
714 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 10, NO. 2, APRIL 2023

Reversible Linguistic Steganography With
Bayesian Masked Language Modeling

Ching-Chun Chang

Abstract— Text authentication serves a vital role in the defense
of digital identity and content against various types of cyber-
crime. The use of a digital signature is a common cryptographic
technique for text authentication. Linguistic steganography can
be applied to further conceal a digital signature within the
corresponding text to facilitate data management. However,
steganographic distortion lurking in the text, albeit almost
imperceptible, has the potential to cause automatic computing
machinery to make biased decisions. This has led to an interest in
the pursuit of reversibility, the ability to reverse a steganographic
process and remove distortion. In this article, we propose
a reversible steganographic system for natural language text.
We use a pre-trained transformer neural network for masked
language modeling and embed messages in a reversible manner
via predictive word substitution. Furthermore, we derive an
adaptive steganographic route by taking account of predictive
uncertainty, which is quantified based on a theoretical framework
of Bayesian deep learning. Experimental results show that the
proposed steganographic system can attain a proper balance
between capacity, imperceptibility, and reversibility with close
semantic and sentimental similarities between cover and stego
texts.

Index Terms— Bayesian uncertainty analysis, masked language
modeling, reversible linguistic steganography.

I. INTRODUCTION

AUTHENTICATION is an essential part of cyber security.
It is the process of validating the identity of users and the

integrity of digital content. As cyber space continues to expand
in scope and scale, authentication plays an important role in
maintaining trust against various types of deception, including,
but not limited to, impersonating identities, spreading spam,
disseminating fake news, sending malicious links, and tamper-
ing with digital media. A digital signature is a mathematical
proof of authenticity using modern cryptographic techniques
such as encryption and hashing [1]. The incorporation of
a timestamp and other tamper-evident designs can further
strengthen security. Such auxiliary data, however, carry the
risk of accidental loss and mismanagement during storage,
transmission, or format transformation.

Steganography is the practice of concealing information
(e.g. a secret message, a copyright mark, or a serial number)
within a carrier object [2]–[4]. Steganographic techniques have

Manuscript received 9 December 2021; revised 26 January 2022 and
4 March 2022; accepted 18 March 2022. Date of publication 8 April 2022;
date of current version 3 April 2023.

The author is with the Department of Computer Science, University of
Warwick, Coventry, CV4 7AL, U.K. (e-mail: c.c.chang@warwickgrad.net).

Digital Object Identifier 10.1109/TCSS.2022.3162233

been applied to covert communications [5], ownership identi-
fication [6], broadcast monitoring [7], and traitor tracing [8].
It can also serve as an authentication solution by embedding
auxiliary metadata in a digital file, thereby mitigating the
risk of losing data. While steganographic distortion is often
imperceptible to human sensory systems, it can bias deci-
sions of automatic computing machinery. Previous studies of
adversarial attacks have reported that machine learning models
can be vulnerable to imperceptible perturbations [9]–[11].
Such distortion might also be inadmissible in some sensitive
circumstances such as forensic science, legal proceedings,
medical diagnosis, and military reconnaissance.

Reversibility is the key to removing steganographic distor-
tion. Reversible computing describes the notion that a compu-
tational process can to some extent be time-reversible. Most
reversible steganographic methods are designed for digital
imagery [12]–[19], whereas methods for textual data remain
relatively undeveloped. A possible explanation is that many
well-developed tools are available for exploiting the redun-
dancies in visual signals on which steganographic methods
rely. In contrast, manipulating natural language texts can
be much more challenging, considering that even the tiniest
change in a character can be discernible to a careful reader.
With the worldwide popularization of social media and the
technological advances in natural language processing (NLP),
textual data have become an important source of information.
Hence, reversible steganography for textual data has emerged
as a promising research field.

Typographical steganography is a methodology that embeds
messages by manipulating the typeface, spacing, font size,
or other typographical characteristics of texts [20]–[24].
It treats text documents as a special type of imagery and
is usually applied to printed copies. However, portability
and robustness are restricted because this class of method
is unable to withstand retyping and font changes. Linguistic
steganography deals instead with natural language per se and
is thereby able to resist such text processing. It exploits
linguistic knowledge and conceals messages by modifying
linguistic properties, ideally without altering the sentence
semantics or degrading sentence fluency. Linguistic steganog-
raphy can be broadly categorized into the following classes:
lexical class, syntactic class, and generative class. A typical
lexical method is synonym substitution, which uses different
synonyms of a word to represent different message digits
[25]–[27]. In principle, words belonging to the same synonym
set have similar meanings and thus can be substituted for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7723-4591


CHANG: REVERSIBLE LINGUISTIC STEGANOGRAPHY WITH BAYESIAN MASKED LANGUAGE MODELING 715

each other without causing notable semantic change. Syn-
tactic methods are based on the fact that a sentence can
be transformed into semantically equivalent syntactic struc-
tures such as active-to-passive voice conversion, subject–verb
inversion, and topicalization [28]–[31]. Generative methods
consider further that a sentence can be translated into a wide
spectrum of forms or completely rewritten subject to minimal
change to the semantics. A feasible approach is to use a
set of machine translators to generate multiple translations
of a given sentence [32]–[35]. Controllable natural language
generation has also emerged as a promising direction for
generative-level linguistic steganography [36]–[40]. Although
these linguistic methods find their applications in areas such
as secret communications and ownership identification, none
of them meets the reversibility requirement for distortion-free
text authentication.

