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Abstract— The metaverse and its underlying blockchain tech-
nology have attracted extensive attention in the past few years.
How to mine, process, and analyze the tremendous data generated
by the metaverse systems has posed a number of challenges.
Aiming to address them, we mainly focus on modeling and
understanding the blockchain transaction network from a struc-
tural identity perspective, which represents the entire network
structure and reveals the relations among multiple entities. In this
article, we analyze three metaverse-related systems: non-fungible
token (NFT), Ethereum (ETH), and Bitcoin (BTC) from the
structural-identity perspective. First, we conduct the complex
network analysis of the metaverse network and obtain several
new insights (i.e., power-law degree distribution, disconnec-
tion, disassortativity, preferential attachment, and non-rich-club
effect). Secondly, based on such findings, we propose a novel
representation learning method named structure-to-vector with
random pace (SVRP) for learning both the latent representation
and structural identity of the network. Thirdly, we conduct node
classification and link prediction tasks with the integration of
graph neural networks (GNNs). Empirical results on three real-
world datasets demonstrate that our proposed SVRP outperforms
other existing methods in multiple tasks. In particular, our
SVRP achieves the highest node classification accuracy (Acc)
(99.3%) and F1-score (96.7%) while only requiring original non-
attributed graphs.

Index Terms— Blockchain, complex networks, graph neural
networks (GNNs), graph representation, metaverse.

I. INTRODUCTION

RECENTLY, the metaverse has enticed massive attention
from the world with the development of novel tech-

nologies. The metaverse, as a combination of “meta”
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(meaning beyond) and the stem “verse” from “universe,”
denotes the next-generation Internet, in which users not only
produce contents but also edit the world [1]. As a new type
of Internet application and social forms with the integration
of a variety of new technologies, the metaverse has been a
paradigm that is constantly evolving. Different participants are
enriching its meaning in their own ways.

The metaverse is not only the synthesis of virtual real-
ity (VR), augmented reality (AR), and extended reality (XR)
but also the underlying blockchain technology, which ensures
trust across multiple entities in the metaverse ecosystem.
Judging from many existing successful projects, the meta-
verse provides an immersive experience based on blockchain
systems, while tightly integrating the virtual world into the
economic system, the information system, and the trusted
identity system. In particular, the initial metaverse startups
usually create blockchain-based platforms that deeply involve
leveraging cryptocurrencies, decentralized Finance (DeFi), and
non-fungible tokens (NFTs) [2], [3]. For example, several
blockchain-based platforms, such as Decentraland’s MANA
and Sandbox’s SAND, require cryptocurrency tokens to pur-
chase and sell virtual assets. Owing to its immutability and
traceability, blockchain has been a critical infrastructure for
diverse metaverse applications.

As the fundamental deployment technology of the meta-
verse, the advent of blockchain systems has gained popular-
ity in a myriad of applications [4]. Despite unprecedented
opportunities brought by decentralization, anonymity, and non-
repudiation, blockchains are also notorious due to malicious
activities, such as money laundering [5], market manipula-
tion [6], scams [7] and ransomware [8]. As the primary
transaction and payment channel of the metaverse, blockchain
technology has an impact on the network security of the meta-
verse ecosystem. In particular, a large number of transactions
have been executed on the underlying blockchain to underpin
the upper metaverse applications. Therefore, it is a necessity
to ensure the security of blockchain transactions, which can
be regarded as the metaverse transaction security. However,
the evolution of metaverse transaction security is still in its
infancy, with great potential for improvement. Facing such
challenges, it is crucial to mine, process, and analyze mas-
sive volumes of blockchain transaction data especially when
dealing with enormous unstructured blockchain transaction
data.
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Structural identity reveals the relationships among multi-
ple entities (e.g., users’ accounts) and expresses the graph
structure of the network. Thus, it is of great importance
to study the structural identity of blockchain transaction
networks for enhancing metaverse transaction security. For
example, a suitable latent representation can represent high-
dimensional network topology as embeddings, which can be
applied to machine learning tasks to discern the type of
users in the metaverse (e.g., malicious or common, illegal or
legitimate, etc.).

Inspired by recent advances in structure-to-vector (s2v)
methods in learning the structural identity of other net-
works [9], we present a novel structural identity representa-
tion method, namely s2v with random pace (SVRP) for the
Blockchain networks (BCNs). Our SVRP can learn the struc-
tural identity of BCNs and characterize similar nodes with the
random pace strategy. Integrating with graph neural networks
(GNNs), our SVRP also outperforms existing methods in both
node classification and link prediction tasks. To summarize,
the main contributions of this article are as follows.

1) In this article, we conduct a complex-network analysis of
three different BCNs and obtain several important obser-
vations including the power-law degree distribution,
disconnection, disassortativity, preferential attachment,
and non-rich-club effect.

2) To our best knowledge, we are the first to propose a
novel representation learning method–SVRP for analyz-
ing BCNs from the structural identity perspective. Our
SVRP can well learn both the latent representation and
structural identity of BCN.

