
seL4: from General Purpose to a Proof of Information Flow Enforcement

Toby Murray∗†, Daniel Matichuk∗, Matthew Brassil∗, Peter Gammie∗, Timothy Bourke∗,
Sean Seefried∗, Corey Lewis∗, Xin Gao∗ and Gerwin Klein∗†
∗NICTA and †University of New South Wales, Sydney, Australia

Email: firstname.lastname@nicta.com.au

Abstract—In contrast to testing, mathematical reasoning and
formal verification can show the absence of whole classes of
security vulnerabilities. We present the, to our knowledge, first
complete, formal, machine-checked verification of information
flow security for the implementation of a general-purpose mi-
crokernel; namely seL4. Unlike previous proofs of information
flow security for operating system kernels, ours applies to the
actual 8,830 lines of C code that implement seL4, and so rules
out the possibility of invalidation by implementation errors in
this code. We assume correctness of compiler, assembly code,
hardware, and boot code. We prove everything else. This proof
is strong evidence of seL4’s utility as a separation kernel, and
describes precisely how the general purpose kernel should be
configured to enforce isolation and mandatory information flow
control. We describe the information flow security statement
we proved (a variant of intransitive noninterference), including
the assumptions on which it rests, as well as the modifications
that had to be made to seL4 to ensure it was enforced. We
discuss the practical limitations and implications of this result,
including covert channels not covered by the formal proof.

I. INTRODUCTION

Provably secure operating systems have been a research

topic for more than 30 years [11], [17], [47], [53], and

while there are a number of small high-assurance separation

kernels [25] in deployment such as INTEGRITY-178B [44],

even the strongest levels of security evaluation schemes

such as Common Criteria do not demand implementation-

level proofs, which have been widely thought infeasible.

Modern mainstream OSes are riddled with security problems

as is to be expected for large monolithic systems, and even

implementations of the proposed mainstream fix for this

problem, hypervisors like Xen [7], have been shown to

exhibit a number of critical vulnerabilities [39].

This paper presents the first formal, fully machine-

checked, mathematical proof that a high-performance,

general-purpose microkernel C code implementation en-

forces strong information flow control. Together with the

existing proofs of seL4’s functional correctness [27] and in-

tegrity enforcement [51], this work shows that seL4 provably

enforces strong access control mechanisms, in particular the

high-level security properties of confidentiality and integrity.

Our proof assumptions explicitly state how to configure

this general-purpose OS kernel to enforce isolated partitions

with controlled communication channels. Unlike previous

information flow verifications ours applies to the actual

8,830 lines of C code that implement seL4, rather than to a

manually abstracted model of its behaviour. Our main proof

assumptions stem from the foundational work on functional

correctness [27]. We assume correctness of compiler, as-

sembly code, hardware, and boot code; we prove everything

else. The verified seL4 kernel runs on commodity ARMv6

and ARMv7 hardware and is available commercially under

the product name OKL4:verified, as well as freely in binary

form for academic use [41].
The information flow property we prove for seL4 is

a variant of intransitive noninterference [19], [40], [46]

proposed for OS kernels [36]. This property enforces confi-

dentiality on storage channels and logical time. As is usual

for noninterference results, fine-grained timing behaviour of

the hardware is not covered by the formal baseline model

and therefore neither by the proof. This means covert timing

channels still need to be mitigated by complementary (e.g.

probability-based) techniques. We argue that for modern

commodity hardware the absence of such channels is not

fully enforceable and that the best that can be expected is

to reduce channel bandwidth based on the risk profile of a

particular deployment.
We analyse the limitations and strength of the proof

statement in detail in Section V. By formally stating the

assumptions under which seL4 enforces information flow

security, this result also provides an unambiguous descrip-

tion of how seL4 should be configured to enforce a par-

ticular information flow policy. The strongest restriction on

such configurations is the absence of direct memory access

(DMA) for devices. This is not an unusual restriction, and is

shared with commercial separation kernels in deployment.

New hardware mechanisms such as IOMMUs [3] may

enable us to relax this in the future.
In detail, the technical contributions of this work are:

• to our knowledge, the most detailed and extensive

machine-checked formal verification of information

flow security ever for a general-purpose OS kernel;

• a formal, and thus precise and unambiguous, descrip-

tion on how to configure the general-purpose seL4

microkernel to enforce a given information flow policy;

• achieving the above results without sacrificing perfor-

mance or preventing the use of the dynamic general-

purpose microkernel API inside partitions.

To achieve this result, we extended the seL4 API only

minimally by adding a static partition-based scheduler com-
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mon to separation kernels. We disallow none of the seL4

API other than requiring that seL4 be configured to pre-

vent asynchronous interrupt delivery to user-space partitions

which would introduce an information channel. This means

that device drivers must poll for device interrupts via mem-

ory mapped IO, which is typical behaviour for separation

kernels [42] and high-assurance systems.

While traditional separation kernels typically provide no

system calls at all after initial configuration, in our general-

purpose seL4 setting, all other kernel facilities are available

within partitions, including dynamic memory allocation and

revocation, (intra-partition) inter-thread messaging, capabil-

ity transfer and shared memory. Between partitions, seL4

provides asynchronous notifications and shared memory to

facilitate uni-directional communication. The information

flow security theorem implies that these primitives are free of

storage back-channels, and that the dynamic intra-partition

services do not violate information flow security either. A

modified version of the paravirtualised Linux system Wom-

bat [29] allows an entire Linux instance and its applications

to run within a partition. This enables mandatory information

flow control policies to be enforced between untrusted and

legacy applications, with guarantees on information flow

provided by a strong machine-checked theorem.

During this proof of noninterference we did not find any

information-flow problems in the seL4 kernel that required

code changes, as we had hoped given the previous intensive

work on proving functional correctness and integrity. We

did, however, find a number of API features that had to

be explicitly forbidden for inter-partition use. For experts,

most of these were not surprising. For instance it is well-

known that synchronous IPC will introduce an information

flow back-channel, but the proof clearly identified all in-

stances. This included a number of cases that were not

immediately obvious, such as capability deletion potentially

and observably crossing partition boundaries. All of these

could be excluded by reasonable restrictions on supported

seL4 configurations, detailed in Section IV and summarised

in Section V.

Our security proof—like all others—is not an iron-clad

statement of general security for seL4, but rather a powerful

piece of evidence about seL4’s security mechanisms and its

suitability as a separation kernel. Importantly, any system-

level security evaluation can now concentrate its effort on

validating proof assumptions, which is a much simpler job

than asserting information flow security, and on using com-

plementary techniques for the remaining items that are not

covered by our proof (detailed in Section V). Furthermore,

the proof statement addresses whole high-level classes of

attack such as information leakage to confined subjects

without access to timing sources, and the evaluation can be

guided by precise formal statements of policy and system

deployment assumptions. The security proof gives precise

predictions about the strength of mechanisms; the previous

functional correctness proof shows that these mechanisms

will be reliably enforced by the implementation.

The remainder of this paper is organised as follows. We

briefly summarise the attacker/threat model in Section II. We

then discuss background material in Section III, including

the seL4 API and how it can be used to implement separation

and information flow control, as well as past formal seL4

verification work that our proof builds upon. We present our

formal statement of information flow security and discuss

its proof in Section IV. We consider its implications and

limitations in Section V. Section VI situates our result in

the context of related work before we conclude.

II. THREAT MODEL

Our target deployment scenario is a physically secured,

high-assurance, uni-processor system with trusted hardware.

The system may potentially have access to untrusted net-

works and run mutually distrusting application software. The

security goal for the kernel is to only permit information

flows according to the partitions and information flow policy

it was configured with.

