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Abstract— Crime risk prediction is crucial for city safety1

and residents’ life quality. However, without labeled data, it is2

challenging to predict crime risk in cities. Due to municipal3

regulations and maintenance costs, it is not trivial for many4

cities to collect high-quality labeled crime data. In particular,5

some cities have lots of labeled data while others may have few.6

It has been possible to develop a crime prediction model for7

a city without labeled crime data by learning knowledge from8

a city with abundant data. Nevertheless, the inconsistency of9

relevant context data between cities exacerbates the difficulty10

of this prediction task. To this end, this article proposes an11

effective unsupervised domain adaptation model (UDAC) for12

crime risk prediction across cities while addressing the contexts’13

inconsistency issue. More specifically, we first identify several14

similar source city grids for each target city grid. Based on these15

source city grids, we then construct auxiliary contexts for the16

target city, to make contexts consistent between the two cities.17

A dense convolutional network with unsupervised domain adap-18

tation is designed to learn high-level representations for accurate19

crime risk prediction and simultaneously learn domain-invariant20

features for domain adaptation. The effectiveness of our model21

is verified through extensive experiments using three real-world22

datasets.23

Index Terms— Crime prediction, crime risk, unsupervised24

domain adaptation.25

I. INTRODUCTION26

CRIME continuously threatens urban safety and under-27

mines citizens’ life quality. According to [1], there have28

been 435 mass shooting events happened in the United States29

during the year 2019, resulting in 517 dead, 1648 wounded,30

severe property loss, and inestimable grief. Thus, sensing31

crime risk is important for individuals and society, to prevent32

and reduce potential crime events. Fortunately, the availability33

of various urban data in some cities (e.g., Chicago) fos-34

ters unprecedented opportunities for researchers to explore35
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crime-related problems, such as crime hotspot detection [2], 36

[3], crime classification [4], [5], [6], crime rate inference [7], 37

[8], and crime count prediction [4], [5], [9], [10], [11]. 38

An amount of urban data has been investigated to be helpful 39

for performance improvement of crime-related studies. For 40

example, the occurrence of crime events may be affected by 41

human mobility, that more crowd of people may bring an 42

increasing possibility of larceny. 43

Nevertheless, due to the uneven development level of 44

cities, a number of cities do not disclose data to the pub- 45

lic for some possible reasons, i.e., the high cost of data 46

collection and maintenance, the absence of clear-cut regula- 47

tions, and increasing privacy concerns. Thus, residents need 48

sufficient experience to sense whether there will be risk. 49

But not all residents have such local experience, and this 50

brings more challenges for newcomers, e.g., tourists. Recently, 51

transfer learning [12], [13] provides a new paradigm that 52

enables us to use learned knowledge from a data-rich city 53

(source city) to solve similar tasks in a data-scarce city 54

(target city), e.g., chain store site recommendation and crowd 55

flow prediction [14], [15]. Therefore, we attempt to resort to 56

unsupervised transfer learning to explore crime risk prediction 57

in cities without labeled crime data. 58

However, even though adequate labeled data can be col- 59

lected from a source city, a prediction model trained using 60

these data may fail to predict crime risk in the target city 61

without labeled crime data. Different data collection capa- 62

bilities may result in inconsistencies in the available rele- 63

vant context data in different cities. Suppose that the source 64

city is New York City (NYC), and the target city is Los 65

Angeles (LA). Due to its widespread deployment of detection 66

equipment and long-standing open data project, NYC has 67

collected multisource urban data over the past many years and 68

continues to disclose information to the public, e.g., point of 69

interest (POI) distribution and taxi trip records. Some cities 70

also collect many urban data. But due to some concerns on 71

privacy issues or high data collection costs, they do not make 72

some useful and relevant data available to the public, such 73

as taxi mobility data in cities like LA. Thus, the contexts’ 74

inconsistency issue hinders crime risk prediction performance 75

in cities with unlabeled data. 76

An intuitive approach to solve contexts’ inconsistency is 77

to only use common context data to train a model from the 78

source city and then fine-tune this model to solve tasks in 79

the target city, leaving inconsistent city-specific context data 80

alone. But this may lose some useful information for crime 81

risk prediction, and even worse when context data are sparse. 82
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Due to the prevalence of deep learning technologies, more83

