
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021 881

WELFake: Word Embedding Over Linguistic
Features for Fake News Detection

Pawan Kumar Verma , Member, IEEE, Prateek Agrawal , Ivone Amorim , and Radu Prodan , Member, IEEE

Abstract— Social media is a popular medium for the dissem-
ination of real-time news all over the world. Easy and quick
information proliferation is one of the reasons for its popularity.
An extensive number of users with different age groups, gender,
and societal beliefs are engaged in social media websites. Despite
these favorable aspects, a significant disadvantage comes in
the form of fake news, as people usually read and share
information without caring about its genuineness. Therefore,
it is imperative to research methods for the authentication of
news. To address this issue, this article proposes a two-phase
benchmark model named WELFake based on word embedding
(WE) over linguistic features for fake news detection using
machine learning classification. The first phase preprocesses the
data set and validates the veracity of news content by using
linguistic features. The second phase merges the linguistic feature
sets with WE and applies voting classification. To validate its
approach, this article also carefully designs a novel WELFake
data set with approximately 72 000 articles, which incorporates
different data sets to generate an unbiased classification output.
Experimental results show that the WELFake model categorizes
the news in real and fake with a 96.73% which improves the
overall accuracy by 1.31% compared to bidirectional encoder
representations from transformer (BERT) and 4.25% compared
to convolutional neural network (CNN) models. Our frequency-
based and focused analyzing writing patterns model outperforms
predictive-based related works implemented using the Word2vec
WE method by up to 1.73%.

Index Terms— Bidirectional encoder representations from
transformer (BERT), convolutional neural network (CNN), fake
news, linguistic feature, machine learning (ML), text classifica-
tion, voting classifier, word embedding (WE).

I. INTRODUCTION

NOWADAYS people around the world are getting much
involved on online social networks regardless of age,

community, or sex [1]. Communicating using social networks

Manuscript received October 2, 2020; revised January 26, 2021 and Febru-
ary 25, 2021; accepted March 18, 2021. Date of publication April 5, 2021;
date of current version August 2, 2021. This work was supported in part by the
European Union’s Horizon 2020 Research and Innovation Program through
ARTICONF Project under Grant 825134. (Corresponding author: Prateek
Agrawal.)

Pawan Kumar Verma is with the Department of Computer Engineering and
Applications, GLA University, Mathura 281406, India, and also with School of
Computer Science and Engineering, Lovely Professional University, Phagwara
144411, India (e-mail: pawankumar.verma@gla.ac.in).

Prateek Agrawal is with the School of Computer Science and Engineering,
Lovely Professional University, Phagwara 144411, India, and also with
the Institute of Information Technology, University of Klagenfurt, 9020
Klagenfurt, Austria (e-mail: prateek.agrawal@lpu.co.in).

Ivone Amorim is with MOG Technologies, 4470-605 Moreira, Portugal,
and also with the CMUP Mathematical Research Center, University of Porto,
4099-002 Porto, Portugal (e-mail: ivone.amorim@mog-technologies.com).

Radu Prodan is with the Institute of Information Technology, University of
Klagenfurt, 9020 Klagenfurt, Austria (e-mail: radu@itec.aau.at).

Digital Object Identifier 10.1109/TCSS.2021.3068519

is simple, fast, and attractive to share and transfer informa-
tion. Currently, social network sites like Facebook trailed by
Twitter are the market pioneers, facilitating over 1.3 billion
clients with a dynamic monthly variation of 300 million users
in average [2]. Their collaborations generate Terabytes of
information every second [3], [4]. Online social networks are
attractive because of the simple and convenient way to access
and circulate information with other people. However, the fast
scattering of data at a high rate with minimal effort enables
the widespread of false information, such as fake news, which
are harmful to society and people.

Fake news are low-quality information with purposefully
false data, propagated by individuals or bots that deliberately
manipulate message for tattle or political plans. Schudson
and Zelizer [5] claimed that the term “fake news” originated
in previous centuries together with the mass media itself.
Nevertheless, this term attracted increased attention after the
U.S. presidential elections of 2016, when the propagation of
fake news on social media pulled the attention of a larger
number of online users than traditional newsreaders. In the last
five months before the elections, approximately 7.5 million
tweets contained a link to exceptionally one-sided or false
news websites. An interesting and worrying aspect is that false
and unsubstantiated news from doubtful sources attracts more
audiences than credible information [6]. Relevant work on
this topic concluded that fake news spread quicker, penetrate
further, and have a deeper impact than true news [7]. There are
numerous cases where people accept and spread news without
checking their correctness certified by sources. By doing this,
they become part of a group that deliberately or unintentionally
propagates fake news. The intention behind the prolifera-
tion of fake news may be manipulation of public views for
financial or political benefit, or simply fun. The negative
consequences of this phenomenon are, therefore, undeniable,
ranging from wrong decision-making to episodes of bullying
and violence. Fig. 1(a) and (b) shows two common examples
of fake news over social networks.

False information categories are fake news, satire, mis-
information, rumor, hoax, disinformation, propaganda, and
opinion spam [8]. These categories are not mutually exclusive,
but many researchers used them with different storylines.
Although there exist a few websites to check the authen-
ticity of the news like PolitiFact [9], The Washington Post
Fact Checker [10], FactCheck [11], Snopes [12], TruthOrFic-
tion [13], FullFact [14], HoaxSlayer [15], Vishvas News [16],
Factly Media & Research [17] yet, these websites are unable
to spontaneously react to any fake news event [18].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6861-0698
https://orcid.org/0000-0002-8247-5426
https://orcid.org/0000-0002-2189-3974
https://orcid.org/0000-0001-6102-6165

882 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

Fig. 1. Fake news examples. (a) Decontextualized news. (b) False news.

As online social networks are major sources of information
that can mislead individuals or communities [19], there is a
serious need for solutions to verify the authenticity of the
content. Many researchers consistently try to develop machine
learning (ML) models with different sets of features targeted
toward automating the fake news detection process [20], [21]
using visual [22] or text-based linguistic approaches. However,
the following four questions remain unanswered.

1) Which linguistic features are most significant in classi-
fying the news data into real and fake?

2) Which word embedding (WE) technique with lin-
guistic features predicts fake news better than other
ML methods like convolutional neural networks
(CNNs) [21] or bidirectional encoder representations
from transformers (BERTs) [23]?

3) Which classification method is the most appropriate for
fake news detection on available data sets?

4) Does ensemble voting classifier improve the fake news
detection results?

To answer these questions, we propose a new method called
WELFake exclusively focused on text data in three stages.

1) Fake news prediction using linguistic feature sets (LFS);
2) WE over LFS for improved fake news detection over a

WELFake data set.
3) Comparative analysis of the linguistic features based

results with state-of-the-art CNN and BERT methods.

The WELFake model does not require additional metadata
information related to the user or media [24] for the classifi-
cation of real and fake news. Instead, it aims for a reformation
of the state-of-the-art techniques in the detection of fake news
over social media websites by using a combined LFS and WE
technique. We highlight three contributions of our WELFake
model.

A. WELFake Data Set [25]

We designed a larger WELFake data set to prevent over-
fitting of classifiers and enable better ML training. For this
purpose, we merged four popular news data sets (i.e., Kaggle,
McIntire, Reuters, and BuzzFeed Political) and prepared a
more generic data set of 72 134 news articles with 35 028 real
and 37 106 fake news.

B. WELFake Fake News Detection Model

We proposed a novel WELFake model for fake news
detection in two steps.