The threat model assumes that all user-level code after

system initialisation is malicious and acting in concert to

break the information flow policy. The attacker’s goal is to

read or indirectly infer the contents (i.e. private state) of a

partition that according to the information flow policy should

remain secret to it. The attacker is assumed to know the

configuration and code of the entire system, including the

kernel, but not the contents of other partitions.

As mentioned, timing channels are not in the scope of this

proof and must be analysed by complementary techniques.

The channels that are in scope are storage channels and

causal deduction. The attacker may run any sequence of

instructions or attempt any kernel call, to break the infor-

mation flow policy. Our proof statement is that, subject to

the limitations and assumptions discussed in Section V, the

attacker will not succeed.

III. BACKGROUND

A. The seL4 Kernel API

The seL4 microkernel provides a minimal set of mecha-

nisms for implementing secure systems: threads, capability

management, virtual address spaces, inter-process commu-

nication (IPC), and interrupt delivery. The state of each

instance of a service is maintained within the kernel by

data structures termed kernel objects. For example, for each

thread in a system there is a thread object that stores

the information about the thread relevant to scheduling,

execution, and access control. User-space programs can only

refer to kernel objects indirectly through capabilities [16],

each of which combines a reference to a specific object with

a set of access rights. For example, a thread cannot start,

stop, or read or modify the registers of another unless it

possesses a capability for the corresponding thread object.
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Capabilities are managed by the kernel, and stored in

kernel objects called CNodes. Each thread object also con-

tains several distinguished capabilities. One of these defines

the root of a thread’s CSpace: a directed graph of the

CNodes the thread can access. A user-space program refers

to capabilities in its CSpace via addresses that specify paths

relative to its CSpace root. It is possible to fabricate an

address but never a capability; invalid addresses are simply

rejected during decoding. We say that a thread invokes a

capability when it passes the address of that capability to a

system call. For instance, a CNode capability can be invoked

to copy, move, delete, or derive (reduce the associated access

rights of) the capabilities contained within it.

Besides access control, capabilities also serve to manage

memory. Unallocated memory is made available through

Untyped memory capabilities that can be retyped into kernel

objects like CNodes or thread objects. Retyping creates fresh

capabilities that refer to the newly created objects, and which

are derived from the original Untyped capability. The revoke
system call deletes all capabilities derived from the invoked

Untyped capability, which effectively reclaims all resources

allocated from within it and is a useful way of destroying

an entire subsystem in a single system call.

Untyped memory can also be allocated to kernel ob-

jects representing page directories, page tables, and pages.

Another of the distinguished capabilities stored in each

thread object refers to the page directory at the root of

the associated thread’s virtual address space (VSpace). By

invoking this capability, and those for the associated page

tables and pages, a thread can direct the kernel to configure

the memory management unit of the underlying platform. In

particular, multiple threads that each possess capabilities to

the same physical pages may each map those pages into their

respective VSpaces and thereafter communicate by reading

and writing to the shared memory.

Threads can also communicate and synchronise by send-

ing messages through IPC endpoints. There are two types

of endpoint: synchronous, where a sender blocks waiting for

a receiver; and asynchronous, where a sender never blocks.

Capabilities to either kind of endpoint may carry the Send

and Receive access rights; a thread with a Send capability to

an endpoint can use it to transmit messages to any thread that

has a Receive capability to the same endpoint. In addition,

capabilities for synchronous endpoints may also carry the

Grant right that allows senders to transmit capabilities to

receivers in the style of classical take-grant systems [30].

Two special capability types are used to control the ker-

nel’s interrupt delivery mechanism. An InterruptControl ca-

pability confers the authority to create new InterruptHandler

capabilities for specific interrupt request (IRQ) numbers,

each of which confers the authority to receive an IRQ.

Interrupts are disabled in kernel mode to avoid in-kernel

concurrency. Low interrupt latencies are ensured by adding

preemption points to certain long-running system calls, such

as revoke which iteratively deletes derived capabilities. In-

terrupts are polled at these points and, if necessary, an active

system call may be suspended until the requesting thread is

next scheduled to run.

B. Using seL4 as a Separation Kernel

As a microkernel, seL4 is designed to provide mecha-

nisms only; policy is implemented in user-space. On startup,

the kernel hands control to the initial user-level thread, which

has complete authority, and whose job it is to configure the

system including implementing any security policy that is to

be enforced by carefully distributing subsets of its authority

to the entities that it sets up.

This means that, when used as a separation kernel, the

initial thread is responsible for creating each of the partitions

and any communication channels between them. The initial

thread is then responsible for destroying itself, and once this

is completed correctly the system is configured to enforce

separation. It is from this state, after this configuration has

occurred, that our proof of information flow security applies.

Each partition spans both user-space and kernel-space: it

contains not just user memory mapped into the VSpaces of

the threads within the partition, but may also include kernel

objects that those threads have capabilities for. Concretely,

each partition will typically contain a number of thread

objects with associated page directories, page tables and

pages to implement their VSpaces, as well as a number of

CNode objects to implement their CSpaces, and any other

kernel objects used within the partition such as endpoints for

intra-partition messaging and capability transmission. The

partition may also contain Untyped Memory capabilities to

allow new objects to be created and intra-partition subsys-

tems to be destroyed. All kernel services, other than interrupt

delivery (see below), are available to partitions. This allows

partitions to host large and complex applications, not least a

paravirtualised version of Linux to host legacy applications.

As mentioned in Section I, shared memory and asyn-

chronous endpoints allow uni-directional communication

between partitions. These facilities must be set up by the

initial thread when partitions are created, which involves

distributing the necessary capabilities for these facilities to

each partition that is going to use them. This is because

capabilities cannot be transferred between partitions without

breaking authority confinement [51], which is a necessary

condition for our information flow security property.

Figure 1 depicts a small example system with two par-

titions, that communicate via shared memory and asyn-

chronous endpoints. Partition 2 on the right has read access

to a shared page in Partition 1 on the left, and Partition 1 has

send rights to an asynchronous endpoint in Partition 2. This

allows information to flow only from Partition 1 to Partition

2, in accordance with our information flow theorem.

To implement separation in seL4, we had to extend

its existing priority-based scheduler to implement partition
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Figure 1. A small example system, with two partitions.

scheduling. Here, the scheduler follows a static round-robin

schedule between partitions, with fixed-length time slices per

partition, while doing dynamic priority-based round-robin

scheduling of threads within each partition. This ensures that

the choice of which partition is currently running depends

only on this fixed schedule, while the choice about which

thread is running in the current partition depends only on the

internal state of the current partition. Thus scheduler choices

do not leak information between partitions.

A limitation of the current implementation that we discuss

further in Section V is that partitions can overrun their time-

slices by performing system calls just before a partition

switch would have occurred. This happens because interrupts

are disabled in kernel mode, which prevents a partition

switch from being serviced until after the system call has

been handled or a preemption point has been reached. While

there exist obvious solutions to this problem, deciding on

the most appropriate fix necessarily involves a trade-off

between performance and timing channel bandwidth which

can only be properly decided within the context of a specific

deployment scenario. For this reason, we have currently left

a general treatment of this limitation as future work. This

channel can trivially be drastically reduced by configuring

seL4 to not permit any intra-partition system calls at all,

as in a traditional separation kernel; a classic “yellow-light”

mechanism, whereby kernel services are denied near the end

of a partition’s timeslice, based on a sound upper bound

for the worst-case execution time of the kernel [12] in this

configuration could fully eliminate this channel.

Another limitation mentioned earlier in Section I is that

the initial thread must ensure that the kernel APIs for

interrupt delivery are not exposed to any partition. It does

so trivially by never giving any partition an InterruptControl

or InterruptHandler capability, and never using any such

capabilities that it might possess. As explained earlier, this

forces partitions to interact with devices solely through

memory-mapped IO.

