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Abstract—Mobility will surely be at the core of the smart
cities of the future. As such, it must be planned based
on novel mobility models, smart enough to answer the
multifaceted needs of users, while being sustainable and
energy efficient. In this evolution, electric vehicles (EVs)
will be crucial, as confirmed by the fact that many gov-
ernments are already actively sustaining their spread in
place of common internal combustion engine (ICE) ones.
Nonetheless, for their adoption to be actually widespread,
one must be able to govern the mass adoption mecha-
nisms, by designing policies that are cost-effective and
successful in making the mobility transition a reality in due
time. In this work, we propose a novel framework that can
represent a valuable control-oriented tool to serve this am-
bitious goal. Our framework lays its foundation on a quanti-
tative description of the inclination of traditional car owners
toward EVs, which is retrieved by relying on data-driven
insights on their mobility habits only. This information is
further exploited to construct a proximity-based network,
that is combined with the individual characterization into a
cascade model describing the adoption dynamics. To show
the potential of the introduced framework, we exploit it to
assess the unforced spread of EVs starting from a set of
known EV owners, and to test and quantitatively evaluate
the cost and benefits of policies enacted to foster adoption.

Index Terms—Electric vehicles (EVs), smart cities, so-
cial networks, spread maximization, technology adoption
models.

I. INTRODUCTION

A LARGE part of the Next Generation EU program will be
devoted to the so-called environmental transition, sharing

the same goals of the Clean Energy Revolution and Environ-
mental Justice Plan of the new US administration. One of the
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main objectives of both initiatives is to reach carbon-neutrality
by 2050. In this challenging journey, mobility will for sure be
a major player, since about 24% of total energy consumption
in 2020 was used for moving people and goods along [1]. All
policy makers share the belief that electric vehicles (EVs) are
the platform on which such mobility transition must be built,
but their adoption must reach mass levels for this change to
take place. Nonetheless, to achieve mass adoption, incentive
policies must be conceived and tested at design-time, so that
only the most cost-effective ones are deployed. However, the
sociocultural complexity of the alleged adopters and their dif-
ferent mobility habits make the definition of a general incentive
scheme difficult to conceive [2], [3], so up to now, EV adoption
has somehow lagged behind.

A. Contribution

This article aims at providing a new framework to support
the policy design step. At its core, we introduce a data-driven
description of each potential adopter and we set up a multiagent
network. These elements allow us to account for both the pe-
culiarities of each agent and the social interactions that might
take place among them, so that they can be actively exploited
to activate the social contagion that drives mass adoption. Both
the agents’ description and the network construction are based
on measured spatiotemporal mobility patterns, derived from real
anonymized data measured on board of ICE vehicles equipped
with telematic e-Boxes, that have been monitored over a 12-
month period [4]. Leveraging on these data, we characterize
the suitability of each agent to adopt a fully electric vehicle in
a quantitative fashion. To do so, we detect the share of daily
trips that could be seamlessly accommodated by an EV, while
assuming a single overnight recharge as in [5]. Nonetheless, we
extend the preliminary results in [5] by segmenting the agents
into four classes, each of them denoting an increasing suitability
of the agents to switching from an ICE vehicle to an EV, without
altering their mobility habits. According to the rationale that
adoption is guided by homophily, namely, the tendency of indi-
viduals to be maximually influenced by closest neighbors [6],
agents are immersed into a network defined by geographical
proximity. Once again, the inferred geographical proximity is
retrieved from the anonymized data. To effectively combine
the individual descriptions and the data-based network into a
unique framework, we rely on state-of-the-art tools and methods
of adoption dynamics, which allow for a formal description of
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opinions’ formation and their spread among agents. We show
that our framework can be effectively exploited to characterize
the spread of EVs over the network when no incentive policy is
enacted, while it can be a valuable starting point for the design of
incentive and mass adoption control strategies. This last asset is
preliminarily highlighted by showing that, within the proposed
framework, policy design problems can be easily cast into spread
maximization ones [7]. This allows policy makers to benefit
from existing methods, while accounting for both the features
of the social connections between agents and their personal
inclinations. To provide a complete overview of the potential of
the framework, we additionally propose a set of indicators that
can be used to quantitatively evaluate incentive schemes to foster
mass adoption of EVs and their potential environmental impact.

B. Relations to Prior Literature

So far, the impact of social relationships to mobility habits has
received little attention, especially when compared with other
factors, such as working and shopping activities [8]. However,
the individuals’ social network is emerging as a relevant ingre-
dient in shaping new models of travel behavior [9], with recent
empirical studies confirming their strong relationship [10]. In
this context lays the increased popularity of studies of opinion
formation in social networks [11], which has shown to be a pow-
erful tool for studying innovation diffusion in general [12], [13]
and environmental ones in particular (see [14] and references
therein). Indeed, individual behaviors are often influenced by
social relations with others, and their understanding is key to
predict, analyze, and control social systems [15], [16]. Driven
by these results, in this work, we leverage on existing models
within the realm of opinion dynamics to describe the adoption
process as a dynamical system. Similar to [14] and [17], the
initial predisposition of agents toward EVs is based on a ra-
tional factor, namely, the daily driving range and stop length.
Nonetheless, by blending this information with insights on the
technological limits of EVs, initial opinions are shaped by how
effortlessly individual mobility habits can be served by the use
of a fully electric vehicle. This allows us to derive a quantitative
predisposition indicator that accounts for an essential psycho-
logical factor influencing the individual intention to adopt EVs,
i.e., how much one has to change its routine to switch to a
green mobility solution. A first attempt in this direction is our
recent work [5] that is improved by considering a more refined
classification of the agents based on their data-inferred habits and
extended by exploiting the adoption model to design and assess
the effectiveness of several policies. By following another stream
of works, in this article, the incentive strategies are designed
by solving influence maximization problems [13], so as to
detect and favor the most influential nodes within the considered
network [18]. Nonetheless, the influence maximization problem
has been proven to be NP-hard, with exact algorithms to solve it
having exponential complexity in the size of the network [13].
This has created the ground for the development of suboptimal
algorithms, either based on greedy rules [19], or on classical
“centrality measures,” e.g., [7] and [20]. In this context, several

works further propose solutions to the static maximization in-
fluence problem in social networks [21], [22]. Nonetheless, our
data-based approach is the first effort in considering optimal
policies and seeding of cascades, simultaneously taking into
account the heterogeneity of individuals.