1) collection of various linguistic features from state-of-
the-art methods and identification of a subset that per-
forms well on the larger WELFake data set, and

2) ensemble learning on WE features using various ML
methods.

C. WELFake Model Generalization and Validation
We applied an adversarial approach to evaluate the model

generalization and effectiveness by training and testing on
separate data sets.

Experimental results on the WELFake data set revealed that
our model achieved a fake news classification accuracy of up
to 96.73%, which improves the state of the art by 4.25% over
CNN and by 1.31% over BERT methods.

The article has eight sections. Section II gives a background
overview on text classification methods. Section III highlights
the related work. Section IV describes the proposed methodol-
ogy and the WELFake model, followed by the resulting algo-
rithm in Section V. Section VI describes the implementation
of CNN and BERT state-of-the-art methods for fake news
classification used for direct comparison. Section VII pro-
vides evaluation results and further related work comparison.
Section VIII concludes the article and highlights the future
work.

II. TEXT CLASSIFICATION BACKGROUND

This section discusses several ML [26] methods, including
CNN and BERT for text classification.

A. ML Classification Methods
We review in this section a few ML methods [26] used for

fake news classification in the WELFake model.
1) Naive Bayes: This is a supervised learning algorithm

based on Bayes’ theorem that gives fast predictions with better
accuracy in the domain of sentiment analysis, spam filtration,
and text classification?

2) Support Vector Machine: This is a supervised learning
algorithm that works for both classification and regression
problems. The algorithm finds the best line for set separation
and predicts the correct set for new data values.

VERMA et al.: WELFAKE: WE OVER LINGUISTIC FEATURES FOR FAKE NEWS DETECTION 883

3) Decision Tree: This is a supervised learning algorithm
that classifies the data for both categorical and continuous
dependent variables. This classifier uses tree structures to solve
a problem by distributing complete data sets into homogeneous
ones. Internal nodes, branches and leaf nodes in this tree
structure represent the data set, the decision rules and the
outcome. There are two attribute selection measures for the
best attribute node: information gain and Gini index.

4) Random Forest: This is a supervised learning algorithm
based on ensemble learning that ensembles several decision
trees (DTs) into a random forest (RF) and calculates the
average results. The large number of trees in the RF may
increase the model accuracy.

5) K-Nearest Neighbor: This is majorly useful for classifi-
cation problems based on feature similarity. The algorithm can
use any integer value for K based on the problem statement
and statistics, and employs the Euclidean, Manhattan, or Ham-
ming metric for calculating the distance between data.

6) Boosting: This connects all base learners sequentially.
Initially, it passes a few records to the first base learner
(B L1) (of any model) for training, evaluates all the records on
B L1, and passes the incorrectly classified ones to the second
learner (B L2) for training. B L2 tests all the records and passes
the incorrectly classified ones to the next learner B L3. This
process continues until a specified number of base learners.

7) Bagging: This is known as bootstrap aggregation, this
is an ensemble technique that uses multiple base learners and
provides different subsets of the original data set to each model
for training (bootstrapping). The testing process decides the
output based on the majority votes from the different models
(aggregation). Apart from different sample sets, one can train
the models with different subsets to reduce over-fitting.

B. Text Classification Methods

This section reviews the state-of-the-art CNN and BERT
classification methods used in our experimental evaluation.

1) CNN [27]: This is each sentence into words (called
tokens) and converts them into vectors using context-based
WE methods like GloVe, Word2vec, and FastText. These vec-
tors join together to form a m×n matrix for a given sentence,
where m is the embedding dimension and n is the number of
tokens present in the vocabulary. Next, it applies the filters on
the 1-D convolution (Conv1D) layer. This convolution kernel
works from top to bottom (single directional) because of the
same width of filters. The Conv1D later combines its outcomes
and applies pooling (maximum, average, and global) that
passes the data to the final fully connected layer. This takes
care of the output generated by the pool layer and produces
the classification decision depending on the loads appointed
to each other inside the text.

2) BERT [28]: This is a popular pretrained model for text
processing developed by Google, which gives a better sense
of the language context compared to unidirectional models in
two phases.

1) Bidirectional training of an input and output transformer
representation model, comprising:

a) an encoder reading the text as input, and

b) a decoder generating the output based on the task;
and

2) Popular attention mechanism with a neural network
(NN) implementing important features only [29].

BERT takes input text and preprocesses it using tokenization,
lemmatization, stopword removal, and text lowering opera-
tions. Second, it passes the preprocessed text to the encoding
phase where additional token, segment, and positional embed-
ding processes take place. Third, it converts the input into
default 768 long embedding vectors and passes them through
the encoder layers. Finally, the more accurate information of
each token available at the last encoding layer passes to the
dense layer for text categorization.

III. STATE-OF-THE-ART SURVEY

This section focuses on reviewing various important fake
news detection methods.

A. Clickbaits

Clickbaits a special type of fake content that contains
linguistic headlines to attract the readers but do not fulfill their
promises. Chen et al. [30] scrutinized potential techniques
for programed discovery of clickbaits by combining syntax
and semantics under textual cues, as well as images and
newsreader behavior under nontextual cues. They surveyed
the importance of these cues for the identification of fake
news but failed to implement a prototype of their methodology.
Bourgonje et al. [31] proposed a model for clickbait detection
that checks the relevance of headlines for article bodies.
They used the data set released by the coordinators of the
first fake news challenge on stance detection and achieved
a significant accuracy of 89.59% using a logistic regression
classifier. Rashkin et al. [32] compared the language of real
news with satire, hoaxes, and propaganda, and discovered the
features of fake text and other online sources for the fact-
checking.

B. News Credibility

Alrubaian et al. [33] analyzed the credibility of 489 330
Twitter accounts using text (sentiment analysis), the user (gen-
der, number of followers), and message (URL, hashtag, num-
ber of replies) specific features. They implemented RF, Naive
Bayes (NB), DT, and feature-rank NB algorithms with a ten-
fold cross-validation. Castillo et al. [34] detected fake news
based on credibility using four feature sets: text-specific (e.g.,
number of characters, words, question marks, punctuation, and
sentiment analysis), user-specific (e.g., verified accounts, num-
ber of followers, number of tweets, and account creation time),
message-specific (e.g., with URL, retweeted status) and prop-
agation (e.g., root node degree and propagation tree depth).
These features applied on a Twitter data set obtained precision
and recall in the range between 70% and 80%. Benjamin
et al. [35] classified the news as real or fake based on stylistic
(e.g., syntax, text style, and grammar), complexity (e.g., article
title), and psycholinguistic features. Experimental results on
three data sets revealed better results with large amounts of

884 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

data and more in-depth features. Kaliyar et al. [36] proposed
a deep convolutional neural network for fake news detection
network (FNDNet) model and achieved a 98.36% accuracy
on the Kaggle data set. However, they did not show results on
generalized text [37]. Shu et al. [38] discussed the worthiness
of real or fake news detected through comments on particular
items and achieved 90.4%, respectively, 80.80% accuracy on
the PolitiFact and GossipCop data sets. Zellers et al. [39]
proposed a text generation model named GROVER that uses
adversaries to spread more trustworthy disinformation than
humans. They investigated several propagated threats and
showed that GROVER can be an effective discriminator that
outperforms BERT in detecting the generated false news.