C. Functional Correctness Proof

Our information flow security proof builds upon two

earlier verification results for the seL4 microkernel. The first

is a proof of functional correctness [27], reported by Klein

et al. in 2009. The second is a proof of integrity enforcement

for seL4 [51], completed by Sewell et al. in 2011.

The functional correctness proof for seL4 is a classical

proof of refinement [1], [15], showing that seL4’s C im-

plementation refines (or implements) an abstract specifica-

tion of its functional behaviour, which we call simply the

abstract specification. Each level is formalised as a state

machine whose transitions include processing an interrupt or

exception, performing a system call, and ordinary user-level

operations like reading and writing user-accessible memory.

For an automaton A and initial observable state s and

sequence of transitions as, let execution A s as denote the set

of observable states that can be reached by A performing as.

Then, an automaton C refines A, written A � C, when C’s

behaviours are a subset of A’s.

A � C ≡ ∀ s as. execution C s as ⊆ execution A s as

This proof took around 25 person-years to complete [27].

Much of that effort was devoted to proving invariants, which

the kernel maintains and which are necessary preconditions

in the refinement proof. We make direct use of these

invariants when reasoning about information flow in seL4.

Importantly, the functional correctness proof enabled us

to perform our information flow security proof over the

abstract specification, which is far simpler to reason about

than the kernel’s C code. The formulation of information

flow security that we adopt is preserved by refinement [36].

This means that once proved for the abstract specification,

we can compose this result with the refinement theorem to

derive information flow control for the kernel’s C code.

By proving information flow security over the abstract

specification, we gain a substantial saving in effort (see Sec-

tion V-D) that we estimate is about an order of magnitude.

D. Integrity and Authority Confinement

Sewell et al.’s proof of integrity and authority confinement

for seL4 [51], also over the abstract specification, provides

the second foundation for our proof of information flow.

Roughly, the integrity result says that all changes to the sys-

tem state are authorised by the capabilities of the currently

running thread. Authority confinement says that, in suitable

system configurations, no thread’s authority will increase.

A more formal account of both properties requires 1) an

access control policy that captures the subjects in a system,

and the authorities that each has to each of the others,

2) an abstraction function that partitions kernel objects and

memory locations between subjects in an access control

policy, and, 3) the wellformedness constraints necessary to

ensure that the authority of subjects cannot increase. We will

now describe each element in more detail.

An access control policy is essentially a directed graph

with subject labels on nodes and authority types on edges.

For example, the policy in Figure 2, derived from the system

depicted in Figure 1, shows subjects labelled ‘S1’ and

‘S2’, where S1 has Read and Write authority to itself and

418



S1 S2
Read

AsyncSend

ReceiveRead

Write

Figure 2. Example access control policy.

AsyncSend authority to S2, and S2 has Receive authority

to itself and Read authority to S1; other self-edges are

implicit. The other possible authorities are Grant, SyncSend,

Reset, and Control. SyncSend and AsyncSend represent

the authority to send on synchronous and asynchronous

endpoints respectively. Reset represents the authority to reset

an object to its original state. Control authority implies

complete control over a target subject; it exists, for instance,

when one subject has a thread capability to another, allowing

it to overwrite the other’s registers.

An abstraction function maps each kernel object and

memory location to a subject label, partitioning all system

resources between access control subjects. Integrity and

authority confinement are formulated over a triple pas that

contains an access control Policy, an Abstraction function,

and the label of the currently active Subject. We often refer

to this triple as simply an access control policy.

Given a specific pas and a state s, pas-refined pas s states

that pas both conservatively over-approximates the authority

distribution of s and that it meets certain wellformedness

constraints [51]. The wellformedness constraints include

standard requirements like assuming full reflexive authority

and the absence of Grant authority between distinct subjects,

which could trivially allow a subject’s authority to exceed

that prescribed by pas.

Given these elements, the proof of authority confinement

shows that for all access control policies pas and states s
that satisfy the invariants of the abstract specification, if

pas-refined pas s holds, then for all states s ′ directly reach-

able from s, pas-refined pas s ′ must also hold. In other

words, pas is an upper bound on authority within a system.

The integrity property, on the other hand, is captured by

the predicate integrity pas s s ′ between any pair of states s
and s ′. It shows that any modification that the current subject

can perform is permitted by the authority represented in pas,

thus giving a bound on the differences between s and s ′. The

main integrity theorem states that for all states s that satisfy

the invariants, if pas-refined pas s holds, then for all directly

reachable states s ′, integrity pas s s ′ also holds. In terms of

the example of Figure 2, integrity says that whenever the

subject S2 executes, including during system calls it might

make, nothing in subject S1 changes, because S2 has only

Read authority to S1.

Combining the integrity and authority confinement theo-

rems allows the conclusion that integrity is preserved across

PSched

P1 P2

Figure 3. Example information flow policy.

all sequences of transitions (for wellformed access control

policies). This is important, because we use integrity to help

prove information flow security for seL4.

IV. INFORMATION FLOW CONTROL FOR SEL4

In this section, we describe how information flow control

was formalised for seL4 and discuss its formal proof.

A. Information Flow Policy

Our formulation of information flow security builds on

the integrity and authority confinement proofs for seL4. We

begin by mapping an access control policy to a correspond-

ing information flow policy, which allows us to re-use the

integrity and authority confinement results to help us prove

information flow security.

Each access control subject Si induces a corresponding

information flow partition Pi. We also include a parti-

tion PSched for the scheduler, as required by our formu-

lation of information flow security [36]. The information

flow policy � is computed in two steps as follows.

We first compute the extent of each partition Pi that is

not PSched. The extent of Pi is simply the set of all access

control subjects that Pi can directly infer information about.

This includes those that Pi can read directly as well as

those that the kernel reads during a system call and then

reveals to Pi in the results or effects of the system call. This

computation is a function of just the access control policy,

and is governed by a set of simple rules. For instance, subject

Si is necessarily in the extent of partition Pi; if subject Si
has Read authority to a subject Sj then Sj is in the extent

of partition Pi etc. Referring to Figure 2, the extent of the

partition P1 induced by subject S1 is simply the subject S1;

the extent of the partition P2 induced by subject S2 is both

subjects S1 and S2 because S2 has Read authority to S1.

Having computed the extent of each partition Pi, the

information flow policy � is computed using the following

two rules. Here Pi and Pj are non-PSched partitions.

1) Pi � Pj if the access control policy allows Si to affect

any subject in Pj’s extent.

2) PSched � Pi for all Pi, and PSched � PSched.

The calculation of whether Si is allowed to affect some

subject Sk according to the access control policy is derived

from the integrity theorem: Si can affect Sk according to

policy pas whose current subject is Si, when there exist states
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(a) Small-step transition system.

KEntry
Interrupt

KPre-
empt

KExit

(b) Big-step system.

Figure 4. Transition systems for the seL4 abstract specification. Shading
indicates whether the scheduling partition PSched is active (unshaded)
or not (shaded). For KEntry ev, PSched is active iff ev = Interrupt.

s and s ′ that differ only for some object in Sk for which

pas-refined pas s holds and integrity pas s s ′ holds.

It is trivial to prove that, under these rules, � allows no

partition other than PSched to send information to PSched;

that� is reflexive; and that PSched can send information to

all partitions. This last result is expected since the scheduler

can necessarily affect any other partition by scheduling a

thread within it. The first result ensures that the scheduler

cannot then become a global transitive channel through

which information can flow from any partition to any other.

Figure 3 depicts the information flow policy, excluding

self-edges, derived from Figure 2’s access control policy.