data may bring better performance since they can extract more84

useful information in the networks. Therefore, we try to design85

an effective model that can construct possible source-city-86

specific context data for the target city to address the contexts’87

inconsistency problem, and then predict crime in the target city88

leveraging learned knowledge from the source city.89

In this article, we propose an unsupervised domain adap-90

tation model (UDAC) for crime risk prediction across cities91

while addressing the contexts’ inconsistency issue, called92

UDAC. The objective of UDAC is to solve crime risk predic-93

tion in a target city without labeled crime data, by transferring94

knowledge learned from a source city with abundant labeled95

data to the target city. Inspired by [15], we design a method96

to construct possible city-specific context data for the target97

city grids, based on context data in similar source city grids,98

to address the issue of inconsistent context. We then present a99

network to learn effective features for crime risk prediction in100

the source city and learn domain-invariant features simultane-101

ously for the success of unsupervised domain adaptation. The102

optimization process would consider three elements simulta-103

neously, i.e., crime risk prediction error, domain classification104

error, and distribution discrepancy distance. Extensive experi-105

ments are conducted to verify the effectiveness of UDAC using106

three real-world datasets from NYC, Chicago, and LA.107

The main contributions of our work are as follows.108

1) Our work is a promising step toward unsupervised109

domain adaptation in crime prediction across cities,110

while simultaneously addressing the contexts’ inconsis-111

tency issue between cities.112

2) We propose an effective model for crime risk predic-113

tion in cities without labeled data, which can facilitate114

deep unsupervised domain adaptation method leverag-115

ing knowledge learned from a source city with abun-116

dant labeled data. To address the inconsistent contexts117

between two cities, we first construct city-specific con-118

texts for the target city, and then present a dense convo-119

lutional network to learn effective features for accurate120

crime prediction and domain-invariant features for unsu-121

pervised domain adaptation. The optimized network can122

be feasible for crime prediction in the target city.123

3) We conduct extensive experiments to illustrate the effec-124

tiveness of our proposed UDAC model using real-world125

datasets from three cities. The experimental results show126

that our strategy outperforms the state-of-the-art compar-127

ison methods.128

The rest of this article is organized as follows. We begin by129

reviewing previous studies in Section II. Section III presents130

the problem formulation and an overview of our proposed131

framework. In Section IV, we describe the three phases of132

this framework in detail. Extensive evaluation results are133

demonstrated in Section V. Finally, we conclude this article134

and chart future plans in Section VI.135

II. RELATED WORK136

Our work is related to previous studies on crime prediction137

and unsupervised domain adaptation. In this section, we briefly138

introduce some related work from these two categories.139

A. Crime Prediction 140

There have been a few studies on urban crime prediction 141

in the past decades. Identifying relevant external features for 142

crime prediction study is significant. Ranson [16] analyzed 143

meteorological data and found that these data may be rel- 144

evant to crime, e.g., weather and temperature information. 145

Zhou et al. [17] conducted a fine-grained study to understand 146

crime leveraging various urban data, including meteorological 147

data, POI distribution, and taxi trips’ data. They found valuable 148

correlation between these data and crime. 149

With features analyzed, designing effective models to 150

achieve accurate prediction has been popular. A lot of 151

spatio-temporal prediction models have been proposed over 152

the past few decades capturing spatial and temporal dependen- 153

cies to solve various tasks, such as traffic prediction and infer- 154

ence [18], [19], [20], social event prediction [21], air quality 155

prediction [22], and logistics management optimization [23]. 156

However, these spatio-temporal prediction models paid little 157

effort on the prediction tasks without labeled data. For crime 158

prediction, a large amount of data, e.g., taxi trip, Twitter, 159

demographic, and Foursquare data, have been used in various 160

methods (e.g., linear models, count models, and machine 161

learning models) to improve prediction performance [9], [24], 162

[25]. Huang et al. [4] proposed a hierarchical recurrent neural 163

network with an attention layer to capture dynamic patterns 164

and learn temporal relevance for future crime occurrences’ 165

prediction, using crime data, POI, and 311 public service 166

complaint data. Yang et al. [3] leveraged Twitter and POI 167

data into multiple machine learning models (e.g., random 168

forest and decision tree) to predict crime hotspots in NYC. 169

Yi et al. [26] proposed an integrated model using a clustered 170

continuous conditional random field (CCRF) method to extract 171

spatio-temporal features and improve future crime predic- 172

tion performance. They further incorporated long short-term 173

memory (LSTM) units into the aforementioned CCRF method 174

to learn nonlinear relationship between the input and the 175

