
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 1, FEBRUARY 2021 5

Modeling of Multilayer Multicontent
Latent Tree and Its Applications

Chia-Yu Lin, Yu-Fang Chiu, Li-Chun Wang , Fellow, IEEE, and Dusit Niyato , Fellow, IEEE

Abstract— Latent tree model (LTM) is a probabilistic
tree-structured graphical model, which can reveal the hidden
hierarchical causal relations among data contents and play a
key role in explainable artificial intelligence. However, because
current LTM modeling techniques are only suitable for single-
content variable, the applications of LTMs are somewhat lim-
ited. Toward this end, a multilayer LTM (ML-LTM) is first
presented to deal with the hierarchical clustering issues of
multicontent variables. Second, we further develop an ML-LTM-
based multicontent recommendation system. Our experiment
results show that the proposed ML-LTM can achieve 90%
recommendation accuracy, but the current LTM can only has
20%. Third, we propose an incremental update approach for
ML-LTM that can save five-sixth updating time comparing with
the whole-model retraining approach for achieving the same
recommendation accuracy.

Index Terms— Incremental update techniques, latent tree
model (LTM), multicontent data, recommendation systems.

I. INTRODUCTION

D ISCOVERING latent variables to explain their latent
dependencies are the key in explainable artificial intel-

ligence for data science. The explanation of latent variables
helps users make better decisions and increase their acceptance
of suggestions [1]–[3]. In general, there are two types of
discovering latent variables approaches: 1) matrix factorization
and 2) latent tree model (LTM). Matrix factorization char-
acterizes data along each dimension by latent vectors and
calculates the similarity between users and items in the latent
space through inner product [4]. However, matrix factorization
can only show the similarity between variables, instead of
explaining the meanings of latent variables [5]. LTM utilizes
a probabilistic tree to explain hidden complex relationships
among data [6]. Fig. 1 is an example of a latent tree over
cloth data. Twill, diamond, hound’s tooth, stripe, and check
are five observed variables of pattern. “Yes” and “No” are two

Manuscript received January 6, 2020; revised September 19, 2020; accepted
October 17, 2020. Date of publication November 18, 2020; date of current
version January 29, 2021. This work was supported in part by the National
Chiao Tung University and Ministry of Education, in part by the Ministry
of Science and Technology (MOST), and in part by the Pervasive Artificial
Intelligence Research Laboratories through the Higher Education Sprout
Project, under Grant MOST 109-2634-F-009-018. (Corresponding author:
Li-Chun Wang.)

Chia-Yu Lin is with the Department of Computer Science and Engineering,
Yuan Ze University, Taoyuan City 32003, Taiwan.

Yu-Fang Chiu and Li-Chun Wang are with the Department of Electrical and
Computer Engineering, National Chiao Tung University Guangfu Campus,
Hsinchu 30010, Taiwan (e-mail: lichun@g2.nctu.edu.tw).

Dusit Niyato is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore 639798.

Digital Object Identifier 10.1109/TCSS.2020.3035202

Fig. 1. Example of latent tree based on cloth data.

states of observed variables to indicate the presence or absence
of variables. In LTM, latent variable L1 indicates the twill
pattern of “twill, diamond, and hound’s tooth.” L2 clusters the
strip pattern of “strip and check.” Considering three observed
variables (twill, diamond, and hound’s tooth), there are eight
possible states. When we observe the data, we find that data
are gathered in four states. These four states are called latent
states to represent the meaning of latent variables. The number
of latent states is shown in parentheses. Latent variables and
latent states represent the latent relationship among observed
variables. LTM has recently received widespread attention,
since the dependencies in complex data sets can be clearly
explained by the tree structure with linear complexity [7], [8].

However, most existing LTMs only consider one content
variable instead of multicontent variables. Take the medical
data as an example [9]–[11]. Collins and Lanza [9] adopted
LTM to analyze the result of healthy behavior questionnaires.
Zhang et al. [10] utilized LTM to find a group of syndromes
and helped doctors classify patients into different classes.
Zhao et al. [11] built LTM to discover symptom co-occurrence
patterns from depressive patients. The LTMs in these works
only dealt with single content data, such as syndromes. In
practice, medical data contained syndromes and medicines,
which should be considered together in the analysis process.
To the best of our knowledge, the multicontent analysis for
LTM was rarely seen in the literature.

In this article, we propose a multilayer LTM (ML-LTM)
based on bridge-islands (BI) algorithm [12] for multicontent
data. In the ML-LTM, individual LTM and intermediate LTM
are the key roles in discovering the relevance among vari-
ables with different contents. We also utilize joint probability
(JP), mutual information (MI), and conditional MI to find

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7883-6217
https://orcid.org/0000-0002-7442-7416

6 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 1, FEBRUARY 2021

the relevant latent variables and demonstrate ML-LTM on
multicontent recommendation systems.

Another challenge of LTM is the accuracy issue when new
data come into the system. The original LTM built in the
batch mode may become obsolete and result in low accuracy.
Existing works focus on improving the efficiency of building
latent tree with many observed variables instead of solving the
issue of model updating [12], [13]. The computation cost of
retraining LTM is high. Updating the LTM model in real time
is a big challenge.

An incremental update mechanism for efficiently updating
ML-LTM is proposed in this article. We distinguish unstable
variables by MI and information coverage. During the updating
process, we only update the unstable variables to reduce the
computing complexity of model updating.

The contribution of this article is summarized as follows.
1) For multicontent data, the proposed approach is the first

ML-LTM in the literature.
2) From the experiments of multicontent recommenda-

tion system, the proposed ML-LTM can achieve 90%
accuracy, while the traditional LTM can only get 20%
accuracy.

3) The proposed incremental update approach can reach
equivalent accuracy, but only requires one-sixth update
time compared with the whole-model retraining
approach. As mentioned earlier, ML-LTM is an efficient
model for discovering latent variables among multicon-
tent data in many applications.

The rest of this article is organized as follows. Section II
introduces the background and related works of LTM.
Section III presents the ML-LTM for multicontent variables.
Section IV deploys the ML-LTM for a recommendation
system. The experiments and numerical results are shown
in Section V. Finally, we give our concluding remarks in
Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the basic concepts of LTM and
the works of LTMs in the recommendation system and model
updating.

A. Latent Tree Model Construction

LTM utilized latent variables to find relationships among
observed variables and connect them through a tree structure.
LTM was originated from the Bayesian network, which was
regarded as a directed probabilistic graphical model. In LTM,
leaf nodes were observed variables and intermediate nodes
were latent variables. Given an observed variable Oi with
latent variable Li , the probabilistic dependence between two
nodes could be defined by a conditional distribution P(Oi |Li).
In general, assume there were n observed variables (O) =
O1, O2, . . . , On and k latent variables (L) = L1, L2, . . . , Lk .
pa(X) denoted the parent of a variable X . When X was the
root, let pa(X) be an empty set. The joint distribution over
observed and latent variables by LTM was

P(O1, . . . ,On,L1, . . . ,Lk) =
∏

X∈O∪L

P(X |pa(X)). (1)

The goal of building an LTM m was maximizing Bayesian
information criterion (BIC) score was used for scoring
LTMs [14], as follows:

BIC(m|D) = log P(D|m,θ∗)−d(m)

2
log N (2)

where θ∗ was the maximum likelihood estimation of the
parameters. d(m) was the number of free probability para-
meters in m. N was the sample size. A variety of learning
LTM methods were proposed previously [6], [13], [15], [16].
Zhang [6] proposed a hierarchical latent class model (LCM)
for cluster analysis. In the experiments of [6], they only
considered data with 16 attributes. Zhang and Kocka [15]
designed two computationally, efficient algorithms for learning
minimal latent trees. They simulated algorithms based on
80 observed variables. Choi et al. [13] presented a method
for performing multidimensional clustering on categorical data
and showed its superiority over unidimensional clustering. In
the experiments, we adopted two data sets with four binary
manifest variables. These works could not handle data with
hundreds or more attributes. Liu et al. [12] proposed a BI
algorithm to build LTM with hundreds of attributes. There
were three steps of BI algorithm for learning LTM: 1) group
similar content variables and find latent variables; 2) connect
subtrees by the Chow–Liu algorithm [17]; and 3) refine the
tree based on the global view by expectation–maximum (EM)
algorithm [18].