B. System Model

Before describing how we formalise information flow

security for seL4, we first describe the formal model of the

kernel over which this property is defined. This model is

essentially a state machine with unlabelled transitions.

Figure 4(a) depicts the transition system of the seL4

abstract specification for which we proved information flow

security, comprising 4,970 source lines of Isabelle/HOL. The

transitions do not carry labels; rather, all information about

each state transition is encoded in the pre- and post-states

of the transition. One piece of information encoded in the

state is the current abstract mode of execution, which labels

the nodes in Figure 4(a). The KEntry mode is parameterised

by a kernel event ev, indicating the reason for kernel entry,

whose values include Interrupt, to model the arrival of device

interrupts; SyscallEvent, to model the occurrence of user

traps; and others that represent virtual memory faults and

exceptions etc. The abstract modes that model kernel-mode

execution begin with ”K”. The transition from KEntry to

KPreempt models the kernel handling a system call, reaching

a preemption point and preemption occurring because an

interrupt has arrived. The following transition models the

kernel handling the preemption—i.e. responding to the just-

arrived interrupt. The transition from KEntry to KSched
models the kernel handling an event without preemption

occurring.

The transition from KSched models the execution of the

scheduler, which is invoked at the end of every kernel event

before returning to user-space. When invoked, the scheduler

examines the remaining time slice of the current partition.

When the remaining time slice is zero the scheduler switches

to the next partition in the static partition schedule; when

it is non-zero the scheduler schedules the highest priority

runnable thread in the current partition or the idle thread if

there are no runnable threads to choose.

The current partition’s remaining time slice is decre-

mented upon the arrival of timer interrupts, which are seen

only by the kernel. Recall, from Section III-B, that we

assume the system is initialised so that all other interrupts are

disabled. This is formalised by the property only-timer-irq.

It is relatively straightforward to prove that only-timer-irq
is invariant across all executions. So the arrival of each

interrupt marks the passage of another timer tick.

The transitions from KExit model exiting the kernel back

to user-mode. We distinguish the cases in which a user-level

thread is running (UserMode) from those in which the idle

thread is running (IdleMode), because in the latter the only

way to enter the kernel is by the arrival of a device interrupt

(KEntry Interrupt).
The self-loop transition on UserMode models the ordi-

nary user-level actions of the currently running thread, for

instance reading and writing to the physical memory that is

mapped in its virtual address space. The self-loop transition

on IdleMode represents the passage of time as the idle thread

awaits the arrival of the next interrupt.

The transition system in Figure 4(a) differs a little from

the transition system of the kernel about which functional

correctness was originally proved [27]. The original tran-

sition system did not have the states KPreempt, KSched
and KExit and had just single transitions from kernel entry

to user-mode and to idle-mode respectively. We modified

it (and then re-established functional correctness) to break

these kernel transitions into a number of smaller steps be-

cause the actions of handling timer interrupts and scheduling

a new partition occur on behalf of the scheduling partition,

PSched, which is distinct from all other partitions Pi. These

must therefore be represented as separate transitions.

The machine model on which the kernel specifications

sit uses an interrupt oracle to model the arrival of device

interrupts. This oracle is simply an infinite stream of values

in the range 0x00–0xFF (where 0xFF means no interrupt is

currently active), with a natural number variable that records

the current position in this stream. The machine function

getActiveIRQ returns the currently active IRQ. When called,

it advances the current position of the interrupt oracle and

then examines the value at the new position in the interrupt

stream. getActiveIRQ returns this value if it is not 0xFF

and is allowed by the current interrupt masks; otherwise

getActiveIRQ returns a null value. Under the assumption

only-timer-irq, which implies that all non-timer interrupts are
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masked off, getActiveIRQ can return only one of two possible

answers each time it is called: either a timer interrupt has

arrived, or no interrupt has arrived since getActiveIRQ was

last called. We prove information flow security for all such

oracles, and assume that partitions are allowed to know the

position of all timer interrupts in the oracle stream as well

as the current oracle position. This implies that all partitions

are allowed to observe the passage of global time.

To formalise information flow, we had to transform the

transition system of Figure 4(a) into one with larger exe-

cution steps. While we do not model the passage of time

explicitly, it is exposed (albeit quite coarsely) in our formal

model of the kernel via the current position of the interrupt

oracle. Advancing this position, by calling getActiveIRQ,

allows the passage of time to be observed. The amount that

the oracle position is advanced when handling a pre-emptible

system call necessarily depends on how many preemption

points were traversed, which depends on the input data to

the system call. Thus the change in the oracle position on any

individual transition of Figure 4(a) could leak information

if observed by another partition.

Fortunately, in reality, no other partition can observe any-

thing about the new interrupt state until it next executes—

i.e. until after the next partition switch. We transform the

transition system of Figure 4(a) to reflect this reality, arriving

at the transition system depicted in Figure 4(b). This trans-

formation coalesces together all transitions from one KExit
until the next (timer) interrupt is processed, in which case

the system’s new mode is either KPreempt (if the interrupt

arrived during a preemptible system call) or KEntry Interrupt
(otherwise). Because only the timer interrupt is enabled these

transitions represent all activity by the currently running

partition in between one timer tick and the next, and show

up in the final transition system as a single transition from

KExit to KPreempt or KEntry Interrupt respectively. We also

coalesce all transitions from KPreempt to the next KExit and

similarly for KEntry Interrupt. These transitions represent

activity by the scheduling partition PSched.

The amount that the interrupt oracle position is advanced

on any transition of this new transition system depends only

on its previous position and the position of the next timer

interrupt: on a transition from KExit it is advanced to the

position of the next timer interrupt in the stream; on a

transition to KExit it is advanced once only, during servicing

of the just-arrived interrupt.

C. Formalising Information Flow Security

With the system model as depicted in Figure 4(b) we may

now formalise information flow security, given an informa-

tion flow policy � derived as explained in Section IV-A.

We adopt a variation of intransitive noninterference pro-

posed in earlier work [36] for operating system kernels. An

intransitive noninterference variant is most appropriate here

because the information flow policy � may, in general, be

intransitive, in that it may allow information flows from Pi to

Pj and Pj to Pk, without allowing a direct flow from Pi to Pk.

Crucially, however, our definition admits systems in which

the association between each transition and the partition on

whose behalf the transition is said to occur depends on the

pre-state of the transition. This is required since, as in other

operating system kernels, when an event like a system call

happens in seL4, the kernel must consult the scheduling data

structures to determine which partition is currently active in

order to decide which partition the system call has been

made by. The mapping from transitions to partitions is thus

state-dependent.

Our definition of information flow security is also pre-

served by refinement [36], which is vital in allowing us

to prove it about seL4’s abstract specification and then

conclude that it must hold for seL4’s C implementation by

virtue of the functional correctness result.

Our definition of information flow security is a descendant

of von Oheimb’s notion of nonleakage [40]. This condition

forbids partitions from being able to learn about the contents
of others but, unlike traditional purge-based noninterfer-

ence definitions [19], [46] and more recent improvements

thereof [34], it does not prevent them from learning about

the occurrence of transitions of others. Before defining our

condition formally it is worth explaining why it is most

appropriate here, over purge-based formulations.

Recall, from Section III-B, that seL4 schedules partitions

in accordance with a fixed, pre-determined schedule. At

any point in time, therefore, the scheduler always knows

exactly which partitions have executed in which order. The

system model, depicted in Figure 4(b), over which our

information flow security proof is conducted has two kinds

of transitions: those leading to KExit that model actions of

the scheduling partition PSched, and the others that model

actions of the ordinary partitions Pi. These latter model the

entire execution of a partition from one timer tick to the next.

