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Abstract—Macrolevel facial muscle variations, as used for
building models of seven discrete facial expressions, suffice when
distinguishing between macrolevel human affective states but
won’t discretise continuous and dynamic microlevel variations
in facial expressions. We present a hierarchical separation and
classification network (HSCN) for discovering dynamic, continu-
ous, and macro- and microlevel variations in facial expressions
of affective states. In the HSCN, we first invoke an unsuper-
vised cosine similarity-based separation method on continuous
facial expression data to extract twenty-one dynamic facial ex-
pression classes from the seven common discrete affective states.
The between-clusters separation is then optimized for discovering
the macrolevel changes resulting from facial muscle activations.
A following step in the HSCN separates the upper and lower facial
regions for realizing changes pertaining to upper and lower facial
muscle activations. Data from the two separated facial regions are
then clustered in a linear discriminant space using similarities in
muscular activation patterns. Next, the actual dynamic expression
data are mapped onto discriminant features for developing a rule-
based expert system that facilitates classifying twenty-one upper
and twenty-one lower microexpressions. Invoking the random for-
est algorithm would classify twenty-one macrolevel facial expres-
sions with 76.11% accuracy. A support vector machine (SVM),
used separately on upper and lower facial regions in tandem,
could classify them with respective accuracies of 73.63% and
87.68%. This work demonstrates a novel and effective method
of dynamic assessment of affective states. The HSCN further
demonstrates that facial muscle variations gathered from either
upper, lower, or full-face would suffice classifying affective states.
We also provide new insight into discovery of microlevel facial
muscle variations and their utilization in dynamic assessment of
facial expressions of affective states.

Index Terms—Affective state assessment, cosine similarity-
based separation, facial expression classification, hierarchical
classification, microexpression detection, rule-based systems.
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I. INTRODUCTION

FACIAL expressions convey internal thoughts, feelings, and
emotions and provide interpretable external signals that

convey variations in affective states [1]. Variations in facial
expressions result from conscious and subconscious processing
of several internal and external stimuli, including any contextual
biases and the interactions between past and present experi-
ences [2]. Patterns of facial muscle movements provide reliable
models for automated recognition of human affective states [3],
[4], [5]. Facial muscle movement models have been used for
realizing complex and difficult to identify affective states and
have been tested using large datasets [5], [6], [7], [8].

Humans realize the dynamic and continuous affective states
through assessment of facial expressions using intuitive knowl-
edge and collective experiences [3]. Given the complexities
of emotion elicitation and the neuro- and pathopsychological
factors behind them, emotions cannot be regarded as static
occurrences in time [5], [9]. Changes in facial expressions are
regarded as continuous and time-dependent functions. There-
fore, we posit that microlevel facial expressions should also
be classifiable within a continuous prevailing space. This ap-
pears logical as microlevel facial expressions represent transient
macrolevel expressions such as perceived expressions of anger,
joy, and fear [10].

Affective computing literature cites a diverse range of related
works on facial expression recognition and affective state as-
sessment [11], [12], [13]. A large majority of the cited facial
expression classifiers use Ekman’s discrete models of affec-
tive states [14]. Ekman’s seven distinct and discrete models
of affective are based on significant macrolevel differences
in facial muscle movement patterns [15], [16], [17]. How-
ever, these seven discrete models cannot represent microlevel
facial expressions.

Microlevel variations in facial muscles can be seen as rep-
resenting delicate, involuntary, and spontaneous changes in fa-
cial expressions and they often show true emotive experiences.
A review of important microfacial expression recognition ap-
proaches [18] suggests that due to their transient nature and
low intensity, microlevel expressions are not captured easily in
real life situations [7], [18], [20], [21]. Because of difficulties
in capturing micro expressions, several interesting approaches
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have been proposed for their realization. For example, an ac-
cretive layer was added to a hybrid network in [19] for refining
the features of facial expressions. Microfacial expressions were
recognized in [22] using the accordion spatiotemporal data
classified by the random forest (RF) algorithm. Similarly, in [7],
an algorithm ensemble that exploited the handcrafted features
and deep features was used for identifying faces and classifying
microfacial expressions.

In order to assess human facial expressions, analysts would
usually rely on discriminative spatiotemporal features. In [22],
a hybrid deep learning approach was proposed. The method
first uses a spatial convolutional neural network (CNN) for
processing static facial images and then uses a temporal CNN
for processing the optical flow in images to separate yet simul-
taneous learning of significant spatial and temporal features.
These significant spatial and temporal features are taken to a
deep belief network (DBN) model where the average pooling
is performed to obtain the fixed-length global feature repre-
sentation. Finally, a support vector machine (SVM) performs
the classification [22]. The complexity and computational costs
required for continuous dynamic assessment of affective states
in [22] were also observed in several other works [23], [24],
[25]. Despite the recent advances, the idea of extracting mi-
croexpressions from the discrete models of affective states has
not been explored much.

For avoiding data acquisition problems and algorithmic com-
plexities involved in building dynamic and occluded facial
expression classifiers, this work proposes a novel method of
classifying micro, macro, continuous, and dynamic-facial ex-
pressions. We use a rule-based expert system to exploit facial
muscle movements for classifying micro- and macrolevel facial
expressions. The hierarchical separation and classification net-
work (HSCN) used in this work consists of three subsystems,
viz., 1) a module for macrolevel affective state assessment using
whole face data; 2) a module for upper facial region microex-
pression classification; and 3) a module for lower facial region
microexpression classification. We used an unsupervised, co-
sine similarity-based separation method for exploiting mutual
information in continuous facial expression data, facilitating the
discovery of boundaries and regions within a multidimensional
hyperplane. A following linear discriminant analysis (LDA)
subsystem further separates and clusters facial expressions by
identifying discriminant features and realizing multiple hyper-
planes within the discriminant space [2], [26]. Compared with
other statistical and neural multilabel data classification tech-
niques, LDA is considered computationally efficient as it would
reduce the dimensionality and requires lesser amount of training
data [13], [26], [27].