C. Linguistic Features
The utilization of linguistic features for fake news detection

has been popular since the mid-2000s. Burgoon et al. [40]
used 16 linguistic features categorized in four classes, which
achieved an accuracy of 60.72% using a DT algorithm with
15-fold cross-validation. Vicario et al. [41] used different
features like text (e.g., number of characters, words, sentences,
question marks, and negations), user-specific, and message-
specific (e.g., number of replies, likes) to identify hoaxes and
fake news on social media using linear regression, logistic
regression, support vector machine (SVM), K-nearest neighbor
(KNN), and NNs. The validation on an Italian Facebook data
set with new features achieved an accuracy of 91% on the lin-
ear regression classification algorithm. Pérez-Rosas et al. [42]
used major linguistic features (e.g., n-grams, punctuation,
psycho-linguistic, readability, and syntax) and achieved an
accuracy of 76% on two novel data sets covering seven
domains. Buntain and Golbeck [43] attempted to classify
real or fake Twitter threads in four categories using 45 fea-
tures: structural (e.g., length, the number of tweets), content
(e.g., polarity, subjectivity), temporal, and user (e.g., age,
followers, authenticity). They used the CREDBANK [44] and
PHEME [45] data sets for training and the BuzzFeed data set
for testing with an accuracy of 65.29%. Newman et al. [46]
applied logistic regression to evaluate 29 features and achieved
an accuracy between 52% and 67%. Similarly, Zhou et al. [47]
used 20 features of nine categories for fake news detection.
Ahmed et al. [48] used an unclear private version of the con-
tinuously updated Kaggle data set for fake news detection and
achieved an accuracy of 92%. Shu et al. [49] used Politifact
and BuzzFeed data sets in their analysis, which are hard to
generalize due to their very small size. Gravanis et al. [37]
compared their model with [48], [49] by combining some
articles from four data sets (Kaggle-EXT, McIntire, BuzzFeed,
and Politifact) in a new UNBiased data set with 3004 articles
and achieved the highest accuracy of 95% using SVM. Table I
shows a comparative study of five linguistic feature categories.

1) Readability index quantifies the text’s complexity (i.e.,
reading difficulty) based on word length, number of
syllables, and sentence length.

2) Psycho-linguistic features describe emotions, behaviors,
persona, and mindset.

3) Stylistic features explain the style of a sentence.
4) User credibility features describe user information.

TABLE I

STATE-OF-THE-ART COMPARISON OF LINGUISTIC FEATURES

TABLE II

FAKE NEWS DETECTION DATA SETS

5) Quantity features explain sentence information such as
the number of words and number of sentences.

D. Open Data Sets
From the large number of data sets available for the study

of fake news [55]–[61], we highlight some popular data sets
in Table II.

1) Benjamin Political News is a very small data set with
75 stories each for real, fake, and satire categories.

2) Burfoot Satire News is an unbalanced data set with real
and satire categories.

3) BuzzFeed News is a very small data set of 101 news.
4) CREDBANK consists of incomplete news articles in real

and fake events categories.
5) Fake News Challenge focuses on individual claims

among three categories: disagree, discuss and unrelated.
6) FakeNewsNet consists of only 422 news articles with

incomplete classification in real and fake categories.
7) LIAR contains various hard-to-classify social media

posts and speeches due to the lack of verification
sources or knowledge bases [62].

8) Reuters consists of real and fake news articles from a
single source that increases the chances of biased data.

9) McIntire consists of real and fake news categories with-
out authentic confirmation from any individual.

10) Kaggle consists of real and fake news data without
source information.

E. Summary
No single method guarantees the best solution for all data

sets. The state-of-the-art approach of Gravanis et al. [37] used
57 linguistic features and embed them with a word-to-vector
embedding method on UNBiased data set of less than
4000 articles only. They used all features in a single LFS

VERMA et al.: WELFAKE: WE OVER LINGUISTIC FEATURES FOR FAKE NEWS DETECTION 885

Fig. 2. WELFake model overview.

and achieves up to 95% accuracy. WELFake improves on this
method using a novel method based on four stages that:

1) creates a larger data set with improved generalization;
2) identifies the most significant twenty linguistic features

and creates three unique LFS based on categories;
3) applies two WE methods to train various ML models;

and
4) generates the final prediction using a two-stage voting

classification.

IV. WELFAKE MODEL

This section outlines the WELFake model for fake news
detection divided into four phases, shown in Fig. 2.

1) Data set preparation involves the collection and pre-
processing of the data in a proper format, as a funda-
mental task of any ML model;

2) Feature engineering involves linguistic feature extrac-
tion and selection;

3) WE identifies the most appropriate technique connected
with the LFS;

4) Fake news detection tunes the model parameters and
applies a hard voting classifier for better accuracy.

A. Data Set Preparation

1) News Data Collection: This is essential for a balanced
and unbiased data set and the key to providing high quality
training data and delivering good results. Although there exist
an important number of open data sets for the study of fake
news (see Section III and Table II), the literature showed
their serious limitations in terms of size, category, or bias.
After a careful study, we prepared a more comprehensive
WELFake data set that combines four data sets, Kaggle,
McIntire, Reuters, and BuzzFeed, for two reasons. First, they
have a similar structure with two categories (i.e., real and fake
news). Second, combining the data sets reduces the limitations
and the bias of each individual data set. Table III shows the
WELFake open data set with 72 134 news articles classified as
35 028 real and 37 106 fake news [25]. The data set contains
three columns (i.e., title, text, label) with a binary label for
fake and real news. Table IV summarizes the balanced fake

TABLE III

WELFAKE DATA SET

TABLE IV

FAKE VERSUS REAL NEWS DISTRIBUTION IN WELFAKE

and real news distribution in the WELFake data set across all
four feature categories.

a) Number of short sentences (below ten words) represent-
ing real news is greater than those representing fake news.

b) Text readability of fake news is poorer than the readability
of real news.

c) Subjectivity of fake news articles is larger than for real
news articles.

d) Number of articles representing real news is larger than
those representing fake news.

2) Data Preprocessing: This solves different problems in
the collected data, like typographic errors, unstructured data
format, and other limitations, using several methods, depend-
ing on the data set and objectives.

a) Missing data handles undefined (NaN) and blank values
(NULL) present in the data set, which hinder the feature
engineering process. Since deleting the data entries containing
missing values may cause the loss of important informa-
tion [63], we performed a missing value imputation process
that estimates missing values and then analyzes the complete
data set as if these values were the actual observed ones.

b) Inconsistent data deviates from other data points because
of mistakes during data collection. We employed several
visualization techniques and mathematical functions for outlier
identification and correction, like box plot, scatter plot, Z-
score, and inter-quartile range (IQR) score.

c) Duplicate data or deduplication removes redundancy that
can lead to biased results, which may occur when the same
person collected the data.

d) Irrelevant data removes stop words (and other noise)
that make the sentence grammatically complete, but do not
have semantic significance in news classification operations.
Removing stop words and keeping relevant tokens only sig-
nificantly increases the model performance.

e) Stemming converts the text into its root word by applying
the Porter–Stemmer algorithm on text features for accuracy
improvement. In case it cannot recognize the root word,
it generates the canonical form of a corresponding word.

B. Feature Engineering

1) Linguistic Features Extraction: This is the process of
conversion from raw text to the data provided to the ML

886 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

algorithm. Feature extraction aims to create a feature set
that summarizes the information of the original data set,
which speeds up the model training and improves the data
visualization and learning accuracy. We extracted in WELFake
87 text-based linguistic features from state-of-the-art works,
falling into two syntactic (i.e., writing pattern, quantity) and
semantic (i.e., grammar, psycho-linguistics) categories.

a) Writing pattern emphasizes the writing style of the text
by accessing the sentence types, use of determinants, special
characters, and modifiers.

b) Grammar focuses on the text readability index and
emphasizes the word structure, average syllables per word,
easy word use ratio in a word list, and sentence complexity.

c) Psycho-linguistic estimates the text sentiment and infor-
mation opinion based on semantic and subjectivity.

d) Quantity identifies speech information parts by counting
the verbs, adjectives, adverbs, syllables, and words, as well as
the rate of adjectives, adverbs, and words per sentence.

