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Abstract— Crime risk prediction is crucial for city safety
and residents’ life quality. However, without labeled data, it is
challenging to predict crime risk in cities. Due to municipal
regulations and maintenance costs, it is not trivial for many
cities to collect high-quality labeled crime data. In particular,
some cities have lots of labeled data while others may have few.
It has been possible to develop a crime prediction model for
a city without labeled crime data by learning knowledge from
a city with abundant data. Nevertheless, the inconsistency of
relevant context data between cities exacerbates the difficulty
of this prediction task. To this end, this article proposes an
effective unsupervised domain adaptation model (UDAC) for
crime risk prediction across cities while addressing the contexts’
inconsistency issue. More specifically, we first identify several
similar source city grids for each target city grid. Based on these
source city grids, we then construct auxiliary contexts for the
target city, to make contexts consistent between the two cities.
A dense convolutional network with unsupervised domain adap-
tation is designed to learn high-level representations for accurate
crime risk prediction and simultaneously learn domain-invariant
features for domain adaptation. The effectiveness of our model
is verified through extensive experiments using three real-world
datasets.

Index Terms— Crime prediction, crime risk, unsupervised
domain adaptation.

I. INTRODUCTION

RIME continuously threatens urban safety and under-

mines citizens’ life quality. According to [1], there have
been 435 mass shooting events happened in the United States
during the year 2019, resulting in 517 dead, 1648 wounded,
severe property loss, and inestimable grief. Thus, sensing
crime risk is important for individuals and society, to prevent
and reduce potential crime events. Fortunately, the availability
of various urban data in some cities (e.g., Chicago) fos-
ters unprecedented opportunities for researchers to explore
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crime-related problems, such as crime hotspot detection [2],
[3], crime classification [4], [5], [6], crime rate inference [7],
[8], and crime count prediction [4], [5], [9], [10], [11].
An amount of urban data has been investigated to be helpful
for performance improvement of crime-related studies. For
example, the occurrence of crime events may be affected by
human mobility, that more crowd of people may bring an
increasing possibility of larceny.

Nevertheless, due to the uneven development level of
cities, a number of cities do not disclose data to the pub-
lic for some possible reasons, i.e., the high cost of data
collection and maintenance, the absence of clear-cut regula-
tions, and increasing privacy concerns. Thus, residents need
sufficient experience to sense whether there will be risk.
But not all residents have such local experience, and this
brings more challenges for newcomers, e.g., tourists. Recently,
transfer learning [12], [13] provides a new paradigm that
enables us to use learned knowledge from a data-rich city
(source city) to solve similar tasks in a data-scarce city
(target city), e.g., chain store site recommendation and crowd
flow prediction [14], [15]. Therefore, we attempt to resort to
unsupervised transfer learning to explore crime risk prediction
in cities without labeled crime data.

However, even though adequate labeled data can be col-
lected from a source city, a prediction model trained using
these data may fail to predict crime risk in the target city
without labeled crime data. Different data collection capa-
bilities may result in inconsistencies in the available rele-
vant context data in different cities. Suppose that the source
city is New York City (NYC), and the target city is Los
Angeles (LA). Due to its widespread deployment of detection
equipment and long-standing open data project, NYC has
collected multisource urban data over the past many years and
continues to disclose information to the public, e.g., point of
interest (POI) distribution and taxi trip records. Some cities
also collect many urban data. But due to some concerns on
privacy issues or high data collection costs, they do not make
some useful and relevant data available to the public, such
as taxi mobility data in cities like LA. Thus, the contexts’
inconsistency issue hinders crime risk prediction performance
in cities with unlabeled data.

An intuitive approach to solve contexts’ inconsistency is
to only use common context data to train a model from the
source city and then fine-tune this model to solve tasks in
the target city, leaving inconsistent city-specific context data
alone. But this may lose some useful information for crime
risk prediction, and even worse when context data are sparse.
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Due to the prevalence of deep learning technologies, more
data may bring better performance since they can extract more
useful information in the networks. Therefore, we try to design
an effective model that can construct possible source-city-
specific context data for the target city to address the contexts’
inconsistency problem, and then predict crime in the target city
leveraging learned knowledge from the source city.

In this article, we propose an unsupervised domain adap-
tation model (UDAC) for crime risk prediction across cities
while addressing the contexts’ inconsistency issue, called
UDAC. The objective of UDAC is to solve crime risk predic-
tion in a target city without labeled crime data, by transferring
knowledge learned from a source city with abundant labeled
data to the target city. Inspired by [15], we design a method
to construct possible city-specific context data for the target
city grids, based on context data in similar source city grids,
to address the issue of inconsistent context. We then present a
network to learn effective features for crime risk prediction in
the source city and learn domain-invariant features simultane-
ously for the success of unsupervised domain adaptation. The
optimization process would consider three elements simulta-
neously, i.e., crime risk prediction error, domain classification
error, and distribution discrepancy distance. Extensive experi-
ments are conducted to verify the effectiveness of UDAC using
three real-world datasets from NYC, Chicago, and LA.