output, and stacked denoising autoencoder to learn pairwise 176

interactions between spatial regions [10]. Zhou et al. [27] 177

proposed a hierarchical framework for road-level crime pre- 178

diction, which first established a pattern using spatio-temporal 179

features to estimate crime prior knowledge and then update 180

crime prediction results incorporating recurrence crime fea- 181

tures. They further investigated crime dynamics from the per- 182

spective of influence propagation and proposed a zero-inflated 183

negative binomial regression model to predict future road-level 184

crime risk [28]. 185

All these relevant studies paid efforts to solve prediction 186

tasks with adequate labeled data and external urban data, 187

with little effort on prediction with unlabeled data. For crime 188

prediction, predicting crime risk in cities without labeled crime 189

data is also significant for citizens and society. 190

B. Unsupervised Domain Adaptation 191

Domain adaptation can help improve the crime prediction 192

performance when predicting crime in cities with few crime 193

data since it can learn knowledge from the source domain 194

and apply it to solve new tasks in the target city. For cities 195

without releasing crime data, unsupervised domain adaptation 196
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Fig. 1. Overview of the framework.

can play significant roles. It has been widely applied in many197

areas, such as image recognition, fault diagnosis cellular traffic198

prediction, transaction fraud detection, vehicle positioning,199

and POI recommendation [14], [15], [29], [30], [31], [32],200

[33], [34], [35]. Yao et al. [36] investigated spatial–temporal201

prediction problems in cities with only a few data. They202

proposed an effective meta-learning based spatial–temporal203

network using long period data from multiple cities. The204

experiments on two typical tasks, i.e., traffic and water quality205

prediction, verified the effectiveness of their proposed model.206

Zhao and Tang [37] exploited transferring crime knowledge207

learned from one borough to other boroughs in the same city208

to improve prediction performance. A novel transfer learning209

framework had been proposed.210

Inspired by previous studies, we choose the unsupervised211

domain adaptation framework to predict future crime risk212

in cities without ground-truth values. However, there still213

exist challenges to apply the existing methods directly in214

this problem, due to the contexts’ inconsistency as aforemen-215

tioned. So we attempt to design a novel method to construct216

domain-specific contexts to make contexts consistent from217

both the domains for further crime prediction in the target218

domain.219

III. PROBLEM FORMULATION AND220

FRAMEWORK OVERVIEW221

A. Problem Formulation222

In this article, we define a source city S with adequate223

labeled crime risk data while a target city T without any224

crime data. There are more types of relevant external urban225

data collected from city S than city T . Thus, the context data226

from city S can be separated into two categories: common227

context data CS and city S-specific auxiliary context data AS .228

The common context data from city T can be represented229

as CT . For example, here, some urban data are available230

in both the cities S and T , such as weather conditions, air231

temperature, POI distribution, and police station distribution. 232

They can be treated as the common context data. Some urban 233

data are available in city S and unavailable in city T , such 234

as taxi trip records, so that they can be treated as the city 235

S-specific context data. Both the cities are partitioned into 236

equal-sized grids, which is denoted as rS and rT , respectively. 237

The crime risk data in city S and city T are defined as DS
238

and DT , respectively. Note that these values are numerical 239

values representing crime counts. 240

We aim to design a prediction model leveraging historical 241

�t time durations’ data in both the cities S and T to 242

predict unobserved crime data D̃T
t+1 in the target city T at 243

time duration t + 1. Here, the historical data are defined as 244

{DS , CS , AS , CT }[t−�t+1,t], and [t −�t + 1, t] is defined as 245

a series of continuous time durations 246{
DS , CS, AS, CT }

[t−�t+1,t] −→ D̃T
t+1. (1) 247

B. Framework Overview 248

Fig. 1 presents an overview of our proposed framework, 249

which can learn knowledge from the source city while address- 250

ing the contexts’ inconsistency issue, and then apply to the 251

target city to predict crime risk. The framework consists of 252

three phases, i.e., intercity similar-grid matching, auxiliary 253

features construction, and crime risk prediction using a dense 254

convolutional-network-based unsupervised domain adaptation. 255

In the first phase, inspired by the work [15], we design a novel 256

intercity similar-grid matching method leveraging common 257

context data from a source city and a target city, while taking 258

into account the data sparsity caused by the low frequency 259

of crime incidents. In the second phase, we present a novel 260

method to construct auxiliary features for the target city, 261

based on the source-city-specific contexts of several similar 262

source city grids. This method can address the contexts’ 263

inconsistency problem between the source city and the target 264

city. In the third phase, as shown at the right part of Fig. 1, 265
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to achieve unsupervised crime risk prediction, we propose266