3) Extensive experiments on three datasets demonstrate that
our SVRP outperforms existing state-of-the-art base-
lines when integrating our SVRP with GNNs in node
classification and link prediction tasks. Meanwhile, the
results reveal that our SVRP requires less attributed data
(which contain naturally or artificially-constructed node
features) to achieve the highest accuracy (Acc) (99.3%)
and F1-score (96.7%).

The rest of the article is organized as follows. Section II
first presents a literature review on related studies. Then, a
complex network analysis on BCNs is given in Section III.
Section IV presents our proposed structural identity represen-
tation learning method. Experimental results are then given
in Section V. Finally, Section VI concludes the article and
discusses the future direction.

II. RELATED WORK

As a basic unit to record interactions between different
blockchain accounts, a transaction can characterize activities
occurring on the blockchain. Therefore, it is crucial to analyze
the blockchain transaction network consisting of multiple cor-
related transactions from a network perspective. Unlike some
existing methods relying on artificial or natural features [5],
[10], [11], [12], network representation learning methods have
been adopted to analyze blockchain transaction networks.
Despite advances in [13], [14], [15], [16], and [17], most of
them are mainly based on Deepwalk [18] or node-to-vector

Fig. 1. Nodes u and v have similar neighborhood structures, but they are
far away from each other in the network.

(node2vec) [19], which can well learn latent representations of
nodes while cannot accurately capture the structural identity
of the entire network. Take Fig. 1 as an example, in which
nodes u and v have similar local structures, i.e., the same
degree and similar neighbor structures (e.g., either u or v is
connected with a triangular cycle). However, they cannot be
well learned by existing approaches since they do not share
similar latent representations as they are far away from each
other or even disconnected.

This section presents a brief literature survey on related
studies to our work. We roughly categorize them into net-
work analysis on understanding BCNs, modeling BCNs, and
representation learning on graphs.

A. Understanding BCNs

There are myriad studies on modeling blockchain transac-
tion networks by considering unstructured cryptocurrency data
as a network structure. Most of them mainly focus on data
analysis, such as [20], [21], [22], [23], [24], and [25] explored
BCN with a focus on descriptive statistics. Thereafter, studies
like [26], [27], and [28] analyze the BCN from perspectives of
the long-term evolutionary dynamics. Meanwhile, studies [29],
[30], and [31] provide large-scale insights into the BCN
transaction network. However, full graph analyses require a
tremendous computational cost of processing and analyzing
data. Therefore, the study [30] reduces the size of BCN by
utilizing a scalable clustering algorithm.

B. Modeling BCNs

In the line of studies on modeling BCNs, a substantial
part of them focuses on price prediction. Literatures [11],
[32], [33], [34], [35], and [36] provide various models for
the analysis of the cryptocurrency prices or transaction fees,
such as Gradient Boosting Decision Tree, neural networks, and
long short-term memory (LSTM) networks. On the other hand,
other studies focus on characterizing graphs and detecting
cryptocurrency BCNs. In this context, studies [37], [38], [39],
and [29] detect unusual behaviors. Moreover, studies [14],
[16], and [40] propose graph-representation methods and
graph-feature explanation methods to identify and capture
informative graphs. It is worth noting that the study [14] and
[16] employs DeepWalk and node2vec methods while [40]
uses the struc2vec model to label graphs.

C. Representation Learning on Graphs

Despite the above advances in analyzing BCNs, there are
few studies on representation learning for the BCN. One
of the major challenges is learning to capture the structural
identity representation of nodes. There are some studies on
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Fig. 2. Visualization of BCNs containing 10 000 selected nodes. (a) NFT. (b) ETH. (c) BTC.

network representation learning for other types of networks.
For example, Deepwalk [18] firstly proposes the random walk
with the natural language processing (NLP) model to process
the graph. Moreover, node2vec [19] extended Deepwalk as a
second-order biased random walk model, which generates the
context of nodes more flexibly. However, these random walk-
based methods are limited by the Skip-Grim distant window
size. In other words, some similar nodes, which are far away
in the network, cannot have approximating representations.
Therefore, struc2vec [9] proposes a network representation
method based on the structural similarity, to construct a
multilayer network, thereby avoiding random walks in the
original network topology. It is worth mentioning that we
design a representation method, which is more suitable for
the BCN inspired by the idea of struc2vec (see Section IV).

Although we present part of the main findings in our
previous short conference paper [41], the current version is
significantly different from the short paper in the following
perspectives: 1) we conduct a comprehensive complex network
analysis in Section III on three types of typical BCNs, which
are highly related to the Metaverse and 2) we present new
results on representation learning in Section V.

III. COMPLEX NETWORK ANALYSIS

In blockchain cryptocurrency systems, a transaction records
transaction hash, timestamp, input addresses, and output
addresses. The correlated transactions between addresses then
construct BCN, which can be represented by a directed graph
denoted by G = (V , E), where V is a set of nodes, and
E is a set of edges. In this graph, a node is a blockchain
cryptocurrency address and an edge denotes a transaction
between two addresses (i.e., nodes).