Following the LDA transform, the HSCN uses a novel
rule-based expert system for upper and lower facial region
microexpression classification. The expert system uses data
pertaining to the continuous muscle movements and the logic
manifested in facial action coding system (FACS) [28]. Though
in a different context, expert systems have previously been
used for facial expression analyses. For example, in [29] a self-
adaptive expert system used the facial feature contours localized
in a static dual-view facial image to label the interpreted facial

expressions. Authors [30] deployed a belief rule-based expert
system that exploited the outputs of a CNN classifier for
inferring the mental state of a person using the observed facial
expressions. In both cases, rule-based expert systems were used
to augment and improve the classifier performance. Building
upon previous works, we provide another example showing
how rule-based systems can be deployed for continuous and
dynamic assessment of affective states.

A. Contributions

Building upon previous works, this article contributes the
following.

1) We present a novel framework and an ensemble of
classifiers enabling hierarchical separation and classifi-
cation of macro- and microlevel expressions of affec-
tive states. We exploit well-tested generic algorithms
in the context of a dynamic affective state assess-
ment environment.

2) This work demonstrates use of a novel affective state
assessment schema and introduces methods of capturing
and monitoring continuous facial expressions.

3) We introduce a unified and systematic approach of sep-
arating the upper and lower facial regions in a dy-
namic environment and separately classifying them in
tandem for continuous and dynamic classification of
facial expressions.

4) We propose a novel methodology of developing
and applying a rule-base for classifying continuous
macrolevel expressions.

5) We detail implementation of a rule-based expert system
that uses the dynamic linear discriminant features for re-
alizing continuous microexpressions on upper and lower
facial regions.

6) This work presents a systematic way of extracting mi-
crolevel facial expressions of affective states.

In relation to the first contribution stated above—please note
that ensemble approaches are becoming popular in complex
feature classification tasks and detection of implicit patterns
[31], [32]. Such ensemble approaches allow for hierarchical
processing of information signals and enable stepwise refine-
ment of separable features. This work extends application of
ensemble approaches by using an ensemble for microexpres-
sion classification.

This article is organized such that Section I introduces the
work and Section II presents the relevant background infor-
mation. Section III discusses related works and current trends
in the literature. Section IV details methods used for unsu-
pervised clustering and labeling, cosine similarity estimation,
data separation, macro- and microlevel LDA, and construc-
tion of the rule-based expert system. Section V reports results
pertaining to the aforementioned analyses and system valida-
tion. Section V also describes the rule-based expert system.
Section VI concludes this work and provides directions for
future research. Section VII informs on the funding source and
ethics compliance.
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II. BACKGROUND INFORMATION

“Core affect” is a psychological construct that signifies the
continuous nature of emotions and affective states [9]. The
concept of “core affect” helps in interpreting complexities of
human affective states and emotions by providing theoretical
foundations for building a dynamic affective state assessment
solution. The fluidity and multidimensional nature of expres-
sions of affective states described in the core affect model high-
lights the need for a dynamic classifier capable of accounting
for complex, multidimensional expressions.

Several models that represent “unique emotions” have been
introduced in the literature. For example, the authors [4], [33]
attempted to model disgust and anger. Such single-expression
models provide well-defined ways of comprehending and clas-
sifying human expressions of affective states. One such model,
the Hourglass model [34] followed by its enhanced version
[35] highlights the continuous and nonstatic nature of human
sentiment and their assessment. The hourglass of emotions, an
emotion categorization model, was optimized for polarity de-
tection. It was built using empirical data pertaining to sentiment
analysis. Nonetheless, it could be used in the context of affective
state classification. The hourglass model categorizes similar
and dissimilar emotions and presents a dynamic model that
appears more representative of human emotions compared with
the discrete emotion models. Other continuous emotion models
include the Plutchik spectrum and the three-factor model [36],
[37]. Such continuous emotion models can delineate emotions
and their macrolevel expressions [10]. In a somewhat similar
manner, macrolevel expressions have also been assessed along
multidimensional axes of valence, arousal, and intensity [38].

Facial expression analysis and affective state classification
are complex problems. Thus, many of the available solutions
underperform in real life situations. Changes in expressions
of affective states are causal, representing some response to a
particular temporal event or a combination of multiple external
and internal stimulating factors [5], [9]. Responding to certain
stimuli and experiencing particular affective states would cause
internal pathological and physiological changes in humans.
Hence, fluctuations in cues like heart rate, skin conductance,
and hormone balances have been used for affective state classi-
fication. Variations in affective states are also reflected through
external cues like speech rate and/or volume and, hemodynamic
changes on the face and facial expressions [39]. Recent affective
computing and psychophysiology literature highlights limita-
tions of discrete facial expression models and affective state
assessment solutions.

The FACS and emotion facial action coding system
(EMFACS) were discussed in [28] and their application details
were presented in [16], [40], [41], [42]. These works categorize
facial muscles movements through coding and action units
and work as tools for the facial expression assessment and
recognition. The EMFACS action units allow modeling feature
fluctuations in time, as one’s expressions change from one
state to another. The rule-based expert system deployed in this
work for upper and lower facial microexpression classification
is based on the muscle movements defined in the EMFACS.

TABLE I
LIST OF AFFECTIVE STATES PRESENT IN THE CK+ DATASET AND THEIR

CORRESPONDING FACIAL MUSCLE ACTIONS IDENTIFIED IN FACS
AND EMFACS STUDIES

State Action
Units

Physical Actions Muscles

Happy 12 Lip corners raised Zygomaticus major
6, 7 Raised lower eyelids Orbicularis Oculi
26, 27 Open mouth Orbicularis Oris

Surprise 1 Raised eyebrows Medial Frontalis
5 Raised upper eyelids Levator palpebrae

superioris
26, 27 Open mouth Orbicularis Oris

Anger 4 Eyebrow frown Corrugator Supercilii
5 Raised upper eyelids Levator palpebrae

superioris
6, 7 Raised lower eyelids Orbicularis Oculi
23 Lip tightener Orbicularis Oris

Disgust 4 Eyebrow frown Corrugator Supercilii
6, 7 Raised lower eyelids Orbicularis Oculi
9, 10 Raised upper lip Levator labii

superioris
Fear 4 Eyebrow frown Corrugator Supercilii

1 Raised eyebrows Medial Frontalis
5 Raised upper eyelids Levator palpebrae

superioris
26, 27 Open mouth Orbicularis Oris

Sadness 4 Eyebrow frown Corrugator Supercilii
1 Raised eyebrows Medial Frontalis
15 Lowered lip corners Depressor Anguli

Oris
Contempt L12 or

R12
Slight lip corner raised
(asymmetrical)

Zygomaticus major

L14 or
R14

Dimpler (asymmetrical) Buccinator

It would be prudent to note at this point that the “upper facial
region” classifies muscle movements emanating from eyes,
eyelid, brow, and upper cheek, whereas the “lower facial
region” classifies muscle movements emanating from nostril,
mouth, lip, buccinator, and lower cheek [43], [44].