The objective of the first step was determining sibling
clusters. To identify potential siblings, MI [19] was adopted
to decide the mutual dependence between two variables,
as follows:

I(X; Y) =
∑
X,Y

P(X, Y) log
P(X, Y)

P(X)P(Y)
. (3)

The pair of variables with the highest MI initially formed
the sibling cluster. The new variable was added to the sibling
cluster if it had the highest MI with the current cluster. The
MI of a new variable X and a sibling cluster C was calculated
as follows:

I(X; C) = max
Z∈C

∑
X,Z

P(X, Z) log
P(X, Z)

P(X)P(Z)
. (4)

In the second step, the Chow–Liu algorithm connected
subtrees. The inputs of the Chow–Liu algorithm were latent
variables. The latent variables with the highest MI were
connected. The connecting process was repeated until all latent
variables were connected to generate a latent tree.

EM-algorithm refined LTM based on global consideration
in the final step. The probability of latent classes and the con-
ditional probability between observed and latent classes were
optimized. EM algorithm was repeated until the convergence
was found.

B. Latent Tree Model for Recommendation Systems

LTM was utilized to explain the clusters of variables. Take
the medical data as an example. Yang et al. [20] identified
the symptoms in psoriatic patients based on latent class
analysis (LCA). In this article, 507 psoriatic patients were

LIN et al.: MODELING OF MULTILAYER MULTICONTENT LATENT TREE AND ITS APPLICATIONS 7

clustered into three symptoms by LCA. Zhang et al. [10]
constructed the relation between syndromes and the dis-
eases and classified patients into different classes by LTM.
Zhao et al. [11] adopted LTM to discover symptom co-
occurrence patterns from 604 cases of depressive patients. An
LTM with 29 latent variables was built in [11]. Probabilistic
symptom co-occurrence patterns were captured by some latent
variables. However, in previous studies, doctors could only
group patients by their syndromes but could not group the
relationship between symptoms and medicines through LTM.
The recommendation among multicontent variables based on
LTM is essential and has not been mentioned in the literature.

C. Updating Latent Tree Model

There were many works focused on the building of LTM.
Liu et al. [12] built LTM with hundreds of attributes by
proposing a BI algorithm. Choi et al. [13] developed recursive
grouping and CLGrouping for the learning of latent tree based
on a distance-based framework. Liu et al. [21] proposed a
hierarchical latent tree analysis (HLTA) to determine a topic
of documents. Balakrishnan and Chopra [22] adopted the
method of gradient acceleration optimization to improve the
execution efficiency of progressive EM HLTA (PEM-HLTA)
for topic detection. References [12], [13], [21], and [22] only
considered how to build LTM with a large amount of data.
However, in current applications, new data frequently enter
the system [23]. Traditional LTM was built in the batch mode.
When new data came in, the LTM might become obsolete and
result in low accuracy. Lin et al. [4] discussed the accuracy
issue of recommendation systems when the speed of the new
input data increased. Efficiently updating the LTM model
based on new data becomes important.

III. MULTILAYER LATENT TREE MODEL FOR

MULTICONTENT VARIABLES

We propose an ML-LTM for multicontent data. Since a
traditional latent tree cannot represent the relationship of
multicontent variables, we design an intermediate tree in
ML-LTM to connect different content data. ML-LTM consists
of three key elements: 1) individual LTM; 2) intermediate
LTM; and 3) possible states. We define the parameters of
ML-LTM, as shown in Table I. The input data of the ML-
LTM contains N contents. In LTM, leaf nodes are observed
variables. On

1 , On
2 , . . . , On

i denotes the observed variable of
content n. un

i,1, un
i,2, . . . , un

i, j are the states of the observed
variable On

i . In LTM, intermediate nodes are latent variables.
Ln

1, Ln
2, . . . , Ln

k denotes the latent variables of content n.
vn

k,1, v
n
k,2, . . . , v

n
k,m represent the latent states of the latent

variable Ln
k . Given an observed variable On

i in the state un
i, j

belongs to the latent state vn
k,m of latent variable Ln

k , the prob-
abilistic dependence between two nodes can be interpreted by
a conditional distribution P(On

i = un
i, j |Ln

k = vn
k,m).

A. Individual LTM

We build individual LTMs by BI algorithm [12] to separate
different content variables. We take two content input data as

TABLE I

DEFINITION OF PARAMETERS IN ML-LTM

TABLE II

EXAMPLE OF THE INPUT DATA

an example. There are five observed variables in content 1 and
four observed variables in content 2. Table II is an example of
the input data. The individual LTMs of content 1 and conten 2
are constructed, as shown in Fig. 2(a) and (b). In the LTM of
content 1, observed variables O1

1 , O1
2 , and O1

3 belong to latent
variable L1

1. In the LTM of content 2, observed variables O2
1

and O2
2 belong to latent variable L2

1. Besides the clustering
result of observed variables, we can obtain latent states from
LTM. In Fig. 2(a) and (b), we assume that v1

1,1 and v1
1,2 are

two latent states of L1
1. L2

1 has three latent states v2
1,1, v2

1,2,
and v2

1,3. LTM also records the probabilities of latent states
in (5) and the probabilities of observed variables in different
latent states in (6)

P
(
Ln

k = vn
k,m

)
n ∈ {1, . . . , N}, k ∈ {1, . . . , K }, m ∈ {1, . . . , M} (5)

P
(
On

i = un
i, j |Ln

k = vn
k,m

)
n ∈ {1, . . . , N}, i ∈ {1, . . . , I }, j ∈ {1, . . . , J }
k ∈ {1, . . . , K }, m ∈ {1, . . . , M} (6)

8 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 1, FEBRUARY 2021

Fig. 2. Example of an ML-LTM. (a) Individual tree of content 1. (b) Indi-
vidual tree of content 2. (c) Ideal intermediate tree. (d) Real intermediate
tree.

B. Intermediate LTM

An intermediate latent tree is designed to connect LTMs
with different content variables. Since the input data of the
intermediate latent tree are latent variables and latent states,
we have to transform observed variables to latent states.
The transforming process is calculating the JP of observed
variables and latent states. The latent state with maximum JP
will be chosen to represent observed variables. We assume
that T n

k is the number of observed variables that belong to the
latent variable Ln

k . Mn
k is the number of latent states of latent

variable Ln
k . The objective function to find the latent state of

Ln
k is shown in (7)

arg
v

max
m∈{1,...,Mn

k },
i∈{1,...,T n

k }
P

(
Ln

k = vn
k,m

∣∣On
1 = un

1, j , . . . , On
i = un

i, j

)

= arg
v

max
m∈{1,...,Mn

k },
i∈{1,...,T n

k }

P
(

Ln
k =vn

k,m , On
1 =un

1, j , . . . , On
i =un

i, j

)
P

(
On

1 = un
1, j , . . . , On

i = un
i, j

) .