The static schedule pre-determines exactly how many timer

ticks each partition should run for before advancing to the

next position in the schedule. Therefore whenever it executes

the scheduler partition PSched knows the exact number of

(unlabelled) transitions each partition has performed so far.

Recall also that the information flow policy �, derived

from the system’s access control policy, allows no other par-

tition to send information to the scheduler partition PSched.

Because we cannot prevent PSched from learning the num-

ber of transitions that have occurred so far, it does not make

sense to adopt a purge-based noninterference condition that

would forbid partitions learning about the occurrence of

others’ transitions. Instead, it is more appropriate to require

that partitions be unable to learn about the contents of others.

In our model, with unlabelled transitions, the information

about each transition is encoded in the partition-contents.

Thus such a condition still prevents partitions from learning

the nature of others’ transitions; it allows otherwise isolated
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partitions to learn only the number of transitions each other

performs, as pre-determined by the static schedule.

Such noninterference variants have been well explored

in the context of programming language security [48], for

instance to assert that the final contents of low-classification

variables should never depend on the initial contents of high-

classification ones. Our condition [36], called nonleakage, is

an extension of the original nonleakage formulation of von

Oheimb [40].

Nonleakage is defined formally as follows. Let the initial

state of the system be s0. Let reachable s denote when state s
is reachable from s0 by zero or more transitions.

For two states s and t and a partition Pi, let s
Pi∼ t denote

when, for each entity e in Pi’s extent, e’s state is identical in s
and t. s PSched∼ t when s and t agree on the scheduler’s private

state, which includes which domain is currently running and

how many timer ticks it has left on its timeslice. For a set

of partitions P, let s
P≈ t mean ∀ p∈P. s

p∼ t.
Let Step denote the step-relation on states of the unla-

belled transition system depicted in Figure 4(b): (s, s ′) ∈
Step when the system can transition from state s to state s ′.

Let part s denote the currently running partition in state s,

determined by examining the private state of the scheduler.

It is easily shown that s
PSched∼ t −→ part s = part t.

Then the function sources is used to calculate the par-

titions that are permitted to send information to a specific

partition p when a sequence of n (unlabelled) transitions

occurs from a state s; this is the set sources n s p.

sources 0 s p = {p}
sources (n + 1) s p =

⋂ {sources n s ′ p | (s, s ′) ∈ Step} ∪
{w | w = part s ∧

(∀ s ′. (s, s ′) ∈ Step −→
(∃ v. part s � v ∧ v ∈ sources n s ′ p))}

The first equation says that partition p is always permitted

to send information to itself. The second says that, when one

or more transitions occur from state s, firstly: any partition is

permitted to send information to p that is always permitted

to do so after the first transition has occurred; and secondly:

that the current partition is permitted to send information to

p if it is always permitted to send information to a partition

who is subsequently permitted to send to p.

Nonleakage asserts that the only partitions that can influ-

ence the contents of an arbitrary partition p after n transitions

have occurred from an arbitrary reachable state s are PSched
and those in sources n s p. This condition is phrased by

considering the counterfactual case in which the state s
is modified to produce a new reachable state t such that

s
sources n s p≈ t and s

PSched∼ t, and then asserting that s ′ p∼ t ′

for all states s ′ and t ′ reached after performing n transitions

from s and t respectively, abbreviated s
p∼n t.

nonleakage ≡ ∀ n s t p. reachable s ∧ reachable t ∧ s
PSched∼ t

∧ s
sources n s p≈ t −→ s

p∼n t

This definition considers pairs of finite executions of

identical length n, in line with the observation above that

purge-based definitions are not appropriate in our setting.

This definition is also entirely termination insensitive,

because it is trivially satisfied when non-termination occurs.

However, the functional correctness proof for seL4 proves

that its execution is always defined, implying that all transi-

tions for the transition system depicted in Figure 4(a) always

terminate. Under the assumption that the interrupt oracle

delivers an infinite stream of timer interrupts, it is relatively

straightforward to prove that the coalesced transitions of the

transition system depicted in Figure 4(b) always terminate

too—since a timer interrupt will always arrive that then

causes the scheduling partition to take over. Hence, non-

termination is not an issue and a termination insensitive

formulation of information flow security is appropriate here.

D. Information Flow Theorem

Let MA be the automaton for the seL4 abstract specifica-

tion, and nonleakageA denote nonleakage applied to MA.

The top-level information flow theorem we prove for MA,

simplified for presentation, is the following.

Theorem 1: seL4’s abstract specification enforces in-
formation flow security. Let s0 denote the initial state of

the system, after configuration, and pas be an access control

policy, and � the corresponding information flow policy.

Then if s0 satisfies the kernel invariants, pas is consistent

with s0 and wellformed for all subjects, and all interrupts

other than the timer interrupt are disabled in s0, and all

subject-crossing capabilities are safe in the sense described

below in Section IV-E, then nonleakage is enforced:

invs s0 ∧ pas-refined-wellformed pas s0 ∧ only-timer-irq s0 ∧
sscc pas s0 −→ nonleakageA

Here, sscc is a condition on capabilities that cross parti-

tion boundaries, described later in Section IV-E. Intuitively,

it ensures that partition-crossing communication channels

can never be destroyed, as destroying an otherwise uni-

directional channel signals to both sender and receiver.

Letting MC be the corresponding automaton for the seL4

C implementation, and nonleakageC denote nonleakage ap-

plied to MC , the functional correctness proof [27] implies

that: MA � MC . We then have that because nonleakage

is preserved by refinement: MA � MC ∧ nonleakageA

−→ nonleakageC . Information flow security for seL4’s C

implementation then follows trivially.

Theorem 2: seL4’s C implementation enforces infor-
mation flow security. Let s0 denote the initial state of the

system, after configuration, and pas be an access control

policy, and � the corresponding information flow policy.

Then:

invs s0 ∧ pas-refined-wellformed pas s0 ∧ only-timer-irq s0 ∧
sscc pas s0 −→ nonleakageC
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E. Proving Information Flow Security

Like other noninterference variants, nonleakage is proved

by discharging proof obligations called unwinding condi-
tions that examine individual execution steps. The following

unwinding condition, called confidentiality-u, is sound and

complete for (i.e. is equivalent to) nonleakage [36].

confidentiality-u ≡ ∀ p s t. reachable s ∧ reachable t ∧ s
p∼ t

∧ s
PSched∼ t ∧ (part s � p −→ s

part s∼ t) −→ s
p∼1 t

It says that the contents of each partition p after each step

can depend only on the contents of the following partitions

before the step: p, PSched and the currently running parti-

tion part s when it is allowed to send information to p. In

other words, information may flow to p only from PSched
and the current partition in accordance with the information

flow policy �.

To prove this condition for the execution steps of our

transition system (depicted in Figure 4(b)), we consider the

following cases.

Case 1 — part s � p: In this case confidentiality-u
collapses to the following property, noting that part s �
p ∧ p = PSched −→ part s = PSched because, � is

purposefully constructed so that ∀ p ′. p ′� PSched −→ p ′

= PSched:

∀ p s t. reachable s ∧ reachable t ∧ s
p∼ t ∧ s

PSched∼ t

∧ part s � p ∧ s
part s∼ t ∧ (p = PSched −→ part s

= PSched) −→ s
p∼1 t

(1)

This property we discharge using a relational proof

calculus [36], similar in style to the seminal work of

Benton [10] and other reasoning systems for confidentiality

properties [4], [5], with an automated verification condition

generator [14].

We prove Property 1 for each of the small transitions of

Figure 4(a) to conclude it holds for the coalesced transitions

of Figure 4(b).