2) Linguistic Features Selection: This is the process of
choosing important features for data classification, which
diminishes the quantity of input features, decreases the compu-
tational expense and improves the accuracy of the ML model.
For this purpose, we calculated the Pearson’s correlation
coefficient of each feature with the other features within
the same category and discarded those with a correlation
coefficient higher than 0.7, which indicates a strong positive
linear relationship [23] between the two features. A learning
model with fewer features is simpler and more precise accord-
ing to Occam’s razor principle and the minimum description
length concept [62]. We executed this recurrent process until
removing all the least significant features. Table V shows the
remaining 20 most significant features of WELFake grouped
based on the four categories.

3) LFS Creation: This groups the selected 20 linguistic
features in different sets to enable multiple WE methods for
unbiased model training. We need an odd number of input sets
to obtain a clear result upon subsequent voting classification.
We consequently created a minimum of three distinct LFS
based on four categories, as shown in Table V.

a) Readability index defines the sentence structure complex-
ity of any text. We identify the level or grade of the text writer
based on the readability index, which helps in classifying the
news as real or fake. For this reason, we uniformly distributed
all three readability index features among the three LFS and
assigned one feature to each set.

b) Psycho-linguistic features play an important role in detec-
tion of fake news, as explained in Section III. We, therefore,
used all three of them in all the three LFS.

c) Quantity features also participate in news classification,
so we evenly distributed them across the three LFS.

d) Writing pattern contains five features and, therefore,
we evenly distributed three features to each LFS.

C. WE
1) WE Selection: This identifies the most appropriate tech-

nique for converting plain text into a numeric value, as ML
methods cannot directly process plain text. We observed two
popular WE categories in the literature: 1) content-based, such

TABLE V

WELFAKE LFS

as term frequency-inverse document frequency (TF-IDF) and
count vectorizer (CV), that focus on previous knowledge and
2) context-based, such as Word2Vec, GloVe, and FastText, that
focus on writing text patterns. As fake news writers (fakesters)
tend to repeat similar words, we selected the content-based WE
that focuses on writing patterns rather than context [64].

a) CV: Also called one-hot encoding, CV converts text
document in a histogram vector, where each element represents
the number of appearances of the word in the document. The
vector length depends on the number of unique words in the
corpus.

b) TF-IDF: This is the advanced version of CV, which
shows the importance of a term (representing a word) in a
corpus alongside its occurrence in the document. TF-IDF is
the multiplication of the term frequency tf(t, d) that computes
the occurrence of a term t in a document d and the inverse
document frequency idf(t, D) that computes the importance of
that term t in a corpus of documents D

TF-IDF(t, d, D) = tf(t, d) · idf(t, D)

tf(t, d) = fd(t)

maxw∈d fd(w)

idf(t, D) = ln

(|D|
|{d ∈ D : t ∈ d}|

)

where fd(t) represents the number of occurrences of the term
t in the document d , |D| is the number of documents in the
corpus D, and |{d ∈ D : t ∈ d}| is the number of documents
containing the term t .

2) WE Over LFS: This improves the output prediction,
as predefined features do not always accurately predict and
need additional training methods. For this purpose, we com-
bined the WE with LFS. We applied the TF-IDF and CV
WE techniques on the three LFS and found that CV gives
better results. We achieved maximum of 95.61% accuracy
using SVM on CV, while TF-IDF gave maximum accuracy
of 95.12% using bagging. Thus, we selected CV and combined
it with LFSs for further accuracy analysis of various models
in Section VII-B.

VERMA et al.: WELFAKE: WE OVER LINGUISTIC FEATURES FOR FAKE NEWS DETECTION 887

TABLE VI

HYPERPARAMETERS FOR ML MODELS TUNING

D. Fake News Detection

1) ML Model Creation and Tuning: This passes the LFS
with WE through six ML methods: SVM, NB, KNN, DT,
Bagging, and AdaBoost. For this purpose, we experimented
with each ML model on random samples of the WELFake data
set with four training-testing data combinations: 60%–40%,
70%–30%, 80%–20%, and 90%–10%. To improve the accu-
racy, we performed a manual tuning of the six different
models using the hyperparameters displayed in Table VI.
We sequentially explored different hyperparameter value com-
binations from the given possible value ranges and tuned
them until we obtained a state-of-the-art accuracy of at least
96%. We evaluated the performance of each ML model on
different training and testing data distributions as explained in
Section VII-B and found out that a 70%–30% data distribution
gives better accuracy for all six ML methods.

2) Voting Classification: This process uses ensemble learn-
ing to collect predictive outputs from various models and
generates an output that minimizes the error and the over-
fitting. There are in general two voting classifier approaches:
soft voting based on probability and hard voting based on
maximum votes. Since fake news detection is a binary classi-
fication problem, we use hard voting that predicts a target
variable Y based on the maximum votes mode given by
different models Mi to a class:

Y = mode{M1(X), M2(X), . . . , Mn(X)}
where X is predictor or input variable.

V. WELFAKE FAKE NEWS DETECTION ALGORITHM

Fig. 3 shows the WELFake binary news classification
method (as real or fake) using TF-IDF and CV, three linguistic
feature sets (LFS1, LFS2 and LFS3) and the hard voting
classifier. The WELFake workflow consists of four steps:

1) Apply TF-IDF and CV on entire data set, store the
results in P1 and P2, and decide the better WE based on
accuracy.

Fig. 3. Sequential workflow of WELFake model.

2) Apply CV (better performing method) on three well-
defined LFS and store the results in P3, P4, and P5.

3) Apply WE hard voting classifier on P3, P4, and P5, and
generate the prediction P6 as output.

4) Combine P1, P2, and P6 using the hard voting classifier
and generate the final prediction output.

Algorithm 1 explains the steps of the proposed WELFake
model organized in four phases, as explained in Fig. 2.

1) Data Set Preparation: This the WELFake data collection
in line 1 and data set preprocessing in line 2.

2) Feature Engineering: Extracts linguistic features of the
data set in line 3 and applies Pearson’s coefficient to
select the significant linguistic features in line 4. Line 5
creates an odd number of LFS to perform voting.

3) WE: (i.e., CV and TF-IDF) This applies on the entire
data set in lines 6 and 7. We select in line 8 the best
method to combine with the various LFS created in
line 5. Lines 9 and 10 combine the LFS with the best
WE method.

4) ML Model Tuning and Voting Classifier: We train in line
11 the data sets from line 5 on various ML classification
models and select the best results from each set. Line
12 applies the voting classifier on the results achieved on
the different LFS using the best ML classification model
and generates the hard voting output. Line 13 applies
again the hard voting classifier (line 12), CV (line 6), and
TF-IDF (line 7) and returns the final news classification
prediction.

VI. CNN AND BERT IMPLEMENTATIONS ON

WELFAKE DATA SET

This section describes the CNN and BERT implementation
on the WELFake data set. We performed a hyperparameter
tuning to improve their performance, summarized in Table VII.

A. CNN-Based Fake News Detection

After preprocessing the text as presented in Section IV-A2,
we pass it to our CNN implementation consisting of several
layers shown in Fig. 4.

