection comparing with
the other two methods.

To improve the accuracy of our method further, we will
combine the convolutional neural network and the GAN
method for extracting the spatiotemporal features of network
data. At the same time, a feature extraction algorithm is
necessary to improve the real-time performance of our method.

REFERENCES

[1] Y. Zhao, X. Dong, and Y. Yin, “Effective and efficient dense subgraph
query in large-scale social Internet of Things,” IEEE Trans. Ind. Infor-
mat., vol. 16, no. 4, pp. 2726–2736, Apr. 2020.

[2] M. A. Azad, S. Bag, F. Hao, and A. Shalaginov, “Decentralized self-
enforcing trust management system for social Internet of Things,” IEEE
Internet Things J., vol. 7, no. 4, pp. 2690–2703, Apr. 2020.

[3] H. Ning and Z. Wang, “Future Internet of Things architecture: Like
mankind neural system or social organization framework?” IEEE Com-
mun. Lett., vol. 15, no. 4, pp. 461–463, Apr. 2011.

[4] C. Liu, J. Liu, and Z. Jiang, “A multiobjective evolutionary algorithm
based on similarity for community detection from signed social net-
works,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2274–2287, Dec. 2014.

[5] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol., vol. 68,
no. 5, pp. 5031–5044, May 2019.

[6] Z. Ning et al., “Partial computation offloading and adaptive task schedul-
ing for 5G-enabled vehicular networks,” IEEE Trans. Mobile Comput.,
early access, Sep. 18, 2020, doi: 10.1109/TMC.2020.3025116

[7] Y. Zhang, X. Lan, J. Ren, and L. Cai, “Efficient computing resource
sharing for mobile edge-cloud computing networks,” IEEE/ACM Trans.
Netw., vol. 28, no. 3, pp. 1227–1240, Jun. 2020.

[8] A. Ghosh and K. Grolinger, “Edge-cloud computing for IoT data
analytics: Embedding intelligence in the edge with deep learning,” IEEE
Trans. Ind. Informat., vol. 17, no. 3, pp. 2191–2200, Mar. 2021.

[9] Z. Ning et al., “Distributed and dynamic service placement in pervasive
edge computing networks,” IEEE Trans. Parallel Distrib. Syst., vol. 32,
no. 6, pp. 1277–1292, Jun. 2021.

[10] T. Dbouk, A. Mourad, H. Otrok, H. Tout, and C. Talhi, “A novel ad-hoc
mobile edge cloud offering security services through intelligent resource-
aware offloading,” IEEE Trans. Netw. Service Manage., vol. 16, no. 4,
pp. 1665–1680, Dec. 2019.

[11] Z. Ning et al., “Joint computing and caching in 5G-envisioned Internet
of vehicles: A deep reinforcement learning-based traffic control system,”
IEEE Trans. Intell. Transp. Syst., early access, Feb. 5, 2020, doi:
10.1109/TITS.2020.2970276.

[12] C. Chen, B. Liu, S. Wan, P. Qiao, and Q. Pei, “An edge traffic flow
detection scheme based on deep learning in an intelligent transportation
system,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1840–1852,
Mar. 2021.

[13] X. Wang, Z. Ning, S. Guo, and L. Wang, “Imitation learning enabled task
scheduling for online vehicular edge computing,” IEEE Trans. Mobile
Comput., early access, Jul. 28, 2020, doi: 10.1109/TMC.2020.3012509.

[14] Z. Ning et al., “Intelligent edge computing in Internet of vehi-
cles: A joint computation offloading and caching solution,” IEEE
Trans. Intell. Transp. Syst., early access, Jun. 5, 2020, doi:
10.1109/TITS.2020.2997832.

[15] D. Yuan et al., “Intrusion detection for smart home security based
on data augmentation with edge computing,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2020, pp. 1–6.

[16] Y. Dong, R. Wang, and J. He, “Real-time network intrusion detection
system based on deep learning,” in Proc. IEEE 10th Int. Conf. Softw.
Eng. Service Sci. (ICSESS), Oct. 2019, pp. 1–4.

[17] Z. Tian, C. Luo, J. Qiu, X. Du, and M. Guizani, “A distributed deep
learning system for Web attack detection on edge devices,” IEEE Trans.
Ind. Informat., vol. 16, no. 3, pp. 1963–1971, Mar. 2020.

[18] Z. Ning et al., “Mobile edge computing enabled 5G health monitoring
for Internet of medical things: A decentralized game theoretic approach,”
IEEE J. Sel. Areas Commun., vol. 39, no. 2, pp. 463–478, Feb. 2021.