The main contributions of our work are as follows.

1) Our work is a promising step toward unsupervised
domain adaptation in crime prediction across cities,
while simultaneously addressing the contexts’ inconsis-
tency issue between cities.

2) We propose an effective model for crime risk predic-
tion in cities without labeled data, which can facilitate
deep unsupervised domain adaptation method leverag-
ing knowledge learned from a source city with abun-
dant labeled data. To address the inconsistent contexts
between two cities, we first construct city-specific con-
texts for the target city, and then present a dense convo-
lutional network to learn effective features for accurate
crime prediction and domain-invariant features for unsu-
pervised domain adaptation. The optimized network can
be feasible for crime prediction in the target city.

3) We conduct extensive experiments to illustrate the effec-
tiveness of our proposed UDAC model using real-world
datasets from three cities. The experimental results show
that our strategy outperforms the state-of-the-art compar-
ison methods.

The rest of this article is organized as follows. We begin by
reviewing previous studies in Section II. Section III presents
the problem formulation and an overview of our proposed
framework. In Section IV, we describe the three phases of
this framework in detail. Extensive evaluation results are
demonstrated in Section V. Finally, we conclude this article
and chart future plans in Section VI.

II. RELATED WORK

Our work is related to previous studies on crime prediction
and unsupervised domain adaptation. In this section, we briefly
introduce some related work from these two categories.
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A. Crime Prediction

There have been a few studies on urban crime prediction
in the past decades. Identifying relevant external features for
crime prediction study is significant. Ranson [16] analyzed
meteorological data and found that these data may be rel-
evant to crime, e.g., weather and temperature information.
Zhou et al. [17] conducted a fine-grained study to understand
crime leveraging various urban data, including meteorological
data, POI distribution, and taxi trips’ data. They found valuable
correlation between these data and crime.

With features analyzed, designing effective models to
achieve accurate prediction has been popular. A lot of
spatio-temporal prediction models have been proposed over
the past few decades capturing spatial and temporal dependen-
cies to solve various tasks, such as traffic prediction and infer-
ence [18], [19], [20], social event prediction [21], air quality
prediction [22], and logistics management optimization [23].
However, these spatio-temporal prediction models paid little
effort on the prediction tasks without labeled data. For crime
prediction, a large amount of data, e.g., taxi trip, Twitter,
demographic, and Foursquare data, have been used in various
methods (e.g., linear models, count models, and machine
learning models) to improve prediction performance [9], [24],
[25]. Huang et al. [4] proposed a hierarchical recurrent neural
network with an attention layer to capture dynamic patterns
and learn temporal relevance for future crime occurrences’
prediction, using crime data, POI, and 311 public service
complaint data. Yang et al. [3] leveraged Twitter and POI
data into multiple machine learning models (e.g., random
forest and decision tree) to predict crime hotspots in NYC.
Yi et al. [26] proposed an integrated model using a clustered
continuous conditional random field (CCRF) method to extract
spatio-temporal features and improve future crime predic-
tion performance. They further incorporated long short-term
memory (LSTM) units into the aforementioned CCRF method
to learn nonlinear relationship between the input and the
output, and stacked denoising autoencoder to learn pairwise
interactions between spatial regions [10]. Zhou et al. [27]
proposed a hierarchical framework for road-level crime pre-
diction, which first established a pattern using spatio-temporal
features to estimate crime prior knowledge and then update
crime prediction results incorporating recurrence crime fea-
tures. They further investigated crime dynamics from the per-
spective of influence propagation and proposed a zero-inflated
negative binomial regression model to predict future road-level
crime risk [28].

All these relevant studies paid efforts to solve prediction
tasks with adequate labeled data and external urban data,
with little effort on prediction with unlabeled data. For crime
prediction, predicting crime risk in cities without labeled crime
data is also significant for citizens and society.

B. Unsupervised Domain Adaptation

Domain adaptation can help improve the crime prediction
performance when predicting crime in cities with few crime
data since it can learn knowledge from the source domain
and apply it to solve new tasks in the target city. For cities
without releasing crime data, unsupervised domain adaptation



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: UNSUPERVISED DOMAIN ADAPTATION FOR CRIME RISK PREDICTION ACROSS CITIES 3
Source city Target city
Common ﬂ,_é i Inter-city similar- P e Input Crime predictor 6,
contexts | =5 Q| grid matching Common | 873 !
[ 2% | o |
. l contexts ¢ o3 j Feature 4>| FC |—»
Auxiliary y  — T embedding
e f:;@;‘;’ ! Top-k similar-grid 7
------------ \ pairs y, Domain classifier 04
¢ Conv
Auxiliary feature v
construction =
BN-ReLU-Conv
A ¢ —
) f C tructed ) v Distribution discrepancy
onstructe
Embedded features . e Embedded features metrics 0
) L auxiliary features ) ‘

v

Dense convolutional network-

E BN-ReLU-Conv

based unsupervised domain <:
adaptation

Fig. 1. Overview of the framework.