888 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

Algorithm 1: WELFake Fake News Detection Algorithm
Data: Kaggle, McIntire, Reuters, BuzzFeed
Result: WELFake Model for news classification
// Phase 1: data set preparation

1 WELFake_data set ← collection(Kaggle, McIntire, Reuters, BuzzFeed) // News collection
2 WELFake_data set ← preprocess(WELFake_data set) // Data set pre_processing
// Phase 2: feature engineering

3 L F ← extract(WELFake_data set) // Linguistic feature extraction
4 L F ← selection(LF) // Feature selection using Pearson’s correlation
5 L FS ← split(LF) // Split linguistic features in odd sets
// Phase 3: Word embedding

6 CV ← cv(WELFake_data set) // Apply CV technique on data set
7 T F I DF ← tfidf(WELFake_data set) // Apply TFIDF technique on data set
8 Best ← select(CV, TFIDF) // Select best embedding technique with data set
9 foreach L FSi ∈ L FS do

10 C L FSi ← combine(C L FSi , Best)

// Phase 4: ML model tuning and voting classifier
11 Model ← bestModel(SVM (CLFS), DT (CLFS), NB (CLFS), Bagging (CLFS), AdaBoost (CLFS), KNN (CLFS))

// Selection of best model for linguistic feature set
12 vote_hard ← votingClassifier(Model (C L FSi));
13 return votingClassifier(TFIDF, CV, vote_hard)

Fig. 4. CNN text processing on WELFake data set.

1) Embedding Layer: This converts the input text into WE,
where every word in the vocabulary transforms into a high-
dimensional space vector for next layer execution. We used
the GloVe technique for the conversion of text into a vector.

2) Convolutional Layer: This layer the WE from the previ-
ous layer as input and specifies the number of Conv1D layers
and the kernel size k, representing the number of words in a
sentence during one filter slide. We used three Conv1D layers
having kernels of size two, three, and four with 32 filters
each (totalling 96 filters in the Conv1D layers). We obtained
32 feature maps from each kernel for further execution and
calculated the filter height as m − k + 1, where m is the
maximum sequence length in the data set.

3) Pooling Layer: The pooling layer reduces the number
of outputs generated at the previous layer. After applying a
global average pooling, the size of the vector is the same as
the number of filters. This layer also merges the converted
vectors of size f × x , where f is the number of filters and x
is the number of kernels.

4) Dense Layer: This layer takes the output from the
pooling layer and passes it on to two consecutive dense layers

Fig. 5. BERT text processing on WELFake data set.

for final prediction using a Sigmoid activation function with
values in the [0, 1] interval, which helps to assess the CNN
prediction confidence.

B. BERT-Based Fake News Detection

We performed fine-tuning of the pretrained BERT model
for fake news classification in several steps, shown in Fig. 5.

1) Data Preprocessing: performs the operations described
in Section IV-A2 on the raw text and adds a classification
[CLS] token at the start of the first sentence.

VERMA et al.: WELFAKE: WE OVER LINGUISTIC FEATURES FOR FAKE NEWS DETECTION 889

TABLE VII

CNN AND BERT MODEL PARAMETERS

TABLE VIII

FAKE NEWS PREDICTION PARAMETERS

2) BERT Model Architecture: uses the BERTBASE model
with 12 encoder layers. Each encoder layer performs a self-
attention mechanism and passes the output to a feed-forward
network. The output of each layer is a vector of default
size 768. We applied at the 12th layer the [CLS] token to
store the useful information for classification.

3) Output Layer: reads the vector stored in the [CLS] token.
We used a Sigmoid activation function and implemented a NN
with five dense layers and three dropout layers to classify the
text news. The Sigmoid function produces the results in the
range of [0, 1], which identifies confidence classes such that
the class with a larger value wins the prediction.

VII. EXPERIMENTAL EVALUATION

We implemented WELFake in Python 3.6 on a Jupyter
notebook. We run the experiments on a computer equipped
with a ninth-generation i7 processor and 16 GB of memory.

A. Evaluation Metrics

We define four evaluation parameters, true-positive (TP),
true-negative (TN), false-positive (FP), and false-negative
(FN), based on the relation between the predictive news
classification and the actual one, displayed in Table VIII.
Based on these parameters, we evaluated the WELFake model
on four performance metrics.

1) Accuracy: This is the ratio between the number of correct
predictions and the total number of predictions

Accuracy = TP+ TN

TP+ TN+ FP+ FN
.

2) Precision: This measures the positive predicted value,
as the ratio between the number of correct positive predictions
to the total number of positive predictions

Precision = TP

TP+ FP
.

3) Recall: R measures the sensitivity of the model as the
ratio between the number of correct positive predictions to the
total number of correctly predicted results

Recall = TP

TP+ FN
.

4) F1-Score: F1 measures the testing accuracy of the model
as the harmonic mean of the precision and the recall

F1− score = 2

Recall−1 + Precision−1 .

B. Comparative ML Classification
We analyze the accuracy of the WELFake model on the six

ML classifiers in Table IX using four scenarios.
1) LFS: This classifies the news on the three LFS indi-

vidually using the six ML classifiers. The accuracy of all
three sets ranges between 77.3% and 85.6%. LFS1 gives
the best accuracy of 83.4% using Bagging and the worst
accuracy of 79.2% using NB. LFS2 produces the highest
accuracy of 84.2% using Bagging and the lowest accuracy
of 77.3% using NB. Similarly, LFS3 achieves the highest
85.6% accuracy using SVM and the lowest accuracy of 79.8%
using NB. Bagging and SVM performed the best among all
six ML classifiers followed by AdaBoost, DT, KNN, and NB.

2) WE: This applies CV and TF-IDF on the WELFake data
set and classifies the news to predict P1 and P2, as illustrated
in Fig. 3. We observed that CV achieved in general a better
accuracy than TF-IDF. CV performed the best on SVM with
a 95.61% accuracy, followed by Bagging, AdaBoost, NB, DT,
and KNN. TF-IDF achieved an accuracy of 95.12% using
Bagging, followed by SVM, AdaBoost, NB, KNN, and DT.

3) LFS-Enabled WE: This combines CV with the three
LFS to predict P3, P4, and P5 and applies voting classifier to
obtain P6. We achieved a maximum accuracy of up to 96.1%
using SVM and a minimum accuracy of up to 89.6% using
DT. Overall, SVM performed the best followed by Bagging,
AdaBoost, NB, KNN, and DT.

4) WELFake Prediction: This predicts the final classi-
fication output by applying voting classifier across the
LFS-enabled WE classification (P6), TF-IDF (P1) and CV (P2)
predictions. SVM achieved the maximum accuracy of 96.73%
followed by AdaBoost, Bagging, NB, KNN, and DT.

5) Comparison: Table X shows the performance among
several training and testing dataset splits and Table XI com-
pares the overall performance of the WELFake model in
terms of accuracy, precision, recall, and F1-score, introduced
in Section VII-A. From all six ML models, WELFake pro-
duces the best results using SVM with a maximum accuracy
of 96.73%, and a minimum accuracy of 89.92% using DT.
Similarly, SVM achieved the highest precision (94.6%), recall
(98.61%), and F-1 score (96.56%), while DT scored the lowest
precision (86.1%) and F1-score (89.24%). KNN achieved the
worst recall of 90.55% only. From these results, we conclude
that the proposed WELFake model achieved the best perfor-
mance on the WELFake data set (on all evaluation metrics)
using SVM followed by AdaBoost, Bagging, NB, KNN, and
DT.