In this article, we study reversible linguistic steganography.
We apply a masked language model to generate a list of
predictive words (Section II) and embed messages via predic-
tive word substitution (Section III). The underlying principle
is that most words can be retrieved within a finite number
of predictive words, and this type of redundancy can be
leveraged for reversibility. The performance of the stegano-
graphic system is associated with the accuracy of the predictive
model. We further observe that the carrier words can be
selected more efficiently by exploiting predictive uncertainty
(Section IV). To determine an efficient route for message
embedding, we study uncertainty quantification based on a
theoretical framework of Bayesian deep learning (Section V).

The remainder of this article is organized as follows.
Section II provides a brief overview of masked language mod-
eling. Section III introduces a practical method of reversible
linguistic steganography. Section IV offers a further discus-
sion on steganographic routing. Section V presents Bayesian
uncertainty quantification. Section VI shows the experimental
results for the proposed systems. Concluding remarks are
offered in Section VII.

II. MASKED LANGUAGE MODELING

Masked language modeling is a fill-in-the-blank task (a.k.a.
a cloze test), where a model attempts to predict a masked
word from the surrounding context words. Tokenization is a
preliminary step whereby a text sequence is split into tokens
(e.g. words, punctuation marks, and numbers). A masked
language model takes an input sequence that contains one or
more mask tokens and estimates the probability distribution
of each mask token over the entire vocabulary.

Given a sequence of tokens, a fundamental issue across
nearly all NLP tasks is how to represent tokens as numer-
ical input in a computational model. The arguably simplest
representation is the one-hot vector. It is a binary vector of
‖V ‖ elements, with all elements set to 0 except the element
at the index of the corresponding word in a dictionary, where
‖V ‖ is the size of the vocabulary. This type of denotational
representation is sparse and treats each word as a completely
independent entity; hence, it cannot capture latent word seman-
tics. In linguistics, the distributional hypothesis suggests that

words tend to have similar meanings if occurring in similar
contexts [41]. This gives rise to the notion of distributional
representation. For a given corpus, a co-occurrence matrix
of size ‖V ‖ × ‖V ‖ is computed by counting the number
of times each word appears within a context window around
the word of interest. Words with similar co-occurrence pat-
terns are expected to have similar meanings. However, the
matrix is of high sparsity due to the curse of dimensionality.
While singular value decomposition (SVD) can be applied for
dimensionality reduction, it has a disadvantage in terms of
scalability. This algorithm is computationally expensive for
large matrices and has to be performed again from scratch
if the co-occurrence matrix is updated by incorporating new
terms or corpora. A modern approach toward representation
learning is to train a neural network model on a certain task
(e.g. language modeling) with each word vector initialized
randomly, and then update word vectors iteratively using
a stochastic optimization algorithm (e.g. gradient descent).
A common limitation of early word vectorization models
(e.g. word2vec [42] and GloVe [43]) is their inapplicability
to polysemy and homonymy. Multiple meanings of a word
are conflated into a single indistinguishable representation
regardless of the context within which the word appears.

Contextual word representation is an advanced concept in
which each word vector can be adapted dynamically to its
context [44]. The BERT model (standing for bidirectional
encoder representations from transformers) is a state-of-the-
art neural network developed by Google for learning con-
textual word representation [45]. The model is based on
the transformer architecture which comprises multiple layers
of self-attention modules and processes an input sequence
bidirectionally [46]. To learn contextual word representation,
the model is trained to perform masked language modeling.
This task forces the model to learn more about contextual
information. The knowledge learned from masked language
modeling can then be transferred to tackle other downstream
NLP tasks (e.g. machine translation, sentiment analysis, topic
categorization). This is done by fine-tuning: choosing relevant
layers in the pre-trained model, adding task-specific layers
on top of the model, and training the model on new data.
There are a variety of ways to use a pre-trained BERT model,
and transfer learning is still a matter of ongoing research.
Nevertheless, our steganographic system relies only on a basic
function of the BERT model, namely, masked language mod-
eling. The architectural details of the BERT masked language
model are illustrated in Fig 1.