can play significant roles. It has been widely applied in many
areas, such as image recognition, fault diagnosis cellular traffic
prediction, transaction fraud detection, vehicle positioning,
and POI recommendation [14], [15], [29], [30], [31], [32],
[33], [34], [35]. Yao ef al. [36] investigated spatial-temporal
prediction problems in cities with only a few data. They
proposed an effective meta-learning based spatial-temporal
network using long period data from multiple cities. The
experiments on two typical tasks, i.e., traffic and water quality
prediction, verified the effectiveness of their proposed model.
Zhao and Tang [37] exploited transferring crime knowledge
learned from one borough to other boroughs in the same city
to improve prediction performance. A novel transfer learning
framework had been proposed.

Inspired by previous studies, we choose the unsupervised
domain adaptation framework to predict future crime risk
in cities without ground-truth values. However, there still
exist challenges to apply the existing methods directly in
this problem, due to the contexts’ inconsistency as aforemen-
tioned. So we attempt to design a novel method to construct
domain-specific contexts to make contexts consistent from
both the domains for further crime prediction in the target
domain.

III. PROBLEM FORMULATION AND
FRAMEWORK OVERVIEW

A. Problem Formulation

In this article, we define a source city S with adequate
labeled crime risk data while a target city 7 without any
crime data. There are more types of relevant external urban
data collected from city S than city 7. Thus, the context data
from city S can be separated into two categories: common
context data C® and city S-specific auxiliary context data A,
The common context data from city 7 can be represented
as C7. For example, here, some urban data are available
in both the cities S and 7, such as weather conditions, air

m
v MMD
> BN-ReLU-Conv [~

temperature, POI distribution, and police station distribution.
They can be treated as the common context data. Some urban
data are available in city S and unavailable in city 7, such
as taxi trip records, so that they can be treated as the city
S-specific context data. Both the cities are partitioned into
equal-sized grids, which is denoted as < and 7, respectively.
The crime risk data in city S and city 7 are defined as D®
and D7, respectively. Note that these values are numerical
values representing crime counts.

We aim to design a prediction model leveraging historical
At time durations’ data in both the cities S and 7 to
predict unobserved crime data f)ZLl in the target city 7 at
time duration ¢ + 1. Here, the historical data are defined as
{DS, C%, AS, CT};_ar+1., and [t — At + 1, 1] is defined as
a series of continuous time durations

1)

S S 4S T AT
{D ,C7, A7, C }[thtJrl,t] Dy

B. Framework Overview

Fig. 1 presents an overview of our proposed framework,
which can learn knowledge from the source city while address-
ing the contexts’ inconsistency issue, and then apply to the
target city to predict crime risk. The framework consists of
three phases, i.e., intercity similar-grid matching, auxiliary
features construction, and crime risk prediction using a dense
convolutional-network-based unsupervised domain adaptation.
In the first phase, inspired by the work [15], we design a novel
intercity similar-grid matching method leveraging common
context data from a source city and a target city, while taking
into account the data sparsity caused by the low frequency
of crime incidents. In the second phase, we present a novel
method to construct auxiliary features for the target city,
based on the source-city-specific contexts of several similar
source city grids. This method can address the contexts’
inconsistency problem between the source city and the target
city. In the third phase, as shown at the right part of Fig. 1,
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to achieve unsupervised crime risk prediction, we propose
a dense convolutional network to learn features for accu-
rate crime risk prediction and domain-invariant features for
unsupervised domain adaptation. The network parameters can
be learned with consideration of three optimization elements
simultaneously during the optimization process, i.e., crime risk
prediction error, domain classification error, and distribution
discrepancy distance.

IV. UDAC FOR CRIME RISK PREDICTION

In this section, we present our UDAC for crime risk
prediction. We first match several similar source city grids for
each target city grid, and then we construct auxiliary contexts
for the target city to make contexts consistent between two
cities. After that, we present a dense convolutional network
with unsupervised domain adaptation for crime risk prediction.

A. Intercity Similar-Grid Matching

The objective of this phase is to discover some source
city grids {r?,r5,...,r5} having similar spatio-temporal
patterns with each target city grid riT . Due to data sparsity
caused by rare crime events, we match top-k similar grids in
the source city for each grid in the target city based on their
similarity coefficients, bringing k intercity similar-grid pairs.
We adopt the same similarity metrics following the work [15],
as Pearson coefficient. As there are fewer types of relevant data
in the target city than the source city, we choose the common
context data in both the cities, CS and C7, to compute
similarity coefficients. We denote c,s , as the common context
data of the source city grid r° in time duration ¢ and CrT
as the common context data of the target city grid 7 in
time duration . For example, in our crime risk prediction
problem, for each target city grid rl.T, we use common contexts
(e.g., weather conditions, POI distribution, and police station
distribution) from each source city grid and riT and compute
similarity coefficients between these two grids. Based on the
similarity coefficients’ results, we can identify k source city
grids as the partners of riT

PrT ps = corr({ch,,}, {C,s,,}). 2)

Thus, each target grid r” has identified their intercity
similar-grid partners in the source city with top-k similarity
coefficient values.