C. Notation

Let Rn be the set of real vectors of dimension n and Z≥0

be the set of non-negative integers. The cardinality of a set S
is indicated as |S |. A graph is denoted by a pair G = (V ,E ),
where V is the set of unitary elements of the network (or nodes),
and E ⊆ V × V is the set of edges or links representing the
relationships among such entities. A path in G is a sequence of
edges which joins a sequence of vertices. A graph G is said to be
connected if there is a path from each vertex in the graph to every
other vertex. Given a matrix A ∈ {0, 1}|V |×|V |, the graph G =
(V ,E ) associated with A is defined by drawing an edge (i, j) ∈
E if and only if Aij = 1. If A is symmetric, i.e., Aij = Aji for
each i, j ∈ V , the undirected edges will be denoted as unordered
pairs {i, j}, corresponding to both the directed links (i, j) and
(j, i). Let G = (V ,E ) be a graph, then the in-neighborhood of a
node i ∈ V is defined as Ni = {j ∈ V : (j, i) ∈ E }, while the
in-degree of a node is defined as di =

∑
j∈V Aij .

D. Outline of this Article

The rest of this article is organized as follows. Section II
illustrates the dataset and the processing steps needed to build
the network and characterize the agents’ classes. Section III
describes the cascade model that governs the adoption mech-
anism, which is exploited for an open-loop analysis of the
adoption dynamics in Section IV. Section V illustrates a possible
formulation for incentive policies design within our framework,
whose impact on the network is then analyzed in Section VI via
a set of quantitative indicators. Finally, Section VII concludes
this article.

II. AGENTS AND NETWORK DESCRIPTION UNDER A

DATA-BASED LENS

To understand the intertwining relationship between social
relationships and EV adoption, it is pivotal to characterize
the network embedding connections between agents and their
mobility attitudes. In this work, both these features are retrieved
from a set of anonymzed data collected from 1000 ICE vehi-
cles equipped with e-Boxes,1 all registered within the Italian
province of Parma. The dataset comprises the GPS latitudes and
longitudes gathered at ignitions, shutdowns, and during trips of
each vehicle over one year (from September 1, 2017 to August
31, 2018) with the respective time stamps. These raw data are ag-
gregated to retrieve information on the distance traveled daily by
each agent and the duration of the stops between trips, ultimately
allowing us to have insights on their real mobility patterns.

1The considered vehicles are a statistically significant sample extracted from
a much larger dataset, with the aim of easing the presentation of the proposed
approach.
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Fig. 1. Agents’ classification based on their EP index: Shares of each class and distribution of categorized agents over the proximity-based
network. (a) Percentage of agents belonging to each macro-level cluster. (b) Influence network with class-dependent labeling of the nodes.

A. Data-Based Proximity-Based Network

The influence network between agents is formalized by means
of an undirected graph G = (V ,E ), where each node v ∈ V of
the graph represents one of the travelers. Since the available
data are anonymized and, thus, we have no actual information
on the social relationship between agents, the edges E of the
graph cannot be selected as effortlessly. By relying on the
inferred mobility patterns to specify how agents influence each
others, we build G based on the geographical proximity of their
bases {bv}v∈V , the features of which are retrieved by averaging
individual GPS coordinates associated with at least 50% of
the overnight stops with a duration greater than or equal to
7 [h]. Accordingly, an edge is added to G when the following
holds (v, w) ∈ E ⇐⇒ d(bv, bw) ≤ D, where d(bv, bw) is the
geodesic distance between the bases of the vth and wth agents,
and D = 3 [km] denotes the maximum distance between base
positions for two agents to be seen as neighbors. The value of D
is dictated by the average size of a neighborhood in the city of
Parma2. This design choice is driven by the inkling that agents
are likely to form a “bond” whenever they are close enough to
habitually interact with each others, for a fairly long time. In
turn, a prolonged interaction favors shifts of the agents’ attitude
toward EVs when the number of their close neighbors already
owning an electric vehicle increases. Based on these principles,
the 1000 vehicles initially considered are pruned to discard
agents whose bases are either 1) outside the city of Parma or
2) not uniquely defined. During this cleaning phase, 6% of the
initial agents are dropped, leading to a network that comprises
940 nodes out of the starting 1000.

Despite the pruning phase, the resulting proximity-driven
network is still characterized by subcommunities that are barely
connected among each others, as expected due to the extent of the
Parma province. The presence of these isolated groups is likely
to hinder the diffusion of new mobility habits over the whole
network, especially when most members of a community are
resistant to EV adoption. We thus detect the largest connected
component in the adjacency matrix A associated with G , and
retain the latter only for our subsequent analysis. The resulting
data-based influence network G = (V ,E ) [see Fig. 1(b)] is

2The average area of a neighborhood in the city of Parma is about 19 km2.

constituted by |V | = 728 nodes. Note that several agents are
concentrated in an area corresponding to the city of Parma and
its close surrounding belt, while the others are spread over the
province. This result shows that we are still able to consider
a geographically meaningful suburban community, despite the
reduction in the number of agents. It is worth stressing that
several agents are still poorly connected, i.e., they have strictly
less than 50 neighbors, and thus, they might hamper the diffusion
of EVs, especially if they are particularly resistant to this new
technology. Further details on the network and the associated
degree distribution can be found in [23].

B. Capturing Agents Attitude: A Data-Based
Classification

As for the proximity-based network described in Section II-A,
the attitude of each agent toward EVs can only be inferred from
real mobility patterns. To blend this data-based information with
the features of the considered technology, we rely on the intuition
that agents are more likely to buy an electric vehicle if their
mobility habits somehow comply with the main limitations of
EVs. To this end, here we focus on their battery autonomy range
and recharge time. Accordingly, we follow the same rationale
of [4], by categorizing the daily trips of each agent based on
their feasibility with respect to the technological limits of EVs.

