
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 3, JUNE 2020 751

An Agent-Based Model of Collective
Decision-Making: How Information Sharing
Strategies Scale With Information Overload

Dirk-Jan van Veen , Graduate Student Member, IEEE, Ravi S. Kudesia ,
and Hans R. Heinimann, Member, IEEE

Abstract— Organizations rely on teams for complex decision-
making. By bringing diverse information together and utiliz-
ing information sharing strategies, teams can make intelligent
decisions. However, as organizations face increasing information
overload, it has become unclear whether such strategies remain
adequate or whether bounds on human rationality will prevail.
We develop an agent-based model that simulates information
sharing in teams, where critical information is distributed across
its members. We tested how robust various information sharing
strategies are to information overload and bounds on rationality
in terms of the speed and accuracy of collective decision-making.
Our results suggest distinct strategies depending on whether
speed or accuracy is imperative and, more broadly, shed light on
how intelligence is best attained in collective decision-making.

Index Terms— Agent-based model, collective decision-making,
distributed cognition, hidden profile, organization theory.

I. INTRODUCTION

WHY do people form organizations, rather than solve
their problems through crowds, markets, or com-

munities? The answer to this—the foundational question
in organization theory—concerns information: organizations
are uniquely suited to integrate diverse information from
across multiple individuals to produce intelligent collective
decisions [1]. Organizations can bring together individuals
with different areas of functional expertise and use mech-
anisms, such as teams, routines, and hierarchy, to integrate
their diverse information when making decisions. In fact,
Simon [2, pp. 18 and 19] even canonically defined the
organization in terms of “the pattern of communications and
relations among a group of human beings, including the
processes for making and implementing decisions.” As such,
the integration of information in organizations continues to be
a topic of intensive research and immense practical importance
(e.g., [3]–[5]).
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Organization theorists, particularly those in the Carnegie
tradition following Simon [6], [7], have emphasized the impor-
tance of studying human information processing in the context
of the organization in which decisions are made [8]. For
instance, many organizational decisions can be made in a
routine matter by individuals, but certain types of decisions are
problematic because they are both nonroutine and complex—
and, therefore, exceed the capacity of any one person to
solve [9], [10]. Because these problematic decisions are non-
routine, they cannot be solved by individuals relying on past
experience or standard operating procedures [1]. Because they
are complex, these problematic decisions require knowledge
of the interdependencies among diverse information sets.
As such, they are best solved through interactions among
multiple individuals in a team, each of whom has access to
different information [11]. Indeed, this is why teams are the
favored mechanism for complex strategic decisions in organi-
zations, such as in research and development teams and top
management teams: team members can search their respective
information sets for the most diagnostic information for the
current decision, share this diverse information through com-
munication, and, thereby, collectively integrate the information
into an intelligent decision [12]–[14]. Recent meta-analyses
accordingly find that teams benefit from deep-level diversity—
for example, when team members possess unique information
because they have different functional expertise in marketing,
finance, and so forth—and that this diversity is more useful for
teams making decisions about complex problems with inter-
dependent information [15], [16]. In contrast to surface-level
diversity of demographic characteristics, which offers little
benefit for decision-making, this deep-level diversity of infor-
mational expertise confers an advantage for teams faced with
complex problems [16].

Despite the advantage of possessing more diverse informa-
tion, teams are not always effective at actually integrating this
information during decision-making [4]. In fact, an influential
paradigm in collective decision-making, known as the hidden
profile paradigm, has repeatedly shown that when teams have
deep-level diversity in their information, they tend to share the
information they all have in common, rather than communi-
cating their unique individual information—and that doing so
makes them eight times less likely to arrive at intelligent col-
lective decisions [17]–[19]. Given that teams are the locus of
complex problem solving in organizations, their inefficiencies
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in sharing the most vital information constitute a fundamental
flaw in the very reason people form organizations [20].

Two literatures speak to this flaw. One focuses on identi-
fying the bounds on rationality that impair decision-making,
and another focuses on formal interventions that can improve
collective decision-making. The first literature emphasizes how
individuals are subject to bounds on their rationality and
how the quality of their information sharing determines the
intelligence of their collective decisions [7]. One consequence
of this bounded rationality is that individuals are most able
to search for information in their local neighborhood, that
is, around their current train of thought [21], [22]. People
are less able to search their memories and environments for
information that is distant. Another important consequence of
bounded rationality in organizations concerns communication.
Not only do people have limitations that cause them to anchor
on their personal information, which they receive before
discussion [23]–[25], but they frequently have good social
reasons to weigh their individual information more heavily
than information shared by others, as other members of a team
may have different motives and incentives [11], [20], [26].
Taken in sum, the intelligence of collective decision-making,
therefore, relies on an interplay between epistemic motivations
to search for information deeply and social motivations in how
much one trusts the self, relative to others [27].

Regarding the second literature, a large body of work
has examined information sharing strategies in teams
that influence collective decision-making and how formal
interventions can enhance their intelligence. In general, teams
make better decisions to the extent that members share
their individual information [4], [19]. Doing so requires that
team members are individually and collectively motivated to
search the broader information space, rather than searching
only around their local neighborhood [22], [27]. Formal
interventions that prompt team members to disagree with
each other, such as devil’s advocacy and dialectical inquiry,
facilitate a more thorough search of this information space
by counteracting the tendency toward groupthink and
emphasizing shared information [28]–[33]. Indeed, deep-level
diversity especially enhances decision-making when teams
use formal interventions [4].

In this study, we examine how bounded rationality and
information sharing strategies impact collective decision-
making, specifically in the light of information overload.
Information overload has become an incredibly salient issue
for organizations, particularly with the adoption of new infor-
mation technologies [34]–[38]. These new technologies make
access to information both faster and cheaper, producing
opportunities and challenges alike for organizations [38].
Namely, although these technologies can provide informa-
tion that aids decision-making [39], [40], ensuring the rel-
evance of this information for decision-makers remains a
challenge [40]—particularly given the prevalence of unreliable
and low-quality information sources [34], [41]. As a conse-
quence of the increasing scope and reach of these information
technologies [42], [43], today’s organizations face an abun-
dance of information when making decisions, leading both to
fatigue and poorer decision quality [44]. Following Simon’s
[45, pp. 40 and 41] prediction about information technologies

that “a wealth of information creates a poverty of attention
and a need to allocate that attention efficiently among the
overabundance of information sources that might consume it,”
organizations have started treating attention as a scarce cur-
rency and wondered how it might be better allocated [46]. The
technology firm Intel, for instance, calculated that employees
lose approximately 8 hours each week to information overload,
which translates into an annual cost of $1 billion for a firm of
its size [47].