B. Auxiliary Features’ Construction

This phase aims to construct auxiliary features for each
target city grid, using the source-city-specific contexts of
several similar source city grids. In particular, we separate the
context data in the source city into two groups, i.e., common
contexts shared by both the cities and source-city-specific
auxiliary contexts which are only collected in the source city
and the target city did not release this type data. Note that there
is no requirement for city-specific context data selection. Then,
we construct auxiliary features for the target city with the same
feature dimensionality as the auxiliary contexts in the source
city. More specifically, for each target city grid 7, we can
find & matched similar-grid partners {r;s, rf Y r,f } in the
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source city after similarity coefficients’ computation. A simple
and effective method is to calculate the average value of the
auxiliary contexts of these source city grids {riS , rf s rks},
as presented in (3). a,s is defined as the auxiliary data of
the grid ris . A7 is defined as the set of constructed auxiliary
data in the target city grids, a,7 is defined as the constructed
auxiliary data in the grid 7. a,r € AT

k
a7 = pr,s X as. 3)

i=l1

C. Dense Convolutional Network With Unsupervised
Domain Adaptation

After auxiliary features’ construction for the target city and
features’ embedding from both the source city and the target
city, we propose a dense-convolutional-network-based [38]
UDAC to learn knowledge and apply to the target city for
unsupervised crime risk prediction. The input data include
common and auxiliary features in S, common context features
in 7, and constructed auxiliary features in 7. The first
two features are embedded as one-hot representation. The
common context features in 7 would be concatenated with
constructed auxiliary features in 7 together, and then fed
into the network. Then we use a layer convolution operation
(Conv) to capture the latent features. After that, three layers
of composite operation are presented, which are defined as
a sequential combination of batch normalization (BN), rec-
tified linear units (ReLUs), and Conv. The three layers are
following a dense connectivity pattern, which can connect
each layer of the network to each other layer in a feed-
forward manner. The implementation of the dense connectivity
pattern here facilitates feature learning and improves feature
propagation, while alleviating the vanishing gradient issue.
High level and features are learned effectively after the final
composition operation (BN-ReLU-Conv). With the proposed
network, we need to optimize the parameters following three
objectives simultaneously, to accomplish the unsupervised
domain adaptation task as predicting crime risk in cities with
unlabeled data.

The first objective is to minimize the crime risk prediction
error on S in the Frobenius norm. We define the loss L, as
in (4), for further optimization of the parameters learned from
the source city

= DS — pS|>. 4
t
L” ZH IHF “)
t

The second objective is to maximize the domain classi-
fication error with the purpose of learning domain-invariant
features. If a domain classifier is unable to identify which
specific domain features should belong to, these features can
be treated as domain-invariant features [39]. Here, we use
binary cross-entropy as the domain classification loss Ly as
in (5) and denote d; as the predicted domain label and d; as
the ground-truth value. Ms and M7 are defined as the number
of training samples from S and 7, respectively,

Ms+Mrt

Le= Y. dilog(d)+ (1 —d)log(l —dp). (5
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The third objective is to minimize the distribution discrep-
ancy distance between the source and target city datasets.
Following [14], we use the way to compute the dis-
tance as the maximum mean discrepancy (MMD) distance.
MMD( S, f7) is defined as the distance estimated between
high-level learned features from two cities, i.e., f° and f7.
®(-) is a kernel function, and we adopt the Gaussian radial
basis function to calculate the distance. The computation is
shown as follows:

Ms Ms
MMD(f%, f7) = Mz ZZ@ 217
My My
ZZ (1)
Ms My

MSMTZZ@ 507, ©

The total optimization function is the combination of afore-
mentioned functions, with optimization on 6,, 04, and 0,
as shown in (7). u and 4 control the strength caused by domain
adaptation from city S to city 7

#Ld (ed» (9;11) + /“\//I-M'B(em)
(7

To solve this task, we use a popular parameter optimization
method, the stochastic gradient descent (SGD) [40], to learn
these parameters. Thus, 0, 04, and 0,, can be updated through
the following optimization process:

min L = 9,,“5% L («91,, 9m) —

6,, = argmin L(H,,,Hd,ﬁm) (8)

é;, = arg;’nin L(H,,,Hd,ﬁm) )

6’~d = arg(;nax L(e,,,ed,em) (10)
i

L = L,(0y,600) — uLa(ba,0n) + AMMD(@,). (1)

V. EXPERIMENTS

In this section, we first introduce datasets used in this
study, implementation and evaluation metrics, as well as
comparison methods. After that, we evaluate the performance
on both prediction and ranking, respectively. We also conduct
a parameter study to investigate the effect of the parameter on
the prediction tasks.