The HSCN we propose was trained on the extended Cohn-
Kanade (CK+) dataset [45] for the dynamic assessment of affec-
tive states and microexpression classification. The CK+ dataset
contains continuous facial expression information as actors
transitioned from an inactive/neutral state to an activated state
as outlined in Table I, along with their corresponding action
units and muscle movements. Using the FACS, the continuous
nature of the CK+ dataset allows for a continuous model of
facial muscle movements in real-time. Visualizing changes in
expressions as time-dependent functions and interpreting them
using the EMFACS can help in the initial validation of the rule-
based expert system being proposed.

Through dynamic modeling of expressions of affective states
and using multiple features, our proposed HSCN aims to im-
prove on prevailing facial expression classification systems
[16], [46]. Considering variations in affective states as functions
of time, the HSCN exploits continuous emotion models and at-
tempts to further their static, discrete classification counterparts.
As HSCN is based on continuous expression delineation, it
goes beyond modeling the transient expressions and expression-
intensity variations at the macrolevel. It also demonstrates the
transience of expressions by modeling continuous microlevel
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muscle movements in upper and lower facial regions and allows
for classification of various microexpressions. Furthermore, the
HSCN builds upon the prevailing dynamic facial expression
recognition systems [47] and proposes an alternate approach
for continuous macro- and microexpression analysis.

Table I makes it obvious that the upper facial muscles move
in a different way compared to the lower facial muscles dur-
ing discrete expressions of affective states. This fact raises a
question—whether one facial region is more important than the
other. Research in [48] answers this question by examining the
human participants’ response to video recordings in order to
determine the relative importance of upper and lower facial re-
gions for classifying facial expression. The study [48] reported
that the importance of different facial regions is dependent on
the affective state being expressed and that a full facial expres-
sion is always easiest to classify [48]. These findings were also
supported by research conducted in [42], which looked at the
impact of different facial regions while attempting to classify
facial expressions. These studies suggest that for developing a
comprehensive affective state assessment system, detection and
classification of both upper and lower facial region microex-
pressions are important [44], [47]. In [48], authors reported
that humans more accurately classify affective states using the
lower facial region expressions compared with the upper facial
region. This pattern was also observed while validating the
performance of the HSCN’s microexpression classifiers.

III. RELATED WORKS

In order to overcome limitations of a single cue-based,
vision-supported affective state classifier, multiple-cue sup-
ported classifiers have been proposed. A recent survey [16]
presents a corpus of affective state assessment solutions, fo-
cusing on the ones related to assessment of audio and visual
cues. Research in [46] reported deployment of a prototype
multimodal affective state assessment machine that used facial
expressions and speech signals to improve the classification
performances of a septenary classifier that could be compared to
those discussed in [16]. For real-time classification of affective
states, an active-camera system has been used to track changes
in the face and integrating them in a classifier that exploits hu-
man face and lip features to describe muscle-based expressions
of affective states [47].

Pfister et al. [49] suggested using temporal interpolation
for feature mapping prior to implementing traditional machine
learning classifiers like SVMs, multiple kernel learning, and
RFs. Xu et al. [50] proposed a “facial dynamics map” which
characterizes microexpression related movements using granu-
lar pixel features along with an algorithmic approach that was
based on optical flow estimation. Xu et al. [50] employed a
SVM classifier to identify and categorize different types of fa-
cial microexpressions. Polikovsky et al. [40] used the EMFACS
for microexpression detection such that their method divided
full facial images into smaller facial regions based on action unit
locations. A histogram of oriented gradients (HOGs) approach
was combined with the K-nearest neighbor (KNN) classifier for
detecting microexpression and action unit activations.

Instead of exploiting the visual cues, the authors [41], [42]
used facial thermal features for facial expression classifica-
tion. In [41], facial thermal features were compared on the
basis of muscle-activated temperatures along both, upper and
lower facial regions. In [42], the authors reported differences
in classifier performances when different subregions of the face
were used for feature extraction. While thermal features are
more innate and use biometric data, their use case in real-
time systems is hampered by the cost and accessibility of
thermal cameras.

In [51], authors deployed an extension of the popular bidirec-
tional transformer (BERT) model called micron-BERT, which
exploited attention maps to perceive the difference between
two frames. Authors performed experiments using 3/4/7 classes
[51] and proposed a solution. In this work, we used HSCN
to model 21 microexpressions in both the upper and lower
facial regions. Similarly, in [52], authors proposed an attention-
based magnification-adaptive network (AMAN) to focus on
the magnification levels of different microexpressions. Their
proposed network deployed a magnification attention module
which leverages a pretrained ResNet-18 model followed by a
frame attention module which combines the five-class classifi-
cation [52].

We collate the related works in Table II and summarize:
1) feature space; 2) deployed architecture; 3) microexpression
classification; 4) macrolevel facial expression classification;
5) number of classes modeled; and 6) accuracy/performance
metric. Through these works, we observed that feature maps and
attention mechanisms were common in microexpression recog-
nition literature (including thermal representations). In these
works, the authors also stressed on the fleeting nature of mi-
croexpressions and the difficulty in modeling real-time changes
in microexpressions. We therefore propose the HSCN frame-
work as a vehicle to model activations in time and use upper
and lower facial region microexpressions to explain the detected
macrolevel expressions.

IV. METHODS

Unsupervised learning approaches help in discovering ef-
fective states by separating and labeling patterns within a col-
lection of unlabeled data. Therefore, unsupervised learning is
widely used for pattern classification for assessing affective
state. Previous works had treated continuous expression inten-
sity estimation as an unsupervised learning problem. Generally,
continuous expression sequences begin as a neutral expression
and evolve to a fully activated and unique facial expression [12],
[53]. The corpus of unsupervised learning algorithms is exten-
sive, ranging from dimensionality reduction to manifold learn-
ing, to linear and nonlinear clustering techniques [54]. These
methods rely on statistical foundations. They detect similarities
within a set of unlabeled data and exploit either similarity or
dissimilarity measures for the purpose of identifying trends and
building clusters in a classification space [54].