Beyond its practical relevance for organizations, information
overload also introduces important theoretical considerations.
First, the more the information available for making a decision,
the greater the information processing demands placed on
individual team members [19], [48]. Information overload
would, therefore, seem to exacerbate the bounded rationality
of individual team members. However, it is possible that,
under certain conditions, communication within the team could
help overcome this bounded rationality. For instance, perhaps
formal interventions could help team members search their
growing information space more effectively. Given that there
has been relatively little research on information overload
in teams, it remains unclear how teams can be made more
robust to information overload [49]. Second, and relatedly,
information overload speaks directly to the temporal dynamic
inherent within collective decision-making. Common informa-
tion tends to be shared first in teams and only with time
does the individual information come out, depending on the
strategies team members use to share information (such as by
emphasizing disagreement over agreement) [50]. Therefore,
the effect of different information sharing strategies seems
to manifest especially over time. However, the research on
collective decision-making has not adequately explored this
temporal dimension, focusing mostly on accuracy rather than
on how information overload impacts the tradeoff between
speed and accuracy [51]–[53]. It is possible that the most
effective information sharing strategy at low levels of infor-
mation load may not perform as well when the information
load increases. It is further possible that the greatest accu-
racy in decision-making is reached using information sharing
strategies that do not scale well with information overload and
that organizations that value speed should utilize a different
strategy. However, neither the speed–accuracy tradeoff nor
its specific relation to information sharing strategies has been
explicitly studied.

To explore how the speed and accuracy of collective
decision-making scale with information overload, we utilize
an agent-based model that computationally simulates multiple
team members and their interactions with each other and their
environment [54]. An agent-based model is the appropriate
method for this research question for four reasons. First,
it is difficult to experimentally manipulate different aspects
of bounded rationality in laboratory settings [55]. One can
instead study naturally occurring individual differences in
bounded rationality [56], but this approach precludes strong
causal claims. This is, indeed, why scholars have embraced
agent-based models to explore bounded rationality [57]–[59].
Second, using formal interventions to examine the effects of
information sharing strategies in laboratory settings has limi-
tations. For instance, these interventions can prompt subjects
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Fig. 1. Conceptual model of the collective decision-making setting. A fully connected network of agents that share information in order to make more
intelligent collective decisions. Together, the agents must reach a consensus on the best decision. Agents are responsive to team-level processes that influence
what information they share.

to switch away from decision-making and have secondary
conversations about how to improve their communication
processes [31]. The observed effects of formal interventions
in laboratory settings can, therefore, conflate actual improve-
ments from the formal interventions with those from the
secondary conversations. Since agents in an agent-based model
are programed, they do not suffer from unintended secondary
behaviors. Third, because agent-based models simulate the
behavior, they provide an opportunity to run experiments
that simultaneously explore behavior across a wide parameter
space that would, otherwise, require an intractably large num-
ber of human subjects to examine [60]. In this way, we can
replicate prior work showing the importance of features, such
as team diversity and information load [4], [19], and extend
it in the light of our specific research questions. Fourth, and
most generally, agent-based models are valuable for research
questions in which the outcome of interest is emergent from
the interactions of several individuals, as is the case with
collective decision-making [54], [57].

In what follows, we first describe the architecture of our
agent-based model and the collective decision-making task
agents are concerned with. Then, to explore the effect of
bounded rationality in agents, we lay out a basic model that
explores how four information sharing strategies scale with
information overload in terms of the speed and accuracy of
decision-making, sequentially introducing two key features of
bounded rationality. Finally, we conclude with a discussion
of our results and recommendations for future research and
practice.

II. AGENT-BASED COMPUTATIONAL MODEL

A. Purpose

Our model aims to evaluate how various information sharing
strategies affect the speed and accuracy with which a team of

agents makes decisions. Each agent in the simulation can take
up, store, and evaluate information on its own. Agents can also
influence the opinion of other agents by sharing information,
thereby improving the intelligence of team-level decisions.
Following Simon [61] and Shannon and Weaver [62], the infor-
mation in our model has meaning for a particular decision
situation; it can be stored in and retrieved from memory,
shared with others through communication, and subjectively
evaluated in terms of how much it reduces uncertainty about
the decision to be made.

The implementation of the model follows an “agent-
and-information modeling” approach [63], which sets apart
the physical space and the information space. In many
agent-based models, agents act based on simple if-then
rules. The agent-and-information modeling paradigm allows
for more complex motivations in action selection. Under
the agent-and-information modeling paradigm, agents select
actions based on a set of information where information may
be conflicting and selection may be stochastic. This requires
that we model the information each agent has access to the
information space. Actions performed by one agent in the
physical space, namely, sharing new information, can affect
the information space of another agent. The physical space
and information space can, thus, evolve both independently
and interactively.

B. Conceptual Framework

Fig. 1 illustrates our conceptual framework, which consists
of a fully connected team of agents that are able to communi-
cate peer-to-peer. Each agent has an information space, which
is a repository of information akin to a person’s memory.
The actions of agents follow typical patterns of conversation.
The actions receive and share emulate turn-taking in
conversation [64]–[66] and facilitate the flow of information
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in and out of memory. The action evaluate emulates the
information appraisal process [61], [67] and vote keeps track
of consensus formation [66], [68]. The team-level information
space is a repository that keeps track of the votes of individual
agents and previously shared information and represents a
collective memory. Three functions characterize team behav-
ior: set strategy specifies a set of instructions that tell
agents how to select information to share with other agents and
sequence interactions refers to the order in which
agents are sharing or receiving information, while check
consensus aggregates the votes of agents and stops the
simulation when consensus has been achieved.

