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Sparse Control Node Scheduling in Networked
Systems Based on Approximate

Controllability Metrics
Takuya Ikeda , Member, IEEE, and Kenji Kashima , Senior Member, IEEE

Abstract—This article investigates a novel sparsity-
constrained controllability maximization problem for
continuous-time linear systems. For controllability metrics,
we employ the minimum eigenvalue and the determinant
of the controllability Gramian. Unlike the previous problem
setting based on the trace of the Gramian, these metrics
are not the linear functions of decision variables and are
difficult to deal with. To circumvent this issue, we adopt a
parallelepiped approximation of the metrics based on their
geometric properties. Since these modified optimization
problems are highly nonconvex, we introduce a convex
relaxation problem for its computational tractability. After
a reformulation of the problem into an optimal control
problem to which Pontryagin’s maximum principle is
applicable, we give a sufficient condition under which the
relaxed problem gives a solution of the main problem.

Index Terms—Convex optimization, networked systems,
optimal control, resource-aware control, sparse control.

I. INTRODUCTION

THESE DAYS, control system designs that incorporate a
notion of sparsity have attracted a lot of attention in the

control community. Such an approach is useful to find a small
amount of essential information that is closely related to the
control performance of interest. There are mainly two types of
penalty costs to enhance the sparsity. The first one is the �0 norm,
which is defined as the number of nonzero components. This
cost is widely used in sparse modeling motivated by the success
of compressed sensing, and most of the related works in control
systems adopt this type. The second one is theL0 norm, which is
defined as the length of the support. This is an extended version
of the �0 norm for functional spaces, and it seems to appear
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in relatively recent works, e.g., [1]–[5]. However, it should be
emphasized that optimization problems involving both the �0

norm and the L0 norm have not been investigated in the area of
sparse optimization, except for our recent study [6], to the best
of our knowledge.

This study investigates an application of the sparse opti-
mization to the control node selection problem in large-scale
networked systems. The purpose of the node selection problem
is to identify a small number of nodes called control nodes
that should receive exogenous control inputs so that the overall
system of interest is effectively guided. This selection problem
naturally arises in large-scale networked systems due to physical
or financial reasons. For example, let us consider a rebalancing
problem on the mobility network of a sharing system with one-
way trips, where the control input is the number of vehicles re-
balanced by the staff between stations [7]. Staffing (when, which
station, and how much) needs to be decided in advance based
on the expected demand, behavior dynamics model, and human
resource constraints. This is certainly a control node scheduling
problem. We also note that the node selection problem is useful
to identify leaders in multiagent systems [8], [9]. In recent works,
control nodes are chosen based on a metric of controllability. For
example, the work [10] considers the minimum set of con-
trol nodes that ensures the classical controllability in [11]; the
work [12] considers the structural controllability; the works [13]
and [14] introduce quantities, such as the trace of the control-
lability Gramian, that evaluate how much the system is easy to
control. More recently, the work [15] has focused on lattice graph
with linear dynamics consisting of an infinite number of nodes
and has given the analytical expression for the minimum control
energy. The work [16] considers a minimizing problem of the
maximum eigenvalue of the controllability Gramian subject to
a Frobenius norm constraint on the input matrix and gives a
closed-form expression for the optimal values. The work [17]
shows that the controllability Gramian can be expressed as a
Hadamard product of two positive-semidefinite matrices when
the system matrix is diagonalizable and provides an algorithm
for a single-input system that can avoid the explicit computation
of the Gramian when the determinant of the Gramian is used as
the controllability metric.

While the aforementioned works investigate the selection
problem in which the set of control nodes is fixed over time,
more recent works alternatively consider time-varying (TV)
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control node selection, which is also referred to as control
node scheduling. The node scheduling problem finds not only
which but also when nodes should be activated and, hence,
it seems more challenging and efficient for achieving high
control performance. Indeed, Zhao et al. [18] and Nozari et
al. [19] consider the scheduling problem for discrete-time sys-
tems and show its effectiveness over the time-invariant (TI)
control node selection. Mathematically, all of the aforemen-
tioned works consider �0 constrained optimization problems,
in which the number of nodes selected at the same time is
constrained. On the other hand, in networked systems, it is also
important to effectively compress control signals and reduce
communication traffic. To achieve this, it is desirable to find
the best time duration over which controllers should become
active. Then, we considered the L0 constraint on control inputs
and formulated a node scheduling problem for continuous-time
systems in [20], which is based on a controllability metric of the
trace of the Gramian. This scheduling problem is furthermore
analyzed in [21], which provides an explicit formula of the
optimal solutions and shows that the solutions are obtained by a
greedy algorithm. However, these two works on continuous-time
systems mainly consider the L0 control cost, and the resulting
number of activated control nodes at each time instance (i.e.,
the �0 control cost) is not taken into account. Furthermore,
the classical controllability is not automatically ensured by the
trace metric, since the designed Gramian may include the zero
eigenvalue.

In view of this, this article newly proposes an optimal node
scheduling method that satisfies both the �0 and L0 constraints
and ensures the classical controllability for continuous-time lin-
ear TI systems. By introducing the two constraints, we can find a
TV small number of control nodes while reducing the support of
control inputs. As the network controllability, we consider two
types of metrics: 1) the minimum eigenvalue of the controllabil-
ity Gramian, which is inversely related to the worst-case control
energy to steer the network state from the origin to any point on
the unit sphere in the state space and 2) the determinant of the
controllability Gramian, which is proportional to the volume
of the ellipsoid consisting of the states that can be reached
from the origin with a unit energy control input. Note that both
of the controllability measures naturally ensure the classical
controllability, since any selection that makes the system uncon-
trollable returns the worst cost value, unlike the trace measure
addressed in [20] and [21]. The formulated problem includes
a combinatorial structure caused by the L0 and �0 norms. To
circumvent this, we introduce a convex relaxation problem and
establish a condition for the main problem to be exactly solved
via the convex optimization. For the analysis, we transform the
convex relaxation problem to an optimal control problem to
which Pontryagin’s maximum principle is applicable.