890 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

TABLE IX

ACCURACY ANALYSIS OF WELFAKE MODEL

TABLE X

WELFAKE ACCURACY ANALYSIS ON DIFFERENT TRAINING

AND TESTING DATA SETS

TABLE XI

EVALUATION RESULTS FOR DIFFERENT ML MODELS

C. Comparative Text Classification

Fig. 6 compares the accuracy and F1-score of the WELFake
model with the CNN and BERT state-of-the-art methods. The
WELFake model achieved a 96.73% accuracy, while CNN
and BERT achieved a maximum accuracy only up to 92.48%
and 93.79%, respectively. Similarly, WELFake also shows a
better F1-score compared to CNN and BERT due to its better
generalization. While Kaliyar et al. [36] achieved a 98.36%
accuracy using a deep NN on single data set, its accuracy
reduced to 92.48% on the WELFake data set. Similarly, BERT
is a pretrained model which works well with labeled data,
while its performance gets compromised in a generalized data
set where testing data are independent of the training data.
Finally, WELFake focuses on text writing pattern linguistic
features that extract the text structure and provide the syntax,
sentiment, grammatical, and readability evidence specific to
the text content, which explains the improved fake news
detection. Overall, WELFake achieved the highest accuracy
followed by BERT and CNN.

D. WELFake Generalization

We use different training and testing data sets to analyze
the generalization performance of the WELFake model. For
this purpose, we followed an adversarial approach that splits
the WELFake data set into four constituent subsets (i.e.,
BuzzFeed, Reuters, McIntire, and Kaggle). We generated
four experimental data sets that combine three of them as

Fig. 6. CNN, BERT, and WELFake performance comparison.

TABLE XII

WELFAKE GENERALIZATION ACCURACY

training data and keeps the fourth for testing, as presented
in Table XII.

1) Under-Fitting Data Set (3): This has the training data
set smaller than the testing data set, which overestimates the
results in over-constrained models.

2) Over-Fitting Data Set (4): This uses almost the entire
data set as part of training, which underestimates the results
in under-constrained models.

3) Balanced Data Set (1, 2): This splits the training and
testing data in acceptable ratios.

The evaluation results reveal that the WELFake model
accuracy remains high in all four scenarios, ranging between
96.03% to 96.84% with a very small standard deviation of 0.3.
It is possible because our proposed WELFake model handles
well the overfitting and underfitting data due to the multilevel
model training and data classification. These results, therefore,
validate the generalization of the proposed WELFake model.

E. Related Work Comparison

We compare our proposed WELFake model with three
related models, summarized in Table XIII.

VERMA et al.: WELFAKE: WE OVER LINGUISTIC FEATURES FOR FAKE NEWS DETECTION 891

TABLE XIII

WELFAKE COMPARISON WITH RELATED METHODS

1) Ahmed et al. [48]: experimented with fake news detec-
tion on the Kaggle-EXT data set with 25 200 articles. They did
not use linguistic features and applied a linear SVM model on
TF-IDF with the highest 92% accuracy.

2) Shu et al. [49]: used linguistic features for fake news
detection on the BuzzFeed and Politifact data sets of only
240 and 182 articles. They separately used a linguistic feature
method with two features and implemented SVM on both data
sets with an accuracy of 87.8% for Politifact and 86.4% for
BuzzFeed.

3) Gravanis et al. [37]: used the UNBiased data set with
3404 articles with 2004 real news and 1400 fake ones and
achieved accuracy up to 95% using the SVM classifier. They
used 57 linguistic features with the Word2vec WE method.
They also compared their method on other data sets (i.e.,
Kaggle-EXT, BuzzFeed, Politifact, and McIntire) and achieved
an accuracy of up to 99.0%, 72.70%, 84.7%, and 81%,
respectively. They claimed of using a biased Kaggle-EXT
data set (in the year 2018) with real news from one source
only, which produced a constant performance regardless of the
number of features (i.e., up to 99% accuracy even by using a
single linguistic feature, such as a typo).

4) WELFake: applied on a larger data set with over
72 000 news achieved a higher accuracy of 96.73% compared
to the related methods. For a fair comparison, we separately
applied the WELFake model on the four smaller data sets
(i.e., Kaggle, McIntire, Reuters, Buzzfeed) too. Compared
to [37] (the better-proven method among [37], [48], [49]) on
the Buzzfeed and McIntire data sets, WELFake improved the
accuracy from 72.7% to 82.7%, respectively, from 81% to
91.78%.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a new model called WELFake for text fake
news detection. For this purpose, we prepared a larger data
set called WELFake with over 72 000 news articles combining
four open-source data sets (i.e., Kaggle, McIntire, Reuters, and
BuzzFeed) to reduce their individual limitation and bias. After-
ward, we analyzed over 80 linguistic features from state-of-
the-art works and selected 20 significant ones to minimize the

computational complexity and increase the standard classifiers’
accuracy. We applied two WE-based methods (i.e., TF-IDF,
CV) over these linguistic features using six ML models (i.e.,
KNN, SVM, NB, DT, Bagging, and AdaBoost) and found
out that CV produces better overall accuracy than TF-IDF
with an SVM model. We, therefore, used CV over LFS and
classified the 20 features based on four categories: writing
pattern, readability index, psycho-linguistics, and quantity.

As the number of predictors that participate in the voting
classifier needs to be odd, we prepared three LFS by dis-
tributing the twenty selected features in a balanced manner
across these categories. Afterward, we embedded CV with
these LFS and applied all six ML models. We determined
the most accurate ML model and took its predicted results
from each WE-enabled LFS data set for voting classification.
We finally applied the result of this voting classifier to the
next level voting classification with the best model results of
TF-IDF and CV over LFS and obtained the final classification.
Experimental results show that the WELFake model produces
a high 96.73% accuracy on the WELFake data set. To further
analyze its advantage we compared it with two state-of-the-
art works and found out that it improves the overall accuracy
by 1.31% compared to BERT and 4.25% compared to CNN
models. The proposed WELFake model also improved the
accuracy by up to 10% on the McIntire and BuzzFeed data
sets [37]. We also analyzed the performance of different ML
models in terms of accuracy, precision, recall, and F1-score,
and found out that SVM produced the most accurate results.
Finally, our frequency-based model focused on analyzing
writing patterns outperformed predictive-based related works
implemented using the Word2vec WE method by up to 1.73%.

We plan to extend our work in the future with other
factors like knowledge graphs and user credibility for further
verification of the output generated by the WELFake model.

REFERENCES

[1] W. Jiang, J. Wu, F. Li, G. Wang, and H. Zheng, “Trust evaluation in
online social networks using generalized network flow,” IEEE Trans.
Comput., vol. 65, no. 3, pp. 952–963, Mar. 2016.

[2] M. Alrubaian, M. Al-Qurishi, A. Alamri, M. Al-Rakhami,
M. M. Hassan, and G. Fortino, “Credibility in online social networks:
A survey,” IEEE Access, vol. 7, pp. 2828–2855, 2019.

[3] S. Ranganath, S. Wang, X. Hu, J. Tang, and H. Liu, “Facilitating time
critical information seeking in social media,” IEEE Trans. Knowl. Data
Eng., vol. 29, no. 10, pp. 2197–2209, Oct. 2017.

[4] Z. Zhang, R. Sun, X. Wang, and C. Zhao, “A situational analytic method
for user behavior pattern in multimedia social networks,” IEEE Trans.
Big Data, vol. 5, no. 4, pp. 520–528, Dec. 2019.