C. Scope

Organization theorists, particularly in the Carnegie tradition,
emphasize that decisions are to be judged from within a
particular “definition of the situation” [1]. As such, we con-
sider a closed system of information, where all the available
information is distributed across the team members at the start
of the simulation, and this information, when taken in sum,
is adequate to indicate one decision alternative over the others.
No additional information is added at a later stage. For the
purpose of this study, the complete information set accurately
represents their definition of the decision situation, which
allows us to examine the speed with which information sharing
leads to accurate collective decisions. Doing so leaves open
the possibility that the team may have improperly defined the
situation with inadequate information gathering or incomplete
development of alternatives. These questions, which relate to
problem formulation, fall beyond the scope of our research
question about information sharing [20]. The closed system
of information modeled in this study also closely mirrors the
hidden profile paradigm [17], which is widely used to explore
team decision-making [19], [69].

As Simon noted, decision-making must be examined in
terms of bounded rationality and the organizational context in
which decisions are made, both of which are addressed in our
model [6], [7]. In terms of bounded rationality, we capture both
the epistemic and social aspects of bounded rationality that
impact collective decision-making. These aspects influence
both the search for information and the evaluation of infor-
mation. First, as noted previously, when searching for relevant
information, people are often limited to their local neighbor-
hood: the information nearest to the information from which
they are currently operating [21], [22], [58]. The local nature
of search can limit their ability to identify and share their most
relevant information and may be especially limiting with high
information load, as their individual information space grows
in size. To this end, we create, for each agent, an associative
memory and vary the extent to which search is constrained to
its local neighborhood. Second, also noted previously, when
evaluating information, people often anchor on their initial
individual information [23]–[25], thereby discounting informa-
tion they receive subsequently from other team members [11],
[20], [26]. To this end, we give agents the capacity to update
their decision preference based on additional information
(i.e., Bayesian belief updating [70]–[72]). However, we vary
the degree to which they weigh their individual information

over the information they receive from others to explore the
consequences of anchoring (see Algorithm 1).

Turning from the bounded rationality of agents to the
context of decision-making, in our model, the organizational
environment consists of the hidden profile decision task,
the other agents, and the distribution of information across
them. The hidden profile constrains the information that an
agent initially has access to, which can be augmented as
other agents share additional information. This reflects the
core insight that organizations structure the flow of information
into teams [2], [73]. It further aligns with the finding within
the hidden profile paradigm that the allocation of information
within teams—i.e., the team’s deep-level diversity—is an
important driver of intelligent decision-making [4], [19], [74].
We, therefore, vary both the diversity of information within
teams and the degree of information overload, which is itself
influenced by organizational factors, such as the use of infor-
mation technology and organizational culture [35]–[37], [75].

D. Decision Task

We examine the team decision task shown in Fig. 2,
which is modeled after the seminal hidden profile para-
digm [17], [19], a multicriteria decision scheme in which
a team of individuals must pick one option from a set of
decision alternatives {O1, O2, . . .} based on a set of informa-
tion attributes {a1, a2, . . .}. Each attribute has one attribute
score (between 0 and 1, higher is better) for each alter-
native. Attribute scores indicate the degree of support for
an alternative and are drawn from a uniform distribution
xi = [xi1, xi2, . . .], xi j ∼ U{0, 1}, such that each attribute is
independent, and then normalized ai = (xi/(‖ xi ‖)) so each
attribute is weighted equally (

∑
ai = 1). The correct decision

is the one with the highest cumulative attribute score Ocorrect =
max{∑n

i=1 xi1,
∑n

i=1 xi2, . . .}.
The hidden profile paradigm captures important team

dynamics in organizational decision-making, as when a
top management team is composed of chief executive, oper-
ations, marketing, finance, and technology officers. Each of
these team members possesses a different set of information.
To make intelligent strategic decisions, team members must
share and integrate this information, despite their bounded
rationality in searching for and evaluating information [20].

E. Information Distribution

Each attribute in Fig 2 has a label “common” or
“individual.” Following [48], the label “common” indicates
that an attribute is known by all agents, whereas “individual”
means that this attribute is only known by a single agent.
At the start of the simulation, common information and
individual information are distributed to agents in equal
amounts, such that half of an agent’s information is common
information and half is individual. Since we generate attribute
scores randomly, it may occur that a majority of agents
already agree on the optimal decision, based on their initial
information. We exclude these cases from our analysis because
no interaction is needed. In the hidden profiles that we analyze,
the incomplete set of information favors a suboptimal decision
alternative, whereas all information combined reveals the
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Fig. 2. Creation of decision situations used in this simulation. Box 1: for each decision alternative Oi, a number between 0 and 1 is drawn from a uniform
distribution. These numbers are normalized by row to form one information attribute ai. Box 2: each information attribute is assigned a label “common”
or “individual,” meaning that this attribute is either known by all agents or by just a single agent. Box 3: each agent has a memory in which it can store
information. Information is distributed equally among agents, such that each agent has an equal number of common and unique information attributes. We vary
total information attributes in steps of 10 (5 agents × 1 common + 5 × individual) such that there is never an imbalance in the number of attributes each
agent receives initially.

Algorithm 1 Update Decision Preference
Input: A, W, a, w
A � attributes in memory of agent, e.g. [[0.31, 0.42, 0.27], [0.23, 0.07, 0.70], …]
W � weights of attributes in memory, e.g. [1, 1, …]
a � newly shared attribute, e.g. [0.63, 0.32, 0.05]
w � weight of new attribute, e.g. 0.5
Output: pref, A, W
pref � agent’s preferred decision

1: function UPDATE_DECISION_PREFERENCE(A, W, a, w)
2: A← A.append(a)
3: W ← W.append(w)
4: AW ← A ∗W
5: AWsum ← sum(AW)
6: pref ← max(AWsum)
7: return pref,A, W

optimal decision alternative, relative to the team’s definition
of the situation. As a result, the optimal decision alternative
is hidden to the team as a whole but can be discovered if
agents share their individual information with each other.

F. Agent Behavior

Agents associate certain information with other information.
Hence, we represent their information space as a memory
network in which each node represents an attribute and each
edge represents an association between two attributes (see
Fig. 3). This network resembles an agent’s personal view of
the decision situation. The network is constructed as follows.