Case 2 — part s �� p: In this case, we consider two

sub-cases.

a) p = PSched
In this case, we prove the following condition, noting

that part s �� p ∧ p = PSched −→ part s �= PSched
because � is reflexive:

∀ s t. reachable s ∧ reachable t ∧ s
PSched∼ t ∧

part s �= PSched −→ s
PSched∼ 1 t

(2.a)

This requires us to show that the scheduling partition’s

contents after a transition of another partition depends

only on its contents beforehand. All of PSched’s con-

tents remains unchanged during the execution of other

partitions except the current position of the interrupt

oracle (Section IV-B). As explained earlier, however,

the transition system of Figure 4(b) is purposefully

constructed to reflect the reality that the oracle position

after the execution of a non-scheduling partition will

always be precisely the position of the next timer

interrupt in the stream. The location of all timer in-

terrupts in the oracle stream and the current oracle

position are included in PSched’s contents, under the

assumption that all partitions are allowed to learn about

the passage of global time. Hence, Property 2.a above

follows easily.

b) p �= PSched
In this final case we use Sewell et al.’s integrity theo-

rem [51] for seL4 (Section III-D) to prove the following

property, which says that the current transition may

not alter p at all. confidentiality-u then follows from

symmetry and transitivity.

∀ p s s ′. reachable s ∧ p �= PSched ∧ part s
�� p ∧ (s, s ′) ∈ Step −→ s

p∼ s ′ (2.b)

Integrity holds for all of the small transitions of Fig-

ure 4(a), and thus holds for the coalesced transitions of

Figure 4(b), and so implies Property 2.b.

Of these cases, Case 1 is the most interesting and con-

sumed the bulk of the work. We briefly describe the most

illuminating aspects of this effort.

As mentioned above, to prove Property 1 across the

compound transitions of Figure 4(b), we proved it across

each of the individual component transitions of Figure 4(a).

There are essentially two distinct sets of transitions to

consider here, namely those for the scheduling partition and

those for non-scheduling partitions.

The proofs for the scheduling partition necessarily cover

the case where the scheduler does a partition switch when

the timeslice of the current partition expires. In this case,

proving Property 1 for the situation in which p is the

new partition being scheduled involves showing that the

partition switch leaves no residual information behind from

the old partition that was previously running. The ARM

implementation of seL4 maintains a fixed page of memory,

called the globals frame, that is shared between all threads

and at any point in time contains information relevant to

the currently running thread. When scheduling a thread, the

kernel writes new data to this page for the now active thread.

Part of proving Property 1 therefore involved proving that the

globals frame, which essentially moves between partitions

on each partition switch, contains no residual information

after a partition switch and so cannot serve as a covert

storage channel. The same also had to be done for the

machine context, which includes the CPU registers that are

saved and restored on kernel entry and exit respectively, as

well as all other global resources that are shared between

partitions like the system idle thread.

The proofs for Property 1 for non-scheduling transitions

mostly involve reasoning that the state read by the kernel

when performing a system call for the currently active parti-

tion is contained within the extent of the current partition—

i.e. that the kernel reads only state that it is permitted to
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reveal to the current partition. These proofs were relatively

straightforward, and benefited from substantial automation.

The exceptions to this rule, however, are system calls

that facilitate communication between partitions. One such

system call is that for sending a message on an asynchronous

endpoint, send-async-ipc. Proving Property 1 for this system

call requires considering the case in which p is the current

partition who is sending on the asynchronous endpoint. In

this case, we must prove that p’s contents after the system

call do not depend on the contents of the asynchronous

endpoint being sent on (which necessarily lives outside of p’s

extent) nor the contents of any partition who is waiting on

the endpoint in question and so who will receive the message

being sent. In other words, proving Property 1 involves

proving that the kernel’s implementation of asynchronous

endpoints has no covert storage back-channels.

The kernel necessarily reads the internal state of the

endpoint being sent on, so we must prove that the kernel

reveals none of this read state to p. This involves considering

all possible internal states that the endpoint being sent on

might be in, and proving that the effects of send-async-ipc as

observed by the sending partition are identical in all cases.

These proofs had to be performed more manually, and were

amongst the most challenging for the entire effort.

Besides the kernel’s primitive facility for interrupt deliv-

ery, which we exclude by assuming that all non-timer IRQs

are disabled, the only other problematic kernel behaviour

that we encountered during the proof was object deletion.

Specifically, seL4 deletes an object when the last capability

to that object is deleted. This capability is called final. Thus

the behaviour of the kernel, when a capability is deleted,

depends on which other partitions possess a capability to

the same object. This opens up a potential storage channel.

As with interrupt delivery, we avoided this problem by

placing an assumption on the initial configuration of the

system. We assume that when the partitions were set up that

an extra inert CNode was also created, to which no partition

was granted access, and that a copy of every subject-crossing
capability was placed into this inert CNode. A subject-

crossing capability is one that refers to a subject that is dif-

ferent from the one that possess the capability, with subject

boundaries defined with reference to the access control pol-

icy pas. Since these copies can never be deleted (because no

subject has access to the inert CNode that holds them), this

ensures that only non-subject-crossing capabilities can ever

become final. This assumption is formalised by the property

sscc, which stands for safe subject-crossing capabilities.

It is relatively easy to prove that sscc is invariant. Under

sscc, the behaviour when deleting a capability depends

only on the currently running partition, and so ensures that

confidentiality is not violated. Intuitively, this restriction

enforces that communication interfaces between partitions

should be static, because any change in that interface causes

a bidirectional information flow.

V. DISCUSSION

Having presented our proof and statement of information

flow security for seL4, we now analyse its strengths and

limitations, and relate the result to its practical significance.

The history of computer security is littered with published

security proofs that were later broken by novel exploits and

attacks. This happens when: (1) the proof is incorrect, i.e. not

logically valid, (2) the proof’s assumptions are not realistic,

or (3) the property proved was not strong enough or does

not mean what we thought it did. We consider each in turn.

A. Proof Correctness

Our proof for seL4 is machine-checked, and carried out in

the interactive theorem prover Isabelle/HOL [38], which is

a prover for higher-order logic in the so-called LCF family

with strong soundness properties: all derivations must pass

through a small proof kernel. While a defect in the Isabelle

proof kernel may permit errors in our proof, this possibility

can be made arbitrarily small by extracting the proof term

from Isabelle and running it through a series of small,

independently written proof-checking programs. Errors in

the proof itself are therefore a non-issue in practice [21].

B. Assumptions

The assumptions on which our proof rests are realistic,

and amenable to validation. Our proof makes three ex-

plicit assumptions about the seL4 configurations to which

it applies. Firstly, it assumes that the system has been

correctly configured to enforce information flow control,

by asserting that the access control policy is consistent

with the initial state and wellformed. Secondly, it assumes

that only the timer interrupt, used by the kernel to control

scheduling, is enabled. Thirdly, it assumes that there exist

inert copies of all subject-crossing capabilities to prevent

any such capability from becoming final (see Section IV-E).

The first of these is an obvious requirement. The second and

third are required to ensure that kernel functionality that is

potentially problematic for separation is never invoked. Each

of these assumptions is easily ensured by careful system ini-

tialisation, which itself is amenable to formal verification [6].

Only the latter two place limitations on the kinds of systems

that can be constructed, by forcing device drivers to poll

for interrupts and preventing inter-partition communication

channels from being destroyed respectively. Neither of these

limitations is uncommon in deployed separation kernels.

Our proof also makes a number of extra-logical assump-

tions. Many of these are inherited directly from the seL4

functional correctness proof [27] on which our result builds.