[19] W. Wang, X. Du, D. Shan, R. Qin, and N. Wang, “Cloud intrusion
detection method based on stacked contractive auto-encoder and support
vector machine,” IEEE Trans. Cloud Comput., early access, Jun. 9, 2020,
doi: 10.1109/TCC.2020.3001017.

[20] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “FlowGuard: An
intelligent edge defense mechanism against IoT DDoS attacks,” IEEE
Internet Things J., vol. 7, no. 10, pp. 9552–9562, Oct. 2020.

[21] A. Mourad, H. Tout, O. A. Wahab, H. Otrok, and T. Dbouk, “Ad
hoc vehicular fog enabling cooperative low-latency intrusion detection,”
IEEE Internet Things J., vol. 8, no. 2, pp. 829–843, Jan. 2021.

[22] R. Heartfield, G. Loukas, A. Bezemskij, and E. Panaousis, “Self-
configurable cyber-physical intrusion detection for smart homes using
reinforcement learning,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 1720–1735, 2021.

[23] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for
pervasive edge computing: A decentralized computation offloading algo-
rithm,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 411–425,
Feb. 2021.

[24] J. Liu, C. Wang, H. Su, B. Du, and D. Tao, “Multistage GAN for fabric
defect detection,” IEEE Trans. Image Process., vol. 29, pp. 3388–3400,
2020.

[25] H. Yang, Z. Xiong, J. Zhao, D. Niyato, L. Xiao, and Q. Wu, “Deep
reinforcement learning-based intelligent reflecting surface for secure
wireless communications,” IEEE Trans. Wireless Commun., vol. 20,
no. 1, pp. 375–388, Jan. 2021.

[26] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu,
“Artificial-intelligence-enabled intelligent 6G networks,” IEEE Netw.,
vol. 34, no. 6, pp. 272–280, Nov. 2020.

[27] R. Ganesan, S. Jajodia, and H. Cam, “Optimal scheduling of cyberse-
curity analysts for minimizing risk,” ACM Trans. Intell. Syst. Technol.,
vol. 8, no. 4, p. 52, 2017.

[28] W. Sha, Y. Zhu, M. Chen, and T. Huang, “Statistical learning for
anomaly detection in cloud server systems: A multi-order Markov chain
framework,” IEEE Trans. Cloud Comput., vol. 6, no. 2, pp. 401–413,
Apr. 2018.

[29] R. Conforti, M. L. Rosa, and A. H. M. T. Hofstede, “Filtering out
infrequent behavior from business process event logs,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 2, pp. 300–314, Feb. 2017.

[30] N. Moustafa, J. Slay, and G. Creech, “Novel geometric area analysis
technique for anomaly detection using trapezoidal area estimation on
large-scale networks,” IEEE Trans. Big Data, vol. 5, no. 4, pp. 481–494,
Dec. 2019.

[31] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion
detection system using a filter-based feature selection algorithm,” IEEE
Trans. Comput., vol. 65, no. 10, pp. 2986–2998, Oct. 2016.

[32] S. Garg, K. Kaur, N. Kumar, G. Kaddoum, A. Y. Zomaya, and R. Ranjan,
“A hybrid deep learning-based model for anomaly detection in cloud
datacenter networks,” IEEE Trans. Netw. Service Manage., vol. 16, no. 3,
pp. 924–935, Sep. 2019.

http://dx.doi.org/10.1109/TITS.2020.2970276
http://dx.doi.org/10.1109/TMC.2020.3012509
http://dx.doi.org/10.1109/TITS.2020.2997832
http://dx.doi.org/10.1109/TCC.2020.3001017

NIE et al.: INTRUSION DETECTION FOR SECURE SIoT BASED ON COLLABORATIVE EDGE COMPUTING 145

[33] M. Saharkhizan, A. Azmoodeh, A. Dehghantanha, K.-K.-R. Choo, and
R. M. Parizi, “An ensemble of deep recurrent neural networks for
detecting IoT cyber attacks using network traffic,” IEEE Internet Things
J., vol. 7, no. 9, pp. 8852–8859, Sep. 2020.

[34] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Trans. Emerg. Topics Comput.
Intell., vol. 2, no. 1, pp. 41–50, Feb. 2018.

[35] C. Xu, J. Shen, and X. Du, “A method of few-shot network intrusion
detection based on meta-learning framework,” IEEE Trans. Inf. Forensics
Security, vol. 15, pp. 3540–3552, 2020.

[36] A. Montieri, D. Ciuonzo, G. Aceto, and A. Pescape, “Anonymity ser-
vices Tor, I2P, JonDonym: Classifying in the dark (Web),” IEEE Trans.
Dependable Secure Comput., vol. 17, no. 3, pp. 662–675, May 2020.