a dense convolutional network to learn features for accu-267

rate crime risk prediction and domain-invariant features for268

unsupervised domain adaptation. The network parameters can269

be learned with consideration of three optimization elements270

simultaneously during the optimization process, i.e., crime risk271

prediction error, domain classification error, and distribution272

discrepancy distance.273

IV. UDAC FOR CRIME RISK PREDICTION274

In this section, we present our UDAC for crime risk275

prediction. We first match several similar source city grids for276

each target city grid, and then we construct auxiliary contexts277

for the target city to make contexts consistent between two278

cities. After that, we present a dense convolutional network279

with unsupervised domain adaptation for crime risk prediction.280

A. Intercity Similar-Grid Matching281

The objective of this phase is to discover some source282

city grids {rSi,1, rSi,2, . . . , rSi,k } having similar spatio-temporal283

patterns with each target city grid rTi . Due to data sparsity284

caused by rare crime events, we match top-k similar grids in285

the source city for each grid in the target city based on their286

similarity coefficients, bringing k intercity similar-grid pairs.287

We adopt the same similarity metrics following the work [15],288

as Pearson coefficient. As there are fewer types of relevant data289

in the target city than the source city, we choose the common290

context data in both the cities, CS and CT , to compute291

similarity coefficients. We denote crS ,t as the common context292

data of the source city grid rS in time duration t and crT ,t293

as the common context data of the target city grid rT in294

time duration t . For example, in our crime risk prediction295

problem, for each target city grid rTi , we use common contexts296

(e.g., weather conditions, POI distribution, and police station297

distribution) from each source city grid and rTi and compute298

similarity coefficients between these two grids. Based on the299

similarity coefficients’ results, we can identify k source city300

grids as the partners of rTi301

ρrT ,rS = corr
({

crT ,t

}
,
{
crS ,t

})
. (2)302

Thus, each target grid rT has identified their intercity303

similar-grid partners in the source city with top-k similarity304

coefficient values.305

B. Auxiliary Features’ Construction306

This phase aims to construct auxiliary features for each307

target city grid, using the source-city-specific contexts of308

several similar source city grids. In particular, we separate the309

context data in the source city into two groups, i.e., common310

contexts shared by both the cities and source-city-specific311

auxiliary contexts which are only collected in the source city312

and the target city did not release this type data. Note that there313

is no requirement for city-specific context data selection. Then,314

we construct auxiliary features for the target city with the same315

feature dimensionality as the auxiliary contexts in the source316

city. More specifically, for each target city grid rT , we can317

find k matched similar-grid partners {rS1 , rS2 , . . . , rSk } in the318

source city after similarity coefficients’ computation. A simple 319

and effective method is to calculate the average value of the 320

auxiliary contexts of these source city grids {rS1 , rS2 , . . . , rSk }, 321

as presented in (3). arSi
is defined as the auxiliary data of 322

the grid rSi . ÂT is defined as the set of constructed auxiliary 323

data in the target city grids, ârT is defined as the constructed 324

auxiliary data in the grid rT . ârT ∈ ÂT
325

ârT =
k∑

i=1

ρrT ,rSi
× arSi

. (3) 326

C. Dense Convolutional Network With Unsupervised 327

Domain Adaptation 328

After auxiliary features’ construction for the target city and 329

features’ embedding from both the source city and the target 330

city, we propose a dense-convolutional-network-based [38] 331

UDAC to learn knowledge and apply to the target city for 332

unsupervised crime risk prediction. The input data include 333

common and auxiliary features in S, common context features 334

in T , and constructed auxiliary features in T . The first 335

two features are embedded as one-hot representation. The 336

common context features in T would be concatenated with 337

constructed auxiliary features in T together, and then fed 338

into the network. Then we use a layer convolution operation 339

(Conv) to capture the latent features. After that, three layers 340

of composite operation are presented, which are defined as 341

a sequential combination of batch normalization (BN), rec- 342

tified linear units (ReLUs), and Conv. The three layers are 343

following a dense connectivity pattern, which can connect 344

each layer of the network to each other layer in a feed- 345

forward manner. The implementation of the dense connectivity 346

pattern here facilitates feature learning and improves feature 347

propagation, while alleviating the vanishing gradient issue. 348

High level and features are learned effectively after the final 349

composition operation (BN-ReLU-Conv). With the proposed 350

network, we need to optimize the parameters following three 351

objectives simultaneously, to accomplish the unsupervised 352

domain adaptation task as predicting crime risk in cities with 353

unlabeled data. 354

The first objective is to minimize the crime risk prediction 355

error on S in the Frobenius norm. We define the loss L p as 356

in (4), for further optimization of the parameters learned from 357

the source city 358

L p =
∑

t

∣∣∣∣D̃S
t − DS

t

∣∣∣∣2

F
. (4) 359

The second objective is to maximize the domain classi- 360

fication error with the purpose of learning domain-invariant 361

features. If a domain classifier is unable to identify which 362

specific domain features should belong to, these features can 363

be treated as domain-invariant features [39]. Here, we use 364

binary cross-entropy as the domain classification loss Ld as 365

in (5) and denote d̃i as the predicted domain label and di as 366

the ground-truth value. MS and MT are defined as the number 367

of training samples from S and T , respectively, 368

Ld =
MS+MT∑

i

d̃i log(di) + (
1 − d̃i

)
log(1 − di). (5) 369
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The third objective is to minimize the distribution discrep-370