The rest of this article is organized as follows. Section II
provides mathematical preliminaries. Section III formulates our
node scheduling problem. Section IV introduces a convex re-
laxation problem and gives a sufficient condition for the main
problem to boil down to the convex optimization. Section V
illustrates numerical examples of the proposed node scheduling.
Finally, Section VI concludes this article.

II. MATHEMATICAL PRELIMINARIES

This section reviews notation that will be used throughout
this article. We denote the set of all positive integers by N and
the set of all real numbers by R. Let m,n ∈ N and Ω ⊂ R.
For a vector a = [a1, a2, . . . , am]� ∈ Rm, diag(a) denotes the
diagonal matrix whose (i, i)-component is given by ai, and
a ∈ Ωm means ai ∈ Ω for all i. The �0 norm and �1 norm of
a are defined by ‖a‖�0 � #{i ∈ {1, 2, . . . ,m} : ai �= 0} and
‖a‖�1 �

∑m
i=1 |ai|, respectively, where # returns the number

of elements of a set. We denote the Euclidean norm by ‖a‖ �
(
∑m

i=1 a
2
i )

1/2. We denote the identity matrix of size m by Im.
For any M ∈ Rm×n, M� denotes the transpose of M . The
intersection of all the convex sets containing a given subsetC of
Rm is called the convex hull of C and is denoted by coC. Note
that the convex hull of a finite subset {c1, c2, . . . , cn} of Rm

consists of all the vectors of the form
∑n

i=1 νici, with νi ≥ 0
for all i and

∑n
i=1 νi = 1. Let C be a closed subset of Rm

and a ∈ C. A vector δ ∈ Rm is a proximal normal to the set
C at the point a if and only if there exists a constant σ ≥ 0
such that δ�(b− a) ≤ σ‖b− a‖2 for all b ∈ C. The proximal
normal cone toC at a is defined as the set of all such δ, which is
denoted byNP

C (a). We denote the limiting normal cone toC at a
byNL

C (a), i.e.,NL
C (a) � {δ = limi→∞ δi : δi ∈ NP

C (ai), ai →
a, ai ∈ C}.

Let T > 0. For p ∈ {0, 1, 2,∞}, we define the Lp norm of a
function s(·) = [s1(·), s2(·), . . . , sm(·)]� on [0, T ] by

‖s‖L0 �
m∑
j=1

μL({t ∈ [0, T ] : sj(t) �= 0})

‖s‖Lp �

⎧⎨
⎩
∫ T

0

m∑
j=1

|sj(t)|pdt
⎫⎬
⎭

1/p

‖s‖L∞ � max
1≤j≤m

ess sup
0≤t≤T

|sj(t)|

where μL is the Lebesgue measure on R. We denote the set of
all functions s with ‖s‖Lp <∞ by Lp. The subgradient of a
function f : Rn → R at x ∈ Rn is denoted by ∂f(x), i.e., the
set of all ζ ∈ Rn satisfying

f(y)− f(x) ≥ ζ�(y − x)

for all y ∈ Rn. We say that ζ ∈ Rn is the proximal subgradient
of f at x if for some σ ≥ 0 and for some neighborhood X of x,
we have

f(y)− f(x) + σ|y − x|2 ≥ ζ�(y − x)

for all y ∈ X . The set of all such ζ is called the proximal
subdifferential of f at x and is denoted by ∂P f(x). The limiting
subdifferential ∂Lf(x) of f at x is defined by

∂Lf(x)

� {ζ = lim
i→∞

ζi : ζi ∈ ∂P f(xi), xi → x, f(xi) → f(x)}.

We call a vector-valued function with absolutely continuous
components arc [22, p. 255].
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III. PROBLEM FORMULATION

A. System Description

Let us consider a network model consisting of n nodes and
define the overall system by

ẋ(t) = Ax(t) +BS(t)u(t), 0 ≤ t ≤ T

S(t) � diag(s(t))
(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
� ∈ Rn is the state vec-

tor consisting of n nodes, where xi(t) is the state of the ith
node at time t, u(·) ∈ Rm is the exogenous control input that
influences the network dynamics, A ∈ Rn×n is the dynam-
ics matrix that represents the information flow among nodes,
B = [b1, b2, . . . , bm] ∈ Rn×m is a constant matrix that repre-
sents candidates of control nodes, s(·) ∈ {0, 1}m represents the
activation schedule of the control input u, and T > 0 is the final
time of control. Throughout this article, we put the following
assumption on A.

Assumption 1: The matrix A in (1) is diagonalizable.
The control input uj(t), the jth component of u(t), is able

to affect the system through the vector bj at time t if and
only if sj(t) = 1, and the nodes that receive the inputs are
called control nodes. In other words, the control node scheduling
problem seeks an optimal variable s over [0, T ] based on a given
cost function and some constraints. In particular, this article
considers the question of which and when control nodes should
be activated so that the control energy required to steer the
network state from the origin (i.e., x(0) = 0) to any target state
is as small as possible. We note that after the optimal variable s is
found, the function S(·) = diag(s(·)) is fixed and the minimum
energy control is naturally expected to be implemented.

B. Main Problem

This article is interested in an energy-saving node scheduling
in networked systems. To quantify the required control energy,
several metrics have been proposed (see, e.g., [13] and [14]).
Among them, this article considers two metrics, i.e., 1) the min-
imum eigenvalue and 2) the determinant of the controllability
Gramian. In short, these metrics are used to design the shape of
the reachable set R with a unit energy control input, where the
set R for the system (1) is defined by

R �
{
xf ∈ Rn : xf =

∫ T

0

eA(T−t)BS(t)u(t)dt,

‖u‖L2 ≤ 1

}
.