For each agent v ∈ V , we consider the set Av of active days,
namely the ones in which the vehicle is actually used, and we
determine the associated kilometers traveled. By considering a
rather conservative autonomy range for an EV of about 300 km,
we exploit the data-based mobility patterns to determine which
active days can be critical for a potential EV owner, as the daily
trips exceed this technological limits. Nonetheless, a critical day
might not hamper the final adoption of an EV if the daily trips
feature at least one stop, that is long enough to be potentially
compatible with an EV recharge. As the minimum charging time
(at a fast charging point) of a battery to regain sufficient driving
range amounts at approximately 30 min, we thus search for the
subset E�v ⊆ Cv of eligible days, namely critical days with at
least one stop longer than this lower thresholds. This categoriza-
tion allows us to find a data-based proxy for the adaptability of
agents’ mobility habits to a prompt transition to an EV. Indeed,
the higher the number of critical and noneligible days, the more
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agents have to change their daily routine to satisfy the constraints
imposed by electric vehicles. This insight is translated into the
critical ratio CRv ∈ [0, 1], a compact indicator that quantifies
how much the habits of the vth agent have to be modified for a
smooth transition to an EV. The critical ratio is defined as

CRv =
|Cv| − |E�v|

|Av| , v ∈ V (1)

so as to be closer to 0 whenever an agent is suited for an
immediate shift to an EV according to the previous classification.
Because of the features of their mobility patters, the consid-
ered agents are all characterized by relatively small critical
ratios. This provides narrow margins for an actual discrimination
between the considered agents, which might negatively affect
our analysis. To overcome this problem, we first normalize the
agents’ critical ratios as

C̃Rv =
(CRv −minv∈V (CRv))

(maxv∈V (CRv)−minv∈V (CRv))
, C̃Rv ∈ [0, 1]

(2)
and, then, we exploit the information embedded in {C̃Rv}v∈V

to build the final electrification potential (EP) index, which is
given by

EPv = 1− tanh ε(C̃Rv), EPv ∈ [0, 1]. (3)

This definition, along with the choice of ε = 10, allows us to
emphasize differences between the suitability of agents to EVs.
We stress that ε is a tunable parameter, that can be adapted
according to the features of the considered scenarios.

By relying on the continuous EP indexes [see (3)], EV
adoption is analyzed by clustering agents into four macro-level
groups, based on the “similarity” of their electrification po-
tential. This choice allows us to account for a rather detailed
picture of the individual attitudes toward EVs, while still limiting
the number of classes. Because of the nonlinear nature of the
mapping exploited in constructing the EP index, the agents are
classified as follows:

1) EPv < 0.67: the vth agent is not suited for EV adoption;
2) EPv∈ [0.67, 0.83): the agent is mildly suited for EV adop-

tion;
3) EPv ∈ [0.83, 1): the agent is almost suited for EV adop-

tion;
4) EPv = 1: the agent is perfectly suited for EV adoption.

This uneven splitting allows us to consider a framework in
which only the agents with full electrification potential can
effortlessly adopt an EV, while emphasizing the natural un-
willingness of agents with lower EPs to change their mobility
habits. The shares of each class for the considered set of agents
is reported in the Fig. 1, along with the agents’ location within
the proximity-based influence network. As shown in Fig. 1(a),
perfectly suited agents represent a rather large portion of the
overall agents and they are quite scattered across the network
[see Fig. 1(b)]. Therefore, they are allegedly able to influence
those agents more reluctant to buy an EV. It is worth commenting
that all the classes are significantly represented, in spite of the
predominant number of perfectly suited agents. We stress that
the proposed classification solely relies on information that can
be deduced from individual mobility patterns. Indeed, the data

used in this work are anonymized, and thus, we have no insights
on the actual predispositions of each agent toward EVs nor
we have information on the presence of EV owners within our
set of agents. If additional information was available, it could
have been easily embedded into the proposed framework, and
exploited to refine the tuning of ε in (3) and to validate and
improve the splitting in discrete classes.

III. CASCADE MODEL FOR EV ADOPTION

The influence network and the agents’ attitudes toward EVs
inferred from their real mobility patterns are now used to char-
acterize the EV adoption mechanism over G . To this end, we
rest on the following assumptions.

Assumption 1: Agents already owning an electric vehicle do
not modify their inclination. Whenever an agent becomes an
adopter, its attitude toward EVs cannot further change. �

Assumption 2: Each agent is endowed with a class-
dependent, constant threshold αv ∈ [0, 1], v ∈ V , dictating the
share of adopter neighbors it needs to switch to an EV. �

Since the average period of ownership of a private car in Italy
is about ten years, Assumption 1 seems quite reasonable when-
ever EV adoption is analyzed within that time range. Instead,
Assumption 2 is introduced to exploit the data-based catego-
rization in Section II-B to characterize the adoption process.
Specifically, we focus on a setup in which the agents’ thresholds
{αv}v∈V are drawn from the following uniform distributions at
random:

1) αv ∼ U[0.55,0.95] if the agent is not suited for an EV;
2) αv ∼ U[0.15,0.55] if the agent is mildly suited for an EV;
3) αv ∼ U[0.001,0.15] if the agent is almost suited for an EV;
4) αv ∼ U[0,0.001] if the agent is perfectly suited for an EV.

According to Assumption 2, this choice is dictated by the
intuition that agents with mobility patterns that are somehow
compliant with the technological limits of electric vehicles are
likely to need less neighbor adopters to be persuaded to switch to
an EV. Note that in the considered scenario even agents belong-
ing to the same class are equipped with different thresholds, so
as to ground the diffusion process on the data-based description
of individual inclinations.

Based on our assumptions, the EV adoption process can
be effectively described through a deterministic irreversible
cascade model on our influence network [20]. To this end, let
xv(t) ∈ {0, 1}be a Boolean time-varying variable, that indicates
the attitude3 of the vth agent toward EVs at time t ∈ N. Denote
with S0 = {v ∈ V : xv(t0) = 1} the set of initial adopters at
the beginning of the analysis, i.e., for t = t0 = 0. In this work,
we model the evolution of the agents’ opinion according to the
following logic:

xv(t+ 1) =

{
1, if xv(t) = 1 or |N �

v |
|Nv | ≥ αv

0, otherwise
v ∈ V

(4a)
where Nv is the set of in-neighbors nodes of the vth agent and
N �

v (t) ⊆ Nv denotes the subset of neighbor adopters. We stress

3At time t, the vth agent has switched to an EV if xv(t) = 1.
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that xv(t) can be seen as the state of the vth agent, whose evolu-
tion is regulated by both its individual inclination, embedded in
the thresholds αv , and its position within the network. As such,
the cascade model can be seen as a foundational state-space
description of the adoption process, for which incentive policies
can be designed by exploiting both feedback control and spread
maximization approaches.

At each time step4 t, the set St = {v ∈ V : xv(t− 1) =
0 and xv(t) = 1} of agents that have switched to an EV thus
satisfies the following relationship:

St =

{
v ∈ V \ (∪t−1

τ=0Sτ) :
|S�

t ∩ Nv|
|Nv| ≥ αv

}
, t ≥ 1 (4b)

where S�
t := ∪t

τ=0Sτ is the set comprising all EV-adopters up
to time t. In this light, EV adoption is thus regulated by the
relative popularity of this mobility solution among neighbors.
Because of the characteristics of the considered adoption model,
the dimension of the set S�

t increases monotonically over time,
and the overall opinion dynamics converges to a final adopter
set S̄�. According to [12], the latter can be characterized based
on the features of the influence network G , the seed set S0 and
the thresholds {αv}v∈V making use of the concept of cohesive
sets, that are defined as follows.