ancy distance between the source and target city datasets.371

Following [14], we use the way to compute the dis-372

tance as the maximum mean discrepancy (MMD) distance.373

˜MMD( f S, f T ) is defined as the distance estimated between374

high-level learned features from two cities, i.e., f S and f T .375

�(·) is a kernel function, and we adopt the Gaussian radial376

basis function to calculate the distance. The computation is377

shown as follows:378

˜MMD
(

f S , f T
) = 1

M2
S

MS∑
i

MS∑
j

�
(

f Si , f Sj
)

379

+ 1

M2
T

MT∑
i

MT∑
j

�
(

f Ti , f Tj
)

380

− 2

MS MT

MS∑
i

MT∑
j

�
(

f Si , f Tj
)
. (6)381

The total optimization function is the combination of afore-382

mentioned functions, with optimization on θp, θd , and θm ,383

as shown in (7). μ and λ control the strength caused by domain384

adaptation from city S to city T385

min L = min
θp,θd ,θm

L p
(
θp, θm

) − μLd(θd, θm) + λ˜MMD(θm).386

(7)387

To solve this task, we use a popular parameter optimization388

method, the stochastic gradient descent (SGD) [40], to learn389

these parameters. Thus, θp, θd , and θm can be updated through390

the following optimization process:391

θ̃m = arg min
θm

L
(
θp, θd, θm

)
(8)392

θ̃p = arg min
θp

L
(
θp, θd, θm

)
(9)393

θ̃d = arg max
θd

L
(
θp, θd, θm

)
(10)394

L = L p
(
θp, θm

) − μLd(θd, θm) + λ˜MMD(θm). (11)395

V. EXPERIMENTS396

In this section, we first introduce datasets used in this397

study, implementation and evaluation metrics, as well as398

comparison methods. After that, we evaluate the performance399

on both prediction and ranking, respectively. We also conduct400

a parameter study to investigate the effect of the parameter on401

the prediction tasks.402

A. Dataset403

We collect crime data and external relevant data during404

the year 2015 from three cities, i.e., NYC, Chicago, and LA.405

The crime datasets contain all the reported crime occurrences406

with detailed information, e.g., crime types and locations. The407

external datasets include weather conditions, POI distribution,408

police station distribution, and taxi mobility. Specifically,409

we collect meteorological data of the three cities from a public410

website [41], including weather conditions and temperature411

information. For POI distribution, we collect POI distribution412

TABLE I

SUMMARY OF DATASETS

data from [42], and each belongs to the first-tier categories of 413

Foursquare. We collect the taxi mobility dataset from NYC 414

Taxi and Limousine Commission (NTLC) [43]. For each city, 415

we split the city into multiple grids. The number of grids 416

among the three cities is different, that is, NYC has 899 grids, 417

Chicago has 683 grids, and LA has 1377 grids. Thus, we select 418

25 × 25 grids in this study. The time duration is set as one 419

day. The summary of these datasets is presented in Table I. 420

B. Implementation and Evaluation Metrics 421

With these cities, we conduct six experiments to show the 422

effectiveness of our model, i.e., NYC → Chicago, Chicago → 423

NYC, NYC → LA, LA → NYC, Chicago → LA, and LA → 424

Chicago. Since we collect more data from NYC than Chicago 425

and LA, the extracted feature dimensionality from NYC and 426

Chicago is different, while the extracted feature dimensionality 427

from LA and Chicago is the same. For each experiment, 428

we define the city before the arrow as the source city and the 429

city after the arrow as the target city. More specifically, for the 430

experiments of NYC → Chicago and NYC → LA, we collect 431

more data from NYC than Chicago and LA, and it is easy to 432

separate the common contexts and auxiliary contexts. For the 433

experiments of Chicago → NYC and LA → NYC, we do 434

not take taxi trip data and police station distribution data in 435

NYC into consideration. For the experiments of Chicago � 436

LA, we discard the police station distribution data in the target 437

city. In these experiments, police station distribution data are 438

treated as source-city-specific contexts in the source cities. 439

We have presented a flowchart of our proposed method, 440

as shown in Fig. 2. In particular, after we have collected all the 441

accessible data, we split them into two datasets, i.e., training 442

dataset and testing dataset. The training dataset consists of all 443

the labeled data from the source city and half of the unlabeled 444

data from the target city. The testing dataset consists of the 445

remaining half of the data from the target city. We divide 446

the training datasets into common context data and auxiliary 447

context data, to create auxiliary features for the target city, 448

and then train a dense-convolutional-network-based UDAC. 449

We obtain a trained model after completing training the model, 450

then use the testing data with the trained model to test the 451

performance, and finally achieve the final prediction results 452