(7)

Since the denominator of (7) of different latent states
vn

k,1, v
n
k,2, . . . , v

n
k,m are the same and the variables are

TABLE III

THE INPUT OF INTERMEDIATE TREE

independent in LTM, the objective function is simplified to (8)

arg
v

max
m∈{1,...,Mn

k },
i∈{1,...,T n

k }
P

(
Ln

k = vn
k,m , On

1 = un
1, j , . . . , On

1 = un
i, j

)

(8)

Take Fig. 2(a) as an example, we transform Data1 in Table II
to the latent state of L1

1 by (8). If L1
1 = v1

1,1 has the
largest JP, L1

1 = v1
1,1 is chosen to represent the state (O1

1 =
u1

1, j , O1
2 = u1

2, j , O1
3 = u1

3, j) of Data1. The same process is
executed to transform other variables. The example result of
the transformation process is shown in Table III.

The intermediate tree is built based on the latent vari-
ables, and the latent states we transformed. As the definition
in Table I, there are R latent variables in the intermediate tree.
Hr is the r th latent variable in the intermediate tree. Fig. 2(c)
is an example of an intermediate tree.

C. Possible States

After building the intermediate tree, possible states are used
to find the correlation among observed variables with different
contents. JP is adopted to represent possible states, as shown
in (9)

P
(
O1

1 , . . . , O1
t1, O2

1 , . . . , O2
t2 , . . . , On

1 , . . . , On
tn

)
1 ≤ t1 ≤ T 1

k , 1 ≤ t2 ≤ T 2
k , . . . , 1 ≤ tn ≤ T n

k . (9)

Fig. 2(c) is an example of an intermediate tree, and L1
1 and

L2
2 are connected via H1. Therefore, O1

1 , O1
2 , O1

3 can connect
to O2

3 and O2
4 . Thus, the possible states among O1

1 , O1
2 , O1

3 ,
O2

3 , and O2
4 by JP are shown in (10)

P
(
O1

1 , O1
2 , O1

3 , O2
3 , O2

4

)
= P

(
O1

1

∣∣L1
1

) × P
(
O1

2

∣∣L1
1

) × P
(
O1

3

∣∣L1
1

) × P
(
L1

1

∣∣H1

)
× P

(
H1

) × P
(
L2

2

∣∣H1

) × P
(
O2

3

∣∣L2
2

) × P
(
O2

4

∣∣L2
2

)
= P

(
O1

1

∣∣L2
2

) × P
(
O1

2

∣∣L2
2

) × P
(
O1

3

∣∣L2
2

) × P
(
O2

3

∣∣L2
2

)
× P

(
O2

4

∣∣L2
2

)
. (10)

However, the number of observed variables is large in big
data applications. It takes a long time to find possible states.
Therefore, to decrease the complexity of possible computing
states in ML-LTM, we consider the “importance” of observed
variables. The importance of an observed variable is defined by
the differences between the clusters after adding the observed
variables. We adopt MI in (3) and information converage (IC)
in (11) as the index of importance. MI represents the depen-
dence between the observed variables and the latent variables.
IC determines how much information about latent variables

LIN et al.: MODELING OF MULTILAYER MULTICONTENT LATENT TREE AND ITS APPLICATIONS 9

Fig. 3. The steps of considering the importance of observed variables.

can be covered by observed variables. If Sn
k represents the set

of observed variables belong to latent variable Ln
k , the informa-

tion coverage of the observed variable On
i is shown in (11). We

set a threshold for IC to filter unimportant observed variables

IC
(
On

i

) = I
(
On

i ; Ln
k

)
I
(
Sn

k ; Ln
k

) . (11)

Fig. 3 is an example of reducing the number of observed
variables during computing latent classes. In the first step,
we compute and sort the MI of O1

1 , O1
2 , and O1

3 . In the second
step, the threshold of IC is set. Since the MI of O1

1 is the
largest, we compute the IC of O1

1 . The IC of O1
1 is smaller

than the threshold, and therefore, we compute the IC of O1
1

and O1
3 . In Fig. 3, we can see that the IC of O1

1 and O1
3 is

larger than the threshold. That is, O1
1 and O1

3 cover most of
the information of L1

1. We filter O1
2 as an unimportant variable

to decrease the computation complexity of analyzing possible
states.

In this section, we introduce the building of individual
trees, an intermediate tree, and find the possible states of ML-
LTM. We also consider the importance of observed variables
to reduce computation complexity. Since LTMs represent the
similarities between observed variables, we can adopt the
proposed ML-LTM in recommendation systems in Section IV.

IV. MULTILAYER LATENT TREE MODEL FOR

RECOMMENDATION SYSTEMS

With the explosive growth of information available on
the Internet, recommendation systems have emerged from
analyzing users’ behavior and helping users to select relevant
information. The correspondence of latent features between
items and users can be discovered by LTM. Fig. 4 is an exam-
ple of adopting an ML-LTM to make the recommendation. The
product description is the input of the recommendation system.
For example, the input data of the recommendation system are
the descriptions of clothes. The ML-LTM is trained based on
the observed variables, and the latent states are extracted from
input descriptions. If a recommendation request, such as “Twill
= Yes” is given, we compute the maximum JP of possible
states by the ML-LTM. The relevant variables with different
content such as “Blue” will be recommended to users. The
detail of the recommendation process by ML-LTM is shown
in Fig. 5. There are six steps in the recommendation process.
To explain further, we define some parameters in Table IV.

A. Build ML-LTM

Based on the input data, the ML-LTM is built. The indi-
vidual LTMs of different contents are built by the BI algo-
rithm [12]. Intermediate latent tree connects the relationship
of different contents.

TABLE IV

DEFINITION OF PARAMETERS OF RECOMMENDATION SYSTEM

TABLE V

EXAMPLE OF MEANINGLESS DATA

B. Find Meaningless States

Observed variables have various states, including “Null.”
“Null” represents that the observed variable does not exist
in the data. When all observed variables are equal to Null,
the state of the latent variable is called the meaningless
state (vNull). Table V is an example of meaningless data. All
observed variables in Data2 is “Null”. The latent state of Data2
is vNull. In recommendation systems, we cannot recommend
variables, which are equal to “Null,” to users. We should
remove vNull before making a recommendation. The same as
the transforming process in Section III-B, we calculate pos-
terior probability of latent states to find vNull. The maximum
posterior probability among latent states is chosen to represent
vNull.

Assume observed variables On
1 , On

2 , . . . , On
i belong to

Ln
k . un

i is the state of On
i . Ln

k has Mn
k latent states.

vn
k,1, v

n
k,2, . . . , v

n
k,m are latent states of Ln

k . The posterior prob-
ability of (On

1 = Null, On
2 = Null, . . . , On

i = Null) with Ln
k =

vn
k,1, Ln

k = vn
k,2, . . . , Ln

k = vn
k,m are P(x1), P(x2), . . . , P(xm),

respectively. P(x1) can be represented as (12)

P(x1) = P
(
Ln

1 = vn
1,1

∣∣On
1 = Null, . . . , On

i = Null
)

= P
(
Ln

1 = vn
1,1, On

1 = Null, . . . , On
i = Null

)
P

(
On

1 = Null, . . . , On
i = Null

) . (12)

Since the denominator of P(x1), . . . , P(xm) is the same,
we can simplify P(x1), . . . , P(xm) to (13). The maximum
posterior probability of the latent states represents vNull.

10 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 1, FEBRUARY 2021

Fig. 4. Example of latent tree for recommendation system.

Fig. 5. Recommendation process of ML-LTM.

For example, if P(x1) has maximum posterior probability,
vn

1,1 represents vNull. In the following “Find Target Latent
Variable” process, we delete vNull before the calculation.
Through this process, we can only carry over useful states.
The time complexity of this step is related to the number of
latent states of Ln

k . We compare the posterior probability of all
the latent states of Ln

k , as shown in (13). Therefore, assuming
the number of the latent states of Ln

k is N , the time complexity
is O(N)

P(x1) = P
(
Ln

1 = vn
1,1, On

1 = Null, . . . , On
i = Null

)
. . .