In particular, each edge is represented as ei j = (i, j), where
i is the input node, and j is the output node. The set E of
a graph with N nodes can then be represented as an N × N
matrix, which is essentially an adjacency matrix denoted by A.
For any element ai j in A, we have ai j = 1 if there exists a
link between i and j ; ai j = 0 otherwise [42]. In particular,
we have

ai j =
{

1, if ei j is defined

0, if ei j is not defined.
(1)

In this article, we focus on three different BCNs which are
closely related to the metaverse: the NFT network, Ethereum
(ETH) network, and Bitcoin (BTC) network. The data of
the NFT network are constructed purely from on-chain data
from [43], representing the activities on the ETH NFT market
between 1 April 2021 and 25 September 2021. The data of the
ETH network are from [44], after using etherscan.io to crawl
the transaction data with 100 804 nodes from 07 August 2015
to 31 December 2019. For the BTC network, we crawl the
BTC transaction data via the cryptocurrency explorer from
block height 520 890–520 910. Section V will present more
details of datasets.

Fig. 2 presents the graph view of the three networks with
10 000 selected nodes respectively. It is worth noting that the
size of a node is proportional to the number of its links,
while the colors distinguish different communities based on
their modularity. From Fig. 2, we have some preliminary
observations: 1) all three networks have rare large nodes;
2) most of the nodes have small sizes and a few numbers
of edges; and 3) they all have some disconnected nodes being
scattered far away so that the networks are not completely
connected.

In order to study and prove these conjectures in-depth, to
figure out what kind of networks the BCNs are, how they
work, and how they are formed, we introduce the measurement
method of complex networks in the following.

A. Degree Distribution

It is critical to examine the node degree distribution of
BCNs. In complex networks, the total number of adjacent
edges of a node is defined as a degree denoted by k. In BCNs,
the degree k is calculated for every cryptocurrency address
after the summation of both incoming and outgoing trans-
actions. Moreover, we also introduce the degree distribution
denoted by P(k) on degree k. The degree distribution P(k) is
the probability that a randomly-selected node has the degree
equivalent to k [42]. Also, if the degree k obeys a power law,
we then have

P(k) ∝ k−α (2)

where α is the scaling parameter of the power-law distribution.
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Fig. 3. Degree distribution of (a) NFT, (b) ETH, and (c) BTC networks.

TABLE I

CONNECTED COMPONENT METRICS OF NETWORKS

Fig. 3 exhibits the degree distributions of the three BCNs in
logarithmic scale in both horizontal and vertical axes. We can
observe from the results that all degree distributions follow
the power-law distribution with the heavy tail. In particular,
the scaling parameters of the network degree distribution are
αNFT = 1.61, αETH = 3.85, and αBTC = 2.07. The results
imply that they are all scale-free networks, in which only rare
nodes have plenty of connections [45] while the plurality of
nodes is of low degrees (i.e., nodes have fewer connections).
The formation of this degree distribution can be owed to the
growth mechanism of the network, such as the preferential
attachment of self-organizing networks. This feature will be
further elaborated in Section III-C.

B. Connected Component

In complex networks, if any pair of nodes in a sub-graph has
at least one connected path, we call this sub-graph a connected
component. Meanwhile, in the case of a directed network, we
measure its strongly-connected components (SCCs), in which
any random node pair (i, j) has a directed path from i to j ,
and also a directed path from j to i simultaneously. Likewise,
weakly-connected components (WCCs) refer to undirected
connected components. Table I presents the connected compo-
nent calculation results of three BCNs, including the number
of SCCs, the size of the largest SCC, the number of WCCs,
and the size of the largest WCC.

We observe that in all of the BCNs, both the largest SCC and
the largest WCC are relatively sizable compared to the entire
graph’s size, implying disconnected networks. To be specific,
the largest SCC covers about 30% of nodes of the NFT graph

and 2% of the ETH and BTC graph. In addition, the largest
WCC covers about 95% of nodes of the NFT graph, 93%
of the ETH, and 75% BTC graph, respectively. We note that
the NFT network is more closely connected than the others.
This can be explained by the fact that NFT is still in the
initial transaction phase within some small communities, and
the user group is relatively fixed. Therefore, there are more
frequent transactions between nodes in the NFT network than
BTC and ETH networks.

We also assume that existing hub nodes bridge many solitary
nodes, as shown in Fig. 2 (see big nodes). In reality, such
hub nodes may be exchanges, financial institutions, or trading
platforms. Meanwhile, we also noticed that the number of
WCCs is far more undersized than that of SCCs, implying that
many transactions are only one-way in these graphs. In other
words, the majority of nodes do not make bidirectional trans-
actions frequently, i.e., they only pay or only accept tokens.
At the same time, only a few nodes transact bidirectionally,
i.e., frequently paying and receiving.

C. Disassortativity

According to the analysis of degree distributions of BCNs,
there is a gap between the number of high-degree nodes and
that of low-degree nodes, implying the high heterogeneity
of BCNs. To further explore this connection tendency, we
introduce the assortativity analysis. Firstly, we adopt the
Pearson correlation coefficient denoted by ρ to characterize
the network assortativity [42]. To be specific, a negative value
of the Pearson correlation coefficient denotes disassortativity.
The total number of edges in the graph is denoted by |E |.
We then have Pearson correlation coefficient ρ as in (3), shown
at the bottom of the page, where ki is the out-degree of node
i at the beginning of link ei j ∈ E(G) and k j is the in-degree
of the node at the end of link ei j ∈ E(G).