A. Dataset

We collect crime data and external relevant data during
the year 2015 from three cities, i.e., NYC, Chicago, and LA.
The crime datasets contain all the reported crime occurrences
with detailed information, e.g., crime types and locations. The
external datasets include weather conditions, POI distribution,
police station distribution, and taxi mobility. Specifically,
we collect meteorological data of the three cities from a public
website [41], including weather conditions and temperature
information. For POI distribution, we collect POI distribution

TABLE I
SUMMARY OF DATASETS

City NYC Chicago | LA

# Grid 899 683 1,377

# Crime 467,665 200,575 | 212,762
# Weather 365 days

# POI 53,374 18,601 15,102
# Police Station | 77 23 21

# Taxi trips 93,975,444 | / /

data from [42], and each belongs to the first-tier categories of
Foursquare. We collect the taxi mobility dataset from NYC
Taxi and Limousine Commission (NTLC) [43]. For each city,
we split the city into multiple grids. The number of grids
among the three cities is different, that is, NYC has 899 grids,
Chicago has 683 grids, and LA has 1377 grids. Thus, we select
25 x 25 grids in this study. The time duration is set as one
day. The summary of these datasets is presented in Table I.

B. Implementation and Evaluation Metrics

With these cities, we conduct six experiments to show the
effectiveness of our model, i.e., NYC — Chicago, Chicago —
NYC,NYC — LA, LA — NYC, Chicago - LA, and LA —
Chicago. Since we collect more data from NYC than Chicago
and LA, the extracted feature dimensionality from NYC and
Chicago is different, while the extracted feature dimensionality
from LA and Chicago is the same. For each experiment,
we define the city before the arrow as the source city and the
city after the arrow as the target city. More specifically, for the
experiments of NYC — Chicago and NYC — LA, we collect
more data from NYC than Chicago and LA, and it is easy to
separate the common contexts and auxiliary contexts. For the
experiments of Chicago — NYC and LA — NYC, we do
not take taxi trip data and police station distribution data in
NYC into consideration. For the experiments of Chicago =
LA, we discard the police station distribution data in the target
city. In these experiments, police station distribution data are
treated as source-city-specific contexts in the source cities.

We have presented a flowchart of our proposed method,
as shown in Fig. 2. In particular, after we have collected all the
accessible data, we split them into two datasets, i.e., training
dataset and testing dataset. The training dataset consists of all
the labeled data from the source city and half of the unlabeled
data from the target city. The testing dataset consists of the
remaining half of the data from the target city. We divide
the training datasets into common context data and auxiliary
context data, to create auxiliary features for the target city,
and then train a dense-convolutional-network-based UDAC.
We obtain a trained model after completing training the model,
then use the testing data with the trained model to test the
performance, and finally achieve the final prediction results
in the target city. The detailed implementation parameters
are set as follows. The model is trained for 5000 epochs.
The batch size is set at 32. Most of the convolution layers



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

( Start )—P| Get Data Split Data
Training
Dataset

Separate Common
Context Data and
Auxiliary Context Data

Source: Source: Target:

Auxiliary Common Common
Context Data, Context Data Context Data,
Target: Auxiliary

Features
Construction

Testing
Dataset

Features
Embedding

Features

Embedding Test Model

Prediction
Results: Crime
Risk in Target
i
y Feanues
Train Dense Convolutional
| Network-based Unsupervised Trained Model End
Domain Adaptation Model

Fig. 2. Flowchart of our UDAC.

Embedded Contructed Embedded
Features Auxiliary Features Features

have 16 filters with a kernel size 3 x 3, and the final layer
has one filter with 1 x 1 kernel size. The penalty parameters A
and u change gradually every ten epochs. The learning rate
during optimization is set as 0.001. These parameters’ values
are chosen based on the needs of the experiments. Alternative
values are also possible

RMSE = i\/z Z d,, (12)
MAPE——ZZ|d”_ - (13)
MAE = —ZZ\d,, —dy,| (14)

15)

HR@K = m Z,: 1 (listg (1), Tistg (7).