in the target city. The detailed implementation parameters 453

are set as follows. The model is trained for 5000 epochs. 454

The batch size is set at 32. Most of the convolution layers 455
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Fig. 2. Flowchart of our UDAC.

have 16 filters with a kernel size 3 × 3, and the final layer456

has one filter with 1 ×1 kernel size. The penalty parameters λ457

and μ change gradually every ten epochs. The learning rate458

during optimization is set as 0.001. These parameters’ values459

are chosen based on the needs of the experiments. Alternative460

values are also possible461

RMSE = 1

N

√∑
r

∑
t

(
d̃r,t − dr,t

)2
(12)462

MAPE = 1

N

∑
r

∑
t

∣∣d̃r,t − dr,t

∣∣
dr,t

(13)463

MAE = 1

N

∑
r

∑
t

∣∣d̃r,t − dr,t

∣∣ (14)464

HR@K = 1

K ∗ T

∑
t

I
(
listK (t), l̂istK (t)

)
. (15)465

For the evaluation metrics, we use the root mean square466

error (RMSE), the mean absolute percentage error (MAPE),467

the mean absolute error (MAE), and the hitting rate @K468

(HR@K ) as the evaluation metrics. Thus, we can evaluate469

both the prediction performance and the ranking performance.470

Since crime is a low-frequent and sparse event, there have471

been lots of grids with value zero. Here, we only consider472

the scenarios where there is a nonzero value between the473

ground truth and the predicted value, the number of which474

is denoted as N . The computation of these metrics is defined475

in (12)–(15), respectively. For HR@K , we define listK (t) as476

a ranking list of most threatening grids, and l̂istK (t) as the477

predicted ranking list. We also use I () [10] as the binary478

function to calculate the number of identical pairs. T is defined479

as the total time duration in the experiments. The computation480

of HR@K is shown in (15). A smaller RMSE/MAPE/MAE481

value indicates a more accurate prediction performance, while 482

a higher HR value brings a better ranking performance. 483

C. Comparison Methods 484

To demonstrate the superiority of our proposed model, 485

we compare our model with several methods. Due to the 486

contexts’ inconsistency between the source city and target city, 487

these methods train their prediction models after discarding the 488

auxiliary context data in the source city. 489

1) CNN: This method is a typical three-layer convolutional 490

neural network (CNN) model trained only using context 491

data and crime data from the source city. 492

2) DDC [44]: This method incorporates a CNN model 493

with an adaptation layer and MMD to identify domain- 494

invariant features. 495

3) Deep Adaptation Network (DAN) [45]: This method adds 496

three adaptation layers on the basis of the deep domain 497

confusion (DDC) method and adopts multikernel MMD 498

for better representation abilities. 499

4) Domain-Adversarial Neural Network (DANN) [46]: This 500

method proposes a deep neural network with a domain 501

discriminative component so that the classifier cannot 502

identify the specific domain. 503

5) RegionTrans [15]: This method is able to achieve 504

cross-city transfer learning to learn a predictive model 505

while addressing the representation divergence with 506

matched region pairs. 507

6) STCNet [32]: This method develops a transfer learn- 508

ing mechanism to improve knowledge reuse in various 509

domains and leverages a convolutional LSTM network 510

to represent the spatial–temporal dependencies. 511

7) DATN [47]: This method designates task-specific feature 512

learning networks and domain adversarial training tech- 513

niques to cope with the domain distribution discrepancy 514

issue. 515

8) ARG-STNet [48]: This method proposes a generation 516

strategy to learn long-term spatial–temporal dependen- 517

cies and subsequently transfer them to the target domain 518

with few-shot learning. 519

9) UDAC-aux: This method is a variant of our proposed 520

UDAC. It discards the auxiliary feature construction 521

module and then trains a prediction model based on the 522

dense convolutional network with unsupervised domain 523

adaptation for further crime prediction tasks in the target 524

city. 525

D. Prediction Performance 526

We present the experimental results of the prediction per- 527

formance comparison by our UDAC model and comparison 528

methods in terms of RMSE, MAPE, and MAE, through 529

six experiments between different city pairs, i.e., NYC → 530

Chicago, Chicago → NYC, NYC → LA, LA → NYC, 531

Chicago → LA, and LA → Chicago. These results are 532

demonstrated in Table II. 533

Horizontally, we observe that our proposed model UDAC 534

outperforms all the comparison methods, with an improve- 535

ment of 62.20%, 15%, 13.6%, 9.97%, 5.81%, 5.11%, 6.11%, 536
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TABLE II

PREDICTION PERFORMANCE COMPARISON

Fig. 3. Execution time comparison.