In this case, the values of the Pearson correlation coefficient
are ρNFT = −0.03, ρETH = −0.21, and ρBTC = −0.023,
indicating that all the networks are disassortative. Particularly,
it means that high-degree nodes tend to link with low-degree

ρ =
|E |−1 ∑

ei j∈E(G) ki k j −
[
|E |−1 ∑

ei j∈E(G) 1/2
(
ki + k j

)]2

|E |−1
∑

ei j∈E(G) 1/2
(

k2
i + k2

j

)
−

[
|E |−1

∑
ei j∈E(G) 1/2

(
ki + k j

)]2 (3)
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Fig. 4. Average in-degree of the closest-neighbor nodes of node i with out-degree kout
i . (a) NFT. (b) ETH. (c) BTC.

nodes while low-degree nodes also prefer linking with high-
degree nodes.

However, the negative value of ρ cannot fully indicate
the disassortativity. We also adopt the following measure
kcn-in(kout) to describe the average in-degree of the closest-
neighbor nodes of node i that has out-degree kout

i [42]

kcn-in(kout) = N∑
i=1,kout

i =kout

(
kcn-out

i

N

)
P

(
kout) (4)

where kcn-out
i = ∑N

j=1 ai jk in
j /kout

i , ai j is the (i, j)th entry of
the adjacency matrix in (1), and P(kout) is the out-degree
distribution function. If the value of kcn-in(kout) shows a
downward trend with respect to the variable kout, then the
graph is disassortative, as shown in the results in Fig. 4.
It means that high-degree nodes prefer connecting to low-
degree nodes while low-degree nodes also prefer connecting
to high-degree nodes. This effect can also be explained by the
preferential attachment, in which newly-joined nodes prefer
connecting to high-degree nodes (i.e., the rich get richer) [22].

D. Rich-Club Coefficient

In addition to disassortativity, we also focus on the connec-
tivity propensity between nodes with high degrees. In complex
networks, the rich club refers to the phenomenon of a tight
connection between high-degree nodes. In other words, the
nodes with a large number of edges are regarded as the rich
nodes, which nevertheless are more likely to gather into clubs
in contrast to those low-degree nodes. We denote the rich-club
coefficient by φ(k), which is defined as follows [46]:

φ(k) = 2E>k

N>k (N>k − 1)
(5)

where N>k(N>k − 1)/2 is the maximum possible edges of
all N>k nodes whose degree is higher than k; similarly, E>k

denotes the number of edges among N>k nodes. It is worth
noting that the rich-club coefficient can be regarded as a
more specific measurement than the assortativity coefficient
since the rich-club coefficient focuses on the possibility of
connection to a node over degree k. For example, a network
with several rich nodes and some low-degree nodes exhibits
disassortativity because the rich nodes are not directly con-
nected; however, it still shows the rich-club phenomenon if
the rich nodes are closely connected in the same sub-graph.

Only when the graph is disassortative and there is no rich-club
ordering, we can say the center nodes are far from each other.

Fig. 5 plots the rich club ordering of NFT, ETH, and BTC
networks. We can observe from Fig. 5(a)–(c) that the rich-
club coefficient φ(k) does not monotonically increase with the
increment of k, implying no obvious rich-club phenomenon
in all the three BCNs. However, as discussed in [46], the
rich-club coefficient alone cannot well reflect the rich-club
effect of large networks. For a more accurate evaluation, we
also compare the BCNs with corresponding random networks.
Thus, we adopt the normalized rich-club coefficient denoted
by φnorm (k) as follows:

φnorm (k) = φ(k)

φrand (k)
(6)

where φ(k) is the rich-club coefficient of the BCN and
φrand (k) is the rich-club coefficient of a random network with
the same degree distribution. Fig. 5(d)–(f) plots the normalized
rich-club coefficient, whereas the rich-club ordering, depends
on whether φnorm (k) > 1. The results also reveal an absence
of rich-club ordering on most k values.

In general, the BCNs exhibit the “non-rich-club” phenom-
enon, implying that the high-degree central nodes in these
networks tend to disconnect from each other. They are evenly
distributed in different connective sub-graphs. This effect can
be explained by the fact that the central nodes are more likely
to be some exchanges or large institutions with their own
relatively-fixed customer groups. Therefore, the rich nodes are
not closely connected to each other in the BCNs.

E. Summary

Through the complex network analysis, we found that BCNs
are scale-free networks that follow the power-law distribution
with a heavy tail. In other words, when a node is randomly
selected from these networks, there is a high probability that
this node has many similar counterparts (according to the
node-degree distribution). On the other hand, we also reveal
the disconnection, disassortativity, and non-rich-club effect of
BCNs. The disassortativity implies that neighbors of a node are
not similar to each other most of the time in these networks.
Meanwhile, the non-rich-club effect indicates that multiple
central nodes serve as hubs, which do not tend to connect.