P(xm) = P
(
Ln

1 = vn
1,m , On

1 = Null, . . . , On
i = Null

)
. (13)

C. Find Source Latent Variable

The recommendation request is given in the third step. The
parent latent variable of recommendation request is regarded as
a source latent variable (SLV). In Section IV-D, we use Fig. 2
as the example. O1

1 = u1
1,1 is given as the recommendation

request and SLV is L1
1.

D. Find Target Latent Variable

The target latent variables (TLVs) are related to the
recommendation request based on the ML-LTM and are uti-
lized to do the recommendation. The ideal case of ML-LTM
is shown in Fig. 2(c). We can find the relationship among

LIN et al.: MODELING OF MULTILAYER MULTICONTENT LATENT TREE AND ITS APPLICATIONS 11

different contents via the intermediate tree. However, the dif-
ference between different contents in real applications is not
big. Latent variables of different contents in intermediate
tree grouped and belonged to one latent variable, as shown
in Fig. 2(d). In this case, it is hard to find meaningful
candidate latent variables (CLVc), which are related to SLV.
The computation process becomes complex. Therefore, JP, MI,
and CMI are proposed in this step to find the TLV.

Follow the example of Fig. 2, L1
1 is SLV. L1

1 has two latent
states v1

1,1 and v1
1,2. L2

1 and L2
2 are two CLVc which are related

to L1
1. L2

1 has two observed variables O2
1 and O2

2 and three
latent states v2

1,1,v2
1,2, and v2

1,3.
1) Joint Probability: The target function of finding TLV

from SCLVc by JP is

F(SLV, CLVc) = arg max
1≤c≤C

P(SLV, CLVc). (14)

O1
1 = u1,1 is given as the recommendation request. The joint

probabilities of SLV and two candidate latent variables L2
1 and

L2
2 are calculated. The latent variable with the maximum JP

will be chosen as TLV.
However, the joint probabilities of SLV and different

CLVc with latent states are equal to one since latent
states of latent variables represent whole data. For exam-
ple, in Fig. 2,

∑
v1

1,x ∈SS
L1

1
,

v2
1,y∈SS

L2
1

P(L1
1 = v1

1,x , L2
1 = v2

1,y) and

∑
v1

1,x ∈SS
L1

1
,

v2
2,y∈SS

L2
2

P(L1
1 = v1

1,x , L2
2 = v2

2,y) are all equal to one,

where SSL1
1
, SSL2

1
, and SSL2

2
are the sets of latent states

of L1
1, L2

1, and L2
2, respectively. To make each JP different,

we remove the meaningless state (vNull) of each latent variable.
(13) is adopted to find the maximum posterior probability.

We assume the posterior probability of (O2
1 = Null and

O2
2 = Null) with L2

1 = v2
1,1, L2

1 = v2
1,2, and L2

1 = v2
1,3

are P(x1), P(x2), and P(x3), respectively. P(x1), P(x2), and
P(x3) are shown in (15).

P(x1) = P
(
L2

1 = v2
1,1 O2

1 = Null O2
2 = Null

)
P(x2) = P

(
L2

1 = v2
1,2, O2

1 = Null, O2
2 = Null

)
P(x3) = P

(
L2

1 = v2
1,3, O2

1 = Null, O2
2 = Null

)
. (15)

The maximum posterior probability is chosen as the latent
state to represent vNull. We assume that the maximum posterior
probability is P(x1) and v2

1,1 represents vNull. After removing
vNull, we calculate JP with L1

1 and the remaining states v2
1,2

and v2
1,3, as shown in (16)

P(X) =
∑

v1
1,x ∈SS

L1
1
,

v2
1,y ∈SS

L2
1
,

v2
1,y �=vNULL

P
(
L1

1 = v1
1,x , L2

1 = v2
1,y

)

= p
(
L1

1 = v1
1,1, L2

1 = v2
1,2

) + p
(
L1

1 = v1
1,1, L2

1 = v2
1,3

)
+ p

(
L1

1 = v1
1,2, L2

1 = v2
1,2

)
+ p

(
L1

1 = v1
1,2, L2

1 = v2
1,3

)
. (16)

From (16), we can see that P(X) is equal to 1-P(x1). In
other words, finding maximum P(X) is equivalent to finding
the minimum P(x1), as follows:

min
∑

v1
1x

∈SS
L1

1
,v2

1,y=vNULL

p
(
L1

1 = v1
1x

, L2
1 = v2

1,y

)
. (17)

The number of computation process of (16) is NSLV × NCLVc ,
where NSLV is the number of latent states of SLV and NCLVc is
the number of latent states of CLVc. Thus, the time complexity
is O(N ∗ M), where N is the the number of latent states
of SLV and M is the number of latent states of CLVc. The
number of computation process of (17) is NSLV × 1 so the
time complexity is O(N). The number of computation process
can be substantially decreased.

L2
2 is another candidate latent variable. The JP of L1

1 and
L2

2 is also calculated, as shown in (18). The time complexity
is O(N), where N is the number of latent states of L1

1
and L2

2

min
∑

v1
1,x ∈SS

L1
1
,v2

2,y=vNULL

p
(
L1

1 = v1
1,x , L2

2 = v2
2,y

)
. (18)

The JP of (17) and (18) are compared. The latent vari-
able, which has the minimum JP, is chosen to be TLV.
Therefore, the time complexity of finding TLV by JP
is O(N) + O(N) = O(N).

2) Mutual Information: MI in (3) can be adopted to deter-
mine TLV from CLVi . The objective function is shown in (19)

F(SLV, CLVi)

= max
vx ∈SSSLV,
vy∈SSCLVc

,

1≤c≤C

I (SLV = vx , CLVc = vy)

= max
1≤c≤C

∑
vx ∈SSSLV,vy∈SSCLVc

P(SLV = vx , CLVc = vy)

× log
P(SLV = vx , CLVc = vy)

P(SLV = vx)P(CLVc = vy)
. (19)

During the recommendation, if all observed variables are
equal to Null, the recommendation accuracy becomes lower.
Therefore, we find and remove vNull.

The maximum posterior probability in (13) is chosen as
the latent state to represent vNull. If P(x1) has the maximum
posterior probability, v2

1,1 represents vNull. Therefore, the MI
of L2

1 without vNull is expressed in (20)

I �(L1
1 = v1

1,x , L2
1 = v2

1,y

)
=

∑
v1

1,x ∈SS
L1

1
,v2

1,y∈SS
L2

1
,v2

1,y /∈v2
1,1

P
(
L1

1 = v1
1,x , L2

1 = v2
1,y

)

× log
P

(
L1

1 = v1
1,x , L2

1 = v1,y2
)

P
(
L1

1 = v1
1,x

)
P

(
L2

1 = v2
1,y

) . (20)

The number of computation process is NSLV × (NCLVc − 1).
Thus, the time complexity is O(N∗M), where N is the number
of latent states of SLV, and M is the number of latent states
of C LV c.

12 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 1, FEBRUARY 2021

The final step is comparing MI of L2
1 and L2

2. The latent
variable, which has the maximum MI, will be chosen as TLV.
Therefore, the time complexity of finding TLV by MI is O(N∗
M) + O(N ∗ M) = O(N ∗ M).

3) Conditional Mutual Information: Recommendation
request is considered during the process of CMI. For
example, when O1

1 = u1
1, j and O1

2 = u1
2, j are given as the

recommendation request, the MI of O1
1 and O1

2 is the same.
The CMI is different since O1

1 and O1
2 are considered in the

probabilities. The CLVc, which has the maximum CMI, will
be defined as TLV. We assume the recommendation request
be On

i = un
i, j and the objective function of CMI is defined

in (21)

F(SLV, CLVc)

= max
vx ∈SSSLV,
vy∈SSCLVc

,

1≤c≤C

I (SLV = vx , CLVc = vy|request)

= max
1≤c≤C

∑
vx ∈SSSLV,
vy∈SSCLVc

,

×
[

P
(
SLV = vx , CLVc = vy, On

i = un
i, j

) × log

× P
(
On

i =un
i, j

)
P

(
SLV=vx , CLVc =vy, On

i =un
i, j

)
P

(
SLV=vx , On

i = un
i, j

)
P

(
CLVc = vy, On

i = un
i, j

)
]
.