Definition 1: [Cohesive set]: A set Ω ⊆ V is said cohesive if
for all ω ∈ Ω it holds that |Ω∩Nω |

|Nω | > 1− αω.

Accordingly, a set Ω is cohesive if for each element ω ∈ Ω
the ratio of neighbors not belonging to Ω is strictly smaller
than threshold αω . Based on Definition 1, S̄� can be formalized
according to the following theorem.

Theorem 1 (Lemma 2 [12]): Given a network with seed set
S0⊂V , let Ω⊂V \S0 be the cohesive set with maximal cardi-
nality. Then, the set of final adopters is given by S

�
= V \ Ω.�

This theoretical result endorses the convergence of our adop-
tion model over an infinite horizon, but provides a character-
ization of the final adopter set that is rather demanding to be
computed in practice. Indeed, retrieving the maximal cohesive
set contained in the complement of S0 is computationally ex-
pensive, as shown in [22]. Nonetheless, the difficulties that one
have to face in retrieving S̄� do not constitute a limitation to
our analysis, since our goal is to study the spread of adoption
over a finite time horizon. This implies that the final adopter
set might not be reached and, thus, its explicit computation is
not required. We stress that looking at a limited time span is
reasonable when studying the EV adoption process, as over long
horizons the agents’ mindset can change due to advances of the
EV technology not accounted for in our model.

As clearly indicated by Theorem 1, the actual diffusion of EVs
over the considered community is tightly bond to the set of initial
adopters S0. Therefore, their characterization is crucial to have
a complete model for the EV adoption process. To construct
the seed set, we rely once again on the real mobility patterns
extracted from data and, in particular, on the classification in-
troduced in Section II-B. Based on this categorization, perfectly

4The time step size should be chosen based on the expected time required
for an individual to have an actual shift in its inclination. To this end, one
should account for time required for both technological advances and neighbors’
behaviors to have an influence on individual opinions.

Fig. 2. Percentage of EV adopters after five years versus agents
changing their attitude at each step, with |S0| = 30% of perfectly suited
agents (median and first and third interquartile range).

suited agents are the ideal candidates to constituteS0, since their
mobility habits would allow them to immediately switch to EVs
smoothly. Meanwhile, only about 7% of the overall vehicles
registered in Italy are actually electric. Consistently with this
trend, not all perfectly suited agents might already own an EV
and, thus, S0 is constructed by uniformly drawing (at random) a
subset of the agents belonging to this macro-level group. Once
again, it is worth commenting that our choices are based on the
fact that no information is available on actual EV owners within
our dataset. Nonetheless, if this information was available, it
could have been directly exploited to construct the seed set S0.

IV. DATA-BASED ANALYSIS OF EV ADOPTION

EV adoption is initially studied by looking at the free evolution
of the EV-adoption model presented in Section III. For the sake
of discussion, we simulate the cascade model for T = 9 steps of
six months each, so as to analyze EV adoption over a time span
of five years. The chosen time intervals allow us to consider a
rather realistic scenario, in which an individual does not change
its inclination toward a mobility solution often in time. Instead,
our choice of simulation time span is made by accounting for
the time generally needed to achieve actual advancements of the
EV technology and getting them into production. All simulations
are carried out by considering 100 realizations of the thresholds
{αv}v∈V and of the setS0 of initial adopters, so as to comprehen-
sively study how their choices can impact the adoption process.
To further bridge the gap between the theoretical cascade model
and the actual dynamics governing EV adoption, we assess how
the number of new adopters at each time step influences the
wide-spread diffusion of this new technology. Indeed, in reality,
agents that are thinking of replacing their vehicle are likely to
rethink their inclination toward EVs, while the others might not
even consider a change of mindset on the subject. The results
in Fig. 2 show that the size of S0 becomes less relevant on
the average number of final adopters, whenever the opinion of
enough agents is updated at each time step. Meanwhile, it still
governs its variance over the 100 threshold realizations. This
behavior can be explained by acknowledging that, with fewer
agents adapting their opinion at each time step, a node is more
likely to be isolated. In this case, agents segregation is due to
the limited reactivity of their neighbors, rather than their position
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Fig. 3. Percentage of EV adopters after five years versus percentage
of perfectly suited agents considered as seeds. Updated at a time: 50%
of nonadopters (median and first and third interquartile range).

within the network. This conclusion is supported by the results
reported in Fig. 3. Indeed, they further highlight that the effect
of the dimension of S0 on the percentage of final adopters is
almost negligible, when at least 50% of agents can change their
attitude at a time. Therefore, the presence of less reactive agents
seems to prevent the spread of EVs more than a limited seed
set. To provide a complete picture of the EV-adoption process,
we finally consider a specific instance of the seed set and the
agents’ thresholds. To this end, we focus on the scenario in which
around 14.3% of the agents5 are assumed to own an EV at time
t = 0. This choice of S0 allows us to consider a case in which
EVs spread over the network even when no incentive policy is
enacted, if enough agents actually reconsider their opinion at
each time step (see Figs. 2 and 3). As such, we impose that 50%
of the agents that have yet not switched to an electric vehicle
can change their inclination toward this mobility solution at
each step. The actual spread of EVs in this specific scenario is
depicted on the network in Fig. 4, showing that electric vehicles
are widely adopted within the considered community despite
the limited size of S0. It is worth commenting that we do not
observe changes in the number of adopters if considering longer
horizons and at least 50% of the non-adopters are allowed to
change their opinion at each time step6.

V. EFFICIENT SPREAD MAXIMIZATION POLICIES

We now show how incentive policies can be designed to
foster EV adoption by relying on our framework. To attain
this goal, we focus on finding optimal strategies to boost the
spread of EVs that leverage on the influence mechanism in the
social network. Specifically, we search for the set of optimal
agents maximizing the adoption when becoming EV owners,
while accounting for how costly changing their opinion is based
on their personal inclination. The policies are thus enacted by
resetting the thresholds of the selected agents to zero. They are
then assessed by looking at the free evolution of the cascade
model with the new policy-shaped thresholds.

Let κv ∈ {0, 1, 2, 3} denote the class of each agent v ∈ V ,
with κv = 0 associated with perfectly suited agents and κv = 3

5This corresponds to 30% of perfectly suited agents, drawn at random.
6This behavior is theoretically supported by the results shown in [24], where

the convergence time is linked to the degree of clustering of the network.