[5] M. Schudson and B. Zelizer, “Fake news in context,” in Understanding
and Addressing the Disinformation Ecosystem. Philadelphia, PA, USA:
Annenberg School for Communication, Apr. 2017, pp. 1–4.

[6] S. Zaryan, “Truth and trust: How audiences are making sense of fake
news,” M.S. thesis, Media Commun. Studies, Lund Univ. Publications
Student Papers, Stockholm, Sweden, Jun. 2017. [Online]. Available:
https://lup.lub.lu.se/student-papers/search/publication/8906886

[7] S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news
online,” Science, vol. 359, no. 6380, pp. 1146–1151, Mar. 2018.

[8] R. Sequeira, A. Gayen, N. Ganguly, S. K. Dandapat, and J. Chandra,
“A large-scale study of the Twitter follower network to characterize the
spread of prescription drug abuse tweets,” IEEE Trans. Comput. Social
Syst., vol. 6, no. 6, pp. 1232–1244, Dec. 2019.

[9] Politifact News Dataset. Accessed: Mar. 31, 2020. [Online]. Available:
http://www.politifact.com/

[10] The Washingtonpost Fact Checker. Accessed: Mar. 31, 2020. [Online].
Available: https://www.washingtonpost.com/news/fact-checker

892 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 4, AUGUST 2021

[11] Fact Check. Accessed: Mar. 31, 2020. [Online]. Available: https://www.
factcheck.org/

[12] Snopes. Accessed: Mar. 31, 2020. [Online]. Available: https://www.
snopes.com/

[13] Truthorfiction. Accessed: Mar. 31, 2020. [Online]. Available: https://
www.truthorfiction.com/

[14] Fullfact. Accessed: Mar. 31, 2020. [Online]. Available: https://fullfact.
org/

[15] Hoax Slayer. Accessed: Mar. 31, 2020. [Online]. Available: http://hoax-
slayer.com/

[16] Viswas News. Accessed: Mar. 31, 2020. [Online]. Available: http://www.
vishvasnews.com/

[17] Factly. Accessed: Mar. 31, 2020. [Online]. Available: https://factly.in/
[18] L.-L. Shi et al., “Human-centric cyber social computing model for hot-

event detection and propagation,” IEEE Trans. Comput. Social Syst.,
vol. 6, no. 5, pp. 1042–1050, Oct. 2019.

[19] M. Glenski, T. Weninger, and S. Volkova, “Propagation from deceptive
news sources who shares, how much, how evenly, and how quickly?”
IEEE Trans. Comput. Social Syst., vol. 5, no. 4, pp. 1071–1082,
Dec. 2018.

[20] E. Lancaster, T. Chakraborty, and V. S. Subrahmanian, “M ALT P :
Parallel prediction of malicious tweets,” IEEE Trans. Comput. Social
Syst., vol. 5, no. 4, pp. 1096–1108, Dec. 2018.

[21] P. K. Verma and P. Agrawal, “Study and detection of fake news:
P2C2-based machine learning approach,” in Proc. Int. Conf. Data
Manage., Anal. Innov., vol. 1175. Singapore: Springer, Sep. 2020,
pp. 261–278.

[22] Z. Jin, J. Cao, Y. Zhang, J. Zhou, and Q. Tian, “Novel visual and
statistical image features for microblogs news verification,” IEEE Trans.
Multimedia, vol. 19, no. 3, pp. 598–608, Mar. 2017.

[23] B. Ratner, “The correlation coefficient: Its values range between +1/−
1, or do they?” J. Targeting, Meas. Anal. Marketing, vol. 17, no. 2,
pp. 139–142, Jun. 2009.

[24] A. De Salve, P. Mori, B. Guidi, and L. Ricci, “An analysis of the internal
organization of Facebook groups,” IEEE Trans. Comput. Social Syst.,
vol. 6, no. 6, pp. 1245–1256, Dec. 2019.

[25] P. K. Verma, P. Agrawal, and R. Prodan, WELFake Dataset for Fake
News Detection in Text Data (Version: 0.1) [Data Set]. Genéve, Switzer-
land: Zenodo, 2021.

[26] V. Madaan and A. Goyal, “Predicting ayurveda-based constituent bal-
ancing in human body using machine learning methods,” IEEE Access,
vol. 8, pp. 65060–65070, 2020.

[27] M. Li, G. Clinton, Y. Miao, and F. Gao, “Short text classification via
knowledge powered attention with similarity matrix based CNN,” 2020,
arXiv:2002.03350. [Online]. Available: http://arxiv.org/abs/2002.03350

[28] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune bert for text
classification,” in Proc. China Nat. Conf. Chin. Comput. Linguistics,
vol. 11856. Cham, Switzerland: Springer, Feb. 2020, pp. 194–206.
[Online]. Available: https://arxiv.org/abs/1905.05583

[29] K. Dzmitry Bahdanau, Y. Cho, and Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proc. 3rd Int. Conf.
Learn. Represent., 2015, pp. 1–15. [Online]. Available: https://arxiv.org/
abs/1409.0473

[30] Y. Chen, N. J. Conroy, and V. L. Rubin, “Misleading online content:
Recognizing clickbait as ‘false news,”’ in Proc. ACM Workshop Multi-
modal Deception Detection, Nov. 2015, pp. 15–19.

[31] P. Bourgonje, J. Moreno Schneider, and G. Rehm, “From clickbait
to fake news detection: An approach based on detecting the stance
of headlines to articles,” in Proc. EMNLP Workshop, Natural Lang.
Process. Meets Journalism, 2017, pp. 84–89.

[32] H. Rashkin, E. Choi, J. Y. Jang, S. Volkova, and Y. Choi, “Truth of
varying shades: Analyzing language in fake news and political fact-
checking,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
2017, pp. 2931–2937.

[33] M. Alrubaian, M. Al-Qurishi, M. Mehedi Hassan, and A. Alamri,
“A credibility analysis system for assessing information on Twitter,”
IEEE Trans. Depend. Sec. Comput., vol. 15, no. 4, pp. 661–674,
Aug. 2018.

[34] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on
Twitter,” in Proc. 20th Int. Conf. World Wide Web (WWW), 2011,
pp. 675–684.

[35] D. Benjamin, D. Horne, and S. Adali, “This just in: Fake news packs a
lot in title, uses simpler, repetitive content in text body, more similar to
satire than real news,” in Proc. 2nd Int. Workshop News Public Opinion,
Mar. 2017, pp. 1–9.

[36] R. K. Kaliyar, A. Goswami, P. Narang, and S. Sinha, “FNDNet—A
deep convolutional neural network for fake news detection,” Cognit.
Syst. Res., vol. 61, pp. 32–44, Jun. 2020.

[37] G. Gravanis, A. Vakali, K. Diamantaras, and P. Karadais, “Behind the
cues: A benchmarking study for fake news detection,” Expert Syst. Appl.,
vol. 128, pp. 201–213, Aug. 2019.

[38] K. Shu, L. Cui, S. Wang, D. Lee, and H. Liu, “dEFEND: Explainable
fake news detection,” in Proc. KDD 25th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining. New York, NY, USA: Association for
Computing Machinery, Jul. 2019, pp. 395–405.

[39] R. Zellers et al., “Defending against neural fake news,” 2019,
arXiv:1905.12616. [Online]. Available: http://arxiv.org/abs/1905.12616

[40] J. K. Burgoon, J. Blair, T. Qin, and J. Nunamaker, “Detecting deception
through linguistic analysis,” in Proc. 1st NSF/NIJ Conf. Intell. Secur.
Inform., Berlin, Germany: Springer, May 2003, pp. 91–101.