[37] A. Shawahna, M. Abu-Amara, A. Mahmoud, and Y. E. Osais, “EDoS-
ADS: An enhanced mitigation technique against economic denial of
sustainability (EDoS) attacks,” IEEE Trans. Cloud Comput., vol. 8, no. 3,
pp. 790–804, Jul./Sep. 2020.

[38] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Devel-
oping realistic distributed denial of service (DDoS) attack dataset and
taxonomy,” in Proc. Int. Carnahan Conf. Secur. Technol. (ICCST),
Oct. 2019, pp. 1–8.

[39] S. Selvakumar, “Anomaly detection framework for Internet of Things
traffic using vector convolutional deep learning approach in fog environ-
ment,” Future Gener. Comput. Syst., vol. 113, pp. 255–265, Dec. 2020.

[40] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach
for network intrusion detection system,” in Proc. 9th EAI Int. Conf.
Bio-Inspired Inf. Commun. Technol., vol. 3, Dec. 2015, pp. 21–26.

Laisen Nie (Member, IEEE) received the Ph.D.
degree in communication and information system
from Northeastern University, Shenyang, China,
in 2016.

He is currently an Associate Professor with the
School of Electronics and Information, Northwestern
Polytechnical University, Xi’an, China. His research
interests include network measurement, network
security, and cognitive networks.

Yixuan Wu was born in Zhejiang, China, in 1994.
He received the B.Eng. degree in optoelectronic
information science and engineering from Ningbo
University, Ningbo, China, in 2017. He is currently
pursuing the degree with the School of Electronics
and Information, Northwestern Polytechnical Uni-
versity, Xi’an, China.

His research interests include network measure-
ment and anomaly detection.

Xiaojie Wang received the M.S. degree from North-
eastern University, Shenyang, China, in 2011, and
the Ph.D. degree from the Dalian University of
Technology, Dalian, China, in 2019.

From 2011 to 2015, she was a Software Engi-
neer with NeuSoft Corporation, Beijing, China.
She is currently a Distinguished Professor with the
Chongqing University of Posts and Telecommuni-
cations, Chongqing, China. Her research interests
are wireless networks, mobile edge computing, and
machine learning.

Lei Guo (Member, IEEE) received the Ph.D. degree
from the University of Electronic Science and Tech-
nology of China, Chengdu, China, in 2006.

He is currently a Full Professor with the
School of Communication and Information Engi-
neering, Chongqing University of Posts and
Telecommunications, Chongqing, China. He has
authored or coauthored more than 200 technical
articles in international journals and conferences.
His current research interests include communica-
tion networks, optical communications, and wireless

communications.
Dr. Guo is currently serving as an Editor for several international journals.

Guoyin Wang (Senior Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer sci-
ence and technology from Xi’an Jiaotong University,
Xi’an, China, in 1992, 1994, and 1996, respectively.

From 1998 to 1999, he was a Visiting Scholar with
the University of North Texas, Denton, TX, USA,
and the University of Regina, Regina, SK, Canada.
Since 1996, he has been with the Chongqing Univer-
sity of Posts and Telecommunications, Chongqing,
China, where he is currently a Professor, the Director
of the Chongqing Key Laboratory of Computational

Intelligence, and the Vice-President and Dean of the School of Graduate.
He had been the Director of the Institute of Electronic Information Tech-
nology, Chongqing Institute of Green the and Intelligent Technology, CAS,
Chongqing, from 2011 to 2017. His research interests include rough set,
granular computing, knowledge technology, data mining, neural network, and
cognitive computing.

Xinbo Gao (Senior Member, IEEE) received the
B.Eng., M.Sc., and Ph.D. degrees in electronic
engineering, signal and information processing from
Xidian University, Xi’an, China, in 1994, 1997, and
1999, respectively.

Since 2001, he has been with the School of
Electronic Engineering, Xidian University. He is
currently a Cheung Kong Professor of Ministry of
Education of China, a Professor of Pattern Recogni-
tion and Intelligent System of Xidian University and
a Professor of Computer Science and Technology of

Chongqing University of Posts and Telecommunications. His current research
interests include Image processing, computer vision, multimedia analysis,
machine learning, and pattern recognition.

Shengtao Li received the M.S. degree in operational
research and cybernetics from Ludong University,
Yantai, China, in 2010, and the Ph.D. degree in
control theory and control engineering from North-
eastern University, Shenyang, China, in 2013.

He is currently an Associate Professor with
the School of Information Science and Engineer-
ing, Shandong Normal University. His research
interests include nonlinear systems theory, optimal
switch-time control theory of switched stochas-
tic systems, and robust control of systems with
time-delay.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