(2)

We recall that the minimum energy control ǔ, which steers
the state from the origin to a target state xf at time T with
minimum L2 norm, satisfies ‖ǔ‖2L2 = x�fG

−1xf [23], where G
is the controllability Gramian for the linear system (1) defined
by

G �
∫ T

0

eA(T−t)BS(t)S(t)�B�eA
�(T−t)dt.

Hence, the reachable set R can be rewritten as an ellipsoid

R =
{
xf ∈ Rn : x�fG

−1xf ≤ 1
}
.

This implies that the directions and the lengths of the axes of
R are given by the eigenvectors of the Gramian and the square
root of the corresponding eigenvalues, respectively. Hence, the
minimum eigenvalue of the Gramian, denoted by λmin(G), is
related to the minimum length of the axes of R and is adopted
as a controllability measure for the worst-case analysis. On the
other hand, the determinant of the Gramian, denoted by det(G),
is proportional to the volume of the reachable set R. Precisely

vol(R) =
π

n
2

Γ(n2 + 1)

√
det(G)

where Γ is the Gamma function. Thus, the network controlla-
bility is enhanced by selecting a function s(·) that makes the
metrics λmin(G) and det(G) large.

Here, we provide the geometric property of the reachable set
R, which is the counterpart of [24, Th. 4.7] for TV systems.
In what follows, we denote the eigenvalues of A by λi ∈ R
and define Λ � diag([λ1, λ2, . . . , λn]

�). We also denote by vi
eigenvectors corresponding to the eigenvalues λi of A such that
V � [v1, v2, . . . , vn] ∈ Rn×n satisfies V −1AV = Λ. We define
W � V �−1

and denote by wi the ith column of W .
Proposition 1: Define

d̄i �
{∫ T

0

e2λi(T−t)‖S(t)B�wi‖2dt
}1/2

and the hyperplanes H+
i ,H−

i ⊂ Rn for i ∈ {1, 2, . . . , n} by

H+
i � d̄ivi + span(v1,

i
ˇ. . ., vn)

H−
i � −d̄ivi + span(v1,

i
ˇ. . ., vn)

(3)

where the symbol i
ˇ

denotes that the ith vector is removed from

the list. Assume d̄i > 0 for all i. The following holds.
1) Fix any xf ∈ R and take u such that

xf =

∫ T

0

eA(T−t)BS(t)u(t)dt, ‖u‖L2 ≤ 1.

Then, we have

xf =

n∑
i=1

divi (4)

where

di �
∫ T

0

eλi(T−t)w�
i BS(t)u(t)dt.

2) We have |di| ≤ d̄i for all i if ‖u‖L2 ≤ 1, and the equality
holds for some i if and only if

u(t) = ±d̄−1
i eλi(T−t)S(t)B�wi.

3) The 2n hyperplanes H+
1 , . . . ,H+

n ,H−
1 , . . . ,H−

n define a
parallelepiped P that is tangent to the reachable set R.

Proof: See Appendix A. �
Remark 1: Here, we illustrate Proposition 1 with an example.
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Fig. 1. Example of a reachable set R and the parallelepiped P.

Let us consider a system (1) with

A =

[
0.4 0.2

0.2 0

]
, B = I2, T = 2,

s1(t) =

⎧⎪⎨
⎪⎩
0, t ∈ [0, 1.25)

1, t ∈ [1.25, 1.75]

0, t ∈ (1.75, 2]

, s2(t) =

⎧⎪⎨
⎪⎩
0, t ∈ [0, 0.25)

1, t ∈ [0.25, 0.75]

0, t ∈ (0.75, 2]

.

In Fig. 1 , the ellipsoid in solid blue shows the reachable set
R defined by (2). (We recall that R is the set of all states that
can be reached from the origin by using a unit energy control.)
The parallelepiped P defined by (3) is shown in solid green.
(Note that in this example, P is a rectangle, since the matrix
A is symmetric and v1 and v2 are orthogonal to each other.)
As shown in Proposition 1, we can see that P is tangent to R.
We also show the axes of the ellipsoid R in the dashed blue
line, which is given by

√
μiρi, i = 1, 2, where μi and ρi are the

eigenvalue and the eigenvector of the Gramian G, respectively.
Motivated by this geometric property, this article considers

the design ofP that can make the aforementioned controllability
measures large. In other words, we consider the maximization
problems of the minimum value of d̄i and the volume of P . Note
that we have

‖S(t)B�wi‖2 = (w�
i BS(t)

�)(S(t)B�wi)

= w�
i BS(t)B

�wi

=

m∑
j=1

(w�
i bj)

2sj(t)

where we used s(t) ∈ {0, 1}m on [0, T ]. Note also that

log vol(P) = log
∣∣∣det([2d̄1v1, 2d̄2v2, . . . , 2d̄nvn])∣∣∣

= n log 2 + log | det(V )|+
n∑

i=1

log d̄i

= n log 2 + log | det(V )|

+
1

2

n∑
i=1

log

∫ T

0

e2λi(T−t)
m∑
j=1

(w�
i bj)

2sj(t)dt.

Then, we define the cost functions by

J1(s) � min
i

∫ T

0

e2λi(T−t)
m∑
j=1

(w�
i bj)

2sj(t)dt

J2(s) �
n∑

i=1

log

∫ T

0

e2λi(T−t)
m∑
j=1

(w�
i bj)

2sj(t)dt.

The cost functions J1 and J2 represent the minimum length of
the axis and the volume of the parallelepiped P up to constant,
respectively. As the constraints, we introduce the L0 and �0

constraints on inputs to take account of the upper bound of the
total time length of node activation and the number of activated
nodes at each time. Now, we are ready to describe the main
problems.