For the evaluation metrics, we use the root mean square
error (RMSE), the mean absolute percentage error (MAPE),
the mean absolute error (MAE), and the hitting rate @K
(HR@K) as the evaluation metrics. Thus, we can evaluate
both the prediction performance and the ranking performance.
Since crime is a low-frequent and sparse event, there have
been lots of grids with value zero. Here, we only consider
the scenarios where there is a nonzero value between the
ground truth and the predicted value, the number of which
is denoted as N. The computation of these metrics is defined
in (12)—(15), respectively. For HR@K, we define listg () as
a ranking list of most threatening grids, and @K(t) as the
predicted ranking list. We also use /() [10] as the binary
function to calculate the number of identical pairs. T is defined
as the total time duration in the experiments. The computation
of HR@K is shown in (15). A smaller RMSE/MAPE/MAE
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value indicates a more accurate prediction performance, while
a higher HR value brings a better ranking performance.

C. Comparison Methods

To demonstrate the superiority of our proposed model,
we compare our model with several methods. Due to the
contexts’ inconsistency between the source city and target city,
these methods train their prediction models after discarding the
auxiliary context data in the source city.

1) CNN: This method is a typical three-layer convolutional
neural network (CNN) model trained only using context
data and crime data from the source city.

2) DDC [44]: This method incorporates a CNN model
with an adaptation layer and MMD to identify domain-
invariant features.

3) Deep Adaptation Network (DAN) [45]: This method adds
three adaptation layers on the basis of the deep domain
confusion (DDC) method and adopts multikernel MMD
for better representation abilities.

4) Domain-Adversarial Neural Network (DANN) [46]: This
method proposes a deep neural network with a domain
discriminative component so that the classifier cannot
identify the specific domain.

5) RegionTrans [15]: This method is able to achieve
cross-city transfer learning to learn a predictive model
while addressing the representation divergence with
matched region pairs.

6) STCNet [32]: This method develops a transfer learn-
ing mechanism to improve knowledge reuse in various
domains and leverages a convolutional LSTM network
to represent the spatial-temporal dependencies.

7) DATN [47]: This method designates task-specific feature
learning networks and domain adversarial training tech-
niques to cope with the domain distribution discrepancy
issue.

8) ARG-STNet [48]: This method proposes a generation
strategy to learn long-term spatial-temporal dependen-
cies and subsequently transfer them to the target domain
with few-shot learning.

9) UDAC-aux: This method is a variant of our proposed
UDAC. It discards the auxiliary feature construction
module and then trains a prediction model based on the
dense convolutional network with unsupervised domain
adaptation for further crime prediction tasks in the target
city.

D. Prediction Performance

We present the experimental results of the prediction per-
formance comparison by our UDAC model and comparison
methods in terms of RMSE, MAPE, and MAE, through
six experiments between different city pairs, i.e., NYC —
Chicago, Chicago — NYC, NYC — LA, LA — NYC,
Chicago — LA, and LA — Chicago. These results are
demonstrated in Table II.

Horizontally, we observe that our proposed model UDAC
outperforms all the comparison methods, with an improve-
ment of 62.20%, 15%, 13.6%, 9.97%, 5.81%, 5.11%, 6.11%,
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TABLE 11
PREDICTION PERFORMANCE COMPARISON

S Target Regi STC- ARG- | UDAC
ouree T8 | Metric | CNN | DDC | DAN | DANN | 8! DATN UDAC
City City -Trans | Net STNet | -aux
RMSE | 1.619 | 0.724 | 0.704 | 0.676 0.660 | 0.651 | 0.643 | 0.639 | 0.645 0.618
NYC Chicago | MAPE | 0.448 | 0.298 | 0.273 | 0.308 0.280 | 0.268 | 0.294 | 0.286 0.217 0.121
MAE | 0.736 | 0.276 | 0.279 | 0.257 0.259 | 0.268 | 0.264 | 0.301 0.293 0.214
RMSE | 1.717 | 0.752 | 0.757 | 0.713 0.697 | 0.700 | 0.701 | 0.678 | 0.668 0.652
Chicago NYC MAPE | 0466 | 0311 | 0.288 | 0.303 0.287 | 0309 | 0.293 | 0.277 | 0.195 0.140
MAE | 0.610 | 0.354 | 0.261 | 0.249 0.258 | 0.256 | 0.332 | 0.254 | 0.291 0.243
RMSE | 1.646 | 0.737 | 0.721 | 0.697 0.652 | 0.640 | 0.662 | 0.640 | 0.652 0.626
NYC LA MAPE | 0.453 | 0.308 | 0.277 | 0.294 0.278 | 0.265 | 0.293 | 0.264 | 0.179 0.130
MAE | 0.657 | 0.332 | 0.331 | 0.272 0.318 | 0.261 | 0.322 | 0.302 | 0.286 0.218
RMSE | 1.728 | 0.773 | 0.757 | 0.737 0.696 | 0.695 | 0.697 | 0.688 | 0.685 0.635
LA NYC MAPE | 0.473 | 0.303 | 0.302 | 0.315 0.279 | 0.288 | 0.290 | 0.290 | 0.170 0.140
MAE | 0.747 | 0.314 | 0.250 | 0.283 0.253 | 0.246 | 0.337 | 0.277 | 0.286 0.213
RMSE | 2.142 | 0.955 | 0.942 | 0.890 0.852 | 0.851 | 0.862 | 0.859 | 0.846 0.813
Chicago LA MAPE | 0.526 | 0.359 | 0.357 | 0.349 0.312 | 0.330 | 0.311 0.327 0.196 0.143
MAE | 0.942 | 0.414 | 0.450 | 0.299 0.325 | 0.345 | 0418 | 0.311 0.352 0.270
RMSE | 2.134 | 0.944 | 0.925 | 0.899 0.849 | 0.837 | 0.859 | 0.855 | 0.831 0.809
LA Chicago | MAPE | 0.486 | 0.340 | 0.316 | 0.327 0.315 | 0342 | 0.327 | 0.318 | 0.246 0.156
MAE | 0.723 | 0.435 | 0.439 | 0.451 0.324 | 0.294 | 0.385 | 0.386 | 0.336 0.303
CNN Chicago->LA
DDC NYC->LA
DAN
LA
DANN
. LA->Chicago
RegionTrans
STCNet NYC->Chicago
DATN Chicago
ARG-STNet LA->NYC
UDAC-aux Chicago->NYC
mmm CNN(target)
UDAC NYC s UDAC
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.2 04 0.6 08