These observations imply that existing representation learn-
ing methods, such as DeepWalk and node2vec may not be
suitable for BCNs since they have inconsistent assumptions
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Fig. 5. Rich club ordering of (a) and (d) NFT, (b) and (e) ETH, and (c) and (f) BTC networks.

with the above observations (e.g., they are based on the
assumption that the closest neighbors are similar to each
other). In addition, the traditional schemes are also limited by
node distance and network connectivity. For instance, cryp-
tocurrency exchanges in DeFi services tend to be embedded
as completely different representations [47] because they are
usually not directly connected, even though they play similar
roles and have similar transaction patterns.

IV. STRUCTURAL IDENTITY REPRESENTATION

Structural identity can represent the entire structure of the
BCN and express the relationships among multiple entities.
Therefore, given the characteristics of BCNs, it is of great sig-
nificance to design a suitable representation learning method
that can capture the structural identity.

To this end, s2v methods are able to learn the structural
identity of complex networks. After measuring node similarity
from a structural-role perspective, s2v methods construct a
multilayer graph with different scales. Similar to other repre-
sentation learning methods, s2v methods also require random
walk operations. However, unlike other representation learning
methods, such as DeepWalk and node2vec, s2v methods do not
require a fully-connected original network when conducting
random walks on the multilayer graph.

Inspired by the above observations of BCNs and the merits
of s2v methods, we propose a novel structural identity rep-
resentation method, namely SVRP for BCNs. Unlike other
s2v methods, we design a novel random walk strategy–
random pace to conduct a flexible random walk while pacing
around. Consequently, our random pace strategy can sample
more similar neighbors for the target node, and better retain
structural characteristics of BCNs, thereby achieving more
accurate representation learning than existing methods. Fig. 6
depicts the working flow of our SVRP.

A. s2v With Random Pace

In our SVRP, the structural distance between nodes u and
v in their k-hop neighborhoods is denoted by fk(u, v), which

Fig. 6. Overview of the proposed framework.

is expressed as fk(u, v) = fk−1(u, v)+ g(s[Rk(u)], s[Rk(v)]),
where Rk(u) denotes the set of nodes at distance k from u in G
(k ≥ 0, f−1 = 0, |Rk(u)| > 0 and |Rk(v)| > 0), s(S) denotes
the ordered degree sequence of a node set S, and g[s1, s2]
measures the distance between the ordered degree sequences
s1 and s2 [9].

Our SVRP constructs a multilayer weighted graph M while
layer k is defined by the k-hop neighborhoods of the node.
We use the multilayer graph M for each node in V to generate
node-sequence contexts (as shown in Step 2 of Fig. 6).

Different from conventional s2v methods, we design a novel
random pace strategy for generating more accurate structure
contexts. Similar to struc2vec [9], SVRP first determines
which layer to walk. At each step, SVRP then determines two
random states with respect to the decaying factor d: 1) trans-
ferring step or 2) pacing around. If the state is “transfer,” the
walk continues after choosing a neighbor to walk; the state is
“pace,” otherwise. Accordingly, several neighbors are added
to the walking path while this strategy does not change the
starting step next time, acting like “pacing” around.

As shown in Fig. 7(a) and (b), traditional search strate-
gies, such as Breadth-first Sampling (BFS) and Depth-first
Sampling (DFS) focus on the local and global characteristics,
respectively. By contrast, the random-pace strategy in Fig. 7(c)
provides a more adaptive manner for neighbor sampling.
We denote the probabilities of passing by a neighbor node via
“transfer” and “pace” by Ptrans and Ppace, respectively. They are
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Fig. 7. Different random-walk strategies (walk length l = 4). (a) BFS.
(b) DFS. (c) Random pace (s = 2).

expressed by Ptrans (u, v) = Pk(u, v)(1−d) and Ppace (u, v) =
d Pk

∑s
i=1(1 − Pk(u, v))i−1, where s is the number of pacing

steps and Pk is the probability of choosing neighbors in
layer k. Meanwhile, Pk(u, v) denotes the probability that node
u chooses its neighbor node v in layer k. In particular, Pk(u, v)
is expressed as follows [9]:

Pk(u, v) = e− fk (u,v)∑
v∈V
v �=u

e− fk (u,v)
. (7)

We then have Markov Chain transition matrix Pk for the
entire network by extending Pk(u, v)

Pk =

⎛
⎜⎜⎜⎜⎜⎜⎝

Pk(1, 1) · · · Pk(1, v) · · · Pk(1, n)
...

...
...

Pk(u, 1) · · · Pk(u, v) · · · Pk(u, n)
...

...
...

Pk(n, 1) · · · Pk(n, v) · · · Pk(n, n)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

where n is the number of vertices. We then have the probability
of selecting v from the neighbors of u in one action

P(u, v) = (1− d)Pk(u, v) + d Pk

s∑
i=1

(1− Pk(u, v))i−1. (9)

We next express (9) via the above matrix as follows:

P = Pk + d
s−1∑
i=1

(
P−k

)i
(10)

where P−k is denoted by

P−k =

⎛
⎜⎜⎜⎜⎜⎜⎝

1− Pk(1, 1) · · · 1− Pk(1, v) · · · 1− Pk(1, n)
...

...
...

1− Pk(u, 1) · · · 1− Pk(u, v) · · · 1− Pk(u, n)
...