III. REVERSIBLE LINGUISTIC STEGANOGRAPHY

Reversible linguistic steganography considers the following
scenario. A sender wishes to communicate a message to a
receiver. The message is concealed in a carrier sequence of
text, causing recoverable distortions to the carrier sequence.
We refer to the original sequence as cover and its distorted
counterpart as stego. The message varies with specific appli-
cations and is generally assumed to be a random binary
sequence. The objective is to assure the accuracy of message
extraction and text recovery, while keeping steganographic
distortion as low as possible.



716 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 10, NO. 2, APRIL 2023

Fig. 1. Architecture of the BERT masked language model.

The proposed method is based on masked language model-
ing, as depicted in Figure 2. To begin with, we mask a cover
word in a text sequence and form a masked sub-sequence by
taking the mask token and a fixed number of context words on
the left-hand and right-hand sides. The masked sub-sequence
is then fed into a pre-trained language model to obtain the
probability distribution of the masked cover word. We sort the
probabilities in descending order and derive a list of predictive
words. The core idea is to substitute the cover word with a
predictive word (or, more precisely, map the index of the cover
word to another index) to represent a message digit.

Let us denote by x the index of the cover word in the list,
where x ∈ N0 is a non-negative integer. We set a bound
for the indices such that x must be less than the bound.
If not, we skip the current word and proceed to the next
cover word. We further set a threshold θ to separate the carrier
and non-carrier indices. The carrier indices constitute a finite
set of size ‖θ‖. To achieve reversibility, encoding must be
a bijective function (i.e. a one-to-one correspondence). The
number of unique combinations between all possible carrier
indices and message digits is given by the Cartesian product
of the two sets. Since all possible message digits form a binary

Fig. 2. Linguistic steganography based on the pre-trained masked language
model.

Fig. 3. Carrier, noncarrier, and ambiguity intervals w.r.t. different settings
of threshold.

set, message embedding doubles the size of the carrier set
and causes an overlap between carrier and non-carrier indices.
To avoid ambiguity in message extraction, the non-carrier
indices have to be shifted outward. Index shifting can induce
out-of-bound indices. The set of out-of-bound indices is also
of size ‖θ‖. These indices are kept unshifted, and one flag
bit is required to distinguish between a shifted and unshifted
non-carrier index in the ambiguity interval [(bound − θ),
(bound − 1)]. The flag bits are regarded as an overhead of
reversibility. At first glance, it seems that index shifting only
acts to transfer the ambiguity interval from one end to another
and serves little if any purpose. Yet, the overhead size is
reduced substantially because the indices which are close to
the bound rarely occur. Given a functional predictive model,
we may reasonably assume that the frequency of an index
value follows an exponential distribution (rather than a uniform
distribution); that is, a smaller index occurs more frequently
and vice versa. An illustration of carrier interval, non-carrier
interval, and ambiguity interval with different θ settings is
shown in Fig. 3. It can be seen that the maximum value of θ
is equal to one-third of the bound. When θ is greater than this



CHANG: REVERSIBLE LINGUISTIC STEGANOGRAPHY WITH BAYESIAN MASKED LANGUAGE MODELING 717

Algorithm 1 Encoding
Input: x , v, m, countm
Output: x ′, v, countm
� encoding
v ← ∅

if x < bound then
if x < θ then � carrier zone

x ′ ← 2x + m[countm]
countm ← countm + 1

else � non-carrier zone
x ′ ← x + θ

if (bound− θ) ≤ x ′ < bound then � ambiguity zone
v ← 0

else if x ′ ≥ bound then � out of bound
x ′ ← x
v ← 1

else � out of bound
x ′ ← x

v. append(v) � update flag list

value, the carrier interval overlaps with the ambiguity interval
and there is no point in embedding one message bit at the cost
of recording one flag bit.

A practical coding method is presented as follows. Based
on the assumption about index frequency, we allocate a
smaller amount of distortion to a smaller carrier index when
embedding a digit. Let m be a binary message digit to be
embedded. If x is within θ , we encode x and m into a stego
index; otherwise, we shift x by θ

x ′ =
{

2x + m if x < θ

x + θ otherwise.
(1)

If the stego index is out of bound, we reset it to its original
value and record the cases by a flag bit

v =
{

0 if (bound− θ) ≤ x ′ < bound

1 if x ′ ≥ bound.
(2)

Decoding is operated in a first-in last-out manner (i.e.
in reverse order of encoding). In the decoding phase, a message
bit is extracted by

m =
{

mod
(
x ′, 2

)
if x ′ < 2θ

∅ otherwise
(3)

and an index is recovered by

x =
{

floor
(
x ′/2

)
if x ′ < 2θ

x ′ − θ otherwise.
(4)

If x ′ is in the ambiguity interval, we read a flag bit to determine
its original value. Pseudo-codes for the encoding and decoding
procedures are provided in Algorithms 1 and 2.