Fig. 4. EV adoption over the influence network. The color associ-
ated to each node is dictated by the Boolean variable xv(t) at time t.
(a) t = 0. (b) t = 9.

TABLE I
CLASS-DEPENDENT COST TO INFLUENCE A NODE

linked to not suited ones. Let Vκ be the set of agents belonging to
class κ, i.e., Vκ = {v ∈ V : κv = κ}, for κ ∈ {0, 1, 2, 3}. We
denote the cost to influence a node in class κ ∈ {0, 1, 2, 3} as
cκ ∈ R, which is here determined based on the logic exploited
to generate the nodes’ thresholds in Section III. Specifically,
{cκ}κ∈{0,1,2,3} is quantified as the average of the interval within
which the thresholds characterizing the κth class are gener-
ated, resulting in the class-dependent costs reported in Table I.
Although these costs do not directly translate into monetary
ones, they allow us to explicitly link the effort to influence an
agent with the percentage of neighbor adopters required for
it to change attitude toward EVs. Therefore, they provide a
realistic quantification of the effort needed to enact the polices,
by facilitating the adaptation of the agents’ habits to the features
of this mobility solution.

Based on this quantification of the costs, we formalize the pol-
icy design problem as a combinatorial influence maximization
problem with a fixed budget. Initially, we impose a fixed budget
on each class. This, in turn, translates into a fixed number mκ

of nodes to influence in each class κ ∈ {0, 1, 2, 3}. Within this
scenario, the influence maximization problem can be formalized
as follows.

Problem 1 (Spread maximization with class budget): Find
the setsΓκ ∈ ⋃

κ Vκ \ S0 such that |Γκ| ≤ mκ and the expected
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number of final adopters

f({Γκ}κ∈{0,1,2,3}) = E[S�({Γκ}κ∈{0,1,2,3})] (5)

is maximal. �
This problem is known to be challenging and computationally

expensive, given its combinatorial nature. In fact, an exhaustive
search would require the policy maker to test

∏
κ∈{0,1,2,3}

(|Vκ|
mκ

)
potential seeds and evaluate the size of the final adopters to
determine the most influential nodes.

As a second instance we impose an overall budget, by formally
considering the following optimization problem.

Problem 2 (Spread maximization with global budget): Let
χ > 0, find the sets Γκ ∈ ⋃

κ Vκ \ S0 such that

max f({Γκ}κ∈{0,1,2,3}) s.t.
∑
κ

cκ|Γκ| ≤ χ. (6)

�
Also in this case an exhaustive search would require to test a

number of configurations that scales exponentially in the size of
the network.

Remark 1 (About the hardness of Problems 1–2): The
considered problems inherit the NP-hardness proven in [13]
for the problem of selecting the k most influential nodes in
a single-class setting. Indeed, both incentive design problems
require the computation of the expected number of final adopters
[see (5) and (6)], but in our scenario, a closed form expression
for the cost function f does not exist. In turn, the final set of
adopters can be formally defined according to Theorem 1, but
it would be computationally hard to find it for our arbitrary
network. �

A. Handling the Complexity of the Policy Design
Problems

To overcome the complexity that would arise when searching
for an exact solution of Problems 1 and 2, we propose to
1) approximate the function f using Monte Carlo samples, and
to 2) resort to a common approach in the literature [25]. In this
last case, the constrained influence maximization problems are
solved for one target at a time in a greedy manner, i.e., choosing
at each iteration a target that gives the largest marginal increase
in the spread of EVs. For a set {Γκ}κ∈{0,1,2,3}, to approximate
the cost function we simulate the cascade process for NR real-
izations of the agents’ thresholds, under the assumption that all
non-adopters can change their opinion at each time step. Note
that, based on the results attained in Section IV, this entails
that the cascade process is simulated up to convergence, as
defined in Theorem 1. Given the setS

�
r({Γκ}κ∈{0,1,2,3}) of final

adopters obtained for the rth simulation, with r ∈ {1, . . . , NR},
the approximated cost function is

f̂NR

({Γκ}κ∈{0,1,2,3}
)
=

1

NR

NR∑
r=1

S
�
r({Γκ}κ∈{0,1,2,3}) (7)

for which the following theorem holds.
Theorem 2: For any arbitrary instance of G = (V ,E ), the set

function f̂NR
(Γ) defined in (7) is monotone and submodular. �

Algorithm 1: Greedy Algorithm for Problem 1.

Require: G = (V ,E ) graph, seed set S0, partition
{Vκ}κ∈{0,...,3} budget constraints {mκ}κ∈{0,...,3}
Initialization:
Γκ
0 = ∅, Λ = ∅, nκ = 0, ∀κ ∈ {0, 1, 2, 3}

for � ∈ {1, . . . ,∑κ mκ} do
v̂ = arg maxv∈V \Λ{Δ(v|Γκ

i−1)}
for κ ∈ {0, 1, 2, 3} do

if v̂ ∈ Vκ then
κ̂ = κ

end if
end for
if nκ̂ < mκ̂ then
Γκ
i = Γκ

i−1 ∪ {v̂}
nκ̂ = nκ̂ + 1

else
Λ = Λ ∪ {v̂}

end if
end for
return Γκ∑

κ mκ
, f(Γκ∑

κ mκ
)

Proof: For an arbitrary instance r ∈ {1, . . . , NR} of the cas-
cading model in (4a), the resulting set of final adopters S

�
r(Γ

κ)
is submodular. This claim can be straightforwardly proven by
applying the results in [19], or it can be alternatively obtained by
adapting the proof devised in [13]. Being a sum of submodular
functions, the function f̂NR

(Γ) is thus submodular. �
Note that, as NR → ∞, the function f̂NR

({Γκ}κ∈{0,1,2,3})
converges uniformly because of the law of large numbers. In this
ideal scenario, the computational complexity of evaluating the
cost function becomes proportional to the number of simulations
and the time required for the convergence of the dynamics, i.e.,
O(NR · T ).