Our ultimate aim was to deploy a model that would rep-
resent upper, lower, and full facial expressions using linear
representations and describe changes in micro- and macrolevel
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TABLE II
COMPARISON OF WORKS DISCUSSED IN SECTION III, HIGHLIGHTING THE FEATURE SPACE, DEPLOYED MODEL, PERFORMANCES, AND CAPABILITIES

REGARDING UPPER, LOWER, AND FULL-FACIAL CLASSIFICATION

Author Features Deployed Model Upper Face Lower Face Full-Face No. Classes Classification
Accuracy

Vice [46] Image space InceptionV3, Xception X X � 7 75.88%–92.78%
Oliver [47] 2-D “blob” features Hidden Markov Model

(HMM)
X � X 5 95.95%

Pfister [49] Active Shape Model
(ASM) feature points

Multiple Kernel Learn-
ing (MKL), RF, SVM

X X � 2 47.6%–83.0%

Xu [50] Facial landmarks →
Facial dynamics map

SVM X X � 2–3 41.96%–75.66%

Polikovsky [40] 3-D Orientation Gra-
dients Histogram +
AUs

K-means classifier +
voting

� � X 47 68.34%–81.5%

Khan [41] Thermal features →
Principal components

PCA + LDA X X � 3–6 71.05% and
73.0%

Khan [42] Thermal features →
Principal components

PCA + LDA � � � 5 66.28% and
56.0%

Nguyen [51] Image → Attention
Map

Modified BERT � � � 3–7 32.54%–89.14%

Wei [52] Image → Attention
Map

Modified ResNet-18 X X � 5 66.82%–79.87%

This work Image space → Lin-
ear discriminants

LDA, SVM, RF � � � 3 x 21 73.63%–87.68%

Fig. 1. Comparison of different projection/embedding techniques that were explored during HSCN’s early design stages including: (a) LDA; (b) t-distributed
stochastic neighbor embedding (t-SNE); (c) spectral embedding; and (d) principal component analysis (PCA). Through these projections, use of LDA was as
the basis for the HSCN is justified.

expressions. To achieve this, we needed to separate discrete,
septenary class data into a continuous representation that
could describe more nuanced expressions of states using mus-
cle movements.

In early design stages, we experimented with projection tech-
niques like t-SNE, PCA, and spectral embedding, among others.
We found that LDA resulted in the most optimal intra- and
intercluster variance in two dimensions while using 100 × 100
pixel images. Results of these experiments are visualized in
Fig. 1. These figures revealed that LDA produced well-defined
clusters that would reveal cluster-to-cluster relationships and
define a logical rule-based system. This influenced our decision
to opt for LDA moving forward.

The HSCN combines two techniques as shown in Figs. 2
and 3. The initial unsupervised clustering and labeling approach
is based on measurements of cosine similarity measures in
continuous data that were projected onto an m-dimensional
hyperplane. Similar approaches were used in [55], [56] for
multiclass facial expression classification.

The LDA transform has been previously used for maxi-
mizing the separation between clusters [57]. Invoking LDA
would project the high-dimensional data onto a lower dimen-
sional linear discriminant (feature-based) space and would clus-
ter data in a way that maximizes the intercluster variance
and minimizes the intracluster variance. This method maxi-
mizes the separation between cluster centroids while minimiz-
ing the separation between samples that belong to the same
class [58].

Analyzing the separated clusters enables modeling the state-
to-state transitions and classification of macrolevel affec-
tive states in a continuous domain. Clusters formed at the
macrolevel via LDA provide foundations for defining the mi-
crolevel clusters of lower and upper facial regions’ data. As
visualized in (1), these lower and upper facial regions’ data
relationships could have been more complex if other embedding
techniques were deployed. Thus, the hierarchical clustering
approach provides the structure to build the HSCN’s rule-based
expert system. Dimensionality reduction and clustering using
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Fig. 2. Preprocessing of continuous expression data and their unsupervised cosine-similarity based separation. Note how continuous frame data from the
CK+ dataset are input and preprocessed prior to undergoing the cosine similarity-based separation and clustering in the HSCN.

LDA were regarded as a set of logically apt optimization steps
for this work.

Solution to the optimization problem was found in deter-
mining the linear discriminants, which corresponded to the
largest eigenvalues of W−1B, noting that the number of linear
discriminants required to solve an LDA problem depends on the
number of labeled classes in a given set [58]. Facial expression
data “xi” were then projected onto the discriminant function
used for the classification tasks and for determining to which
class “k” an expression “xi” would belong to on the basis of
similarity measures. For example

b′(xi − x̄1)− b′(xi − x̄k)− · · · − b′(xi − ¯x21)< 0 (1)

where “x̄k” defines the kth cluster centroid.
As shown in Figs. 2 and 3, projections onto the lower dimen-

sional space were applied in two stages.
1) Projection of the cosine similarity-separated clusters onto

a two-dimensional linear discriminant space, maximiz-
ing separation between cluster centroids to create the
macrolevel facial expression classifier.

2) Projection of upper and lower facial region data onto
two-dimensional space divided by hyperplanes. Using
the rule-based expert system allowed for the systematic
detection and classification of upper/lower facial region
microexpressions.

The processes and subsystems contained within the HSCN
framework are further discussed in the following sections.

A. Cosine Similarity-Based Separation

Some definitions of the used terms and concepts are given as
follows for explaining the unsupervised separation and cluster-
ing methodology.

1) xi = {x1, x2, ..., xm} defines a pattern or feature vector,
i.e., a flattened facial expression image containing “m”
raw pixels/features.

2) X= {x1,x2, ...,xN} defines a set of “N” input patterns
all containing “m” features. In this work, “X” defines
a continuous series of facial expression images ranging
from neutral to activated, which have been projected onto
an m−dimensional hyperplane.