IV. STEGANOGRAPHIC ROUTING

Steganographic routing is the process of selecting a path
for embedding a payload. Different paths can lead to different

Algorithm 2 Decoding

Input: x ′, mrev, v, countv
Output: x , mrev, countv
� decoding
m ← ∅

if x ′ < bound then
if x ′ < 2θ then � carrier zone

x ← floor(x ′/2)
m ← mod(x ′, 2)

else � non-carrier zone
x ← x ′ − θ

if (bound− θ) ≤ x ′ < bound then � ambiguity zone
if v[countv ] = 1 then

x ← x ′
countv ← countv − 1

else � out of bound
x ← x ′

mrev. append(m) � update reversed message list

trade-off curves between capacity and distortion. Routing is
particularly important in the case of a limited payload size
because an optimal path can minimize distortion subject to
a given payload constraint. There are basically two types of
routing: static routing and dynamic routing. Static routing uses
a default or manually configured path pre-shared between the
encoder and the decoder. It is easy to implement, but cannot
minimize distortion. Dynamic routing, on the other hand,
constructs an adaptive path that reflects the degree of distortion
caused by modifying each word. Recall that our coding design
introduces a smaller degree of distortion to a smaller index
and greater distortion to a larger index—that is to say, the
degree of distortion is inversely proportional to predictive
accuracy. Therefore, optimal routing is to select a path in
descending order of predictive accuracy. While an optimal
path is computable at the encoder, it cannot be reproduced
at the decoder. The reason for this is that the word sequence
used to derive the path is inconsistent with the word sequence
received. A path is represented by a long sequence of digits,
and storing such auxiliary information would be impractical.
The problem of designing a dynamic path that is computable
for both the encoder and the decoder is an intriguing one.

The most straightforward way to deal with textual data of
a sequential nature is sequential routing. However, stegano-
graphic distortion imposed upon the preceding words would
propagate, thereby impairing predictive performance on suc-
ceeding words. In other words, the contextual clues from the
past are distorted and only the clues from the future remain
intact. Introducing randomness is conducive to mitigating error
propagation. Words are randomly selected for carrying the
payload, thereby reducing the chance of encountering distorted
context words. Furthermore, a random seed for initializing a
pseudorandom number generator can serve as a secret key
to enhance security. Nevertheless, the random variation on
sequential routing is still a form of static routing and is not
necessarily optimal. As previously mentioned, the optimal path
is associated with predictive accuracy. The encoder and the



718 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 10, NO. 2, APRIL 2023

Fig. 4. Sequential and parallel routings with and without randomness.

decoder cannot derive the same optimal path because predic-
tive accuracy is self-dependent—the accuracy of predicting a
target word is related to the word itself. The target word must
be kept unchanged to derive the same quantity; however, it has
to be changed to carry information. These two objectives are
mutually incompatible.

Predictive uncertainty is a concept closely related to pre-
dictive accuracy and depends purely on the context words.
We can derive an alternative path in ascending order of uncer-
tainty, assuming uncertainty is quantifiable. The synchronicity
between the encoder and the decoder has to be ensured
so that they can compute the same degree of uncertainty
for each target word. For that reason, the context words
have to be kept unchanged. This can be implemented by
sampling target words at fixed intervals of context words.
For instance, the context/target words are arranged in the
following manner: a target word, a segment of context words,
a target word, a segment of context words, and so forth.
If the intended payload is beyond the capacity offered by
the selected target words, we can select another set of target
words by simply shifting the intervals, resulting in multi-level
message embedding. The maximum number of levels is equal
to the length of the context segment plus one. For each
level, we can construct an adaptive path in ascending order
of uncertainty. We refer to this method as parallel routing in
the sense that a route is dynamically computed in each parallel
level. Randomness can be introduced by randomly selecting
a context/target pattern for each level. A variety of routing
methods are illustrated in Fig. 4. Furthermore, we can set
up an empirical threshold τ for filtering out words of high
uncertainty to improve performance. In other words, when
the prediction of a word is perceived to be highly uncertain,
we keep the word completely intact to minimize distortion.