These inherited assumptions are that the C compiler and

linker used to build the kernel correctly implement the

formal C semantics [52] of the proof on the platform of

deployment (i.e. compiler and linker correctness), that the

behaviour of the deployment hardware matches the formal

machine model on which the proofs rest (i.e. hardware
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correctness), that the kernel’s 450 lines of assembly code

correctly match their specification, including that caching-

and TLB-operations are placed correctly, and that the ker-

nel’s initialisation code that runs before it hands control to

the initial thread correctly establishes the kernel invariants.

Many of these assumptions are themselves amenable

to formal verification, particularly compiler/linker correct-

ness [13], [50], assembly and context-switching code cor-

rectness [37] and correctness of the initialisation code, an

earlier version of which was verified at the design level [27].

The hardware model that we share with the seL4 functional

correctness proofs effectively assumes that DMA is disabled.

Our proof also brings a few new implicit assumptions.

Our formulation of information flow security assumes that

the global static partition schedule is allowed to be known by

all partitions. Hence it does not prevent one partition from

knowing about the existence of another, nor does it prevent a

newly scheduled partition from inferring that the previously

running partition must have exhausted its timeslice.

Our model of interrupts, described in Section IV-B, im-

plies that partitions can observe the passage of global time.

Stronger separation where time is not visible to all partitions

could be imagined, but our proof does not enforce this.

A technicality placed on the interrupt oracle by our termi-

nation insensitive formulation of information flow security is

that the oracle delivers an infinite stream of timer interrupts.

This ensures that partition steps always terminate.

As mentioned in Section I, we implicitly assume that

DMA is not enabled. We also assume that user-space threads

have direct access to only those sources of information that

we model: machine registers and memory pages mapped

with read rights, so that user-space threads may be modelled

as a deterministic function of these inputs. Thus we implic-

itly assume that the initial configuration prevents partitions

communicating via external devices.

C. Covert Channels

Our noninterference property, while true of the C imple-

mentation, is phrased against, and so has meaning at the

level of, the kernel’s abstract specification. As explained in

Section I, the formal machine model on which our proofs

rest does not model time explicitly. While exposed coarsely

through the interrupt oracle (Section IV-B), our proof says

little about covert timing channels. Timing channels must

still be analysed and mitigated using traditional means.

As mentioned earlier, our partition-based scheduling im-

plementation is known to suffer from jitter, in that it allows

a partition to overrun its timeslice by performing a system

call just before the arrival of the next timer interrupt. Other

obvious timing channels that certainly exist in the current

seL4 implementation but are likewise not addressed by

our proof include timing channels due to shared caches or

devices. Each of these has obvious mitigation strategies,

such as preventing system calls during the last n timer

ticks of a partition, flushing caches on partition switches

or dividing caches between partitions using cache colouring

and so on. However, deciding on a particular implementation

necessarily involves a trade-off between performance and

covert channel bandwidth that can only be made within the

context of a particular deployment scenario. For seL4, this

analysis can also be made with reference to sound worst-case

execution time (WCET) calculations for the kernel [12].

Our proof says much more about the absence of covert

storage channels, particularly those that might be in the

kernel. We list several channels uncovered by the proof in

Section V-D; all were eliminated either through making the

abstract specification more concrete (see below) or by adding

assumptions on the initial configuration. Our proof certainly

rules out all storage channels present in the seL4 abstract

specification, including all user-accessible physical memory,

CPU registers, and machine state such as the interrupt masks.

It also includes the abstract representation of the kernel heap

present in the abstract specification. What is more, because

our formulation of information flow security is preserved

under refinement, it also rules out user-visible kernel storage

channels below the level of abstraction of the abstract

specification, such as the raw memory of the C kernel heap.

This is because any such channel must show up as user-

visible nondeterminism exhibited by the kernel. In order to

be preserved by refinement, our information flow security

formulation tolerates no user-visible nondeterminism [36]:

such nondeterminism could always be refined by an inse-

cure implementation that resolves the nondeterminism by

examining a secret piece of state, and therefore cannot be

tolerated by a refinement-closed security condition [35].

Indeed, our proof of information flow security uncovered

a number of cases where the kernel uses state present in

the C kernel heap to make choices that are visible to user-

space, but where that state was below the level of abstraction

of the abstract specification. Each of these showed up as

user-visible nondeterminism in the abstract specification,

and was flagged by the proof as a potential covert storage

channel. To prove information flow security, we had to

make the kernel specification more concrete to remove the

user-visible nondeterminism [33], and then re-establish the

functional correctness and integrity results for the augmented

specification. The remaining nondeterminism in the abstract

specification is never revealed by the kernel to user-space—

our proof guarantees this—and includes for instance the

mapping between physical address space identifiers (ASIDs)

and the virtual pool of such ASIDs that seL4 maintains.

Our proof does not rule out the possibility of covert

storage channels that are below the level of abstraction of

the abstract specification, but that the kernel never reads. For

instance, suppose the kernel were ported to a new platform

that included extra CPU registers that the kernel never reads,

but that the port was done incorrectly such that the kernel

fails to clear these registers on a partition switch. It is
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possible our proof would still hold despite the presence

of an obvious covert storage channel. Formally, this is

captured by the hardware correctness assumption. Guarding

against it requires validating that the formal machine model

corresponds to the platform of deployment.

D. Lessons Learned

The proof was carried out over 21 months, and required

a total effort of roughly 51 person-months (pm). This

includes adding the partition scheduler (≈ 2 pm), making

the abstract specification more deterministic (≈ 23 pm), and

the information flow security proofs themselves (≈ 26 pm).

The proof of information flow security comprises 27,756

lines of Isabelle/HOL not including whitespace and com-

ments. This figure excludes the changes made to the ab-

stract specification, the repair to the functional correctness

proofs, and the necessary evolution and strengthening of the

integrity and authority confinement results needed for them

to hook up with the information flow statement.

While the total effort for information flow control is

higher than the 10 person-months reported by Sewell et al.

for integrity and authority confinement [51], it is still far

below the 25 person-years of effort required for the original

functional correctness proofs for seL4 [27]. As with the

previous proof of integrity, we gained a significant saving

in effort by being able to prove information flow security

for seL4’s C implementation over its abstract specification.

Sewell et al. estimate that proving integrity over seL4’s C

implementation directly would have required on the order

of the original 25 person-years to complete. We estimate

an even higher figure for information flow security, even

assuming an initial proof of integrity on which to build

on. Unlike with integrity, however, proving information flow

security over seL4’s abstract specification came at the cost

of having to remove much of the nondeterminism from the

abstract specification (see also Section V-C). Because the

effort required to do so (≈ 23 pm) was low in comparison,

proving information flow security over the abstract specifi-

cation was still undoubtedly the right thing to do.

The proof uncovered many channels in the kernel, some

of which were initially surprising even to those who had

worked with seL4 for years. Very early on in the proof,

the problem of seL4’s object deletion semantics (see Sec-

tion IV-E), in which an object is deleted only when the last

capability in existence to it is deleted, became apparent. That

this behaviour could give rise to a potential channel was

something that had not been explicitly considered before.

We decided to address this by adding an assumption on the

initial configuration. We were then obliged to prove that this

assumption was sufficient to remove the potential channel.

Another channel uncovered by the proof was connected

to the kernel’s interrupt delivery mechanism, namely that

the kernel does not isolate the interrupts of one partition

from another. Taking advantage of the fact that polling for

device interrupts is common practice in separation kernels,

we again decided to add the assumption that this API facility

is disabled at startup instead of rewriting seL4’s interrupt

handling code. The proof again forced us to show that this

was sufficient to remove the channel.

Other channels that the proof forced us to reason about

were anticipated from the beginning: our rules for con-

structing the information flow policy � from the access

control policy explicitly allow a two-way flow of information

between partitions connected by a synchronous endpoint, for

instance. The proof still forced us to show that synchronous

endpoints, while allowing a bidirectional flow between

sender and receiver, do not leak information to anyone else.