...
...

1− Pk(n, 1) · · · 1− Pk(n, v) · · · 1− Pk(n, n)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(11)

Thereafter, for every node of V , we conduct r independent
walks with length l representing the total number of steps for
every walk.

Unlike Deepwalk and node2vec, the walk of SVRP is con-
ducted on the multilayer network M , in which each layer is a
complete graph with edges weighted by the structural distance.
Since any pair of nodes in the complete network is connected,
there is a chance to select all nodes except the current node

when sampling the neighbors. In this case, the traditional
biased random walk is not as advisable as the random pace to
generate the context for the nodes. As mentioned in (7), the
node-transfer probability in the random pace strategy depends
on the structural similarity distance fk(u, v). In other words,
the more similar node pair (u, v) is, the higher probability
Pk(u, v) is. Thus, for each target node, SVRP can sample
more similar neighbor nodes as context sequences, thereby
being beneficial to the computing of embeddings when using
NLP modules, such as Skip-Gram [48].

Moreover, we can implement BFS and DFS strategies by
choosing different values of s and d . When s or d is large, it
can be regarded as BFS; when s = 1 or d is small, it can be
regarded as DFS. Finally, the finished walks of nodes can be
regarded as the node sequence, which is the graph structure
context for the NLP module to compute the embeddings.
In SVRP, we choose the NLP context prediction algorithm,
e.g., Skip-Gram [48], which has been proven to be superior
to other existing methods in similar tasks. Skip-Gram has also
been applied to sequence embeddings for many representation-
learning methods [9], [18], [19]. Despite the effectiveness
of Skip-Gram in learning node representation from graph
data, we can achieve more accurate representation learning
by providing the sequence of nodes with higher similarity
to the target node. Algorithms 1 and 2 depict SVRP and
RandomPace, respectively.

Algorithm 1 SVRP
Input: G(V , E).
Output: Embeddings of nodes {Xv ,∀v ∈ V }.

Initialization : (walk_iter = 0, Number of walks r , Walk
length l, Decaying factor d , Pace step s per node, Dimen-
sions dim);

1: for u ∈ V do
2: K ← Append node degree k(u);
3: return Degree list K
4: end for
5: for k ∈ K do
6: for node pair (u, v) ∈ V do
7: S(u, v) ← structural distances S(Rk(u), Rk(v));

M ← distance network Mk = (V , E, Wk);
8: end for
9: return Multilayer graph M

10: end for
11: while walk_iter < r do
12: for u ∈ V do
13: walk ← RandomPace (M , u, l, d , s);

walks ← Append walk;
14: end for
15: walk_iter ← walk_iter + 1
16: end while
17: Xv ← SkipGram(dim, walks);
18: return {Xv ,∀v ∈ V }

B. Learning Edge Features

It is important to learn edge features, especially for learning
tasks done by GNNs. Thus, we present a semi-supervised
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Algorithm 2 RandomPace
Input: Multilayer graph M , Current node u, Walk length l,

Decaying factor d , Pace step s.
Output: walk.

Initialization : (step_iter = 0, pace_iter = s, walk← append
u, current_layer ← randomLayer(u));

1: while step_iter < l do
2: Vcurr ← walk[−1];

layer ← chooseLayer(current_layer);
3: if pace then
4: while pace_iter > 0 do
5: Vstep ← chooseNeighbor(Vcurr, M);

walk ← Append Vstep;
pace_iter ← pace_iter − 1;

6: end while
7: step_iter ← step_iter + s;
8: else
9: Vcurr ← chooseNeighbor(Vcurr, M);

walk ← Append Vcurr;
step_iter ← step_iter + 1;

10: end if
11: end while
12: return walk

TABLE II

BINARY OPERATORS

method to learn edge representation for the BCN. Since our
random pace strategy requires walks crossing layers among the
multilayer graph, it is efficient to generate edge features along
with the representation of nodes. SVRP provides Skip-Gram
with appropriate node contexts to learn node embeddings
while also considering the edge representation. We construct
the edge features by aggregating the embeddings of nodes
with various binary operators. Let F(u) represent the features
learned from node u to the i th component. Then, the features
of edge euv can be generated by both F(u) and F(v). We con-
sider three binary operators [19]: Weighted-L1, Weighted-L2
and ip defined as in Table II, where dim denotes the dimension
of node embeddings. For each node pair (u, v), we aggregate
their embeddings to generate the edge representation between
them even if there is no existing connection. Thus, there are
positive edge features and negative edge features (nonexistent
edges) for downstream tasks such as link prediction.

V. EXPERIMENTAL EVALUATION

A. Label Data Collection
To evaluate the performance of the proposed SVRP, we

construct five main datasets. In particular, we first obtain
the addresses of the NFT-transferring transactions from
“Moonstream” of the dataset [43]. Consequently, we then
construct the NFT dataset, in which the addresses are labeled
as three different trader types. Secondly, we use the ETH
phishing-node labels from [44], in which the addresses are
classified as either phishing nodes or non-phishing nodes.