Problem 1: Given A ∈ Rn×n, B ∈ Rn×m, T > 0, β ∈
[1,m) ∩ N, and αj ∈ (0, T ], j = 1, 2, . . . ,m, find a TV ma-
trix S(·) � diag(s(·)), s(·) � [s1(·), s2(·), . . . , sm(·)]�, which
solves

maximize
s

J1(s)

subject to s(t) ∈ {0, 1}m ∀t ∈ [0, T ]

‖sj‖L0 ≤ αj ∀j ∈ {1, 2, . . . ,m}
‖s(t)‖�0 ≤ β ∀t ∈ [0, T ].

Problem 2: Given A ∈ Rn×n, B ∈ Rn×m, T > 0, β ∈
[1,m) ∩ N, and αj ∈ (0, T ], j = 1, 2, . . . ,m, find a TV ma-
trix S(·) � diag(s(·)), s(·) � [s1(·), s2(·), . . . , sm(·)]�, which
solves

maximize
s

J2(s)

subject to s(t) ∈ {0, 1}m ∀t ∈ [0, T ]

‖sj‖L0 ≤ αj ∀j ∈ {1, 2, . . . ,m}
‖s(t)‖�0 ≤ β ∀t ∈ [0, T ].

In this article, we will show that Problems 1 and 2 are exactly
solved via an equivalent convex optimization problem. Note that
two optimization problems are said to be equivalent if the set of
all optimal solutions coincides.

Remark 2: An efficient sparse activation schedule of control
inputs is addressed in related works [2] and [25]. While these
works consider the activation schedule after the B-matrix is
given, we note that our study is interested in the optimal design
of the matrix (precisely, BS(·)) based on the controllability
performance and the sparsity constraints.

IV. ANALYSIS

In this section, we provide an equivalence theorem between
the main problems and the corresponding convex relaxation
problems.
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A. Minimum Eigenvalue of the Gramian

We first consider Problem 1. The convex relaxation problem
is described as follows, where the L0 and �0 norms are replaced
by the L1 and �1 norms, respectively.

Problem 3: Given A ∈ Rn×n, B ∈ Rn×m, T > 0, β ∈
[1,m) ∩ N, and αj ∈ (0, T ], j = 1, 2, . . . ,m, find a TV ma-
trix S(·) � diag(s(·)), s(·) � [s1(·), s2(·), . . . , sm(·)]�, which
solves

maximize
s

J1(s)

subject to s(t) ∈ [0, 1]m ∀t ∈ [0, T ]

‖sj‖L1 ≤ αj ∀j ∈ {1, 2, . . . ,m}
‖s(t)‖�1 ≤ β ∀t ∈ [0, T ].

The set of all functions that satisfy the constraints of an
optimization problem is called feasible set. Let us denote the
feasible set of Problems 1 and 3 by S0 and S1, i.e.,

S0 � {s : s(t) ∈ {0, 1}m∀t, ‖sj‖L0 ≤ αj∀j,
‖s(t)‖�0 ≤ β∀t}

S1 � {s : s(t) ∈ [0, 1]m∀t, ‖sj‖L1 ≤ αj∀j,
‖s(t)‖�1 ≤ β∀t}.

Note that the set S0 is also a feasible set of Problem 2.
Note also that S0 ⊂ S1, since ‖sj‖L1 = ‖sj‖L0 for all j and
‖s(t)‖�1 = ‖s(t)‖�0 on [0, T ] for any measurable function s
satisfying s(t) ∈ {0, 1}m on [0, T ]. The inclusion is proper in
general, since the �1 and L1 constraints do not automatically
guarantee that the �0 and L0 constraints and some functions in
S1 are not obviously binary. Then, we first show the discreteness
of solutions of Problem 3, which guarantees that the optimal
solutions of Problem 3 belong to the set S0. For this, we prepare
lemmas.

Lemma 1: The following holds.
1) Define a set

E � {a ∈ Rm+n : aj ≤ αj , j = 1, 2, . . . ,m}
and fix any γ ∈ E. Any δ ∈ NL

E (γ) satisfies

δi(γi − αi) = 0 ∀i ∈ {1, 2, . . . ,m} (5)

δi ≥ 0 ∀i ∈ {1, 2, . . . ,m} (6)

δi = 0 ∀i ∈ {m+ 1,m+ 2, . . . ,m+ n}. (7)

2) Define f(ξ) � max{ξm+1, ξm+2, . . . , ξm+n} on Rm+n.
For any ξ ∈ Rm+n, we have

∂Lf(ξ) = co

⎛
⎝ ⋃

i∈I(ξ)

[
0m

ei−m

]⎞⎠ (8)

where 0m is the zero vector in Rm, ek is the kth canonical
vector in Rn, and

I(ξ) � {i ∈ {m+ 1,m+ 2, . . . ,m+ n} : ξi = f(ξ)} .
Proof: See Appendix B. �

Hereafter, we impose the following assumption; see Remark 3
for its interpretation.

Assumption 2: A is diagonalizable and nonsingular, and all
the systems (A, bj) and (A, bi ± bj) are controllable for all i, j
with i �= j.

Remark 3: For an intuitive understanding of Assumption 2,
let us consider the case with a scalar state and two nodes: ẋ =
λx+

[
b1 b2

]
S(t)u(t) and s∗(t) = [1, 0]� for t ∈ [0, T/2)

and [0, 0]� for t ∈ [T/2, T ]. We can observe that the following
modifications do not change the cost functions J1 and J2.

1) If λ = 0 (i.e., A is singular), the impulse response is
flat. Consequently, a time-shift solution may exist, e.g.,
ś∗1(t) = 1− ε for t ∈ [0, T/2) and ε for t ∈ [T/2, T ]
provided that ‖ś∗(t)‖l1 < β for t ∈ [T/2, T ].