V. BAYESIAN UNCERTAINTY QUANTIFICATION

Most deep learning models are deterministic functions
which offer only predictions without uncertainty information.
Bayesian statistics offers a probabilistic interpretation of deep
learning models from which the underlying uncertainty can be
captured [47]. For a given masked sequence s and a training
set D, the predictive distribution of the masked word y is given
by

p(y|s,D) =
∫

p(y|s,�)︸ ︷︷ ︸
likelihood

p(�|D)d�︸ ︷︷ ︸
posterior

(5)

where � denotes the model parameters. This can be inter-
preted as the average prediction over all plausible parameter
settings according to the parameter posterior. For deep learning
models, the derivation of the parameter posterior is analyti-
cally intractable; hence, we resort to variational inference to
approximate the posterior by a variational distribution q(�),
which belongs to a family of distributions of simpler form.
By substituting the parameter posterior with the variational
distribution and approximating the integral with Monte Carlo
integration, we derive that

p(y|s,D)
VI≈

∫
p(y|s,�)q(�)d�

MC≈ 1

T

T∑
t=1

p
(
y|s, �̂t

)
(6)

where �̂t ∼ q(�). Sampling model parameters from a
variational distribution can be interpreted as dropout [48],
which is a stochastic process of multiplying the output of
each neurone by a random variable drawn from a Bernoulli
distribution. Each dropout configuration corresponds to a
plausible realization of a deep learning model with a portion
of neurones deactivated. Applying T different dropout masks
to the model is equivalent to performing stochastic forward
passes for T repetitions, resulting in an ensemble of sparse
neural network models. This process can be viewed as a proxy
for a probabilistic deep learning model and is referred to as
Monte Carlo dropout [49].

The predictive distribution is derived by averaging the
likelihoods from T stochastic forward passes for each word

p(y = wi |s,D) ≈ 1

T

T∑
t=1

p
(
y = wi |s, �̂t

)
(7)

where wi denotes the i th word in the dictionary. For masked
language modeling, the likelihood is given by the normalized
exponential function or softmax function

p
(
y = wi |s, �̂t

) = softmax
(

fi
(
s, �̂t

))
= exp

(
fi
(
s, �̂t

))∑
j exp

(
f j

(
s, �̂t

)) (8)

where fi denotes the i th logit (i.e. raw prediction) from the
model. In information theory, the uncertainty underlying a pre-
dictive distribution can be measured by Shannon entropy [50]

H = −
‖V‖∑
i=1

p(y = wi |s,D) ln p(y = wi |s,D). (9)



CHANG: REVERSIBLE LINGUISTIC STEGANOGRAPHY WITH BAYESIAN MASKED LANGUAGE MODELING 719

Fig. 5. Bayesian uncertainty quantification via Monte Carlo dropout.

Entropy is an encapsulation of information. It captures the
average amount of information in predictive distribution. It is
maximized when the predictive distribution is a uniform distri-
bution; in other words, the model demonstrates the maximum
uncertainty when each word is equally likely. It is minimized
when only one word has a probability of 1 and all other words
have a probability of 0. An overview of Bayesian uncertainty
quantification is illustrated in Fig. 5.

VI. EXPERIMENTS

We evaluate the proposed stego system with different set-
tings of bound and threshold and compare different routings
of interest. The trade-off between capacity, imperceptibility,
and reversibility is examined with additional analysis on the
semantic and sentimental similarities between cover and stego
texts. Furthermore, a discussion on possible improvements is
provided.

A. Experimental Setup

Our cover text consists of 8 selected paragraphs from a work
of classic English literature, Alice’s Adventure in Wonderland.
The text contains 711 words plus punctuation. Each letter is
made lower case. The BERT model has a vocabulary size of
30 522 tokens. The number of context words on each side of
the target word (i.e. the length of the context segment) is set
to 32 so that each input masked sub-sequence has 65 words.
The number of Monte Carlo dropout samples (i.e. stochastic
forward passes) is set to 1000. The predictive accuracy of the
pre-trained BERT model can be represented by probability
distribution function (PDF) and cumulative distribution func-
tion (CDF) of the word index, as shown in Fig. 6. It suggests

Fig. 6. Distribution of word index.

that more than 60% of words can be accurately predicted and
about 90% of words are among the top 25 predictions in the
case of no steganographic distortion.

B. System Evaluation

We evaluate our steganographic system with different set-
tings of bound and θ and analyze the trade-off between
capacity, imperceptibility, and reversibility. Capacity is mea-
sured by the number of payload bits (absolute value) and
the payload bits per word (relative value). Imperceptibility is
measured by the cosine similarity between the cover sequence
and the stego sequence in the vector representation space.
Reversibility is not an all-or-nothing proposition. We quantify
reversibility by the number of flag bits used to disambiguate
colliding word indices (the lower the better). Figs. 7 and 8
show, respectively, the capacity–imperceptibility curves and
the capacity–reversibility curves from different routing meth-
ods. There is a general trend of decreasing imperceptibility and
reversibility with increasing capacity. For the same threshold
(θ = 1), a smaller bound preserves a better similarity because
there are fewer non-carrier words to be shifted. On the other
hand, a smaller bound incurs more flag bits because ambiguous
indices, which are close to the bound, appear more frequently.
When the threshold is raised to the maximum (θ = bound/3),
the reachable capacity is increased. In addition, increased
imperceptibility is obtained at the expense of lower reversibil-
ity. A comparison between parallel routing and sequential
routing confirms the advantage of dynamic strategy over static
strategy. The parallel routing takes account of predictive uncer-
tainty and constructs an adaptive path for message embedding.
The results also suggest that the random method has a positive
effect on both the routing methods. Furthermore, when a few
carrier words are filtered out by their uncertainty magnitudes
(with a threshold τ ), the reachable capacity is reduced and
yet greater imperceptibility and reversibility are achieved.
A more advanced uncertainty analyzer is expected to further
improve performance. We would also like to point out that the
current uncertainty analyzer requires computationally expen-
sive Monte Carlo dropout. To facilitate real-time applications,
a more efficient way to estimate uncertainty has yet to be
developed.