Similarly, the original seL4 scheduler, before partition

scheduling was implemented, was known not to enforce

isolation. We could not prove information flow security until

we had fully and correctly specified the partition scheduler

in the updated abstract specification. Proving information

flow security then required us to show that the scheduler’s

choice about which partition to schedule next can never be

affected by any other partition, as one would expect.

Apart from one minor change to simplify verification,

the partition scheduler was the only change required to the

seL4 C code, which is what we expected when we began.

It provides some evidence of the security that can be gained

by going through the process of rigorously designing and

verifying a microkernel, even without a formal proof of

security. However, our formal proof of security is what

separates optimistic hope from well-founded confidence,

grounded in formal proof.

Ultimately, our proof of information flow security for

seL4 makes seL4 no more secure than it was to begin with

(excepting the implementation changes mentioned above).

However, it provides a very strong piece of evidence about

the security of seL4 and its suitability as a separation

kernel—the strongest such piece of evidence ever con-

structed for a general-purpose kernel.

VI. RELATED WORK

seL4 is a general-purpose microkernel, whose implemen-

tation we have proved can be configured to enforce static

information flow security in the form of intransitive nonin-

terference. A number of kernels are designed specifically

to enforce information flow control, such as HiStar [54]

whose size is comparable to seL4’s. HiStar implements a

simple semantics for enforcing information flow control,

based on object labels and category ownership. However, to

our knowledge, there exists no formal proof that these rules

correctly model the behaviour of the HiStar implementation,

nor a formal connection between these rules and a high-level

security property like intransitive noninterference.

The first serious attempts to verify an OS kernel ap-

peared in the late 1970s with UCLA Secure Unix [53]

and the Provably Secure Operating System (PSOS) [17],
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and in the 1980s with KIT [11]. The design methodol-

ogy of PSOS was later used for the Kernelized Secure

Operating System (KSOS) [43] by Ford Aerospace. The

Secure Ada Target (SAT) [19] and the Logical Coprocessor

Kernel (LOCK) [49] are also inspired by the PSOS design

and methodology. The proof efforts of this time primarily

aimed at achieving functional correctness; security proofs

of the style presented here were not yet feasible. Klein [26]

provides a more comprehensive overview of this early work.

Functional correctness at the code level has only recently

been achieved by Klein et al. [27], on which we build, and

also independently by the Verisoft project [2].

Our proof further builds on the seL4 integrity proof by

Sewell et al. [51], and on the noninterference property and

associated proof calculus developed in earlier work [36].

Proofs of information flow security for models of OS

kernels and hypervisors are not new. Below, we summarise

other recent work with similar goals. To our knowledge, ours

is the only mechanised proof that applies to the C code of a

general-purpose OS kernel/hypervisor. The C code level is

significant, because no manual checking is needed to verify

the validity of the proof for the running artefact and it is easy

to validate that the proof still applies after code changes. The

proof check is mechanical and fully automatic, and all steps

from the C code on down are automatically generated by

compiler and linker, so any remaining errors are systematic

and not subject to error-prone human validation for every

new deployment or code version.

The work that comes closest to the one presented here is

INTEGRITY-178B, which is a real-time operating system

for which a machine-checked information flow proof has

been completed [44]. However, unlike ours, this proof ap-

plies to a hand-written, detailed formal model of the kernel

that is not linked to its implementation by formal proof but

instead by careful informal argument. This leaves open the

possibility of implementation errors in INTEGRITY-178B

that invalidate the proof of isolation, and risks that the

proof is not adequately updated when code or API change.

The isolation proved for INTEGRITY-178B is based on

the GWVr2 property [18], which bears similarities to our

formulation of information flow security for seL4. The exact

relationship between the two deserves further study.

The Mathematically Analyzed Separation Kernel (MASK)

was also proved to enforce a notion of information flow

control [31], [32]. Their property resembles traditional un-

winding conditions for noninterference, and was shown

to hold for a low-level design model that is close to an

implementation. Again, it was ultimately connected to the

C implementation only by manual translation. Like many of

the other kernels summarised here, MASK is not a general-

purpose kernel such as seL4, but instead designed primarily

to enforce static separation. This means that the verification

of seL4 is more complex and, at the same time, that more

flexible kernel services are available inside partitions.

Heitmeyer et al. [22], [23] present a verification of

separation for an unnamed separation kernel, whose main

purpose is to enforce data separation. Their formulation

of separation involves a number of different properties:

no exfiltration, no infiltration, temporal separation, control

separation and kernel integrity. We can derive analogues

for each of these properties for seL4 from our proof of

information flow security. No exfiltration is a consequence

of integrity; no infiltration a consequence of confidentiality;

temporal separation corresponds to an absence of residual

information on each partition switch, which is required by

our formulation of nonleakage (see Section IV-E); control

separation requires that only one partition executes at a time,

and for seL4 is a consequence of functional correctness; and,

finally, kernel integrity is also a consequence of functional

correctness for seL4. They give a machine checked proof for

an abstract model of the separation kernel, which is related

to its C implementation by a pen-and-paper proof. The size

of the separation kernel was reported at 3,000 lines of C and

assembly, which is under a half the size of seL4.

Hardin et al. [20] verified information-flow control proper-

ties of the AAMP7 microprocessor [45], which implements

the functionality of a simple static separation kernel in

hardware. Similar to other work above, the proof, based on

a comparatively detailed model, is connected to the (in this

case micro-)code by careful manual inspection.

Krohn and Tromer [28] presented a pen-and-paper proof

of noninterference for the Flume operating system. This

proof applied to a very abstract CSP [24] model of the Flume

system, unconnected to its implementation by proof. Unlike

seL4, Flume is Linux-based and so includes the entire Linux

kernel as part of its trusted computing base (TCB).

Recently, Barthe et al. [8] presented a formalisation and

machine-checked proof of isolation for a high-level idealised
model of a hypervisor. More recent work in this vein [9] has

also looked at analysing cache leakage, which our proof does

not, but again only for an idealised hypervisor model.

VII. CONCLUSION

We have presented the most detailed and extensive

machine-checked formal verification of information flow

security ever performed for a general-purpose OS kernel,

specifically a proof of intransitive noninterference for seL4.

Our proof holds for seL4’s C implementation, and builds

on the previous verification results for seL4 that established

functional correctness of its C implementation and integrity

enforcement. Taken together with these previous results, the

verification for seL4 now covers properties from the level

of integrity and confidentiality, over functional correctness,

down to the C implementation, accomplishing a 30-year

stated research goal of the field.

While this proof, like any other assurance mechanism,

has limitations such as making no claims about timing

channels, a number of the current proof assumptions can be
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strengthened. For instance, recent work on eliminating the

compiler and linker assumption by extending the functional

correctness proof to the binary level [50] could be adapted to

automatically derive binary-level noninterference for seL4.

The additional effort for proving noninterference here was

much reduced in comparison to the effort for the previous

functional correctness proof, but still substantial for many

applications. The main application domain of kernels like

this is high-assurance systems, such as space, aviation,

vehicles, and critical infrastructure, where expending this

kind of effort is justified to save lives and prevent substantial

damage. However, seL4 is a general, high-performance

microkernel, capable of hosting entire legacy applications

and operating systems like Linux. Because this verification

need be performed only once for each architecture, nothing

prevents us using this kind of system far more broadly.

While a result like this has intrinsic value on its own,

we see it merely as one step in a bigger vision. The formal

statement of security mechanism enforcement is a tool for

reasoning about the security goals of entire systems built on

top of the OS kernel. By having this formal tool available,

such reasoning now becomes feasible for the first time.
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