We first create a random graph with ncommon nodes and
d edges per node, where all nodes represent common
attributes. For each agent, we rewire 20% of edges, such
that each agent’s network of “common” information is
similar, but different. This represents how agents have only
partially overlapping understandings of decision situations.
After rewiring, nodes representing “individual” information

nindividual are added to each agent’s network and connected
randomly to d other nodes, which can be both common nodes
and other individual nodes. As the network grows larger,
the likelihood of duplicate connections decreases.

The topology and connectedness of the network affect
how efficiently agents can search for information. Because
the topology of such memory networks at the neurological
level remains unknown [76], [77], random topologies are
often used to model such associative relationships [77], [78].
We, therefore, use a random topology although since our
agents’ memories consist of only 2–20 nodes, the topology
is less important than the level of connectedness. The number
of edges per node d represents the cognitive capacity of agents
to associate attributes. As the number of attributes increases,
the network becomes sparser and less dense.

When an agent takes a turn to share information, it must
search for an attribute to share. Agents search for information
to share using a hill-climbing heuristic. Initially, the search
starts at a random node in the agent’s memory, which gives
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Fig. 3. Associative memories of five agents in a hidden profile with 50 attributes where half the information is “common” and the other half “individual.”

it a neighborhood. The neighborhood N includes the node
itself and its neighbors (connected nodes). Each node in
the neighborhood is associated with a particular attribute.
Agents then pick the best attribute in the neighborhood. Next,
the agents move to the node that is associated with the best
attribute and stay if the current node is associated with the
“best” attribute. At the next turn to share information, the agent
starts at said node.

Agents follow an information sharing strategy to select
which attribute is the “best.” The strategy is determined at
the team level, through the set strategy action, prior to
discussion. We simulate teams that adopt one of the following
four information sharing strategies.

1) Agreement: The agent shares the attribute that most
strongly supports the decision alternative that the team
voted for in the previous round of communication.
The focus is on the team-level opinion, and sharing
information that maximally agrees with and supports it,
which is found to impair decision-making, as with the
well-known groupthink phenomenon [29], [79], [80].

2) Advocacy: The agent shares the attribute that most
strongly supports the agent’s own belief about the
correct decision alternative. This represents the natural
tendency of team members to argue according to their
decision preference, commonly seen in free discussion
groups [81]–[83].

3) Disagreement: The agent shares the attribute that most
strongly supports a different decision alternative than
the alternative supported by the last shared attribute.
The focus is on the information-level frame and sharing
contrarian information, mimicking formal interventions,
such as devil’s advocacy and dialectical inquiry [28],
[30], [32], [33], [84]–[86].

4) Random: The agent shares an attribute from its memory
at random. This strategy acts as a benchmark. It reflects
the principle that collective decision-making and search
can benefit by the infusion of random variability, which
team members can selectively retain [87]–[89].

When sharing information at Random, an agent selects an
attribute by drawing with equal probability one attribute ai

from the attribute set that comprises its local neighborhood.
In the case of Advocacy, Agreement, and Disagreement,

the information sharing strategy determines which decision
alternative the agent wants to argue for. Next, it searches
within its neighborhood for the strongest attribute score xmax

supporting that decision alternative

xmax = max
(
xi j ∈ [ai, . . . , an]Nagent

)
. (1)

Finally, the agent shares the attribute that contains the most
supportive attribute score

ashare = ai � xmax. (2)

Note that this search process is not optimal. The optimal
attribute is the one that has the highest attribute score relative
to other attribute scores xi j ∈ ai. For instance, it could be
smarter for an agent to share an attribute with values [0.3,
0.4, 0.3] than [0.15, 0.43, 0.42] (assuming alternative C is the
incumbent alternative), yet the latter would be selected under
this local neighborhood search.

When agents share information, they share it with all agents
at once, in a broadcasting fashion. They share only complete
attributes, comprising attribute scores for all alternatives. Infor-
mation is received without distortion, mimicking a copy-paste
operation of ai from one agent’s memory into another agent’s
memory. We investigate the robustness of our results when
noise is added to this transfer of attributes at a later stage but
do not consider biases, whereby an agent may misremember
information due to motivated information processing or favor
information from certain agents over others due to relationship
history.

An agent’s information appraisal involves the functions
evaluate and vote. Agents evaluate their preferred alter-
native using the Bayesian updating: agents sum the attribute
scores of all the attributes available in their memory

∑i
n=1 xi j

(each attribute score xi j can be interpreted as a probability
that alternative j is the optimal solution). The alternative
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with the highest cumulative attribute score gains the agent’s
preference. Hence, agents can change their preference when
they receive new attributes that tilt the cumulative attribute
score in favor of another alternative (updating). Agents vote for
their preferred alternative. We investigate how anchoring on
their initial individual information influences this process later.

G. Team Behavior

Team-level dynamics are governed by three functions. Prior
to the discussion, the function set strategy selects one
of the four information sharing strategies for the team. Once
a strategy has been chosen, it applies to all agents and does
not change during the simulation.

The function sequence interactions determines the
sequence in which agents share information using random
assignment. All agents are equally likely to claim the turn
to share information.

The function check consensus regulates when agents
stop sharing information. This occurs either when the correct
alternative receives the majority vote or when the agents share
the same attribute for γ times consecutively, indicating that the
team is stuck on a suboptimal decision.

H. Sensitivity Analysis

The quality of team decision-making is measured in terms
of both accuracy and speed. Accuracy is defined as

accuracy = discussions with correct decisions

total discussions
. (3)

For discussions that end with a correct decision, we report
the number of interactions until consensus, where fewer inter-
actions represent faster speed. Because the decision task is
randomly generated, the required number of interactions varies
per experiment. Therefore, we continue repeating simulation
experiments until the median number of interactions remains
stable for 2000 consecutive experiments, which we report as
the speed of decision-making

speed = median(number of interactions). (4)

Accuracy and speed are calculated for simulation exper-
iments that span the range of parameter values, which are
described and justified in Table I.

I. Implementation Details

The model described earlier was implemented in
Python [100] and run on a computing cluster using
Docker [101]. NumPy [102] was used for mathematical
operations.