We review the procedure in Algorithm 1. Starting from the
empty set Γ0 = ∅, at each iteration i a new element ν̂ ∈ V \
Γκ
i−1, maximizing the discrete derivative Δ(v|Γκ

i−1) and not
violating the constraint on the class budget, is added to the seed
set, with Δ(v|Γκ

i−1) given by

Γκ
i = Γκ

i−1 ∪ arg maxvΔ(v|Γκ
i−1).

andΔ(v|Γ) = f̂NR
(Γ ∪ {v})− f̂NR

(Γ). In Algorithm 2, a sim-
ilar procedure is exploited, but the maximum search is not
constrained to each class. Instead, the influence maximization set
is searched on the entire set of nodes, with new agents added to
Γ until the saturation of the constraint. Note that, both strategies
exploit the predictive power of the cascade model proposed
in Section III, here used to test and greedy select the set of
influential nodes, while guaranteeing constraint satisfaction. The
greedy search of influential nodes needed to design the incentive
strategies is carried out in both cases by choosing one node at
a time, reducing significantly the computational complexity of
the proposed solution with respect to exact ones. Indeed, this
strategy allows us to perform a finite number of evaluations of
the cost function f̂NR

only.
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Algorithm 2: Greedy Algorithm for Problem 2.

Require: G = (V ,E ) graph, seed set S0, partition
{Vκ}κ∈{0,...,3} budget constraint χ > 0
Initialization:
Γκ
0 = ∅,mκ = 0, ∀κ ∈ {0, 1, 2, 3}

while
∑

κ cκmκ < χ do
(v̂, κ̂) = arg maxv∈V {Δ(v|Γκ

i−1).}
Γκ
i = Γκ

i−1 ∪ {v̂}
mκ = mκ + 1

end while
return Γκ, f(Γκ)

By combining known results in the optimization of submod-
ular functions with the law of large numbers and the Chebyshev
bounds, also for Algorithm 2 we can provide a probabilistic
bound on the quality of the greedy solution with respect to the
optimum of Problem 2 [25].

Corollary 1: Let Γκ be the output of Algorithm 2. Then, for
all small ε ≥ 0, it holds

P
(
f̂�
NR

≥ (1− 1/e) (f� − ε)
)
≥ 1− η

NRε2

with f̂�
NR

and f� being the optimal costs obtained by running
Algorithm 2 and by solving Problem 1 respectively, and η a finite
constant. �

VI. POLICY EVALUATION

We now test and compare different incentive strategies ob-
tained by running Algorithms 1 and 2 and considering different
design scenarios. In all cases, we focus on the setup devised in
Section IV, where the seed set is selected uniformly at random
among the perfectly suited agents and the individuals are classi-
fied based on their electrification potential index. In particular,
we fix the seed set S0 as the one exploited to obtain the results
shown in Fig. 4. The agents’ thresholds are chosen according to
their class, as explained in Section III. In our tests, Algorithms 1
and 2 are both run by considering NR = 20 random instances of
the thresholds. The spread maximizing sets {Γκ}κ∈{0,1,2,3} are
then retrieved by averaging over the resulting marginal increase
in the number of adopters. The “investment” policies dictated
by the results of the two algorithms in the different scenarios are
deployed once, at the beginning of the horizon, and then their
effectiveness is evaluated by letting the cascade model evolve
based on the new initial conditions. Note that we could also have
enacted the policies for one time step only, then running again
the two algorithms based on the evolution of the model in a
receding horizon fashion. This operation is allowed, thanks to
the dynamical nature of the proposed framework, but it would
be computationally demanding and it might be quite unrealistic
with respect to how actual incentive policies are enacted at a
governmental level. We stress that the available dataset does not
allow us to validate the designed strategies on a data basis, since
we have no actual information on existing EV owners, individual

inclinations nor their changes over five years.7 We thus focus on
simulating their effect on the proposed model and on providing
a quantitative evaluation ground, that can be exploited to assess
the benefits of different strategies. Once designed, each policy
is evaluated by deploying it and looking at its effect on a
single realization of the thresholds introduced in Section III.
Specifically, to assess the overall boost in EV adoption resulting
from their application, we look at the percentage S̃T [%] of final
adopters over the horizon of T = 9 steps already considered in
Section IV, namely

S̃T :=
|ST |
|V | × 100, [%] (8a)

with ST being the set of final adopters [see (4b)] and |ST |
dictating their number. Along with the benefits induced by each
policy, we look at its cost C, given by C :=

∑
κ mκcκ, which

is lower than or equal to the upper bound χ in (6) if Algorithm 2
is used. To combine these indexes, we further evaluate the
cost/benefit tradeoff of each policy, CB, which is defined as
the ratio

CB :=
C

S̃T

.

This concise indicator captures the cost required to drive a 1%
increment in the final adopters, thus indirectly allowing one to
assess whether a policy repays itself (i.e., when CB < 1, since
the cost is lower than the attained increment) or not. In addition
to these indicators, we further evaluate the overall expected
environmental impact of the considered policies by looking at
the resulting percentage reduction in CO2 emissions (R-CO2),
which is computed as

R-CO2 = 100× |CO2,T − CO2,0|
CO2,0

, [%] (9)

with CO2,t = β
∑

v/∈St
Yv being the amount of CO 2,t emissions

at time t, Yv [km] denoting the yearly kilometers traveled by
the vth agent and β = 18.32 [kg of CO2/100 km] being a
constant linking these two quantities. Note that, since the data
are anonymized, all agents that are not EV adopters are assumed
to own a mid-sized ICE vehicle.

The effectiveness of the policies is not assessed at a global
level only, but we also consider the percentage of final adopters
within each of the four classes introduced in Section II-B, i.e.,

S̃κ
T =

|Sκ
T |

|Vκ| × 100, [%] (10a)

whereST = {v ∈ ST : κv = κ}, and |Sκ
T | indicates the number

of final adopters belonging to class κ, with κ ∈ {0, 1, 2, 3}. As
for the overall performance, we evaluate the class-dependent
cost Cκ, which is given by Cκ := mκcκ. The value of Cκ is
dictated by the upper bound characterizing Problem 1 when Al-
gorithm 1 is run, while not being fixed a priori when Algorithm 2
is used. We can thus retrieve the cost/benefit tradeoff CBκ

for each class, namely, CBκ := Cκ

S̃κ
T

. As for the performance

and cost related indexes, we also look at the environmental

7The data cover one year only and they are anonymized.
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impact that the strategies can have on each group of agents,
by considering the class-based counterpart of (9), i.e.,

R-COκ
2 = 100× |COκ

2,T − COκ
2,0|

COκ
2,0

, [%] (10b)

where COκ
2,t indicates the emissions due to members of the κth

class at time t.
We stress that these indexes are exploited for validation pur-

poses only, while they do not shape the costs reported in Table I
nor they influence the imposed budget constraints.