2) If b1 �= 0, b2 = 0 (i.e., (A, b2) is not controllable), s2 does
not affect the cost functions. This may allow a meaning-
less activation, e.g., ś∗2(t) = ε, within the constraints.

3) If b1 = ∓b2 (i.e., (A, b1 ± b2) is not controllable), the
weight (w�

i bj)
2 is flat. This may allow a node-shift solu-

tion such as ś∗(t) = [1− ε, ε]� for t ∈ [0, T/2) provided
that ‖ś∗2‖L1 < α2.

These modifications, however, degrade the sparsity. Assump-
tion 2 excludes similar possibilities that the relaxed L1–�1

problems have a nonsparse optimizer for general cases.
Lemma 2: Denote by Q ∈ Rn×m the matrix whose (i, j)-

component is given by (w�
i bj)

2. Define a matrix Mj ∈ Rn×n,
j = 1, 2, . . . ,m, by

Mj �

⎡
⎢⎢⎢⎢⎣

λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

...
... · · · ...

λn
1 λn

2 · · · λn
n

⎤
⎥⎥⎥⎥⎦ diag(Qj)

where Qj denotes the jth column of Q. Under Assumption 2,
the matrices Mj and Mi −Mj are nonsingular for all i, j with
i �= j.

Proof: See Appendix C. �
Theorem 1 (Discreteness): Under Assumption 2, any solu-

tion of Problem 3 takes only the values in the binary set {0, 1}
almost everywhere.

Proof: Note that, for any s such that s(t) ∈ [0, 1]m on [0, T ],
we have

‖sj‖L1 =

∫ T

0

|sj(t)|dt =
∫ T

0

sj(t)dt.

Hence, for each j, the value ‖sj‖L1 is equal to the final state
yj(T ) of the system

ẏj(t) = sj(t)

with yj(0) = 0. Note also that

−
∫ T

0

e2λi(T−t)
m∑
j=1

(w�
i bj)

2sj(t)dt

is equal to the final state zi(T ) of the system

żi(t) = 2λizi(t)−
[
(w�

i b1)
2 (w�

i b2)
2 . . . (w�

i bm)2
]
s(t)
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with zi(0) = 0. Define y � [y1, . . . , ym]� ∈ Rm, z �
[z1, . . . , zn]

� ∈ Rn, ξ � [y�, z�]� ∈ Rm+n. Then, Problem 3
is equivalently expressed as follows:

minimize
s

f(ξ(T ))

subject to ξ̇ = 2

[
0 0

0 Λ

]
ξ +

[
Im

−Q

]
s

ξ(0) = 0,

ξj(T ) ≤ αj ∀j ∈ {1, 2, . . . ,m}
s(t) ∈ [0, 1]m ∀t ∈ [0, T ]

‖s(t)‖�1 ≤ β ∀t ∈ [0, T ] (9)

wheref is defined in Lemma 1 andQ is defined in Lemma 2. This
is an optimal control problem to which Pontryagin’s maximum
principle [22, Th. 22.26] is applicable.

Let the process (ξ∗, s∗) be a local minimizer of the prob-
lem (9), and define the Hamiltonian function H : Rm+n ×
Rm+n × Rm → R associated with the problem (9) by

H(ξ, p, s) � p�
(
2

[
0 0

0 Λ

]
ξ +

[
Im

−Q

]
s

)
.

Then, it follows from the maximum principle that there exists
a constant η equal to 0 or 1 and an arc p : [0, T ] → Rm+n

satisfying the following conditions:
1) the nontriviality condition for all t ∈ [0, T ]:

(η, p(t)) �= 0 (10)

2) the transversality condition:

−p(T ) ∈ η∂Lf(ξ
∗(T )) +NL

E (ξ
∗(T )) (11)

where the set E is defined in Lemma 1;
3) the adjoint equation for almost every t ∈ [0, T ]:

−ṗ(t) = DξH(ξ∗(t), p(t), s∗(t)) (12)

whereDξH is the derivative of the functionH at the first
variable ξ;

4) the maximum condition for almost every t ∈ [0, T ]:

H(ξ∗(t), p(t), s∗(t)) = sup
s∈S

H(ξ∗(t), p(t), s) (13)

where S � {s ∈ [0, 1]m : ‖s‖�1 ≤ β}.

Let p(t) = [p(1)(t)
�
, p(2)(t)

�
]�, where p(1)(t) ∈ Rm and

p(2)(t) ∈ Rn. Note that

p(1)(t) = p(1)(0), p(2)(t) = e−2Λtp(2)(0)

on [0, T ] from (12). Note also that the supremum in (13) is
attained by a point in S, since the right-hand side is a continuous
function of s and S is a closed set. In other words, we have

s∗(t) ∈ arg max
s∈S

p(t)�
[
Im

−Q

]
s

= arg max
s∈S

m∑
j=1

φj(t)sj

(14)

almost everywhere, where

φj(t) � p
(1)
j (t)−

n∑
i=1

p
(2)
i (t)(w�

i bj)
2.

We here claim that η = 1. Indeed, if η = 0, then it follows
from Lemma 1 and (11) that

p
(1)
j (0)(ξ∗j (T )− αj) = 0 ∀j ∈ {1, 2, . . . ,m} (15)

p
(1)
j (T ) = p

(1)
j (0) ≤ 0 ∀j ∈ {1, 2, . . . ,m} (16)

p
(2)
j (T ) = e−2λjT p

(2)
j (0) = 0 ∀j ∈ {1, 2, . . . , n}. (17)

From (17), we have p(2)(0) = 0 and p(2)(t) = 0 on [0, T ].
Hence, from (10) and (16), there exists j0 ∈ {1, 2, . . . ,m} such
that p(1)j0

(0) < 0. Then, s∗j0(t) = 0 almost everywhere by (14).