We calibrated the stopping threshold γ by setting this
parameter at 20, 30, and 50 interactions and found this does
not change results qualitatively, which we tested by plotting
the simulation results and doing a side-by-side comparison.
The curves follow the same shape, and we only observe
negligible shifts in accuracy. We suspect that when γ ≤ 10,
decision accuracy will be affected more substantially because
the conversation would be cut off prematurely.

To ensure that the simulation is in a steady state when
we report results, we require that the median number of
interactions must at least be stable 2000 times in a row, which

is checked every 100 steps. This includes steps where the team
does not solve the problem. The lowest reported accuracy rate
is ∼10%, so the minimum number of solved problems per
run is 200. The median tends to stabilize between 2200 and
10 000 steps for Advocacy, Agreement, and Disagreement and
up to 20 000 steps for Random. These numbers should be
multiplied by the accuracy rate to get an estimate of the sample
size. By the time the median stabilizes, the average has not
yet stabilized, indicating that there is still some variability
left and that we do not report results from a wastefully large
sample size.

Proper implementation of the model was achieved through
unit testing, a standard procedure in software development to
validate that each unit of the software performs as intended.

III. MODEL APPLICATION

We designed a number of multifactorial experiments. Two
factors—information sharing strategy and information load—
are varied in all experiments. The information sharing strategy
entails four factors: Agreement, Advocacy, Disagreement, and
Random (see Section II-A5), whereas information load covers
a range between 10 and 100 attributes. We discretized the
information load into ten classes, which results in a 4× 10×
n layout with 40n possible combinations, which we all covered
in our experiments.

We performed ten runs per cell, which yielded 400 simu-
lation runs for each tertiary variable. For every combination,
we report the percentage of correct decisions and the median
number of interactions it took to reach a correct decision.
The median number of interactions is an integer number.
To increase the resolution of decision speed from 0 to 1
decimal place, we perform ten runs per cell. Less than ten runs
would result in rounding errors at the 0.1 significance level.
Thus, we report here the averaged median of ten simulation
runs. For reasons of clarity, we specified the terminology that
we use to describe batches of simulation runs in Table II.

A. Descriptive Analysis

Fig. 4 shows the speed–accuracy tradeoff for the four
information sharing strategies, under different levels of
bounded rationality in the search for information (i.e., in the
degree to which search is constrained to the local neighbor-
hood). We consider the strategies first. In terms of decision
accuracy, we can rank the strategies as follows: Random >
Disagreement > Advocacy > Agreement. In terms of decision
speed, we rank Advocacy > Agreement > Disagreement
> Random.

Furthermore, we observe that decision accuracy decreases
with increasing information load in a nonlinear fashion. The
number of interactions needed to reach consensus varies per
strategy but is generally low and increases gradually with
increasing information load in most cases.

B. Effect of Information Sharing Strategies

We find that Random scanning of the information space is
thorough (since all information is considered) but not efficient
(as there is no selection structure for information sharing).
Because there is a generous limit on how often agents are
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TABLE I

PARAMETERS USED IN THE SIMULATION: NOTATION, DESCRIPTION, VALUE, AND JUSTIFICATION

allowed to reshare previously shared attributes before the
discussion is considered stagnant, there is ample opportunity to
scan the entire information space for all levels of information
load, keeping accuracy high. Decision time increases linearly
with total information load because each additional attribute
has an equal chance of being selected. Random, therefore,
demonstrates the starkest speed–accuracy tradeoff in relation
to information load.

For the other strategies in Fig. 4, we instead observe a lim-
ited slowdown in decision speed as information load increases,
which is due to strict selection. Agents try to maximize their
impact on the other agents’ decision preferences by sharing the
attribute that is most supportive of a particular decision alter-
native. As a result, the team misses out on attributes that also
support the desired alternative but to a lesser extent. Thus,
sharing the most supportive attribute leads to a hit-or-miss

TABLE II

TERMINOLOGY OF SIMULATION GRANULARITY

dynamic: the attribute either changes the other agents’
preferences, leading to a quick solution, or it does not
change their preferences, so the agent keeps sharing the same
attribute in vain.

As the decision situation contains more attributes, the rela-
tive importance of one attribute decreases and, with it, its abil-
ity to change another agent’s preference. Consequently, we see



VAN VEEN et al.: AGENT-BASED MODEL OF COLLECTIVE DECISION-MAKING: HOW INFORMATION SHARING STRATEGIES SCALE 759

Fig. 4. Speed–accuracy tradeoffs for four information sharing strategies and three different levels of cognitive limitation. Green depicts decision-making
accuracy and is expressed as the percentage of correctly solved problems. Blue depicts the time needed to reach consensus, expressed in the median number
of interactions (based on repeated runs with different hidden profile problems). Agents share information that (a) agrees with the current team consensus,
(b) advocates for their own belief about the correct decision alternative, (c) supports a different decision alternative than the last decision alternative that was
argued for, or (d) at random.

a decrease in accuracy as the information load increases.
Furthermore, each additional attribute causes a smaller
increase in difficulty relative to the previous. Consequently,
we see an exponential decrease in accuracy.

For Agreement [see Fig. 3(c)], we observe utter failure in
decision-making. A team that starts out supporting an incorrect
alternative and shares information that confirms incorrect
alternative is not going to change its preference. Agreement,
therefore, only succeeds if the attribute that supports the
current team opinion most inadvertently supports the correct
alternative even more, leading some agents to change their
preference.

Conversely, Disagreement [see Fig. 3(d)] instructs agents to
share contrarian information, meaning that the attribute to be
shared can support every decision, except the last supported
one. As a result, a wider variety of information attributes is
brought up in discussion, lifting accuracy.

Advocacy, sharing information in line with one’s own
decision preference, holds the middle ground between
agreement and disagreement. Because different agents
advocate different decision alternatives, there is a greater
variety in discussed attributes than in the Agreement strategy.
However, since agents are tied to their own decision
preferences, the total variety of information shared is less
than in the Disagreement strategy.