(21)

The same as the process of calculating MI, we consider CMI
without vNull. The process of finding vNull is also the same as
the process in Section IV-D.2. We assume v2

1,1 represents vNull.
Therefore, the CMI of L2

1 without vNull is in (22)

I �(L1
1 = v1

1x
, L2

1 = v2,1y

∣∣O1
1 = u1

1, j

)
=

∑
v1

1x
∈SS

L1
1
,

v2,1y ∈SS
L2

1
,

v2,1y /∈v2
1,1

×
[

P
(
L1

1 = v1
1x

, L2
1 = v2,1y , O1

1 = u1
1, j

) × log

× P
(
O1

1 =u1
1, j

)
P

(
L1

1 =v1
1x

, L2
1 =v2,1y , O1

1 = u1
1, j

)
P

(
L1

1 = v1
1x

, O1
1 = u1

1, j

)
P

(
L2

1 = v21y , O1
1 = u1

1, j

)
]
.

(22)

The number of computation process is NSLV × (NCLVi − 1).
Thus, the time complexity is O(N∗M), where N is the number
of latent states of SLV, and M is the number of latent states
of CLVc.

The CMI of L2
1 and L2

2 is compared. The latent variable,
which has maximum CMI is chosen as TLV. Therefore,
the time complexity of finding TLV by CMI is O(N ∗ M) +
O(N ∗ M) = O(N ∗ M).

E. Calculate Possible States

After finding TLV, the possible states are calculated by
JP in.(9). The MI in (3) and IC in (11) are also adopted

to differentiate the “importance” of observed variables and
decrease the computation process. Assume L2

2 is TLV. The
possible states of O1

1 = u1
1, j , O2

3 , and O2
4 are calculated in (23)

P
(
O1

1 = u1
1, j

∣∣L2
2

)
= P

(
O1

1 = u1
1, j

∣∣O2
3 , O2

4

)
= P

(
O1

1 = u1
1, j

∣∣L2
2

) × P
(
L2

2

∣∣H1
) × P(H1) × P

(
L2

2

∣∣H1
)

× P
(
O2

3

∣∣L2
2

) × P
(
O2

4

∣∣L2
2

)
= P

(
O1

1 = u1
1, j , L2

2

) × P
(
O2

3 = u2
3, j

∣∣L2
2

)
× P

(
O2

4 = u2
4, j

∣∣L2
2

)
. (23)

F. Make Recommendation

The possible state (O2
3 = u2

3, j , O2
4 = u2

4, j) with the
maximum JP in (24) will be the recommendation result

max P
(
O1

1 = u1
1, j , L2

2

)
P

(
O2

3 = u2
3, j

∣∣L2
2

)
P

(
O2

4 = u2
4, j

∣∣L2
2

)
.

(24)

We demonstrate how to adopt ML-LTM in the recom-
mendation system. By adopting JP, MI, and CMI, the TLV
is found, and the latent states of TLV are utilized for a
recommendation. The computation complexity is reduced, and
the recommendation accuracy is increased by the proposed
process.

V. INCREMENTAL UPDATE TECHNIQUES

FOR MULTILAYER LATENT TREE

The original LTM built in the batch mode may become
obsolete when new data are given as input. The accuracy of
LTM will be intensively decreased. Retraining LTM for updat-
ing the system consumes much time. An efficient updating
method for LTM is necessary.

Before designing the updating techniques, we observe that
when new input data come in, the observed variable that has
less correlation with the parent latent variable may jump to
other latent variables. We define these observed variables as
unstable variables. Therefore, we identify unstable variables
and update these variables to speed up the model updating.
Preparing stage and updating model stage are two stages for
incrementally updating the latent tree.

A. Preparing Stage

In the preparation stage, unstable observed variables are
found and labeled by IC and MI. We assume that O1

1 is an
observed variable, and O1

1 belongs to latent variable L1
1. IC

in (11) can distinguish the importance of observed variables.
The IC of the stable variable is large. If IC is larger than the
threshold, it means that there is a great deal of information
between O1

1 and L1
1. O1

1 is important to L1
1. MI represents

the similarity between the observed variable and the latent
variable. If the observed variable is not similar to the parent
latent variable, the observed variable is unstable, as follows:
I
(
O1

1 , L1
1

) − I
(
O1

1 , L
)

> MIthreshold

∀L ∈ The set of latent variable, L �= L1
1. (25)

LIN et al.: MODELING OF MULTILAYER MULTICONTENT LATENT TREE AND ITS APPLICATIONS 13

If the IC of O1
1 is not larger than threshold and MI of O1

1
cannot satisfy (25), O1

1 is tagged as an unstable variable.

B. Updating Model Stage

In this stage, there are three steps to check the status of
unstable observed variables and update the model incremen-
tally. The first step is updating the tree structure based on the
new data. As mentioned before, the number of latent variables,
the number of latent states, and the conditional probabilities
between variables are three necessary information of an LTM.
According to different information of original LTM is retained,
there are three methods to update LTM: 1) LCM; 2) EM
method; and 3) copy method.

When updating the latent tree, we utilize LCM to keep the
number of latent variables. In Fig. 2, assume the number of
latent states of L1

1 becomes three. The conditional probabilities
among observed variables and latent variables are recomputed
in (26), where u1

1,1, u1
1,2, u1

1,3 are new latent states of L1
1

P
(
L1

1 = u1
1,1

)
, P

(
L1

1 = u1
1,2

)
, P

(
L1

1 = u1
1,3

)
P

(
O1

1

∣∣L1
1 = u1

1,1

)
, P

(
O1

1

∣∣L1
1 = u1

1,2

)
, P

(
O1

1

∣∣L1
1 = u1

1,3

)
P

(
O1

2

∣∣L1
1 = u1

1,1

)
, P

(
O1

2

∣∣L1
1 = u1

1,2

)
, P

(
O1

2

∣∣L1
1 = u1

1,3

)
P

(
O1

3

∣∣L1
1 = u1

1,1

)
, P

(
O1

3

∣∣L1
1 = u1

1,2

)
, P

(
O1

3

∣∣L1
1 = u1

1,3

)
.

(26)

If we record the number of latent variables and the number
of latent states to update the tree model, it is the EM method.
In Fig. 2, the number of latent states of L1

1 is still two. The
conditional probability between observed and latent variables
based on new data is recalculated, as shown in (27)

P
(
L1

1 = u1
1,1

)
, P

(
L1

1 = u1
1,2

)
P

(
O1

1

∣∣L1
1 = u1

1,1

)
, P

(
O1

1

∣∣L1
1 = u1

1,2

)
P

(
O1

2

∣∣L1
1 = u1

1,1

)
, P

(
O1

2

∣∣L1
1 = u1

1,2

)
. (27)

When the number of latent variables, the number of latent
states, and the conditional probabilities between variables are
retained to update the tree, it is the copy method.

The second step is computing MI among unstable variables
and latent variables based on the new data. If the MI is higher
than the current value, the unstable variable jumps to the other
latent variable. In this step, we use MI to find the new latent
variable for the unstable variable.

The third step connects the subtrees and optimizes new LTM
by the Chow–Liu and EM algorithms.

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
ML-LTM and the incremental update mechanism. We develop
ML-LTM for the recommendation system and compare the
recommendation accuracy with latent semantic analysis (LSA)
and various popular matrix factorization methods. In addition,
we compare the accuracy and computation time of the pro-
posed incremental update method and updating the whole LTM
method.