ExecutionTime(s)

Fig. 3. Execution time comparison.

4.63%, and 4.07% in RMSE, respectively, among all the
six experiments. In terms of MAPE, our model obtains
a decrease of 70.88%, 56.69%, 54.05%, 56.19%, 52.62%,
53.76%, 54.12%, 52.81%, and 30.11%, respectively, compared
with the baseline methods. Besides, with consideration of
MAE, the UDAC model achieves an improvement of 66.47%,
30.87%, 25%, 17.68%, 15.64%, 12.28%, 28.59%, 19.8%, and
21.01%, respectively. These experimental results demonstrate
the superiority of our model for predicting crime risk in
an unsupervised manner, which significantly decreases the
distribution discrepancy between two cities’ data. Moreover,
we also observe that the comparison method CNN has the

Fig. 4.
(target).

Prediction performance comparison between UDAC and CNN

worst performance among all the baseline methods. Here,
this CNN method only learns the knowledge from the source
city and applies it directly to the target city for crime risk
prediction. All the transfer learning-based methods outperform
the CNN method, indicating that transfer learning technologies
would be a helpful and valuable tool to solve the crime risk
prediction tasks with unlabeled data. Besides, we observe
that the methods RegionTrans and UDAC-aux obtain bet-
ter prediction performance over the other transfer-learning-
based methods. This implies that the processing of intercity
similar-grid matching is beneficial for subsequent knowledge
transfer. Furthermore, UDAC-aux achieves superior prediction
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Fig. 5.
Chicago.

performance than RegionTrans. The explanation may be that
crime incidents are infrequent and is more sparse than the data
used in the original RegionTrans [15], i.e., crowd flow data.
Thus, to obtain a robust intercity similar-grid matching, the
design of top-k similar-grid matching is more applicable here.
We also observe that STCNet and attention-reptile-generation
spatial-temporal network (ARG-STNet) achieve considerable
prediction performance, which indicates their power of learn-
ing domain-invariant features. In addition, compared with
the variant method UDAC-aux, our UDAC can obtain an

|

§é

HR@5 HR@10

®

Ranking performance comparison. (a) NYC — Chicago. (b) Chicago — NYC. (c) NYC — LA. (d) LA — NYC. (e) Chicago — LA. (f) LA —

average decrease of 4.07%, 30.11%, and 21.01% in terms of
RMSE, MAPE, and MAE, respectively, among conducted six
experiments. This highlights the significance and value of the
auxiliary feature construction module.

Vertically, we note that UDAC is more robust under dif-
ferent configurations of experiments. Among the three cities,
Chicago and LA are more similar than Chicago and NYC,
or LA and NYC, in terms of population, geographic size,
POI distribution, and so on. More specifically, the exper-
iment of NYC — Chicago achieves superior performance
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to the experiment of Chicago — NYC, with lower RMSE,
MAPE, and MAE values. The possible explanation is that
the model trained in the former experiment may be better
able to accurately predict crime risk than the model trained
in the latter experiment, due to more context data in NYC,
such as weather conditions, POI distribution, police station
distribution, and taxi mobility. The experiments of NYC = LA
also have similar performance that the experiment of NYC —
LA obtains better prediction performance than the experiment
of LA — NYC, with lower RMSE and MAPE values and
considerable MAE values, due to the same possible reason.
Besides, we note that experiments of Chicago = LA obtain
comparable performance on crime risk prediction. This may
be because of the similarity between Chicago and LA in many
aforementioned city characteristics.