C. Effect of Local Search on Decision Speed and Accuracy

Fig. 3 shows that, in terms of decision accuracy, Distant
Search > Local Search (two edges per node) > Local Search

(one edge per node), consistent with the principle that bounded
rationality in search for information will impair decision-
making. Distant Search indicates that agents have immediate
access to all information in their memory, no matter how
distant the information might be from their current position.
Consequently, agents are able to fully search their information
space and, thereby, select the best attribute to share with other
agents given their information sharing strategy. Their most
influential attribute (the global optimum) is readily available,
leading, generally, to high accuracy and fast decisions. When
agents can only pick the best attribute from a limited set of
associated attributes in their local neighborhood N using a
hill-climbing process, agents will share a variety of suboptimal
attributes that are aligned with their strategy, before finding a
local optimum attribute. As a result, decision accuracy drops
for Advocacy, Disagreement, and Random. We see a reversal
of this trend for the Agreement strategy, because Agreement
is a losing strategy. When a losing strategy is badly executed,
results improve.

We also observe that the accuracy of Local Search at two
edges per node is higher than at one edge per node. Since a
memory network consists of only 2–20 nodes, two edges per
node means that agents can usually find the global optimum
attribute within 1–3 hill-climbing steps. Associative memories
with d > 2 return a near-identical result to d = 2. The
main difference between Local Search at two edges per
node and Distant Search is that in Distant Search, the agent
finds the global optimum immediately, whereas in Local
Search (two edges per node), it requires a few hill-climbing



760 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 7, NO. 3, JUNE 2020

Fig. 5. Speed–accuracy tradeoffs for four information sharing strategies and three different levels of anchoring on initial information. Green depicts
decision-making accuracy and is expressed as the percentage of correctly solved problems. Gray depicts the time needed to reach consensus, expressed in
the median number of interactions (based on repeated runs with different hidden profile problems). Agents share information that (a) agrees with the current
team consensus, (b) advocates for their own belief about the correct decision alternative, (c) supports a different decision alternative than the last decision
alternative that was argued for, or (d) at random.

steps. With Local Search at one edge per node, connections
between attributes follow a more tortuous path or may even
be disconnected.

In terms of decision speed, we observe that Local Search
at both two edges per node and one edge per node performs
similar for Advocacy, Agreement, and Disagreement. Decision
speed slows down in all cases relative to Distant Search. This
suggests that Local Search at both two edges per node and
one edge per node takes an equal number of turns to find
a local optimum, but, in the case of two edges per node,
the local optimum often coincides with the global optimum.
The picture changes for Random where the one edge per
node yields faster decision speeds. This can be explained
by the sparsity of the network. If each node is, on average,
connected to only one other node, it may occur that sections
of the network are disconnected, which effectively shrinks the
information space that can be explored. Random exploration
in a restricted space is faster but also lowers accuracy if crucial
attributes cannot be discovered.

D. Effect of Anchoring on Decision Speed and Accuracy

To account for the ways in which agents place a higher
value on their initial individual information, which exerts an
influence on their evaluation of information [26], [32], [103],
we let agents weight attributes differently. Specifically, we let
them discount attributes shared by other agents with weight w,

where w = 1 represents equal weighting and w = 0.5 means
that new information from others is weighted half as much as
their initial information.

Fig. 5 shows the effects of anchoring on decision accuracy
and speed. Not only does anchoring decrease decision accu-
racy but also decreases decision speed. When new information
is discounted, more information is needed to sway an agent’s
opinion, and thus, more interactions are required.

Furthermore, anchoring decreases decision speed much
more for Random than for the other strategies, while also
substantially diminishing the accuracy advantage offered by
Random in the absence of anchoring. The main difference
between Random and the other strategies is that the other
strategies direct search to select attributes for sharing. Con-
ditional on the overall accuracy of the strategy—be it less
accurate like Agreement or more accurate like Disagreement—
these strategies enhance the strength of the attributes that are
shared. Strong arguments can withstand discounting better
than weak arguments.

Two opposing dynamics underlie these results. The higher
the information load, the more the initial information an agent
receives, and thus, the stronger its anchor, which suppresses
decision quality. Simultaneously, a high information load
produces larger memories to navigate, which means that more
hill-climbing steps are needed to find a local optimum. In the
process of taking these additional hill-climbing steps, more
diverse attributes are shared, which counteracts the effect of
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Fig. 6. Speed–accuracy tradeoffs for four information sharing strategies and three different ratios of individual/total information. Green depicts decision-making
accuracy and is expressed as the percentage of correctly solved problems. Orange depicts the time needed to reach consensus, expressed in the median number
of interactions (based on repeated runs with different hidden profile problems). Agents share information that (a) agrees with the current team consensus,
(b) advocates for their own belief about the correct decision alternative, (c) supports a different decision alternative than the last decision alternative that was
argued for, or (d) at random.

anchoring. These dynamics are relatively invariant to infor-
mation load, as we can see from the equal drop in decision
accuracy for both low and high information load.

E. Effect of Team Diversity on Decision Speed and Accuracy

Deep-level diversity in the information team members
possesses typically enhances the intelligence of collective
decision-making because it increases the pool of unique
information available [15], [16]. To replicate this finding,
we varied the proportion of individuals to total information.
Fig. 6 shows that in teams in which members have more
individual than common information, both decision speed and
accuracy increase substantially.1 The reverse is also true: in
relatively homogeneous teams, decision-making takes longer
and is less accurate. This effect is due to simple probability.
Only individual information can change the opinion of other
agents; sharing common information is a waste of time. When
there is more individual information, agents are more likely
to share individual information.

1The jagged lines for r = 0.25 and r = 0.75 are a result of rounding.
Theoretically, if there is 25% common information, we should add 2.5 com-
mon attributes per ten attributes. However, splitting attributes is not possible.
Therefore, we add three common attributes for the first increase in information
load and two common attributes for the next increase. For example, when
there are 30 attributes and 25% are common, meaning that 8/30 attributes are
common. As a result, three agents receive two common attributes and two
agents receive one common attribute. When there are 40 attributes and 25%
are common, we have 10/40 common attributes, in this case, every agent gets
two common attributes.

In addition, the strength of the hidden profile can play a
reinforcing role. When there is a lot of common information,
team members tend to prefer the same suboptimal choice.
Thus, more members need to be converted. When team
members have a lot of individual information, team members
tend to prefer different alternatives, making it easier to form
a majority [19].