Jaccard similarity in (28) is adopted to compare the recom-
mendation accuracy of two considered methods. The Jaccard

Fig. 6. Keyword mapping flow of Polyvore data.

similarity is larger if more recommended features are matched
with the real data

J (A, B) = |A ∩ B|
|A ∪ B| . (28)

We also adopt precision in (29) and recall in (30) to further
discuss the recommendation result [24]

Precision =
∣∣∣∣ Interesting ∩ TopN

N

∣∣∣∣ (29)

Recall =
∣∣∣∣ Interesting ∩ TopN

|Interesting|
∣∣∣∣ . (30)

In the evaluation of Jaccard similarity, precision, and recall,
we only consider whether the recommended feature is matched
with the real data. However, the ranking of recommendation
items decides the quality of recommendation. Thus, we mea-
sure the discounted cumulative gain (DCG) to evaluate the
“ranking” quality. DCG measures the usefulness of an item
based on its position in the recommendation list [25]. In DCG,
the recommended items which are more relevant to users are
given higher gain. We define recommended items with higher
order position in the recommended list to be more relevant
items to users in the experiments. The DCG equation is shown
in the following:

DCGk =
k∑

i=1

reli
log2(i + 1)

(31)

where k represents the number of items that is recommended
and reli is gain for each recommendation item. In the experi-
ments, we use Jaccard similarity to be reli . The DCG of ideal
recommendation order is defined as ideal DCG (IDCG). We
divide the DCG value by IDCG, which is called normalized
DCG (NDCG), to show the result.

A. Data Set Preparation

We use three data sets in the following experiments. The
open data set is from [26], including “Asia, Alarm, Coil, News,
and WebKb” data set. We collect the second data set from
Polyvore [27]. Polyvore is a social platform for users to share
favorite clothes. We collect the description of cloth data and
map data with a keyword table to transform text data into
classification data, as shown in Fig. 6. For example, if we want
to analyze color data of clothes, we find “Red, Green, Yellow,
and so on” by the color keyword table and record whether
the description includes these keywords in the mapping result
table.

14 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 1, FEBRUARY 2021

Fig. 7. Keyword mapping flow of Movielens data.

TABLE VI

INFORMATION OF DATA SET

Besides Polyvore, we also utilize Movielens [28], which is
the most popular data set to evaluate recommendation accu-
racy. We adopt “MovieLens 20M Data Set,” which contains
20 million ratings and 465 000 tag applications applied to
27 000 movies by 138 000 users. To transform the descriptions
and the tags of movies into binary data, we analyze the
top 100 most frequently occurring words and record whether
the descriptions include these words, as shown in Fig. 7.

Fig. 8. Computation time of considering importance variables.

Fig. 9. Accuracy of considering importance of variables.

Fig. 10. Flow of single-content recommendation.

Table VI is a summary of the data set. The data are divided
into 50% training data and 50% test data. The training data
train the initial model. The new streaming data are composed
of the different proportion of training data and testing data to
evaluate the accuracy of the updating model.

B. Importance of Observed Variables

In the proposed ML-LTM, we consider the “importance” of
an observed variable to decrease the computation complexity
of finding latent states. Figs. 8 and 9 show that considering
the importance of observed variables can intensively decrease
the computation time but is not affected the recommendation
accuracy, especially in the WebKb data set, which contains
the largest number of observed variables. Therefore, we will
consider the importance of observed variables in the following
experiments.

C. Multilayer LTM for Recommendation Systems

To demonstrate the proposed LTM can work in a recommen-
dation system, we compare the proposed LTM recommenda-
tion system with LSA.

1) Single-Content Recommendation: LSA decomposes doc-
ument files into the matrix of latent factors by singular-value

LIN et al.: MODELING OF MULTILAYER MULTICONTENT LATENT TREE AND ITS APPLICATIONS 15

Fig. 11. Jaccard similarity of LSA and LTM over the material data.

Fig. 12. Jaccard similarity of LSA and LTM over the pattern data.

Fig. 13. Jaccard similarity of JP, MI, and CMI over the Polyvore data set.

decomposition to recommend similar documents based on
latent factors. Since LSA can only recommend single content,
we compare LTM with LSA in single-content recommendation
based on Polyvore data, as shown in Fig. 10. A feature is
randomly selected as the recommendation request. LTM finds
the sibling observed variables of recommendation request and
calculates the JP. According to the value of JP, the top-
n combination of observed variables will be recommended.
N is set to five in the following experiments.

Figs. 11 and 12 show the Jaccard similarities of recom-
mending material data and pattern data by LTM and LSA,
respectively. The recommendation result of LTM is 98%
similar to real data. Compared with LSA, LTM derives more
accurate recommendation results.

2) Multicontent Recommendation: We want to compare the
recommendation accuracy between the proposed ML-LTM
and the traditional LTM when we make the multicontent
recommendation. The traditional LTM can only deal with

TABLE VII

COMPARISON OF JP, MI, AND CMI OVER MOVIELENS DATA SET

Fig. 14. BIC ratio of updating methods over different open data sets.

single-content data. Thus, the recommendation items are ran-
domly chosen in the traditional LTM. The recommendation
items of ML-LTM are chosen by the JP, MI, and CMI, which
are introduced in Section IV. We evaluate the recommendation
performance of JP, MI, and CMI over Polyvore and Movielens
data sets, respectively. Fig. 13 shows the Jaccard similarity of
JP, MI, and CMI in ML-LTM over Polyvore data. The Jaccard
similarity of proposed JP, MI, and CMI can achieve about 90%
accuracy and is much higher than existing LTM.

Based on Movielens data sets, Table VII shows that MI and
CMI can get higher Jaccard similarity, precision, and recall.
The reason is that MI and CMI consider the latent topics when
calculating the latent states.

To further evaluate the recommendation performance of JP,
MI, and CMI, we compare these methods to different matrix
factorization methods (PopRank, WR-MF, BPR-MF, ShiftMC,
and CSRR) over Movielens dataset. In the recommendation
list, the ranking of items is important. Thus, NDCG is utilized
in this part to represent the recommended quality. NDCG@K
shows a different number of recommendation items. PopRank
is regarded as a baseline since PopRank recommends items to
users based on the popularity of the items. Weighted regular-
ized matrix factorization (WR-MF) [29] is a powerful matrix
factorization model for item prediction on implicit feedback
datasets. Bayesian personalized ranking matrix factorization
(BPR-MF) [30] considers the ranking with implicit feedback
when recommending items to users. Shift matrix completion
(ShiftMC) [31] designed positive-unlabeled learning algorithm
for matrix completion. [32] proposed a robust cost sensitive
learning for recommendation (CSRR) with implicit feedback.
CSRR issued an update when an error occurs. We give movie
tags as the recommendation request and recommend movie
types to users. In Table VIII, the NDCG of JP, MI, and CMI
is higher than 0.9 and much higher than other methods. That is,
JP, MI, and CMI can recommend items which really relevant
to users.

16 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 1, FEBRUARY 2021

TABLE VIII

NDCG EVALUATION OVER MOVIELENS DATA SET

D. Updating Experiment

We compare the accuracy and computation time of the
proposed incremental update method and updating the whole
LTM method. We call updating the whole LTM as “the fully
update method” in the following experiments. We utilize the
ratio of BIC score in (32) and Jaccard similarity in (28) to
compare different updating methods. Since the BIC score
is negative, BICratio > 1 represents that the accuracy of
incremental update mechanism is better

BICratio = BICFully Update

BICIncremental Update
. (32)

1) Preliminary Experiment: LCM, EM, and Copy are three
methods in the proposed incremental update mechanism for
LTM. In the preliminary experiment, we compare the accuracy
and computation time of LCM, EM, copy methods, and the
full update method based on open data. In Fig. 14, the BIC
ratio of LCM, EM, and copy is close to 1. That is, the proposed
LCM, EM, and copy of the incremental update mechanism can
achieve equivalent accuracy to that of the fully update method.