This implies ξ∗j0(T ) = 0 by the dynamics ξ̇j0 = sj0 with the
initial condition ξj0(0) = 0. Then, we have

p
(1)
j0

(0)(ξ∗j0(T )− αj0) = −p(1)j0
(0)αj0 �= 0

which contradicts to (15). Thus, η = 1.
In what follows, we show the following under the assumption.
1) We have

φj(t) �= 0 (18)

almost everywhere for all j ∈ {1, 2, . . . ,m}.
2) There exists jk : [0, T ] → {1, 2, . . . ,m}, k =

1, 2, . . . ,m, such that

φj1(t)(t) > φj2(t)(t) > · · · > φjm(t)(t) (19)

almost everywhere.
By showing this, we find

s∗j(t) =

{
1, ifj ∈ Ω1(t) ∩ Ω2(t)

0, otherwise

for almost every t ∈ [0, T ], where

Ω1(t) � {j1(t), j2(t), . . . , jβ(t)}
Ω2(t) � {k ∈ {1, 2, . . . ,m} : φjk(t)(t) > 0}.

We first show (18). For this, let us suppose φj(t) = 0 on a
set of positive measure for some j. Then, we have φj(t) = 0 on
[0, T ], since φj is analytic [26]. Hence

0 =
drφj
dtr

(0) = −
n∑

i=1

(−2λi)
rp

(2)
i (0)(w�

i bj)
2

for r ∈ {1, 2, . . . , n}. In other words

Mjp
(2)(0) = 0,

where the matrix Mj is defined in Lemma 2. From Lemma 2,
Mj is nonsingular, and hence, we have p(2)(0) = 0, which
implies p(2)(T ) = 0. However, this contradicts to (11) from
Lemma 1.

We next show (19). This can be confirmed similarly. Precisely,
let us suppose φi(t) = φj(t) on a set of positive measure for
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some i, j ∈ {1, 2, . . . ,m} with i �= j. Then, φi(t) = φj(t) on
[0, T ], since φi − φj is analytic. Hence

dr(φi − φj)

dtr
(0) = 0

for r ∈ {1, 2, . . . , n}, which gives

(Mi −Mj)p
(2)(0) = 0.

Hence, we have p(2)(0) = 0 from Lemma 2, which contra-
dicts to (11) from Lemma 1. This completes the proof.

The following theorem is the main result, which shows the
equivalence between Problems 1 and 3. �

Theorem 2 (Equivalence): Suppose Assumption 2. Denote
the set of all solutions of Problem 1 and Problem 3 byS∗

0 andS∗
1 ,

respectively. If the set S∗
1 is not empty, then we have S∗

0 = S∗
1 .

Proof: Denote any solution of Problem 3 by ŝ �
[ŝ1, ŝ2, . . . , ŝm]� ∈ S∗

1 . It follows from Theorem 1 that ŝ(t) ∈
{0, 1}m almost everywhere. Note that the null set ∪m

j=1{t ∈
[0, T ] : ŝj(t) �∈ {0, 1}} does not affect the cost, and hence, we
can adjust the variables so that ŝ(t) ∈ {0, 1}m on [0, T ], without
loss of the optimality. We have

‖ŝ(t)‖�1 = ‖ŝ(t)‖�0 , ‖ŝj‖L1 = ‖ŝj‖L0

for all j, where we used the discreteness of ŝ. Since ŝ ∈ S1,
we have ‖ŝ(t)‖�0 ≤ β and ‖ŝj‖L0 ≤ αj for all t and j. Thus,
ŝ ∈ S0. Then

J1(ŝ) ≤ max
s∈S0

J1(s) ≤ max
s∈S1

J1(s) = J1(ŝ)

where the first relation follows from ŝ ∈ S0, the second relation
follows fromS0 ⊂ S1, and the last relation follows from ŝ ∈ S∗

1 .
Hence, we have

J1(ŝ) = max
s∈S0

J1(s) (20)

which implies ŝ ∈ S∗
0 . Hence, S∗

1 ⊂ S∗
0 and S∗

0 is not empty.
Next, take any s̃ ∈ S∗

0 . Note that s̃ ∈ S1, sinceS∗
0 ⊂ S0 ⊂ S1.

In addition, it follows from (20) that J1(s̃) = J1(ŝ). Therefore,
s̃ ∈ S∗

1 , which implies S∗
0 ⊂ S∗

1 . �
The existence of optimal solutions of Problem 3 is assumed

in Theorems 1 and 2. We finally show the existence.
Theorem 3 (Existence): For any B ∈ Rn×m, T > 0, β ∈

[1,m) ∩ N, and αj ∈ (0, T ], j = 1, 2, . . . ,m, there exists at
least one optimal solution of Problem 3.

Proof: Note that the set S1 is not empty, since αj and β are
positive for all j. Hence, we can define the optimal value

θ � sup
s∈S1

J1(s).