By providing both a macro-level and a more granular eval-
uation of the polices, we can identify the clusters that mainly
benefit from their introduction. Concurrently, we can retrieve
guidelines on the classes the policies have to focus on to reduce
costs and lead to a consistent spread of EVs across the network.

1) Algorithm 1: Problem 1 is solved by looking at different
scenarios, characterized by alternative choices for the class
budget. The latter is here dictated by mκ = γκ|Vκ|, where
γκ ∈ [0, 1] indicates the percentage of agents belonging to each
class on which the policy can be enacted. Clearly, the parameters
{γκ}κ∈{0,1,2,3} allow us to shape the incentive policy, and thus,
its ultimate cost. In this work, we have focused on the scenarios
listed as follows:

1) Scenario 1: γκ = 0.2 ∀κ ∈ {0, 1, 2, 3}. According to
this choice, the class budgets correspond to m0 = 70,
m1 = 30, m2 = 25 and m3 = 21, so that the policy is
characterized by an overall budget of

∑
κ mκ = 146.

Since the class of perfectly suited agents is preponderant
over the others, this incentive strategy favors this cluster
over the ones comprising agents that are less willing to
buy an EV.

2) Scenario 2: γ0 = 0.3, γ1 = 0.25, γ2 = 0.2, γ3 = 0.15.
The policy obtained with these parameters result in
the class budgets m0 = 104, m1 = 38, m2 = 25, and
m3 = 16, and a corresponding overall budget of∑

κ mκ = 183.As not suited agents (κ = 3) are the most
costly to be influenced, this policy is likely to result in the
least cost among the incentive strategies considered here
to tackle Problem 1. Meanwhile, although cost-efficient,
it tends to leave out those agents that are more averse to
switching to an EV.

3) Scenario 3: γ0 = 0.15, γ1 = 0.2, γ2 = 0.25, γ3 = 0.3.
In this case, the class budgets are m0 = 52, m1 = 30,
m2 = 31, and m3 = 32, while the overall budget is given
by

∑
κ mκ = 145. Clearly, the resulting policy is di-

rected toward the classes of agents whose driving habits
are mildly and not suited. Despite the overall budget is
almost equal to that of the first scenarios, this strategy
will be more costly due to the higher number of unwilling
agents on which the policy is enacted.

The results shown in Table II clearly indicate that all poli-
cies favor the spread of EVs across the influence network.
Nonetheless, the strategy obtained within the third scenario
outperforms the others in terms of final adopters, and thus,
of environmental impact, while concurrently being much more
costly. The similarity between the cost/benefit tradeoff indexes

TABLE II
ALGORITHM 1: FREE (cκ = 0, κ ∈ {0, 1, 2, 3}) VERSUS POLICY-DRIVEN

EVOLUTION

|ST | is the percentage of final adopters, C is the cost of the policy, CB is the
associated cost/benefit index, and R-CO2 is the resulting reduction in carbon
emissions.

highlights that it is worth investing slightly more to convince
unwilling agents to switch to an EV, so as to boost the adoption
over the network and favor a reduction in carbon emissions.
Note also that, in the third scenario, the number of mildly suited
(κ = 2) agents on whom the policy is enacted increases, along
with that of not suited agents. This suggests that giving incentives
to these two groups of hesitant agents leads to policies that repay
themselves the most, with the set of most influential agents in the
network likely belonging to these two clusters. This conclusion
is supported by results in Fig. 5 , showing the label associated to
the node selected at each iteration of Algorithm 1. It is clear that,
independently of the considered scenario, mildly and not suited
agents are the first to be selected, with other classes considered
once the budget of these two groups is saturated. By looking at
the number of in-neighbors of the agents selected within each
scenario (see Fig. 6 ), it is also clear that the third one allows
us to select nodes with higher degree, once again corroborating
our intuition. The conclusions on the costs and benefits of each
strategy drawn when looking at the macroscopic indicators are
further confirmed by the class-dependent indexes reported in
Table III . Indeed, it can be seen that the third scenario results
in a consistent increase in the number of adopters within each
class, with relatively similar cost/benefit tradeoff indexes. This
resemblance is particularly evident when comparing the first
and third scenarios, thus highlighting the possible benefits of not
selecting a flat policy8 as the one considered in the first case. The
same conclusion can be drawn with respect to the environmental
impact of the different strategies.

2) Algorithm 2: When considering Problem 2, a maximum
costχ is introduced rather than a class budget to shape the policy.
Alternative strategies are thus originated by varying the upper-
bound in (6), here obtained as a fraction δ ∈ [0, 1] of the cost
required to enact the policy on all agents not belonging to the
seed set as χ = δ

∑
κ

∑
v∈Vκ\S0

cκ.
Problem 2 is addressed by considering three different sce-

narios, characterized by an increasing overall budget with δ =
{0.2, 0.5, 0.7}. The resulting upper constraints are reported in
Table IV, along with the percentages of final adopters, the costs
and the cost/benefit tradeoff indexes of the policies retrieved
within each scenario. Clearly, the final cost of each policy
increases with δ, and full adoption of EVs happens only in the
last two scenarios. Note that the actual cost of each strategy is

8A policy is here considered as flat if the same percentage of agents is selected
within each class.
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Fig. 5. Algorithm 1: Selected nodes’ class κ versus iterations. In the initial runs, the classes of not and mildly suited agents are the first to be
filled. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Fig. 6. Algorithm 1: Number of in-neighbors versus selected nodes. A clear pattern exists with respect to the number of in-neighbors. (a) Scenario
1. (b) Scenario 2. (c) Scenario 3.

TABLE III
ALGORITHM 1: CLASS-BASED PERFORMANCE: FREE VERSUS POLICY-DRIVEN EVOLUTION

S̃κ
T Denotes the in-class percentage of final adopters, Cκ is the cost of the policy linked to the kth class, CBκ is the associated cost/benefit Index, and R-COκ

2 assess the
class-dependent carbon emissions.

TABLE IV
ALGORITHM 2: FREE (cκ = 0, κ ∈ {0, 1, 2, 3}) VERSUS POLICY-DRIVEN

EVOLUTION

|ST | is the percentage of final adopters,C is the cost of the policy,CB is the associated
cost/benefit Index, and R-CO2 the resulting reduction in carbon emissions.

always quite close to the considered upper-bound, indicating that
Algorithm 2 allows us to devise a policy that fully exploits the
available resources. Despite the spread of EVs across the whole
network, it is clear that the costliest strategies lead to policies
that have less pay back, as the cost/benefit tradeoff shows. In
particular, the rather conspicuous investments required to enact
the third strategy are quite close to not repaying themselves,

providing policy makers an interesting insight on the effect that
different budget upper-bounds can have on EV adoption. On
the environmental impact side, clearly the more one invests, the
more people will shift to an EV, thus leading to a full reduction
of carbon emissions.