TABLE III

INFORMATION OF DATASETS

Thirdly, we obtain the BTC address-label dataset from Har-
vard dataverse [17] including six different instance labels:
“mining pool,” “miner,” “coinjoin,” “gambling,”
“exchanges,” and “service.” Moreover, we construct the
Roninbridge graph of the ETH attack event activities, and
3K v graph on the BTC mixing-coin services provided by [49].
Table III summarizes the details of all the mentioned datasets.

B. Case Study: Ronin Bridge

We conduct the case study by tracking the attack
event of the most popular NFT game–Axie Infinity, whose
side-chain Ronin bridge was exploited for 173 600 ETH
on 23 March 2022. Since the hacker’s wallet account
0×098b716b8aaf21512996dc57eb0615e2383e2f96
(in short 0 × 098) is publicly visible, we then represent the
fund-transferring activities as a local sub-graph, Fig. 8(a)
depicts the visualization. For easy illustration, we denote
hacker addresses in red and suspicious transfer addresses in
varied-hue orange colors according to the amount of ETH
transferred. We initially observe that the 0× 098 graph shares
similar properties to the typical BCNs, i.e., power-law distri-
bution (the majority of nodes have only a few connections),
and the multicenter effect.

We then perform representation learning on this network
using different embedding algorithms and visualize the results.
Fig. 8(b)–(e) show the latent representations in two dimensions
for the 0 × 098 graph learned by DeepWalk, node2vec,
struct2vec, and our SVRP, respectively. It is worth mention-
ing that the malicious or suspicious nodes (in red) should
be captured and distinguished from the others in the ideal
representations of learning results.

As shown in Fig. 8(b) and (c), the malicious nodes
(red nodes) are mixed with others (i.e., blue hollow nodes),
implying that DeepWalk and node2vec cannot capture the
structural identities of nodes. This is because DeepWalk and
node2vec mainly work for assortative networks while the
BCNs do not fulfill this feature. By contrast, s2v schemes
(e.g., struct2vec and our SVRP) show better performance than
DeepWalk and node2vec. For example, Fig. 8(d) illustrates that
struct2vec differentiates many suspicious nodes from the rest
of the graph though there is still no clear boundary between
suspect nodes and common nodes. Thus, it is still difficult for
struct2vec to distinguish them completely. Moreover, Fig. 8(e)
demonstrates that our SVRP clearly clusters similar type of
nodes so as to easily distinguish the common nodes from the
malicious nodes, implying that our SVRP well preserves graph
structural identities.

C. Case Study: 3Kv Graph

Mixing services (also known as tumblers) are used to mix
one’s own cryptocurrency tokens with other users, designed
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Fig. 8. Case study: Ronin bridge attack event. (a) 0 × 098 graph. (b) DeepWalk. (c) Node2vec. (d) Struc2vec. (e) SVRP.

Fig. 9. Case study: BTC mixing service. (a) 3Kv graph. (b) DeepWalk. (c) Node2vec. (d) S2V. (e) SVRP.

to obfuscate the original source of funds. In the case study
of 3K v graph, we track a BTC Mixing Service [50] account
3K v (3Kvvf2yAQScujZpQj32ii2NjXZnBBpc6Dp) and
obtain 350 transactions from timestamp 31 March 2019.
We then represent 3K v as a local sub-graph based on the
transfer direction of funds. For simplicity, we use numeric
IDs instead of addresses, where node 0 is the initial Mixing
Service address of 3K v. Fig. 9(a) depicts the visualization of
3K v. We initially observe that the 3K v graph shares similar
properties to the BTC graph, i.e., disassortativity and non-
rich-club effect. Moreover, we also observe that nodes from
zero to seven are central nodes with more connections while
they are not directly connected with each other [i.e., indirectly
connected through some bridging nodes such as nodes 239,
256, 257, and 275 in Fig. 9(a)].

Fig. 9(a), (c)–(e) show the latent representations in
two dimensions for the 3K v graph learned by DeepWalk,
node2vec, struc2vec, and SVRP, respectively. It is worth men-
tioning that some prominent nodes (e.g., nodes from 0 to 7)
should be captured and distinguished from the others in the
ideal representations of learning results.

In Fig. 9(b) and (c), nodes 0–7 are mingling with normal
nodes, implying that DeepWalk and node2vec fail to capture
the structural identities of nodes, similar to the 0×098 graph.
This is because DeepWalk and node2vec mainly work for
assortative networks while BCNs are not (see Section III).
Moreover, the random walk-based representation learning is
limited by the window size of Skip-Gram. By contrast, s2v
schemes also show better performance than DeepWalk and
node2vec. For example, Fig. 9(d) illustrates that s2v differ-
entiates central nodes from the rest of the graph though the
distance between similar nodes is still relatively far and there
is no tendency for clustering. Moreover, Fig. 9(e) demonstrates
that our SVRP clearly clusters similar nodes, which have long
distances from each other, implying that SVRP well preserves
the structural identities of nodes.