3) C= {c1, c2, ..., ck} defines the “k” class labels for the
patterns contained in the pattern set “X.” As men-
tioned earlier, there are k = 21 classes for all micro- and
macrolevel classifiers in the network.

Similarity measures have been used in both supervised and
unsupervised learning problems [53]. Discovering similarity
and dissimilarity measures across “N” patterns in a con-
tinuous sample set “X” allows for categorizing subsets of
patterns based on similar features and mutual information.
The HSCN is split into three major subsystems, the first is
tasked with the autonomous extraction of dynamic, macrolevel
affective state clusters from a set “X” of data. Separation
and initial clustering of patterns was based on mutual in-
formation extracted via cosine similarity measures. Separa-
tion of continuous data was done by comparing the cosine
similarity between all images/patterns within an m-dimen-
sional hyperplane.

Cosine similarity leans on measuring the angle between two
image vectors {xi,xj} projected onto a hyperplane of dimen-
sion “m” [59]. As the mutual information between the two
vectors increases, the angle between them decreases, such that
cos θ = 1 when i= j. The cosine similarity between two im-
ages was therefore calculated as such

Scosθ =
xi · xj

|xi| |xj|
. (2)
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Fig. 3. Visual summary of the proposed HSCN containing a rule-based expert system. The flowchart shows how facial image data are processed from input
to macro- and microlevel assessment stages, and how classification results are reported and displayed to the users. Combined with Fig. 2, one can see how
the ensemble of RFC, LDA, and SVM models were deployed across various stages.

In the CK+ dataset, a large intercluster variance was observed
using the cosine similarity approach. In this work, cosine sim-
ilarity measures were used to detect a set of any two serial
expressions showing higher levels of dissimilarity. Regarding
the CK+ dataset; high levels of dissimilarity indicate a notice-
able change in affective state expression intensity. For each
continuous set of facial expression samples, the dissimilarity
detection algorithm allowed for the separation of large clusters
of images into three, macrolevel facial expression clusters based
on similar features, labeled as follows:

1) Cluster 1: Neutral-dominated state;
2) Cluster 2: Partially activated state;
3) Cluster 3: Fully activated state.
This initial unsupervised separation process was performed

through a “frame-to-frame gradient analysis” which iterates
through continuous data and calculates the dissimilarity mag-
nitude “ΔScosθ” between facial expressions in the series. The
gradient magnitude was calculated as

ΔScosθ = Scosθ(xi,xi)− Scosθ(xi,xi+1) (3)

with “Scosθ(x,y)” defining the similarity measurement between
the two serial expressions. This equation is applied “N− 1”
times to define all frame-to-frame transitions in X.

Dissimilarity magnitudes were used to detect locations of
peak dissimilarity, which defined the cluster boundaries within
the hyperplane. The deployed algorithm splits X into two equal

length subsets, with the global maxima (peak dissimilarity)
being defined in each half. By modeling the continuous nature
of affective states, this allowed for classification of twenty-one,
transient macrolevel facial expressions. The separation of CK+
image samples via the cosine similarity method is shown in
Fig. 2 and is further explained through Algorithm 1.

Theoretically, this algorithm could be extended to increase
the resolution of the transient facial expression classes. Increas-
ing the number of dissimilarity peaks would correspond to an
increase in the number of clusters extracted from a continu-
ous sample such that: Nstates =Npeaks + 1. Furthermore, this
method is not limited to the image domain and could be de-
ployed for the separation of affective speech and video data.

B. Macrolevel Linear Discriminant Analysis

The initial clustering via the cosine similarity-based sepa-
ration method were input into the second tier of the HSCN,
where macrolevel LDA clustering was performed. Please note
that LDA has been extensively used to effectively separate and
cluster labeled facial expressions by discovering hyperplanes
within a linear discriminant space [60]. The clustering was
achieved by maximizing intercluster variance in order to op-
timize cluster centroid separation. Fig. 4 highlights results of
the macrolevel LDA clustering algorithm when applied to a
large volume of continuous facial expression data. Analyzing
the cluster centroids in subplot 2 of Fig. 4, we see emergence
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Fig. 4. Macrolevel LDA clustering results. Subplot 1 on the top left is the input from the initial, cosine similarity-based separation algorithm displaying all
data samples extracted from the CK+ dataset. Subplot 2 on the top right are the cluster centroids for each of the macrolevel expressions with the centroid
closest to (A) fully activated anger; (B) fully activated happiness; (C) fully activated sadness; and (D) fully activated surprise. We expand on these state
transitions in another figure.

Algorithm 1: Cosine similarity-based separation
input: Continuous CK+ Dataset samples
Define X= {x1,x2, ...,xN}
for xi in X do

Extract Facial Image
Reshape xi to 150 × 150 pixels
Convert xi to greyscale
Flatten xi, i.e. xi = {x1, x2, ..., x22500}

end
Let “xi” = ith test facial expression vector
Let “xj” = comparison vector
for i= 1; i≤N ; i= i+ 1 do

for j = 1; j ≤N ; j = j + 1 do
Scos θ =

xi·xj

|xi||xj|
end

end
for i= 1; i≤N − 1; i= i+ 1 do

ΔScos θ = Scos θ(xi,xi)− Scos θ(xi,xi+1)
end
Detect max[ΔScos θ] in each half of X
Define 3× dynamic clusters per state
output: 21 Macrolevel Facial Expression Clusters

of linear trends from inactive (_NEUTRAL) expressions to
partial expressions (_PARTIAL) to fully activated expressions
of all affective states. Furthermore, using points {A,B,C,D},
we can begin to construct two continuous axes that separate
these states:

1) sadness (C) to happiness (B);
2) anger (A) to surprise (D).
We needed to understand “the theoretical underpinning of

these axes?” The linear discriminant space visualized in Fig. 4
was a low-dimensional linear discriminant representation of
facial expressions, a mapping that corresponded with certain

feature changes and variations in facial expressions at a higher
level. We also noticed that the other three activated states (con-
tempt, disgust, and fear) centroids resided on the two defined
axes, with contempt existing at the intercept of the two axes.
This was predictable as it was the most “neutral” expression
relative to the other affective states being modeled.