720 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 10, NO. 2, APRIL 2023

Fig. 7. Capacity–imperceptibility curves of different routings w.r.t. various settings of bound and threshold.

Fig. 8. Capacity–reversibility curves of different routings w.r.t. various settings of bound and threshold.

C. Semantics Analysis
Figs. 9 and 10 display a part of the cover text and the

corresponding stego text, along with the word clouds for
visualizing the frequency distributions of cover words and

stego words. The stego text is generated by the random parallel
routing with θ = 1, bound = 270 and τ = 1. We set the
capacity to 0.3 bits per word so that more than 200 payload
bits are embedded. This number is arguably sufficient for



CHANG: REVERSIBLE LINGUISTIC STEGANOGRAPHY WITH BAYESIAN MASKED LANGUAGE MODELING 721

Fig. 9. Word cloud and sample paragraphs of cover text with highlighted
carrier words (in blue) and non-carrier words (in green).

Fig. 10. Word cloud and sample paragraph of stego text with highlighted
carrier words (in blue) and non-carrier words (in green).



722 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 10, NO. 2, APRIL 2023

Fig. 11. Sentiment analysis of cover and stego texts.

many authentication applications. Perfect reversibility is also
guaranteed without any overhead information. We can observe
that the cover text and stego text are similar in terms of the
semantics and the frequency distribution of words. However,
closer inspection of the stego text shows that there are some
unnatural word usages and grammatical mistakes. A possible
refinement may be made by filtering out grammar words
and named entities and manipulating content words only.
Furthermore, a carefully designed word checker could be used
to regulate the manipulations.

D. Sentiment Analysis

We carry out a sentiment analysis on a stego text generated
using the aforementioned configurations. Fig. 11 reveals the
positive/negative sentiment scores for each cover paragraph
and each stego paragraph. The scores are obtained from a
transformer-based sentiment analyzer. It is observed that the
cover text and the stego text have very similar sentiment pat-
terns, suggesting that steganographic distortion only produces
minimal fluctuations in sentence sentiment. For particular
sentiment-oriented applications, one may refine the system
by retaining some salient contributory words which have a
dominant influence upon text sentiment.

VII. CONCLUSION

In this work, we introduce a linguistic stego system with
reversibility based on predictive word substitution. We use
a pre-trained masked language model to generate a list of
predictive words and embed a message digit by replacing the
target word with one of the predictive words. The underlying
assumption of the reversible coding is that word indices
follow approximately an exponential distribution. We further
apply a theoretical framework of Bayesian deep learning to
quantify the uncertainty in the masked language model and
use it to determine an adaptive route for message embedding.
Our stego system achieves perfect reversibility without extra
auxiliary information under limited capacity conditions. It also
maintains close vector space, and semantic and sentimental
similarities between cover and stego texts. Imperceptibility
analysis suggests that steganographic distortion is to some
extent indiscernible in a computing sense. In reality, however,

even an extra punctuation mark or unusual collocation may be
noted by a careful reader. Therefore, further improvement in
imperceptibility is required. We also envisage further progress
in uncertainty analysis such that the computational efficiency
meets real-time requirements. Furthermore, while the pro-
posed stego system is based primarily on lexical substitution,
syntactic and generative methods also deserve investigation.
We hope this article can shed light on future research devoted
to reversible linguistic steganography.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, 1978.

[2] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data
hiding,” IBM Syst. J., vol. 35, nos. 3–4, pp. 313–336, 1996.

[3] R. J. Anderson and F. A. P. Petitcolas, “On the limits of steganography,”
IEEE J. Sel. Areas Commun., vol. 16, no. 4, pp. 474–481, 1998.

[4] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information
hiding—A survey,” Proc. IEEE, vol. 87, no. 7, pp. 1062–1078, 1999.

[5] J. Fridrich, M. Goljan, P. Lisonek, and D. Soukal, “Writing on wet
paper,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3923–3935,
2005.

[6] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread
spectrum watermarking for multimedia,” IEEE Trans. Image Process.,
vol. 6, no. 12, pp. 1673–1687, 1997.

[7] G. Depovere et al., “The VIVA project: Digital watermarking for
broadcast monitoring,” in Proc. Int. Conf. Image Process. (ICIP), Kobe,
Japan, 1999, pp. 202–205.