D. Node Classification

In order to better perform node classification tasks, we
adopt GNNs to further explore BCNs. GNNs have been
widely used in various graph-related tasks due to their superior

TABLE IV

NODE CLASSIFICATION RESULTS OF GNN (GRAPHSAGE)

TABLE V

NODE CLASSIFICATION RESULTS OF LR

performance by appropriately learning graph natural features.
In particular, we take the embeddings from representation
learning as the node features for the non-attributed BCN
graphs (i.e., original graph topology without feature data),
and construct the graph with attributes (attributed graph), i.e.,
Step 3 as shown in Fig. 6. We then adopt graph sample and
aggregate (GraphSAGE) [51] with sum aggregator to conduct
a fair evaluation on the effectiveness of learning node features
for different node-feature initialization (NFI) methods across
eight types of graph-mining tasks.

We consider the following methods: 1) six intuitive methods
focusing on the structural aspects: random normal, one hot,
degree, PageRank, shared, and bucket range; and 2) four
embedding methods: DeepWalk, node2vec, struc2vec, and
SVRP. To confirm the applicability of the model, for each
dataset, we measure its Acc, and weighted-averaged F1 score
(F1) as in (12) and (15) on different methods. We consider
parameters for all the methods as follows: the number of walks
per node r = 10, walk length l = 40, Skip-Gram window size
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TABLE VI

LINK PREDICTION OF LR AND GNN

w = 5; p = 1 and q = 2 for node2vec; pace step per node
s = 2 and decaying factor d = 0.25 for SVRP.

In particular, the metrics are defined as in (12)–(15), shown
at the bottom of the page.

Table IV lists the results of GNN classification. We observe
that embedding methods perform better than intuitive NFI
methods. While in intuitive methods, the bucket range method
outperforms the others. Meanwhile, over all datasets, our
SVRP obtains the best results among all the methods, e.g.,
reaching 0.993 of Acc on the ETH graph and 0.967 of F1
score on the BTC graph. On the same dataset, compared
with other existing work [17], additional artificially calculated
features are used to reach the best F1 score of 0.960, but the
SVRP result of 0.967 is still higher than that without using
the node attribution data. In other words, in the SVRP method,
we used fewer data to achieve approximate performance.

To further confirm that GNN is the most suitable clas-
sifier model, specifically, we apply the latent representation
embeddings to train a one-versus-rest logistic regression (LR)
classifier model. We observe from Table V that the overall
performance of all the methods is not as good as the results of
GNNs (as shown in Table IV). Similarly, the proposed SVRP
still outperforms other representation learning methods in LR.

E. Link Prediction

Link prediction tasks aim to predict the occurrence of links
in a given graph based on observed information. As men-
tioned in Section IV-B, we choose three binary operators:

Weighted-L1, Weighted-L2, and ip for learning edge features.
After conducting link prediction tasks on the three datasets, we
obtain the results of LR and the GNN method in terms of area
under curve (AUC), as shown in Table VI. Regarding the LR
classifier, we use the one-versus-rest scheme and cross-entropy
loss. Regarding the GNN approaches, we also consider graph
convolutional networks (GCN) [56] as another comparison
method in addition to GraphSage.

We observe from the results that our SVRP outperforms
other methods on all three datasets, especially for NFT
(i.e., reaching the highest AUC of 0.987). Meanwhile, GNN
methods perform better than basic LR methods. Moreover,
GraphSAGE shows superior results than GCN. In addition,
the results manifest that the representation learning of
structural identities is quite meaningful for edge analysis and
is beneficial for understanding BCNs. And it also demonstrates
that our SVRP indeed helps to obtain a more comprehensive
link representation for predictive tasks than other methods.

VI. CONCLUSION

In this article, we accomplish a series of analyses and in-
depth mining on the metaverse BCNs. First, we conduct the
complex network analysis of three BCNs that play significant
roles in the metaverse. Secondly, based on the novel find-
ings as characteristics of BCNs (i.e., power-law distribution,
disassortativity, disconnection, one-way deals, non-rich-club
phenomenon), we proposed the SVRP method to model the
network via a structural identity representation. Thirdly, two

Acc = true positive+ true negative

true positive+ false positive+ false negative+ true negative
(12)

Precision = true positive

true positive+ false positive
(13)

Recall = true positive

true positive+ false negative
(14)

F1 score = 2× Precision× Recall

Precision+ Recall
(15)
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cases of real-time malicious activities study confirmed that
SVRP is quite fitting for the representation learning of the
current blockchain transaction networks. It can distinguish
nodes with more significant structural identities from the
others when creating embeddings.

Last but not least, we applied our method to the blockchain
graphs in the GNN node classification task, and then con-
ducted a comparative experiment with other representation
learning and intuitive NFI methods. Our results demonstrate
that our SVRP reaches 96.7% in the F1 score, which is
the best performance among all the compared methods in
non-attributed data. We also paralleled and compared the
combination of the same representation learning method to the
LR classifier on the classification task. Moreover, we found
that the GNN model achieves better performance than LR
when dealing with the classification of network data. Hereafter,
we show the superiority of the SVRP in link prediction
tasks. It means that our method can be well adapted to a
variety of network analysis tasks. Such findings might lead
us to a better understanding of the structural behavior of
blockchain cryptocurrency transaction networks. Meanwhile,
it may provide insightful implications for detecting mixing
services, malicious addresses, and fund-tracing tasks in meta-
verse security problems in the future.
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