[41] M. D. Vicario, W. Quattrociocchi, A. Scala, and F. Zollo, “Polarization
and fake news: Early warning of potential misinformation targets,” ACM
Trans. Web, vol. 13, no. 2, pp. 1–22, Apr. 2019.

[42] V. Pérez-Rosas, B. Kleinberg, A. Lefevre, and R. Mihalcea, “Automatic
detection of fake news,” in Proc. 27th Int. Conf. Comput. Linguis-
tics, Santa Fe, NM, USA: Association for Computational Linguistics,
Aug. 2018, pp. 3391–3401.

[43] C. Buntain and J. Golbeck, “Automatically identifying fake news in
popular Twitter threads,” in Proc. IEEE Int. Conf. Smart Cloud (Smart-
Cloud), New York, NY, USA, USA, Nov. 2017, pp. 208–215.

[44] T. Mitra and E. Gilbert, “Credbank: A large-scale social media corpus
with associated credibility annotations,” in Proc. 9th Int. AAAI Conf.
Web Social Media. Apr. 2015, pp. 258–267.

[45] A. Zubiaga, G. W. S. Hoi, M. Liakata, and R. Procter, “PHEME
dataset of rumours and non-rumours,” Univ. Warwick, Coventry, U.K.,
Oct. 2016. [Online]. Available: https://figshare.com/articles/dataset/
PHEME_dataset_of_rumours_and_non-rumours/4010619

[46] M. L. Newman, J. W. Pennebaker, D. S. Berry, and J. M. Richards,
“Lying words: Predicting deception from linguistic styles,” Personality
Social Psychol. Bull., vol. 29, no. 5, pp. 665–675, May 2003.

[47] L. Zhou, J. K. Burgoon, J. F. Nunamaker, and D. Twitchell, “Automating
linguistics-based cues for detecting deception in text-based asynchronous
computer-mediated communications,” Group Decis. Negotiation, vol. 13,
no. 1, pp. 81–106, Jan. 2004.

[48] H. Ahmed, I. Traore, and S. Saad, “Detection of online fake news
using N-gram analysis and machine learning techniques,” in Intel-
ligent, Secure, and Dependable Systems in Distributed and Cloud
Environments, vol. 10618. Cham, Switzerland: Springer, Oct. 2017,
pp. 127–138.

[49] K. Shu, S. Wang, and H. Liu, “Exploiting Tri-relationship for fake
news detection,” Dec. 2018, arXiv:1712.07709v1. [Online]. Available:
https://arxiv.org/abs/1712.07709v1

[50] C. Burfoot and T. Baldwin, “Automatic satire detection: Are you having
a laugh?” in Proc. ACL-IJCNLP Conf. Short Papers ACL-IJCNLP, 2009,
pp. 161–164.

[51] B. Riedel, I. Augenstein, G. P. Spithourakis, and S. Riedel, “A simple
but tough-to-beat baseline for the fake news challenge stance detec-
tion task,” 2017, arXiv:1707.03264. [Online]. Available: http://arxiv.
org/abs/1707.03264

[52] W. Y. Wang, “‘Liar, liar pants on fire’: A new benchmark dataset for fake
news detection,” in Proc. 55th Annu. Meeting Assoc. Comput. Linguistics
(Short Papers), vol. 2, 2017, pp. 422–426.

[53] Mcintire Fake News Dataset. Accessed: Apr. 15, 2020. [Online]. Avail-
able: https://github.com/lutzhamel/fake-news

[54] Fake News Kaggle Dataset. Accessed: Apr. 15, 2020. [Online]. Avail-
able: https://www.kaggle.com/c/fake-news/data?select=train.csv

[55] Benjamin Political News Dataset. Accessed: May 15, 2020. [Online].
Available: https://github.com/rpitrust/fakenewsdata1

[56] Burfoot Satire News Dataset. Accessed: May 15, 2020. [Online]. Avail-
able: http://www.csse.unimelb.edu.au/research/lt/ resources/satire

[57] Buzzfeed News Dataset. Accessed: May 15, 2020. [Online]. Available:
https://github.com/BuzzFeedNews/2016-10-facebook-fact-check/
tree/master/data

[58] Credbank Dataset. Accessed: May 15, 2020. [Online]. Available: http://
compsocial.github.io/CREDBANK-data

[59] Fake News Challenge Dataset. Accessed: May 15, 2020. [Online].
Available: https://github.com/FakeNewsChallenge/fnc-1

[60] Fakenewsnet Dataset. Accessed: May 15, 2020. [Online]. Available:
https://github.com/KaiDMML/FakeNewsNet

[61] Liar Dataset. Accessed: May 15, 2020. [Online]. Available: https://www.
cs.ucsb.edu/~william/data/liar_dataset.zip

VERMA et al.: WELFAKE: WE OVER LINGUISTIC FEATURES FOR FAKE NEWS DETECTION 893

[62] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

[63] G. Shmueli, N. R. Patel, and Bruce, Data Mining for Business Intelli-
gence: Concepts, Techniques, and Applications in Microsoft Office Excel
With XLMiner. Hoboken, NJ, USA: Wiley, 2007.

[64] Introduction to TF-IDF. Accessed: Jun. 15, 2020. [Online]. Available:
http://www.tfidf.com/

Pawan Kumar Verma (Member, IEEE) received
the M.Tech. degree in computer science from
the Jaypee University of Information Technology,
Waknaghat, India, in 2010. He is currently pursuing
the Ph.D. degree with Lovely Professional Univer-
sity, Phagwara, India.

He has more than eight years of teaching and
research experience in opinion mining, pattern
recognition, image processing, and artificial intel-
ligence. He has authored or coauthored more
than eight research papers in various international
conferences and journals of repute.

Prateek Agrawal received the Ph.D. degree from
IKG-Punjab Technical University, Ajitgarh, India, in
2018.

He is currently a Post-Doctoral Researcher with
the University of Klagenfurt, Klagenfurt, Austria,
and an Associate Professor with the School
of Computer Science Engineering, Lovely Pro-
fessional University, Phagwara, India. He has
authored or coauthored more than 60 research papers
in various peer-reviewed journals and conferences.
His research interests include natural language

processing, machine learning, image processing, scheduling, and parallel
processing.

Ivone Amorim received the Ph.D. degree in com-
puter science from the University of Porto, Porto,
Portugal, in 2016.

She currently is a Researcher with MOG Tech-
nologies, Moreira, Portugal. She is an Associated
Member of the CMUP Mathematical Research
Center, University of Porto. She participated in
several national and international projects. She
researched in the last years at several Portuguese
institutions in the area of mathematics and its appli-
cations to several fields like robotics, power systems,
and cryptography.

Radu Prodan (Member, IEEE) received the Ph.D.
degree from the Vienna University of Technology,
Vienna, Austria, in 2004.

He was an Associate Professor with the Univer-
sity of Innsbruck, Innsbruck, Austria, until 2018.
He is currently Professor in distributed systems
with the Institute of Software Technology, Univer-
sity of Klagenfurt, Klagenfurt, Austria. He is the
Coordinator of the European Horizon 2020 project
ARTICONF that researches a toolset for trustwor-
thy, resilient, and globally sustainable decentralized

applications, with a special focus on social media networks. He was involved
in numerous national and European projects with a total budget of over six
million. He has authored or coauthored more than 200 publications.

Dr. Prodan was a recipient of the IEEE best paper awards.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