Henceforth, defining rules on the basis of the logical foun-
dations of the EMFACS and Table I became very important.
Comparing changes in muscle activations from one state to
the other state would help in determining what these linear
relationships actually represented in real-life. This would also
provide foundations for building a rule-based expert system
capable of detecting and classifying microexpressions. By com-
paring sadness and happiness muscle activations in Table I, we
were able to model the state-to-state transition and visualize
how expressions changes were based on muscle movements as
shown in Fig. 5. Given the common facial muscles involved in
changing the expression from sadness to happiness, we could
define an axis rule.

Sadness–happiness axis rule: Sadness and happiness share
common facial muscle groups surrounding the mouth, cheek,
and eyelid regions. The formed axis would model the following
transformations: 1) parallel relaxation of brows and raising of
cheeks; and 2) raising of lip corners and mouth from an initial
down-turned expression.

Similarly, comparing anger and surprise muscle activations in
Table I, we could model the transition from anger to surprise as
visualized in Fig. 5. Note that in this case, both states evidenced
“raised upper eyelids” which was useful when attempting to
derive a clearer relationship. Given this second example and the
common muscle groups and facial regions that were activated
(eyebrow and mouth region), we could define a second axis rule
as the following.

Anger–surprise axis rule: Anger and surprise share com-
mon facial muscle movements surrounding the mouth and
eyebrow regions and share a consistent “raised upper eyelid”
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Fig. 5. Left: State-to-state transition along the sadness—happiness trend as visualized in Fig. 4. Examples of neutral and partial states are also shown. Right:
State-to-state transition along the anger–surprise trend as visualized in Fig. 4. Examples of neutral and partial states are also shown.

TABLE III
STATE-TO-STATE COMPARISON SHOWING DIFFERENCES BETWEEN THE nTH

LINEAR DISCRIMINANTS. THE HIGHLIGHTED NUMERICAL VALUES

DISPLAY HIGH AND LOW |ΔLDn| VALUES

PX → PY State → State |ΔLD1| |ΔLD2|
A → B Anger → Happy 0.8170 0.1683
A → C Anger → Sadness 0.0159 0.2163
A → D Anger → Surprise 0.6563 0.6789
B → C Happy → Sadness 0.8329 0.3846
B → D Happy → Surprise 0.1606 0.8471
C → D Sadness → Surprise 0.6722 0.4626

activation. Therefore, the state-to-state transition could model
the following transformations: 1) eyebrows raise from an initial
frowned/depressed position; and 2) mouth opens from an initial
tightened expression.

Expanding on the two rules that have been formed thus far,
we might postulate an initial hypothesis in regard to what the
X and Y axes (i.e., linear discriminant 1 and 2, respectively)
represented in this case. Let the linear discriminant “n” be de-
noted by LDn, the |ΔLDn| values when comparing states, i.e.,
points A→D in subplot 2 of Fig. 4 are reported in Table III.
Together with Fig. 6, these results serve as the basis for proving
the validity of the rule-based microexpression classifier [61].
Given the evidence provided, we could define the following
hypotheses and macroexpression rules.

1) LD1 relates to the openness of the mouth and the lower
region of the face given the following evidence.
a) Sadness and anger shared a low ΔLD1. The two com-

mon actions between the states were: “upper eyebrow
frown” and “lips tightened/lowered corners.”

b) Presence of two common actions would be trouble-
some if not for the presence of the surprise and hap-
piness states, which also shared a low ΔLD1. The
common action between surprise and happiness re-
volved around raised lip corners and ultimately, the
open mouth.

Fig. 6. Visualized state-to-state transition for anger, happiness, sadness, and
surprise expressions. This figure assists in mapping LDn features to real-
world features.

2) LD2 relates to the region around the eyes, i.e., the eye-
lids and eyebrows—the upper facial region, evidenced by
the following.
a) The anger–sadness transition evidences both a low

ΔLD1 and ΔLD2. If the initial hypothesis is that
LD1 is related to the mouth, then the second
common action—“upper eyebrow frown” may be
related to LD2, which supports the upper facial
region relationship.

b) Analyzing Fig. 6 and the transition from anger to
happiness, we saw that the eyes remained the same
shape, with the largest variance evident between full
to partial anger states, when the frown was relaxed
slightly. Removing the lower half of the face, we
could observe that there were similarities between the
brow/eye region of the two states.
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c) The large variance between happiness and surprise.
Given that the open mouth was deduced as being re-
ferred to by LD1, we could identify the difference be-
tween happiness and surprise frames in Fig. 6 through
the upper region of the face, specifically the brow and
eye regions, thus providing further evidence toward
LD2 relating to the upper facial region.

By inferring the above rules for the macrolevel LDA clus-
tering approach, we were able to define a relationship that
allowed mapping statistical features with real-world features
vis–à–vis providing a vehicle for transient macrolevel facial
expression classification.

C. Microlevel Linear Discriminant Analysis

We had previously defined the following rules.
1) LD1 relates to the shape of the mouth and the lower facial

region.
2) LD2 relates to the region around the eyes, eyelids, and

brows—the upper facial region.
These claims were substantiated through the necessary exper-

iments. The microexpression LDA clustering subsystem aimed
to prove the validity of the two claims, while providing a deeper
analysis of dynamic facial expressions and focusing on the
upper and lower facial regions.

An automated function was implemented to slice the CK+
images in half (horizontally), allowing to focus on both the
upper and lower facial regions independently. An additional
LDA clustering approach was then applied to the new image
vectors in an attempt to validate the above hypotheses, thus
allowing for the classification of microexpressions in upper
and lower facial regions. If the initial hypotheses were correct,
then there would be a very discernible trend between states at
the microlevel as this would indicate that the projected feature
“LDn” is related to a particular group of muscles.

Let us describe the macrolevel linear discriminant features as
“LDn”—i.e., LD1 = the lower facial region and LD2 = upper
facial region. Moving to the microlevel, let “m” describe the
microlevel features contained within the higher, “nth” level
regions, i.e., “LDn.m.” For example, LD1.1 and LD1.2 describe
microexpressions in the lower facial region.

The clusters shown in Fig. 7(a) share a similar LD2.2 value,
with the largest variance being in the direction of LD2.1. We
could also see that the clusters moved linearly from anger to
surprise along the LD2.1 axis. Note that fear and contempt states
display large variances in the LD2.2 axis, sharing common LD2.1

values (cluster centroid coordinates). Furthermore, it could be
noted that as per se contempt is an asymmetrical expression
could explain why it was such an outlier. But besides these two
states, we saw that the majority of expressions existed along the
LD2.1 axis.