Then, there exists a sequence {s(l)}l∈N ⊂ S1 such that
liml→∞ J1(s

(l)) = θ. Define q(l) � 2s(l) − 1. Since the set {q ∈
L∞ : ‖q‖L∞ ≤ 1} is sequentially compact in the weak∗ topology
of L∞ [27], there exists q(∞) with ‖q(∞)‖L∞ ≤ 1 and a subse-

quence {q(l′)} such that each component {q(l′)j } converges to

q
(∞)
j in the weak∗ topology of L∞, i.e.,

lim
l′→∞

∫ T

0

(
q
(l′)
j (t)− q

(∞)
j (t)

)
ψ(t)dt = 0 (21)

for any ψ ∈ L1 and j = 1, 2, . . . ,m.
Define s̆(∞) � q(∞)+1

2 . Note that we have

s̆(∞)(t) ∈ [0, 1]m (22)

on [0, T ]. In addition, from (21), we have

‖s̆(∞)
j ‖L1 =

1

2
lim
l′→∞

∫ T

0

(q
(l′)
j (t) + 1)dt

= lim
l′→∞

‖s(l′)j ‖L1 ≤ αj

(23)

for all j = 1, 2, . . . ,m. We also have

‖s̆(∞)(τ)‖�1 = lim
ε→0

1

2ε

∫ τ+ε

τ−ε

‖s̆(∞)(t)‖�1dt

almost everywhere from [28, Th. 7.10], and

∫ τ+ε

τ−ε

‖s̆(∞)(t)‖�1dt = 1

2
lim
l′→∞

m∑
j=1

∫ τ+ε

τ−ε

(q
(l′)
j (t) + 1)dt

= lim
l′→∞

∫ τ+ε

τ−ε

‖s(l′)(t)‖�1dt ≤ 2εβ

for any ε > 0 such that ε < min{τ, T − τ} from (21). Hence,
we have

‖s̆(∞)(τ)‖�1 ≤ β (24)

almost everywhere. It follows from (22)–(24) that s̆(∞) ∈ S1.
Note that we haveJ1(s̆(∞)) ≤ θ from s̆(∞) ∈ S1. On the other

hand, for all i ∈ {1, 2, . . . , n}, we have

J1(s
(l′)) ≤

m∑
j=1

∫ T

0

e2λi(T−t)(w�
i bj)

2s
(l′)
j (t)dt

which gives

θ = lim
l′→∞

J1(s
(l′)) ≤

m∑
j=1

∫ T

0

e2λi(T−t)(w�
i bj)

2s̆
(∞)
j (t)dt.

Hence

θ ≤ min
i

m∑
j=1

∫ T

0

e2λi(T−t)(w�
i bj)

2s̆
(∞)
j (t)dt = J1(s̆

(∞)).

Thus, we have J1(s̆(∞)) = θ. This shows the optimality of
s̆(∞) in Problem 3. �

B. Log Determinant of the Gramian

We next consider Problem 2. The convex relaxation problem
is described as follows.

Problem 4: Given A ∈ Rn×n, B ∈ Rn×m, T > 0, β ∈
[1,m) ∩ N, and αj ∈ (0, T ], j = 1, 2, . . . ,m, find a TV ma-
trix S(·) � diag(s(·)), s(·) � [s1(·), s2(·), . . . , sm(·)]�, which
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solves

maximize
s

J2(s)

subject to s(t) ∈ [0, 1]m ∀t ∈ [0, T ]

‖sj‖L1 ≤ αj ∀j ∈ {1, 2, . . . ,m}
‖s(t)‖�1 ≤ β ∀t ∈ [0, T ].

In what follows, we show the existence of an optimal solution
and the equivalence between Problems 2 and 4. The approach is
based on the discussion in Section IV-A.

Theorem 4: Under Assumption 2, the following holds.
1) There exists at least one solution of Problem 4.
2) Problem 4 is equivalent to Problem 2.

Proof: Note that it follows from the assumption that for
any i ∈ {1, 2, . . . , n}, there exists j ∈ {1, 2, . . . ,m} such that
w�

i bj �= 0, which is observed from the proof of Lemma 2. Hence,
the optimal values are finite in Problems 2 and 4. We first show
the existence of an optimal solution of Problem 4. Let us denote
the optimal value by θ, and take a sequence {s(l)}, subsequence
{s(l′)}, and function s̆(∞), as in the proof of Theorem 3. Then,
as seen in the proof, we have s̆(∞) ∈ S1. In addition, we have

θ = lim
l′→∞

J2(s
(l′)) = J2(s̆

(∞))

from the continuity of the logarithmic function. This implies the
optimality of s̆(∞) in Problem 4.

We next show the equivalence between Problems 4 and 2.
Note that, for all i ∈ {1, 2, . . . , n},∫ T

0

e2λi(T−t)
m∑
j=1

(w�
i bj)

2sj(t)dt

is equal to the final state zi(T ) of the system

żi(t)=2λizi(t) +
[
(w�

i b1)
2 (w�

i b2)
2 . . . (w�

i bm)2
]
s(t)

with zi(0) = 0. Hence, Problem 4 can be written as follows:

minimize
s

g(ξ(T ))

subject to ξ̇ = 2

[
0 0

0 Λ

]
ξ +

[
Im

Q

]
s

ξ(0) = 0,

ξj(T ) ≤ αj ∀j ∈ {1, 2, . . . ,m}
s(t) ∈ [0, 1]m ∀t ∈ [0, T ]

‖s(t)‖�1 ≤ β ∀t ∈ [0, T ]

where g(ξ) � −∑m+n
i=m+1 log ξi. By applying Pontryagin’s

maximum principle to this optimal control problem, we can see
that any optimal solution takes only the values in {0, 1} almost
everywhere, in a similar way to the proof of Theorem 1. Note
that in this case, we have

H(ξ, p, s) � p�
(
2

[
0 0

0 Λ

]
ξ +

[
Im

Q

]
s

)

∂Lg(ξ
∗(T )) = −

[
0�
m 1/ξ∗m+1(T ) · · · 1/ξ∗m+n(T )

]�
.

Finally, the equivalence follows from the proof of
Theorem 2. �

Remark 4: The sparse control node scheduling problem as
in Problems 1 and 2 can also be formulated for discrete-time
systems. However, we cannot show any equivalence for its
convex relaxation similar to Problems 3 and 4. Actually, through
numerical simulations, we have confirmed that the optimal so-
lution of the relaxed convex problem is frequently not sparse.