4.63%, and 4.07% in RMSE, respectively, among all the537

six experiments. In terms of MAPE, our model obtains538

a decrease of 70.88%, 56.69%, 54.05%, 56.19%, 52.62%,539

53.76%, 54.12%, 52.81%, and 30.11%, respectively, compared540

with the baseline methods. Besides, with consideration of541

MAE, the UDAC model achieves an improvement of 66.47%,542

30.87%, 25%, 17.68%, 15.64%, 12.28%, 28.59%, 19.8%, and543

21.01%, respectively. These experimental results demonstrate544

the superiority of our model for predicting crime risk in545

an unsupervised manner, which significantly decreases the546

distribution discrepancy between two cities’ data. Moreover,547

we also observe that the comparison method CNN has the548

Fig. 4. Prediction performance comparison between UDAC and CNN
(target).

worst performance among all the baseline methods. Here, 549

this CNN method only learns the knowledge from the source 550

city and applies it directly to the target city for crime risk 551

prediction. All the transfer learning-based methods outperform 552

the CNN method, indicating that transfer learning technologies 553

would be a helpful and valuable tool to solve the crime risk 554

prediction tasks with unlabeled data. Besides, we observe 555

that the methods RegionTrans and UDAC-aux obtain bet- 556

ter prediction performance over the other transfer-learning- 557

based methods. This implies that the processing of intercity 558

similar-grid matching is beneficial for subsequent knowledge 559

transfer. Furthermore, UDAC-aux achieves superior prediction 560
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Fig. 5. Ranking performance comparison. (a) NYC → Chicago. (b) Chicago → NYC. (c) NYC → LA. (d) LA → NYC. (e) Chicago → LA. (f) LA →
Chicago.

performance than RegionTrans. The explanation may be that561

crime incidents are infrequent and is more sparse than the data562

used in the original RegionTrans [15], i.e., crowd flow data.563

Thus, to obtain a robust intercity similar-grid matching, the564

design of top-k similar-grid matching is more applicable here.565

We also observe that STCNet and attention-reptile-generation566

spatial-temporal network (ARG-STNet) achieve considerable567

prediction performance, which indicates their power of learn-568

ing domain-invariant features. In addition, compared with569

the variant method UDAC-aux, our UDAC can obtain an570

average decrease of 4.07%, 30.11%, and 21.01% in terms of 571

RMSE, MAPE, and MAE, respectively, among conducted six 572

experiments. This highlights the significance and value of the 573

auxiliary feature construction module. 574

Vertically, we note that UDAC is more robust under dif- 575

ferent configurations of experiments. Among the three cities, 576

Chicago and LA are more similar than Chicago and NYC, 577

or LA and NYC, in terms of population, geographic size, 578

POI distribution, and so on. More specifically, the exper- 579

iment of NYC → Chicago achieves superior performance 580
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to the experiment of Chicago → NYC, with lower RMSE,581