We further compare our proposed method with the baseline
methods in execution time. Here, the execution time refers to
the average running time of each test sample. It was computed
by dividing the overall running time by the total number of
test samples, and then averaging the results across all the runs
with the same experiment settings. The average execution time
of our proposed UDAC is below 0.5 s on these experiments.
domain adversarial transfer network (DATN) requires approx-
imately 1.2 times the execution time of UDAC for crime risk
prediction, whereas RegionTrans takes a comparable amount
of execution time, as shown in Fig. 3. The possible reason
behind may be the implementation of the auxiliary feature
construction module.

We train a CNN in the target city with all the labeled data
as well, to achieve an accurate crime risk prediction model.
To distinguish with the aforementioned comparison method
CNN, we name this CNN as CNN (target). We then compare
our UDAC model with this CNN (target) on the three cities,
to evaluate the crime risk prediction performance. The experi-
mental results are presented in Fig. 4. From the figure, we can
observe that the supervised method CNN (target) performs
better than our unsupervised domain adaptation method UDAC
among these experiments. Thus, the experimental results gen-
erated by CNN (target) can be treated as the upper bound of
our unsupervised crime risk prediction study. In a word, our
UDAC performs better than all the aforementioned comparison
methods, while being some distance from the single-domain
CNN (target).

E. Ranking Performance

We also conduct experiments to examine the accurate
prediction capability of our proposed UDAC model and
other comparison methods, using the HR metric. Specifically,
we predict m grids with the highest m level of high crime
risk in the target city and compare them with the actual high
crime risk grids in the source city. The experimental results
are presented in Fig. 5. Each figure demonstrates the results
by these methods on one pair of a source and a target city,
with two HR values as HR@5 and HR@ 10, respectively.

We would like to elaborate on the explanation using
the experiment of NYC — Chicago as an illustration.
From Fig. 5(a), it can be shown that our method achieves
the highest HR with the predicted crime values, successfully

0.95
—e— NYC->Chicago NYC->LA Chicago->LA
0.90 4 — Chicago->NYC LA->NYC LA->Chicago
0.85 4
 0.80
(%}
=
< 0.75 1
0.70
065y — .
0.60 T T T T T T
1 2 3 4 5 6

Fig. 6. Parameter impact analysis.

predicting the 5 and 10 most threatening grids in the target
city. Besides, another interesting observation is that for each
method, the HR value obtained by comparing the most ten
threatening grids is less than obtained by comparing the most
five threatening grids. This is not difficult to understand.
Crime incidents are low-frequent events, and the majority
of grids may witness few crimes for a long time. Only a
small percentage of grids would experience threatening events
frequently, such as places with few security forces and valuable
property. Thus, predicting five most threatening grids would
yield more accurate results than predicting ten grids.

F. Parameter Study

We also study how the parameter k affects the crime
prediction performance. The parameter impact analysis results
are presented in Fig. 6. Here, k refers to the number of
source city grids used to select intercity similar-grid pairs.
From the figure, we discover that optimal selection of k is
different among these experiments to predict crime risk in
cities with unlabeled data. It would be more accurate to make a
prediction using k equal to 3 for the experiments of NYC —
Chicago and NYC — LA. Number 4 is the optimal choice
when considering the results of the experiments conducted as
Chicago — NYC and LA — NYC. A larger value for 5 would
bring about improved performance for the experiments carried
out for LA = Chicago.

We take the experiment of NYC — Chicago as an example
to investigate the parameter impact, with number 3 represent-
ing optimal selection for k. This indicates that when we match
three source city grids that are most similar to each target
city grid, and then average the auxiliary context data among
these three source city grids, the auxiliary features constructed
for the target grid are effective and useful for future crime
prediction in the target city. This is accomplished by averaging
the data from the three source city grids. As a result, we select
a different optimal value for k on different experiments.

VI. CONCLUSION

In this article, to solve the prediction tasks with unlabeled
data, we propose an unsupervised domain adaptation method.
This method can learn knowledge from a source city with
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labeled data and transfer it to the target city while addressing
the context inconsistency issue between cities, to predict
crime risk. We partition cities into multiple equal-sized grids
and identify several similar source city grids for each target
grid. Based on these pairs, we construct auxiliary features
for the target city, to address the contexts’ inconsistency
problem across cities. We then propose a dense-convolutional-
network-based unsupervised domain adaptation module to
learn knowledge from the source city and apply it to the
target city for future crime risk prediction. Domain-invariant
features are learned to facilitate knowledge transfer. Extensive
experiments are conducted to verify the effectiveness of our
method using real-world data from NYC, Chicago, and LA.
The experimental results reveal the superiority of our proposed
method over various state-of-the-art comparison methods.

In the future, we intend to improve our work from several
perspectives. First, we plan to explore prediction performance
when more serious contexts’ inconsistency exists between
the source and target cities. Second, we plan to investigate
a fine-grained unsupervised crime risk prediction, such as
predicting crime risk in roads. This would be more challenge
due to severe data sparsity problem.
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