F. Interaction Between Anchoring and Team
Diversity on Decision Speed and Accuracy

Fig. 7 displays an interaction effect between anchoring and
team diversity, exploring how bounded rationality manifests
across different organizational environments. The impact of
anchoring on decision accuracy increases with information
load for diverse teams (dark green lines diverge), whereas
the impact of anchoring decreases with information load for
homogeneous teams (light green lines converge). This effect
can be explained by the ratio of novel information to initial
information.

When there is little information, say ten attributes, and
agents have 25% individual information, then 3/10 attributes
are individual. Any attribute that can change the team’s
opinion must be one of the three individual attributes.
Changing the team’s opinion is especially difficult when
agents are anchored to their initial common informa-
tion. Even if all three individual attributes are shared,
that may not be enough to change the opinion of the
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Fig. 7. Interaction between anchoring and team diversity. Diverse teams (dark colors, r = 0.75) suffer more from anchoring as information load increases,
whereas homogeneous teams (light colors, r = 0.25) suffer less from anchoring as information load increases. Fixed parameters: v = 1.0—one edge per node
in associative memory, w = 1.0—no anchoring bias, and w = 0.5—new information is weighted half as much as initial information.

agents whose initial information weighs double. As infor-
mation load increases, more individual attributes from
other agents may become available to compensate for
the anchoring.

The reverse is true when agents have 75% initial infor-
mation and there are only three common attributes. For the
two agents who start with only individual information, even
information that is common for the other three agents can
change their opinion for the better. Moreover, when there
is a low information load, it easy for agents to bring out
all individual information. The combined amount of seven
or three individual attributes has a good chance to outweigh
the two anchored attributes. As information load increases,
it becomes more difficult for teams to bring out all individual
attributes, which decreases the team’s ability to compensate
for anchoring.

In sum, for homogeneous teams, more information means
more opportunity to discover individual information, which
can be used to convince anchored individuals to change their
preferences. For diverse teams, who already have enough
individual information to outweigh anchors, more information
makes it more difficult to do so. Because some individual
information weighs stronger than other individual information,
it is more likely to be shared, yet this unshared individual
information might make a difference in convincing anchored
team members. This finding squares with meta-analytic work
that notes how information coverage is more important than
discussion focus [19].

G. Strength of Effects and Prediction Model

We conducted an analysis of covariance (ANCOVA) on
decision accuracy (the percentage of total decisions that
resulted in correct solutions) to determine the strength of
effects (see Table III). Strategy accounted for 51% of vari-
ability, information load for 14%, the ratio of individual/total
attributes for 20%, anchoring for 5%, and edges per node
in memory for 2%, and we observed 8% residual varia-
tion. We note that individual-level factors cause much less
variation than team-level factors, showing that collective
decision-making has emergent properties beyond those of the
individual team members.

The underlying statistical model is as follows:

a = S + I e + R +W + D ± ε (5)

where a is decision accuracy, and capital letters signify the
entire input space of Strategies S, information load I , ratio
of individual to total attributes R, edges per node in memory
network D, and weight of novel information W . ε is the error
term. Since information load is a continuous variable, its effect
on decision accuracy might be nonlinear, which we account for
using a transformation with a power function. By minimizing
the standard-error (ε = 6.5 for e = 1, and ε = 6.1 for
e = 0.1), we obtained an exponent for information load.
We assume linearity for R, W , and D since we only have
three values for these continuous variables.
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TABLE III

RESULTS OF ANCOVA ANALYSIS

IV. DISCUSSION

For decades, researchers interested in teams and their role
in organizational decision-making have studied the effect of
information sharing on decision outcomes. There is consensus
that teams tend to share common information rather than indi-
vidual information, which hampers their ability to make good
decisions [4], [19]. Information sharing strategies can help
counteract this tendency and, thereby, allow teams to better
integrate their diverse information [4], [28]–[33]. Our research
extends the current body of knowledge by investigating how
information sharing strategies scale with increasing informa-
tion load in teams of boundedly rational agents. To this end,
we developed an agent-based simulation of a hidden profile
decision task. Our simulation experiment both replicates prior
findings from the literature and extends it to generate new
insights.

A. Literature Comparison

Regarding decision quality, the ranking of information
strategies (Disagreement > Advocacy > Agreement) confirms
existing evidence [28], [29], [79], [104]–[106]. Extending
this evidence, we add that Disagreement can increase deci-
sion accuracy by about 10%–50% compared with Advocacy.
Agreement decreases decision accuracy by about 50%–70%
compared with Advocacy. Intriguingly, Random information
sharing had the best overall accuracy, which stresses the
importance of fully searching and sharing the information
space. Its usefulness for accuracy, however, was substantially
impacted by bounded rationality, both in terms of local search
and anchoring. To the extent that a perfect random strategy
may not be cognitively feasible for humans to enact, its
usefulness as a strategy may be more modest than our results
suggest.

The results show that decision accuracy decreases expo-
nentially with increasing information load in almost all cases.
In general, decisions with fewer information attributes are
easier to resolve than decisions with many. Each additional
attribute has a smaller impact on the complexity of the
decision situation than the previous one. In order to attempt to
answer the question “what is advisable for teams faced with
information overload?,” it may be instructive to look at the
case where accuracy does not drop exponentially: Random
information sharing with distant search [see Fig. 4(d)]. In this

strategy, agents are not pushed to search for information in
any specific direction. Their search is neither confined by a
local neighborhood search nor by an objective to share infor-
mation supporting a specific alternative. Thus, if teams seek to
increase their decision accuracy, they should particularly work
to eliminate biases in information search.

In our experiment, we do not observe any simul-
taneous increase in both decision speed and accuracy,
confirming evidence of a speed–accuracy tradeoff in
decision-making [51]–[53]. We extend this evidence by noting
how decision speed changes relatively little with increased
information load for all strategies except for random, which
demonstrated the starkest speed–accuracy tradeoff. This find-
ing reveals the importance of having a strategy to direct the
search for information. These strategies, in essence, produce a
“quick solution or no solution” dynamic, whereby information
load shapes whether a solution will be reached at all, more than
it shapes the speed with which the decision is reached.