MAPE, and MAE values. The possible explanation is that582

the model trained in the former experiment may be better583

able to accurately predict crime risk than the model trained584

in the latter experiment, due to more context data in NYC,585

such as weather conditions, POI distribution, police station586

distribution, and taxi mobility. The experiments of NYC � LA587

also have similar performance that the experiment of NYC →588

LA obtains better prediction performance than the experiment589

of LA → NYC, with lower RMSE and MAPE values and590

considerable MAE values, due to the same possible reason.591

Besides, we note that experiments of Chicago � LA obtain592

comparable performance on crime risk prediction. This may593

be because of the similarity between Chicago and LA in many594

aforementioned city characteristics.595

We further compare our proposed method with the baseline596

methods in execution time. Here, the execution time refers to597

the average running time of each test sample. It was computed598

by dividing the overall running time by the total number of599

test samples, and then averaging the results across all the runs600

with the same experiment settings. The average execution time601

of our proposed UDAC is below 0.5 s on these experiments.602

domain adversarial transfer network (DATN) requires approx-603

imately 1.2 times the execution time of UDAC for crime risk604

prediction, whereas RegionTrans takes a comparable amount605

of execution time, as shown in Fig. 3. The possible reason606

behind may be the implementation of the auxiliary feature607

construction module.608

We train a CNN in the target city with all the labeled data609

as well, to achieve an accurate crime risk prediction model.610

To distinguish with the aforementioned comparison method611

CNN, we name this CNN as CNN (target). We then compare612

our UDAC model with this CNN (target) on the three cities,613

to evaluate the crime risk prediction performance. The experi-614

mental results are presented in Fig. 4. From the figure, we can615

observe that the supervised method CNN (target) performs616

better than our unsupervised domain adaptation method UDAC617

among these experiments. Thus, the experimental results gen-618

erated by CNN (target) can be treated as the upper bound of619

our unsupervised crime risk prediction study. In a word, our620

UDAC performs better than all the aforementioned comparison621

methods, while being some distance from the single-domain622

CNN (target).623

E. Ranking Performance624

We also conduct experiments to examine the accurate625

prediction capability of our proposed UDAC model and626

other comparison methods, using the HR metric. Specifically,627

we predict m grids with the highest m level of high crime628

risk in the target city and compare them with the actual high629

crime risk grids in the source city. The experimental results630

are presented in Fig. 5. Each figure demonstrates the results631

by these methods on one pair of a source and a target city,632

with two HR values as HR@5 and HR@10, respectively.633

We would like to elaborate on the explanation using634

the experiment of NYC → Chicago as an illustration.635

From Fig. 5(a), it can be shown that our method achieves636

the highest HR with the predicted crime values, successfully637

Fig. 6. Parameter impact analysis.

predicting the 5 and 10 most threatening grids in the target 638

city. Besides, another interesting observation is that for each 639

method, the HR value obtained by comparing the most ten 640

threatening grids is less than obtained by comparing the most 641

five threatening grids. This is not difficult to understand. 642

Crime incidents are low-frequent events, and the majority 643

of grids may witness few crimes for a long time. Only a 644

small percentage of grids would experience threatening events 645

frequently, such as places with few security forces and valuable 646

property. Thus, predicting five most threatening grids would 647

yield more accurate results than predicting ten grids. 648

F. Parameter Study 649

We also study how the parameter k affects the crime 650

prediction performance. The parameter impact analysis results 651

are presented in Fig. 6. Here, k refers to the number of 652

source city grids used to select intercity similar-grid pairs. 653

From the figure, we discover that optimal selection of k is 654

different among these experiments to predict crime risk in 655

cities with unlabeled data. It would be more accurate to make a 656

prediction using k equal to 3 for the experiments of NYC → 657

Chicago and NYC → LA. Number 4 is the optimal choice 658

when considering the results of the experiments conducted as 659

Chicago → NYC and LA → NYC. A larger value for 5 would 660

bring about improved performance for the experiments carried 661

out for LA � Chicago. 662

We take the experiment of NYC → Chicago as an example 663

to investigate the parameter impact, with number 3 represent- 664

ing optimal selection for k. This indicates that when we match 665

three source city grids that are most similar to each target 666

city grid, and then average the auxiliary context data among 667

these three source city grids, the auxiliary features constructed 668

for the target grid are effective and useful for future crime 669

prediction in the target city. This is accomplished by averaging 670

the data from the three source city grids. As a result, we select 671

a different optimal value for k on different experiments. 672

VI. CONCLUSION 673

In this article, to solve the prediction tasks with unlabeled 674

data, we propose an unsupervised domain adaptation method. 675

This method can learn knowledge from a source city with 676
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labeled data and transfer it to the target city while addressing677

the context inconsistency issue between cities, to predict678

crime risk. We partition cities into multiple equal-sized grids679

and identify several similar source city grids for each target680

grid. Based on these pairs, we construct auxiliary features681

for the target city, to address the contexts’ inconsistency682

problem across cities. We then propose a dense-convolutional-683

network-based unsupervised domain adaptation module to684

learn knowledge from the source city and apply it to the685

target city for future crime risk prediction. Domain-invariant686

features are learned to facilitate knowledge transfer. Extensive687

experiments are conducted to verify the effectiveness of our688

method using real-world data from NYC, Chicago, and LA.689

The experimental results reveal the superiority of our proposed690

method over various state-of-the-art comparison methods.691

In the future, we intend to improve our work from several692

perspectives. First, we plan to explore prediction performance693

when more serious contexts’ inconsistency exists between694

the source and target cities. Second, we plan to investigate695

a fine-grained unsupervised crime risk prediction, such as696

predicting crime risk in roads. This would be more challenge697

due to severe data sparsity problem.698
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