The lower facial region (LD1) is more sparsely clustered
compared to the upper facial region. In Fig. 7(b), it is evident
that most states reside on one side of the spectrum, sharing a
similar LD1.1 feature value, with happiness and its substates
displaying the largest variance in LD1.1. The notable trend
observed in the lower region of the face could be attributed to

Fig. 7. (a) Two-dimensional linear discriminant space representation of
the upper facial region, showing {LD2.1,LD2.2} microexpression features.
(b) Two-dimensional linear discriminant space representation of the lower
facial region, showing {LD1.1,LD1.2} microexpression features.

the microlevel feature LD1.2—the y-axis, showing disgust (top)
and surprise (bottom) as the two extremes.

V. RESULTS

A. Defining the Rule-Based Expert System

Throughout this work, we have emphasized on mentioning
how similarity and dissimilarity measures can be exploited
to improve classifier performances and the capabilities of
decision-making systems. We can also use distance-based sim-
ilarity (specifically Euclidean distances) to validate the rule-
based system derived for the HSCN. Previously, we defined
the macrolevel linear discriminant features as LDn and the
microlevel features as LDn.m. Combined with Fig. 5, Table III
proves the validity of our macrolevel facial expression rules.
We observed that anger, happiness, sadness, and surprise exist
as extreme points in a 2-D linear discriminant space and by
referring back to the EMFACS muscle movements discussed
previously, it allowed establishing that LD1 relates to the shape
of the mouth and the lower facial region and LD2 relates to the
region around the eyes, eyelids, and brows—upper facial region.
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TABLE IV
MICROLEVEL LINEAR DISCRIMINANT CENTROID COORDINATES

FOR UPPER AND LOWER FACE CLUSTERS. SUBSCRIPTS

REFER TO NEUTRAL-DOMINATED, PARTIAL, AND

FULLY ACTIVATED LABELS

Lower Face Upper Face
Cluster LD1.1 LD1.2 LD2.1 LD2.2
AngerN 0.178 0.613 0.278 0.757
AngerP 0.163 0.683 0.159 0.760
AngerA 0.144 0.720 0.054 0.739
Cont.N 0.107 0.457 0.542 0.128
Cont.P 0.158 0.428 0.557 0.087
Cont.A 0.210 0.408 0.565 0.056
Disg.N 0.183 0.664 0.384 0.788
Disg.P 0.120 0.847 0.283 0.761
Disg.A 0.081 0.942 0.192 0.740
FearN 0.257 0.463 0.448 0.828
FearP 0.329 0.323 0.488 0.941
FearA 0.350 0.165 0.568 0.960
HappyN 0.421 0.592 0.412 0.758
HappyP 0.745 0.607 0.358 0.745
HappyA 0.911 0.630 0.342 0.739
SadN 0.143 0.569 0.381 0.737
SadP 0.069 0.592 0.381 0.781
SadA 0.075 0.647 0.371 0.805
Surp.N 0.216 0.570 0.519 0.774
Surp.P 0.210 0.268 0.746 0.783
Surp.A 0.184 0.069 0.942 0.787

Deriving relationships between muscle movements of the
full-facial region allowed to further explore the upper and lower
facial regions and conduct similar experiments. Performing the
same analysis in Table IV, we can establish relationships be-
tween features in the upper facial region and lower facial region
using the EMFACS action units. The neutral, partial, and fully
activated microexpression cluster centroids reported in Table IV
are used to supplement the findings visualized in Fig. 7.

The anger–surprise axis rule modeled two transformations:
1) eyebrows raise from an initial frowned/depressed position;
and 2) mouth opens from an initial tightened position. When
combined with the hypothesis “LD2 relates to the region around
the eyes, eyelids, and brows—the upper facial region.” Thus,
we could state that the microlevel feature LD2.1 referred to
a translation of the eyebrows from an initial frowned/down-
turned position to a raised position, making use of the medial
frontalis, levator palpebrae superioris, and corrugator super-
cilii facial muscles.

Fig. 7(b) exhibits an axis that has been derived previously.
Only in this instance, it has been mapped from one feature
space to another, the sadness–happiness axis, which varies in
regard to the LD1.1 feature. The macrolevel, sadness–happiness
axis rule modeled the following two transformations: 1) parallel
relaxation of brows and raising of cheeks; and 2) raising of
lip corners and mouth from a depressed initial condition. The
second transformation relates to the lower facial region feature.
This transformation, pertaining to the lip corner movements,
may be the causal link between the microlevel feature LD1.1 and
the real world. Analyzing the variations in LD1.2, we see disgust
and surprise on opposite sides of the spectrum. The immediate
hypothesis is that LD1.2 models the openness of the mouth, and

the manipulation of the central lip muscles—orbicularis oris
and levator labii superioris.

The evidence provided by the microlevel LDA-derived clus-
ters prove the validity of the macrolevel inferences. Moving
into the microexpression (mth level), we can define each axis
as follows.

1) LD1.1: Lip corner muscles—modeling a translation from
a down-turned shape to a lifted shape.

2) LD1.2: Openness of the mouth—modeling the manipula-
tion of the central lip muscles from closed to open.

3) LD2.1: Models a translation of the eyebrows from an
initial frowned position to a raised position.

4) LD2.2: Used to identify expressions such as fear and
contempt and asymmetrical movements outside of the
spectrum from anger to surprise.

Establishing this rule-base provided us with the foundations
on which the upper and lower facial region microexpression
detection and classification systems were built.

Deploying the HSCN in a rule-based expert system would
allow for the continuous monitoring and assessment of
macrolevel expressions of affective states and microexpres-
sions, which allow for the modeling of specific muscle move-
ments in the upper and lower facial regions. In the previous
sections, the macro- and microexpressions were modeled using
linear discriminant features defined by nth and mth level sub-
script notation, i.e., LDn.m. Fig. 3 visualizes the rule-based ex-
pert system and shows how facial image data are processed from
input to output stages. Through classification, the proposed sys-
tem is capable of assessing various levels of facial expressions
and muscle movements using the rules derived earlier.