[8] S. He and M. Wu, “Joint coding and embedding techniques for multi-
media fingerprinting,” IEEE Trans. Inf. Forensics Secur., vol. 1, no. 2,
pp. 231–247, 2006.

[9] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc.
Int. Conf. Learn. Represent. (ICLR), Banff, AB, Canada, 2014, pp. 1–10.

[10] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. Int. Conf. Learn. Represent. (ICLR),
San Diego, CA, USA, 2015, pp. 1–11.

[11] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Univer-
sal adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Honolulu, HI, USA, 2017, pp. 86–94.

[12] J. Fridrich, M. Goljan, and R. Du, “Invertible authentication,” Proc.
SPIE, vol. 4314, pp. 197–208, 2001.

[13] C. De Vleeschouwer, J.-F. Delaigle, and B. Macq, “Circular interpre-
tation of bijective transformations in lossless watermarking for media
asset management,” IEEE Trans. Multimedia, vol. 5, no. 1, pp. 97–105,
2003.

[14] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless
generalized-LSB data embedding,” IEEE Trans. Image Process., vol. 14,
no. 2, pp. 253–266, 2005.

[15] D. M. Thodi and J. J. Rodriguez, “Expansion embedding techniques for
reversible watermarking,” IEEE Trans. Image Process., vol. 16, no. 3,
pp. 721–730, 2007.

[16] S. Lee, C. D. Yoo, and T. Kalker, “Reversible image watermarking based
on integer-to-integer wavelet transform,” IEEE Trans. Inf. Forensics
Secur., vol. 2, no. 3, pp. 321–330, 2007.

[17] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible
watermarking algorithm using sorting and prediction,” IEEE Trans.
Circuits Syst. Video Technol., vol. 19, no. 7, pp. 989–999, 2009.

[18] C. Qin, C.-C. Chang, Y.-H. Huang, and L.-T. Liao, “An inpainting-
assisted reversible steganographic scheme using a histogram shifting
mechanism,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 7,
pp. 1109–1118, 2013.

[19] C.-C. Chang, “Adversarial learning for invertible steganography,” IEEE
Access, vol. 8, pp. 198425–198435, 2020.

[20] S. H. Low, N. F. Maxemchuk, J. T. Brassil, and L. O’Gorman, “Docu-
ment marking and identification using both line and word shifting,” in
Proc. IEEE Conf. Compt. Commun. (INFOCOM), vol. 2, Boston, MA,
USA, 1995, pp. 853–860.

[21] S. H. Low, N. F. Maxemchuk, and A. M. Lapone, “Document identi-
fication for copyright protection using centroid detection,” IEEE Trans.
Commun., vol. 46, no. 3, pp. 372–383, 1998.



CHANG: REVERSIBLE LINGUISTIC STEGANOGRAPHY WITH BAYESIAN MASKED LANGUAGE MODELING 723

[22] J. T. Brassil, S. H. Low, and N. F. Maxemchuk, “Copyright protection
for the electronic distribution of text documents,” Proc. IEEE, vol. 87,
no. 7, pp. 1181–1196, 1999.

[23] L. Y. Por, T. F. Ang, and B. Delina, “WhiteSteg: A new scheme in
information hiding using text steganography,” WSEAS Trans. Comp.,
vol. 7, no. 6, pp. 735–745, 2008.

[24] C. Xiao, C. Zhang, and C. Zheng, “FontCode: Embedding information in
text documents using glyph perturbation,” ACM Trans. Graph., vol. 37,
no. 2, pp. 1–16, 2018.

[25] K. Winstein, “Lexical steganography through adaptive modulation of the
word choice hash,” unpublished.

[26] I. A. Bolshakov, “A method of linguistic steganography based on
collocationally-verified synonymy,” in Proc. Int. Workshop Inf. Hiding
(IH), Toronto, ON, Canada, 2005, pp. 180–191.

[27] C.-Y. Chang and S. Clark, “Practical linguistic steganography using
contextual synonym substitution and a novel vertex coding method,”
Comput. Linguistics, vol. 40, no. 2, pp. 403–448, 2014.

[28] M. Topkara, U. Topkara, and M. J. Atallah, “Words are not enough:
Sentence level natural language watermarking,” in Proc. ACM Int.
Workshop Contents Protection Secur. (MCPS), Santa Barbara, CA, USA,
2006, pp. 37–46.

[29] B. Murphy and C. Vogel, “The syntax of concealment: Reliable methods
for plain text information hiding,” Proc. SPIE, vol. 6505, pp. 351–362,
2007.

[30] H. M. Meral, B. Sankur, A. S. Özsoy, T. Göngör, and E. Sevinç, “Nat-
ural language watermarking via morphosyntactic alterations,” Comput.
Speech Lang., vol. 23, no. 1, pp. 107–125, 2009.