By looking at the single policies more closely through the
information provided in Fig. 7, it is clear that the upper-bound
is reached after rather few iterations when δ = 0.2 (43 agents
are selected, against the 159 and 353 considered for δ = 0.5
and δ = 0.7, respectively), as all the agents on which the policy
is enacted are fairly unwilling to change their driving habits to
switch to an EV. Despite the limited number of selected seeds
with the policy obtained for δ = 0.2, it is clear that most of
them is characterized by a relatively high in-degree, as shown in
Fig. 8. The distributions of the number of in-neighbors reported
therein further highlight that the higher is the available budget,
the greater is the number of agents selected by Algorithm 2
with a relatively low in-degree. As of the indicators, this result
suggests that an excessively high budget might not be exploited
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Fig. 7. Algorithm 2: Selected nodes’ class κ versus iterations. The higher the budget, the more agents are drawn from κ = {0, 1} at early stages.
(a) Scenario 1: δ = 0.2. (b) Scenario 2: δ = 0.5. (c) Scenario 3: δ = 0.7.

Fig. 8. Algorithm 2: Number of in-neighbors versus selected nodes. Clearly, the higher δ, the more the policy is enacted on poorly connected
agents. (a) Scenario 1: δ = 0.2. (b) Scenario 2: δ = 0.5. (c) Scenario 3: δ = 0.7.

TABLE V
ALGORITHM 2: CLASS-BASED PERFORMANCE: FREE VERSUS POLICY-DRIVEN EVOLUTION

S̃κ
T denotes the in-class percentage of final adopters, Cκ is the cost of the policy linked to the kth Class, CBκ is the associated cost/benefit Index, and R-COκ

2 assess the
class-dependent carbon emissions.

at its best, with less costly policies resulting in a similar diffusion
of EVs across the network. Such an effect, in turn, provides a
valuable inkling to policy makers, that can consider potential
savings while still obtaining satisfactory outcomes.

The interpretation of the macro-level indexes is supported by
the class-dependent results shown in Table V. They clearly show
a boost in EV acceptance over all classes within all considered
scenarios, with all perfectly suited adopters becoming actual
EV owners even when δ = 0.2. Once again, it is clear that the
price of reaching full adoption is increasingly high, becoming
rather consistent when looking at the more unwilling classes
(κ = 3 and κ = 4). Concurrently, the increased cost of the
policy corresponds to an improvement in the environmental
impact of the latter.

3) Policy Comparison: To fully assess the different policies
previously discussed, it is crucial to compare the results obtained
solving Problems 1 and 2. It is worth commenting that only
a comparison of the policies with class budgets and the ones
obtained for δ = {0.2, 0.5} is actually fair, due to the relevant

discrepancy in the size of Γ̃ =
⋃

κ Γκ characterizing the case
δ = 0.7.

It is clear that imposing bounds on the classes allows one
to obtain polices that are more focused on the micro-level
features of the network and the agents. In turn, this translates
into lower costs and a better cost/benefit tradeoff with respect
to the results obtained imposing upper-bounds on the overall
budget. Nonetheless, full adoption is only reached when the
strategies returned by Algorithm 2 are applied. When the latter
is carried out with δ = 0.2, the overall indicators are quite close
to those obtained with the flat policy considered in the first
scenario explored with Algorithm 1, despite the reduced number
of selected agents. By comparing the class-dependent indexes
in Tables III and V, it is clear that the limited number of agents
selected when δ = 0.2 allows us to visibly boost EV adoption
over the ones belonging to the class κ = 3. Meanwhile, it leads
to a rather small reduction in the number of adopters in the other
clusters. This result indicates that not acting on the most relevant
class from a numerical standpoint can be effective, provided that
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enough members of the most influential clusters are selected.
Notably, both algorithms tend to select mildly and not suited
agents at early stages (see Figs. 5 and 7), thus, confirming the
overall trend that these classes are the most important to enact
the adoption cascade over the network. As for the relationship
between the effectiveness of the policies and the in-degree of the
agents who are given incentives, the pattern visible in Fig. 6 does
not characterize the distributions in Fig. 8. Moreover, only the
distribution characterizing the scenario with δ = 0.5 resembles
the in-degree distributions reported in Fig. 6. When considering
the results obtained for δ = 0.7, it is clear that the imposition of
a class budget allow one to avoid the selection of a consistent
number of poorly connected agents, which instead characterizes
the case in which rather loose bounds on the overall budget are
considered.

VII. CONCLUSION

This work presented a network-based framework, that lays
the foundations for the data-based analysis of EV adoption
processes and for the design of policies devoted to their mass
spread. By relying on real mobility patterns, we have shown how
to translate data-based information into quantitative indexes,
that allow to evaluate the initial agent predisposition to the
considered technological change. With the available data, we
have also framed the agents within a social network model
built on geographical proximity. These two main building blocks
of our framework represent the starting point for a simulation
analysis of EV adoption over the data-based network, and for
the design of incentive policies. The results shown in this work
demonstrate how the proposed framework can be effectively
exploited to understand how EV ownership can spread across a
network of influence, based solely on the connection between
agents and their individual characteristics. By enacting a set of
preliminary policies, that change these last features, we have also
highlighted that data-based policies can be very cost-effective.
Our analysis have demonstrated the significant potential of the
proposed framework as a tool to aid in the design of effective
incentive policies, both from a cost-oriented perspective and
with respect to their environmental and social impact.

The presented framework is rather general, allowing to per-
form analysis and to design policies by blending quantitative and
qualitative features of the agents and encompassing alternative
(i.e., not only proximity-based) representations of their social
connections, as long as they are properly framed. In this light,
future work will be devoted to extend the agents’ characteriza-
tion to encompass additional profiling measures: technological,
economic, and social, so as to account that mobility as a whole
should be developed by considering all these aspects. As we are
aware that a certain mobility choice is likely to be determined by
the conditioning exerted by people close to us (friends, relatives,
etc.), the definition of a model that can correlate mobility patterns
with social relationships in the ego-networks of individuals will
also be the object of our future studies. Thanks to the flexibility
of the proposed framework, this will be done by relying on the
data-based approach presented in the article, via other datasets
comprising both social and proximity information. On the policy

design side, the dynamical and control-oriented nature of the
proposed model will allow us to consider alternative incentive
strategies, relying also on feedback schemes.
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