The rule-based expert system facilitates hierarchical detec-
tion of macrolevel facial expressions as well as detection of
upper and lower facial region microexpressions as each of
the three classifiers models some unique states. Using the mi-
crolevel rules defined in the previous section, the HSCN is able
to detect changes in: 1) lip corner muscles; 2) openness of the
moth; 3) translation of the eyebrows; and 4) level of asymmetry.

B. Hierarchical Classifier Performance

Both macro- and microlevel algorithms developed for this
work were validated using the RF, SVM, and KNN classifi-
cation approaches. Classifiers were trained using the clustered
data that had been defined through the separation and clustering
subsystems of the HSCN. The CK+ facial expression images
used to train the classifiers were resized to 100 × 100 pixels
and were then flattened, providing 5842 image samples. The
80/20, train/test split was used for validating performance of
each classifier. The validation accuracies in this work show the
percentages of correct guesses with respect to the total number
of guesses made, defined as

Accval(%) =
N(correctguesses)

N(totalguesses)
× 100%. (4)

Classification performance of all models are reported in
Table V. We used the RF classifier for macroexpression clas-
sification, predicting twenty-one transient affective state ex-
pressions, across seven independent state axes with 76.11%
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TABLE V
HSCN PERFORMANCE WHEN TRAINED AND VALIDATED ON THE CK+

DATASET USING AN 80/20 TRAIN/TEST SPLIT INVOKED ON 21
UNIQUE CLASSES PER FACIAL REGION

Facial Region Model Validation Acc. (%)
Full-face (macro) RF 76.11
Full-face (macro) SVM 72.95
Full-face (macro) KNN 54.11
Upper face (micro) RF 70.89
Upper face (micro) SVM 73.63
Upper face (micro) KNN 72.67
Lower face (micro) RF 86.37
Lower face (micro) SVM 87.68
Lower face (micro) KNN 87.26

accuracy. For the upper and lower facial microexpression clas-
sifiers, we deployed SVMs, capable of predicting twenty-one
variations of upper and lower facial muscle movements based
on mth level “LDn.m” linear discriminant features and the
rules defined in Section IV. We achieved 73.63% and 87.68%
classification accuracies respectively for upper and lower facial
region microexpression classification with the SVM classifier.

These observed results are comparable with the recent dis-
crete affective state assessment solutions. Looking at the fa-
cial expression classifiers reported in [16], for example, we
see that the accuracies of systems in [16] range between 41%
and 88% while classifying a lesser number of affective states.
When we compare our results with the works discussed in
Section III, we find that their range was between 32.94% and
95.95% accuracies. This shows that our classifiers reside in the
upper bounds of the performance metrics. The observed HSCN
classifiers prove that the resolution and dimensionality of a
recognition system can be improved without hindering classifier
performances. Furthermore, our results show that continuous
affective state assessment solutions could perform as well as
discrete models supported systems would.

Performances of the lower and upper facial microexpression
classifiers were consistent with the human observations made
in [42], [48], stating that the classification of lower facial ex-
pressions is on average, more accurate than that of upper facial
expressions. Looking at Fig. 7(a) and 7(b), one would see why
this might be the case. The lower facial region microexpression
clusters show a larger separation across LD1.1 and LD1.2 axes
compared to the upper facial region microexpressions. This
shows variations along the LD2.1 axis for most states. In reality,
the reason for this outcome could be the prominence and relative
size of the mouth and lips in the lower facial region. Relatively
speaking, the mouth is a larger facial feature compared to other
features. Also, muscle activations around the mouth region
would generally have a larger impact compared to muscular
changes around the eyes or brow region. This explains why
it may be easier to classify lower facial region expressions
compared to upper facial expressions.

The rules derived in this work along with the previously
discussed classifier results allow supporting the real-world phe-
nomena with statistical findings. Through these findings, the
importance of both upper and lower facial region muscle move-
ments for facial expression classification has been highlighted
and reinforced.

VI. CONCLUSION

This work provides new, novel, and useful information on the
respective roles of upper and lower muscles in facial expression
classification. We were also able to explain how micro- and
macrolevel facial muscle movements could be used to build
a robust set of features. Hence, this work should be regarded
as a step forward from discrete affective state classification
systems, capable of classifying one of “n” discrete affective
states to the continuous affective state classification systems.
The proposed HSCN is a new and powerful classifier ensemble
that exploits separation and clustering for categorizing affective
state expressions in a dynamic manner. The HSCN transforms
seven independent facial expression clusters into twenty-one
transient facial expression clusters and classifies twenty-one up-
per and twenty-one lower facial region microexpression classes.
The twenty-one states classification is performed using a rule-
based expert system. A high degree of accuracy was achieved
in training and testing stages. The reported HSCN shows com-
petitive performance when compared to other state-of-the-art
approaches, reported earlier in Table II.

The ability to detect and classify microexpressions would
help affective state assessment in demanding dynamic condi-
tions. However, the complex nature of continuous expression
signals would require developing comprehensive models of
affective state-caused variations in facial features. Our proposed
HSCN approach demonstrates how the micro- and macrolevel
facial muscle movement modeling approach would be useful
in complex affective state assessment situations. The presented
HSCN approach was able to predict twenty-one macrolevel
transient expressions vis–à–vis twenty-one upper and lower
facial region microexpressions. As discussed previously, the
reported validation performance of the HSCN makes it compa-
rable with several previously reported affective state classifica-
tion systems.

The rule-based, expert system-supported HSCN was built
upon the theoretical foundations of the EMFACS and other
continuous affective state expression models. Through a com-
bination of: 1) unsupervised cosine similarity-based separation;
2) LDA-based clustering; and 3) traditional supervised learning
classifiers, the HSCN’s predictive capabilities suggest that it
could be used as a quantitative assessment tool that is supported
by a theory-driven back-end.

Our future research will focus on integration of the HSCN
into a multimodal affective state assessment system. The
goal will be to develop a dynamic assessment tool capable
of detecting and classifying transient facial expressions in
real-time. We intend to expand and modify the HSCN architec-
ture for incorporating human speech as well. This will allow
modeling changes in affective speech expressions as contin-
uous and time-dependent functions to be used for affective
state assessment.
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