In Fig. 15, the computation time of the copy method is
only 4% of the computation time of the fully update method
based on the Asia data set. In other data sets, the computation
time of the fully update method is five times longer than the
computation time of the LCM, EM, and copy methods. All in
all, the proposed incremental update methods not only achieve
comparable accuracy with the fully update method but also
spend 20% computation time of the fully update method.

Since the accuracy of the LCM method is most similar to
that of the fully update method and the computation time is not
much different from other methods. Therefore, we choose the
LCM method to compare accuracy and computation time with
the fully update method in the following updating experiments.

2) Accuracy: We evaluate the recommendation accuracy of
different updating methods based on the Polyvore data set.
We use spring data and winter data, which are collected in
April and November in 2016, to be the training data. Data
of the following months are simulated as new input data to

Fig. 15. Time ratio of updating methods over different open data sets.

Fig. 16. BIC ratio of training ML-LTM by spring data.

LTM. Figs. 16 and 17 show the comparison of the BIC ratio.
With training LTM based on spring data, the proposed LCM
updating method makes LTM be similar to the LTM, which
is fully updated, as shown in Fig. 16. If LTM is not updated,
the accuracy of color, material, and pattern data is decreasing
in winter and summer. The lowest accuracy of color data is in
November. The lowest accuracy of material data is in January.
When spring comes next year, the accuracy becomes higher.
We also train the LTM model based on winter data, as shown
in Fig. 17. We can see that the accuracy of LTM without
updating decreases in spring and summer. The proposed LCM
makes the accuracy of LTM keep close to one.

Figs. 18 and 19 show the comparison of the Jaccard
similarity. With training LTM based on spring data, the Jaccard
similarity of material data is more stable since the number of
material variables is less, and the variance among variables
is little. On the other hand, based on color data, if LTM
is not updated, the Jaccard similarity is decreasing. With
training LTM based on winter data, the Jaccard similarity of
the proposed LCM is higher and more stable than LTM, which
is fully updated and without updating.

3) Time: The ratio of computation time (33) is adopted to
compare the computation time of incremental update methods
and the fully update method

Timeratio = TimeIncremental Update

TimeFully Update
. (33)

LIN et al.: MODELING OF MULTILAYER MULTICONTENT LATENT TREE AND ITS APPLICATIONS 17

Fig. 17. BIC ratio of training LTM by winter data.

Fig. 18. Jaccard similarity of training LTM by spring data.

Fig. 19. Jaccard similarity of training LTM by winter data.

If the value of (33) is smaller than 1, the computation time
of incremental update mechanism is less. Otherwise, the fully
update method spends less time.

Figs. 20 and 21 show the time comparison on Polyvore data.
We find that LCM spends 17% updating time of the fully
update method. Especially in terms of material data, LCM
saves much updating time. Since the materials of the clothes

Fig. 20. Time ratio of training LTM by spring data.

Fig. 21. Time ratio of training LTM by winter data.

we wear in every season are very different, the accuracy
of material data fluctuates as the season changes. LTM of
material data should update in every month. In this case,
the proposed incremental update mechanism for LTM can
intensively decrease the updating time and maintain accuracy.

4) Discussion: In the recommendation experiments,
we design the single-content recommendation and the
multicontent recommendation evaluation. In the single-
content recommendation, we compare the proposed ML-LTM
to LSA. LTM can achieve 98% similar to real data.

In the multicontent recommendation, we evaluate the per-
formance of three proposed recommendation methods (JP, MI,
and CMI) and the traditional LTM. The Jaccard similarity of
the proposed JP, MI, and CMI can achieve about 90% accuracy
and is much higher than the existing LTM. Besides, MI and
CMI can achieve more accurate results since MI and CMI
consider the latent topics when during the calculation of latent
states. We also compare JP, MI, and CMI to various popular
matrix factorization methods (PopRank, WM-RF, BPR-MF,
ShiftMC, and CSRR). The NDCG of JP, MI, and CMI is
higher than 0.9 and much higher than other methods. In
ML-LTM, we have grouped the related variables. Therefore,
ML-LTM can find recommendation variables that are more

18 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 8, NO. 1, FEBRUARY 2021

relevant to the recommendation request. All in all, ML-LTM
can be effectively adopted in the recommendation system to
recommend the related items.

In the updating experiment, we compare the accuracy and
computation time of the proposed incremental update method
and updating the whole LTM method. In the preliminary exper-
iments, we find that among the proposed updating approaches
(LCM, EM, and copy methods), the accuracy of the LCM
method is most similar to that of the fully update method and
the computation time is not much different from other meth-
ods. Since LCM only retain the number of latent variables,
LCM can more easily adapt to the new data and obtain higher
accuracy. Besides, in the updating experiments, the proposed
LCM updating method makes the accuracy of LTM keep close
to one and only spend 17% updating time of the fully update
method. Since we only retain the number of latent variables
and only update unstable variables, LCM can achieve effective
model updating and retain accuracy.

VII. CONCLUSION

In this article, we investigated the modeling and updating
issue of the latent tree for multicontent data. We first devel-
oped an ML-LTM to represent the relationship of different
contents. Second, we further designed the incremental update
mechanism to accelerate the updating process of ML-LTM. In
the experiment of a single-content recommendation system,
ML-LTM achieved 98% recommendation accuracy, which
was much better than the accuracy of LSA. In the case of
the multicontent recommendation system, ML-LTM had 90%
accuracy, while the existing LTM could only achieve 20%
accuracy. Besides, the NDCG of ML-LTM is higher than
0.9 and much higher than the current matrix factorization
methods.

To address the model updating issue, we showed that
the proposed incremental update mechanism spent only 17%
update time of the fully update method under the condition of
maintaining a similar accuracy. In the future, it is worthwhile
extending the incremental updating approach of the ML-LTM
to various latent factor models.

REFERENCES

[1] Z. Han, M. Hong, and D. Wang, Signal Processing Network for Big
Data Application. Cambridge, U.K.: Cambridge Univ. Press, 2017.

[2] D. Doran, S. Schulz, and T. R. Besold, “What does explainable
AI really mean? A new conceptualization of perspectives,” 2017,
arXiv:1710.00794. [Online]. Available: http://arxiv.org/abs/1710.00794

[3] Y. Tao, Y. Jia, N. Wang, and H. Wang, “The fact: Taming latent factor
models for explainability with factorization trees,” in ACM SIGIR Conf.
Res. Develop. Inf. Retr., 2019, pp. 1–8.

[4] C.-Y. Lin, L.-C. Wang, and K.-H. Tsai, “Hybrid real-time matrix factor-
ization for implicit feedback recommendation systems,” IEEE Access,
vol. 6, pp. 21369–21380, 2018.

[5] J. Han, L. Zheng, H. Huang, Y. Xu, P. S. Yu, and W. Zuo, “Deep latent
factor model with hierarchical similarity measure for recommender
systems,” Inf. Sci., vol. 503, pp. 521–532, Nov. 2019.

[6] N. L. Zhang, “Hierarchical latent class models for cluster analysis,”
J. Mach. Learn. Res., vol. 5, pp. 697–723, Dec. 2004.

[7] R. Mourad, C. Sinoquet, N. L. Zhang, T. Liu, and P. Leray, “A survey
on latent tree models and applications,” J. Artif. Intell. Res., vol. 47,
pp. 157–203, May 2013.

[8] N. L. Zhang and L. K. Poon, “Latent tree analysis,” in Proc. AAAI,
2017, pp. 1–5.