[31] C.-Y. Chang and S. Clark, “The secret’s in the word order: Text-to-text
generation for linguistic steganography,” in Proc. Int. Conf. Comput.
Linguistic (COLING), Mumbai, India, 2012, pp. 511–528.

[32] C. Grothoff, K. Grothoff, L. Alkhutova, R. Stutsman, and M. Atallah,
“Translation-based steganography,” in Proc. Int. Workshop Inf. Hiding
(IH), Barcelona, Spain, 2005, pp. 219–233.

[33] R. Stutsman, C. Grothoff, M. Atallah, and K. Grothoff, “Lost in just the
translation,” in Proc. ACM Symp. Appl. Comput. (SAC), Dijon, France,
2006, pp. 338–345.

[34] P. Meng, L. Hang, Z. Chen, Y. Hu, and W. Yang, “STBS: A sta-
tistical algorithm for steganalysis of translation-based steganography,”
in Proc. Int. Workshop Inf. Hiding (IH), Calgary, AB, Canada, 2010,
pp. 208–220.

[35] C.-Y. Chang and S. Clark, “Adjective deletion for linguistic steganog-
raphy and secret sharing,” in Proc. Int. Conf. Comput. Linguistic
(COLING), Mumbai, India, 2012, pp. 493–510.

[36] P. Wayner, “Strong theoretical stegnography,” Cryptologia, vol. 19, no. 3,
pp. 285–299, 1995.

[37] M. Chapman and G. I. Davida, “Hiding the hidden: A software system
for concealing ciphertext as innocuous text,” in Proc. Int. Conf. Inf.
Commun. Secur. (ICICS), Beijing, China, 1997, pp. 335–345.

[38] Z. Yang, X. Guo, Z. Chen, Y. Huang, and Y. Zhang, “RNN-Stega:
Linguistic steganography based on recurrent neural networks,” IEEE
Trans. Inf. Forensics Secur., vol. 14, no. 5, pp. 1280–1295, 2019.

[39] Z. Yang, S. Zhang, Y. Hu, Z. Hu, and Y. Huang, “VAE-Stega: Linguistic
steganography based on variational auto-encoder,” IEEE Trans. Inf.
Forensics Secur., vol. 16, pp. 880–895, 2021.

[40] S. Zhang, Z. Yang, J. Yang, and Y. Huang, “Linguistic steganography:
From symbolic space to semantic space,” IEEE Signal Process. Lett.,
vol. 28, pp. 11–15, 2021.

[41] Z. S. Harris, “Distributional structure,” Word, vol. 10, nos. 2–3,
pp. 146–162, 1954.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in Proc. Int. Conf. Learn.
Represent. (ICLR), Scottsdale, AZ, USA, 2013, pp. 1–12.

[43] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Linguistics (EMNLP), 2014, pp. 1532–1543.

[44] M. E. Peters et al., “Deep contextualized word representations,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics (NAACL), New
Orleans, LA, USA, 2018, pp. 2227–2237.

[45] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in
Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics (NAACL),
Minneapolis, MN, USA, 2019, pp. 4171–4186.

[46] A. Vaswani et al., “Attention is all you need,” in Proc. Annu. Conf.
Neural Inf. Process. Syst. (NeurIPS), vol. 30, Long Beach, CA, USA,
2017, pp. 1–11.

[47] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, Dept. Eng.,
Univ. Cambridge, Cambridge, U.K., 2016.

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929–1958,
2014.

[49] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proc. Int. Conf.
Mach. Learn. (ICML), New York, NY, USA, 2016, pp. 1050–1059.

[50] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

Ching-Chun Chang received the Ph.D. degree
in computer science from the University of War-
wick, Coventry, U.K., in 2019. He participated
in a short-term scientific mission supported by
European Cooperation in Science and Technology
Actions with the Faculty of Computer Science,
Otto von Guericke University Magdeburg, Germany,
in 2016. He was granted the Marie-Curie Fellowship
and participated in a research and innovation staff
exchange scheme supported by Marie Skłodowska-
Curie Actions with the Department of Electrical and

Computer Engineering, New Jersey Institute of Technology, USA, in 2017.
He was a Visiting Scholar with the School of Computer and Mathematics,
Charles Sturt University, Australia, in 2018, and the School of Information
Technology, Deakin University, Australia, in 2019. He was a Research
Fellow with the Department of Electronic Engineering, Tsinghua University,
China, in 2020. He has been a Post-Doctoral Fellow with the National
Institute of Informatics, Japan, since 2021. His research interests include
steganography, watermarking, forensics, biometrics, cybersecurity, applied
cryptography, image processing, computer vision, natural language processing,
computational linguistics, machine learning, and artificial intelligence.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