Our Anchoring simulation concurs with an overwhelm-
ing consensus that anchoring deteriorates decision quality,
including accuracy [23]–[25]. Greitemeyer et al. [32] noted
that individuals can be so anchored to their prediscussion
preferences that it undermines the importance of information
sharing. Xiao et al. [103] contend that when information
is shared, it is not necessarily also used. They argue that
the assumption that shared information is also used only
holds for teams where information is equally distributed—
a condition that our simulation model satisfies. Indeed, our
simulation supports these findings if we decrease the weight w
of novel information further. An important consideration that
our simulation uniquely surfaces is how diverse teams become
less able to compensate for anchoring as information load
increases. Given that organizations assemble diverse teams for
precisely this reason, and subject them to an abundance of
information, this finding merits further unpacking.

B. Limitations and Future Research Directions

The current simulation model entails several simplifying
assumptions, which stem from translating human behaviors
into computer code. Nonetheless, idealized models are still
valuable for building intuition about relationships between key
variables and to make approximate order-of-magnitude calcu-
lations [107]. Details of individual-level cognition often have
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little impact on macrobehavior of a multimember cognitive
system [108]. For instance, it may not matter exactly which
contrarian information is shared as long as that contrarian
information is shared. Still, there are model choices that
deserve discussion.

The simulation follows a precise sequence of actions (share
information, process information, vote, and repeat/end), which
limits agent autonomy. While agents are autonomous in choos-
ing what information to share from their memory network,
how to interpret information using anchoring, and what vote
to cast, they are bound to this sequence of actions. We see
this forced sequence of actions as a natural constraint of
being engaged in a discussion. However, incorporating further
autonomy, for instance, in turn-taking dynamics, is something
we consider for future work.

We model a system in which all information needed to make
a “correct” decision is present. This decision, however, is only
correct based on the team’s definition of the decision situation
(i.e., the available information and alternatives). Thus, we dis-
card the possibility of new information being introduced in the
middle of an ongoing conversation. In practice, information
overload often means that the influx of new information is
greater than the capacity to process it [35], [36]. Because our
model considers a narrow time window of a single conver-
sation, information overload in our model means that agents
may not have the cognitive bandwidth to retrieve and share
crucial information with other agents. In reality, information
that could not be processed might be discarded altogether,
instead of weakly considered by one person.

We assumed that a number of features are standard for
all agents. All agents use the same strategy, all agents have
the same amount of information, all information is equally
relevant, and all agents take equal turns at sharing information.
Making agents more heterogeneous might be more realistic,
and the effects would certainly be interesting to study. How-
ever, heterogeneous agents would also produce more volatile
simulation results that are harder to interpret. The current setup
allows us to better estimate the focal individual- and team-level
factors of local search, anchoring, and deep-level diversity.
Still, nothing in the principles or design of the simulation
prevents future incorporation of such heterogeneity.

We assume that all agents are connected and all agents
receive all information that is sent. Even for a round-table
discussion, these are perhaps optimistic assumptions. Some
members might temporarily tune out, or there might be social
factors that permanently disrupt the communication between
two members. Certainly, this would be detrimental to decision
speed, and if none of the other team members recovers the lost
communication in later rounds, it would also affect accuracy.

The hill-climbing process that agents use to search for
information to share is successful in the sense that it ensures
that agents share a larger percentage of total information in
simple problems than in complex problems. It also ensures
that agents still share more diverse information when there
is more information than when there is little. Thus, while the
basic characteristics of information coverage in discussions are
present in our model, how closely the information coverage
of our agents matches that of actual humans is unknown.

Real teams also likely do not cast a vote as frequently as our
simulated agents do. We had agents vote every round because
tallying preferences allowed us to practically keep track of
team consensus. Although real teams may not cast a vote
after each argument, team members still likely keep track of
who agrees with whom and maintain an implicit vote count.
While the majority is the most preferred decision rule for
teams [109], there may also be cases in which either collectives
need to reach unanimity, such as in parliamentary procedures
that require unanimous consent, or cases where people may
never vote visibly and must infer the preferences of others,
which could lead to a potential false consensus effect [110].
Such alternate arrangements for collective decision-making are
certainly possible and could be studied in future work.

Our model excludes teams that begin with the right choice.
As a consequence, the results may exaggerate the downsides
of agreement and the benefits of disagreement or advocacy
techniques, albeit without affecting the rank ordering of the
strategies. Given widespread acknowledgment that agreement
is a suboptimal decision approach [29], we see this as a minor
issue. It is a necessary consequence of our decision to forego
the limiting assumption in hidden profile research that private
information is necessarily superior to public information in
favor of generating information randomly in our simulation.

In sum, to improve our understanding of multiagent cog-
nitive systems, future simulation-based work may benefit
from relaxing some crude assumptions about human cognition
inherent to the simulation presented here. Specifically, it would
be interesting to investigate the effects of heterogeneity—
such as the unequal distribution of information, unequal
cognitive capacity, and unequal turn-taking—or simulate dif-
ferent decision-making contexts, such as where agents and
information can more fluidly enter and exit throughout the
duration of the decision-making process. Ideally, this would
go hand-in-hand with giving agents greater autonomy over
their actions, where the choice of action is based outcome
of the previous action, such as a Markov process. It is also
possible to further extend our model based on contextual
factors related to human and organizational behavior that we
did not consider. For instance, decision accuracy decreases
with time pressure [111], which could undermine the value of
a random strategy for teams, which is the slowest strategy, or,
conversely, the value of disagreement may be more valuable
in individualistic countries than our results reveal and less
valuable in more collectivist countries [112].

V. CONCLUSION

As the amount of available information continues to prolif-
erate, many of the most complex problems will be directed
to teams for the solution. How can we ensure that teams
are up to this task? Our work suggests that there is not
only value in assembling teams with diverse information sets
but also ensuring that they interact using strategies to guide
their search through this information space. For organizations
that value accurate decisions, they should search through the
information space as thoroughly as possible, by attempting
to mimic random sharing and surfacing any and all relevant
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information. For organizations that value speed in decision-
making, they should leverage the wisdom of disagreement,
which yields the highest accuracy with minimum cost to
decision speed and greater robustness to bounded rationality.
In this way, a richer understanding of how collectives cope
with information overload may bring our collectives closer to
intelligence in decision-making.
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