[9] L. M. Collins and S. T. Lanza, Latent class latent transition analysis:
With Appl. social, Behav., health Sci., vol. 718. Hoboken, NJ, USA:
Wiley, 2013.

[10] N. L. Zhang, S. Yuan, T. Chen, and Y. Wang, “Latent tree models and
diagnosis in traditional chinese medicine,” Artif. Intell. Med., vol. 42,
no. 3, pp. 229–245, Mar. 2008.

[11] Y. Zhao, N. L. Zhang, T. Wang, and Q. Wang, “Discovering symptom
co-occurrence patterns from 604 cases of depressive patient data using
latent tree models,” J. Alternative Complementary Med., vol. 20, no. 4,
pp. 265–271, Apr. 2014.

[12] T.-F. Liu, N. L. Zhang, P. Chen, A. H. Liu, L. K. M. Poon, and Y. Wang,
“Greedy learning of latent tree models for multidimensional clustering,”
Mach. Learn., vol. 98, nos. 1–2, pp. 301–330, Jan. 2015.

[13] M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky, “Consistent
and efficient reconstruction of latent tree models,” in Proc. 48th Annu.
Allerton Conf. Commun., Control, Comput., Sep. 2010, pp. 719–725.

[14] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol. 6,
no. 2, pp. 461–464, Mar. 1978.

[15] N. L. Zhang and T. Kocka, “Effective dimensions of hierarchical latent
class models,” J. Artif. Intell. Res., vol. 21, pp. 1–17, Jan. 2004.

[16] T. Chen, N. L. Zhang, T. Liu, K. M. Poon, and Y. Wang, “Model-based
multidimensional clustering of categorical data,” Artif. Intell., vol. 176,
no. 1, pp. 2246–2269, Jan. 2012.

[17] C. Chow and C. Liu, “Approximating discrete probability distributions
with dependence trees,” IEEE Trans. Inf. Theory, vol. 14, no. 3,
pp. 462–467, May 1968.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Roy. Stat. society. Ser.
B Methodol., vol. 39, pp. 1–38, Sep. 1977.

[19] T. M. Cover and J. A. Thomas, Elements Information Theory. Hoboken,
NJ, USA: Wiley, 2012.

[20] X. Yang et al., “Identifying the zheng in psoriatic patients based on latent
class analysis of traditional chinese medicine symptoms and signs,”
Chin. Med., vol. 9, no. 1, p. 1, 2014.

[21] T. Liu, N. L. Zhang, and P. Chen, “Hierarchical latent tree analysis
for topic detection,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl.
Discovery Databases, 2014, pp. 256–272.

[22] Z. Liu, H. Chen, J. Li, and Y. Yu, “PWA-PEM for latent tree model
and hierarchical topic detection,” in Proc. Int. Conf. Intell. Inf. Process.,
2018, pp. 183–191.

[23] C.-Y. Lin, L.-C. Wang, and S.-P. Chang, “Incremental checkpointing for
fault-tolerant stream processing systems: A data structure approach,”
IEEE Trans. Emerg. Topics Comput., early access, Apr. 22, 2020, doi:
10.1109/TETC.2020.2986487.

[24] H. Zhu et al., “Learning tree-based deep model for recommender
systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Jul. 2018, pp. 1079–1088.

[25] S. Balakrishnan and S. Chopra, “Collaborative ranking,” in Proc. ACM
Int. Conf. Web Search Data Mining, 2012, pp. 143–152.

[26] Open Data. Accessed: Jun. 2013. [Online]. Available: http://www.cse.
ust.hk/~lzhang/ltm/softwares/BI.zip

[27] Polyvore. Accessed: Feb. 2007. [Online]. Available: https://www.
polyvore.com/

[28] Movielens Dataset. Accessed: Apr. 2015. [Online]. Available: https://
grouplens.org/datasets/movielens/20m/

[29] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proc. IEEE Int. Conf. Data Mining, 2008,
pp. 263–272.

[30] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“BPR: Bayesian personalized ranking from implicit feedback,” 2012,
arXiv:1205.2618. [Online]. Available: http://arxiv.org/abs/1205.2618

[31] C.-J. Hsieh, N. Natarajan, and I. Dhillon, “Pu learning for matrix
completion,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 2445–2453.

[32] P. Yang, P. Zhao, Y. Liu, and X. Gao, “Robust cost-sensitive learning
for recommendation with implicit feedback,” in Proc. SIAM Int. Conf.
Data Mining, 2018, pp. 621–629.

Chia-Yu Lin received the B.S. and M.S. degrees in
computer science from National Chiao Tung Uni-
versity Guangfu Campus (NCTU), Hsinchu, Taiwan,
R. O. C., in 2010 and 2012, respectively, and the
Ph.D. degree from the Institute of Communications
Engineering, NCTU, in 2019. She is currently a
Researcher with NCTU.

Her current research interests include real-time
updating techniques for recommendation algorithms
and mathematical framework for data streaming
applications.

http://dx.doi.org/10.1109/TETC.2020.2986487

LIN et al.: MODELING OF MULTILAYER MULTICONTENT LATENT TREE AND ITS APPLICATIONS 19

Yu-Fang Chiu received the B.S. and M.S. degrees
in electrical and computer engineering from
National Chiao Tung University Guangfu Campus
(NCTU), Hsinchu, Taiwan, in 2014 and 2018,
respectively.

She is currently an Assistant Researcher with
NCTU. Her current research interests include
interference management for drone network
communications.

Li-Chun Wang (Fellow, IEEE) received the B.S.
degree from National Chiao Tung University,
Hsinchu, Taiwan, R. O. C., in 1986, the M.S. degree
from National Taiwan University, Taipei, Taiwan,
in 1988, and the M.Sc. and Ph.D. degrees from
the Georgia Institute of Technology, Atlanta, GA,
USA, in 1995 and 1996, respectively, all in electrical
engineering.

From 1990 to 1992, he was with the Telecommu-
nications Laboratories, Ministry of Transportations
and Communications (currently, Chunghwa Telecom

Laboratories of Chunghwa Telecom Company, Ltd.), Taoyuan City, Taiwan.
In 1995, he was with Bell-Northern Research of Northern Telecom, Inc.,
Richardson, TX, USA. From 1996 to 2000, he was a Senior Technical Staff
Member with the Wireless Communications Research Department, AT&T
Laboratories, Florham Park, NJ, USA. Since 2000, he has been with National

Chiao Tung University, Hsinchu, Taiwan, where he was the Chair of the
Department of Electrical and Computer Engineering (ECE), where he is jointly
appointed by the Department of ECE and the Department of Computer Sci-
ence. He holds 18 U.S. patents. He has authored or coauthored over 90 journal
articles, 180 conference articles, and co-edited a book, Key Technologies for
5G Wireless Systems (Cambridge, 2016). His recent research interests are
focused on the cross-layer optimization and big-data-driven methodology for
mobile broadband networks, and cognitive communications/computing for
latency-critical Internet of Things applications.

Dr. Wang was elected to the IEEE Fellow for his contributions to
cellular architectures and radio resource management in wireless networks.
He received the 1997 IEEE Jack Neubauer Best Paper Award in 1997,
the Distinguished Research Award of the National Science Council, Taiwan,
in 2012, and the IEEE Communications Society Asia–Pacific Board Best
Paper Award in 2015.

Dusit Niyato (Fellow, IEEE) received the B.Eng.
degree from the King Mongkut’s Institute of Tech-
nology Ladkrabang, Bangkok, Thailand, in 1999,
and the Ph.D. degree in electrical and computer engi-
neering from the University of Manitoba, Winnipeg,
MB, Canada, in 2008.

He is currently a Professor with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His research
interests are in the area of energy harvesting for
wireless communication, Internet of Things, and
sensor networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