V. EXAMPLE

A. Example 1

This section illustrates our node scheduling with numerical
examples. We first consider a network model (1) consisting of
two nodes with

A =

[
0.1 0.2

0.2 0

]
, B =

[
1 0

0 1

]
.

For this network, we simulated our node scheduling method
with T = 2, α1 = α2 = 0.8, and β = 1. In this example, each
node is a candidate for control nodes since B is the identity
matrix, but the L0 and �0 constraints impose us to select at
most one control node at each time and provide a control input
to each node at most 0.8 s. Note that this example satisfies
the assumption in Theorems 2 and 4. Hence, Problems 1 and
2 are equivalent to Problems 3 and 4, respectively. Then, we
applied CVX [29] in MATLAB, which is a software for convex
optimization, to Problems 3 and 4.

Figs. 2 and 3 show the resulting time series of the control node
on [0, T ] and the corresponding reachable set. Certainly, we can
see that the set of control nodes depends on the time and satisfies
both theL0 and �0 constraints. Thus, we can find a finite number
of essential nodes at each time and an essential time interval to
provide control inputs, based on a given controllability measure.
For comparison, we also simulated the TI node selection [14],
where the matrix S is constant and the control node is fixed on
[0, T ]. From β = 1, one node can be activated on [0, T ], that is,
we consider

maximize
v∈R2

Jk(s)

subject to s(t) = v ∀t ∈ [0, T ]

v ∈
{[

1

0

]
,

[
0

1

]}
(25)

for each k = 1, 2. Note that the space sparsity is taken into
account in this TI case, while the time length of activation is
necessarily 2 s, which is greater than

∑2
j=1 αj , and the time

sparsity is not considered. The optimal solution v∗ of the prob-
lem (25) is v∗ = [0, 1]� for each k ∈ {1, 2}, which implies that
node 2 should be activated on [0, T ]. The minimum eigenvalue
of the resulting controllability Gramian and the volume of the re-
sulting reachable set are 0.0301 and 0.8116, respectively. In our
scheduling method, these values are 0.6471 and 3.0457, which
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Fig. 2. Top: Optimal solution of Problem 1. Bottom: Corresponding
reachable set R and the parallelepiped P tangent to R.

Fig. 3. Top: Optimal solution of Problem 2. Bottom: Corresponding
reachable set R and the parallelepiped P tangent to R.

Fig. 4. Reachable set R and the parallelepiped P tangent to R for the
TI selection. Top: s1(t) = 1 and s2(t) = 0 on [0, T ]. Bottom: s1(t) = 0
and s2(t) = 1 on [0, T ].

are increased by about 20.6 times and 3.8 times, respectively.
The reachable sets for the TI selection are shown in Fig. 4.

B. Example 2

We next simulate our proposed method for three kinds of
networks (i.e., Erdös–Rényi [30], Barabási–Albert [31], and
Watts–Strogatz [32] models) with n = 100 nodes. For each
model, we randomly generate 50 networks and define them as
the adjacency matrix A and then solve Problem 3. Through the
50 simulations for each model, we compute the average of the
minimum eigenvalue of the optimal controllability Gramian. In
this example, we assume that the first 50 nodes are the candidates
for control nodes, i.e., m = n/2, B = [Im×m, 0m×m]�. For
the sparsity constraints, we take β ∈ {m/5, 2m/5, . . . ,m} and
αj = Tβ/m for all j, where T = 1 is fixed. The parameters
of each model are as follows. In the Erdös–Rényi (ER) model,
we first define the n nodes and then connect each pair of nodes
with probability 0.3. In the Barabási–Albert (BA) model, starting
from five nodes, five new nodes are added to the network at each
time step. In the Watts–Strogatz (WS) model, after constructing
a regular ring lattice with n nodes connected to four neighbors,
edges are rewired with probability 0.2. Fig. 5 shows the obtained
results (log 10 scale), where our optimal solution is colored in
red and the worst of the minimum eigenvalues by the proposed
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Fig. 5. Average of the minimum eigenvalues of the optimal controllabil-
ity Gramians (log 10 scale). Top: ER model. Middle: BA model. Bottom:
WS model.

method through the 50 simulations is shown in yellow. For
comparison, we also simulate a TI selection method based on a
greedy algorithm presented in [14] (in blue) and a TI selection
method that randomly selects fixed β nodes (in green). We
note that in this example, for β �= m, the TI selections do not
satisfy the sparsity constraint in the proposed optimization, since
αj < T for all j. The line in black shows the average of the
minimum eigenvalue of the Gramian when all the candidate
nodes are selected on [0, T ], i.e. β = m, αj = T , ∀j. (Hence,
this line shows an upper bound of the control performance.)

We first note that, taking the upper bound shown in black
into account, sufficiently large eigenvalues are obtained with a
relatively small β and αj by the proposed method, compared to
the TI methods. Furthermore, as the yellow line indicates, our
proposed method stably provides a good minimum eigenvalue.
From this observation, we can expect the reduction of node
activations by the proposed TV method while keeping the control
performance.

We next note that our proposed method particularly outper-
forms the TI methods for especially smallβ andαj . For example,
the TI methods for the BA and WS models with β/m = 0.2
provide quite small eigenvalues. This illustrates the difficulties
of making the system controllable with a fixed small number of
control nodes and the advantage of the proposed TV method.
On the other hand, for large β, the advantage of the TV method

over the TI method tends to be small or zero. This is because
when a large number of control nodes can be selected at a time,
the number of candidates for control nodes that can be newly
selected at the next time is necessarily small even if the TV
method is applied, and the improvement seems to be less. In
addition, in this setting, our optimal solution can totally activate
nodes at mostTβ and its time sparsity gets higher than that of the
TI methods for especially large β. The qualitative investigations
on the advantages of the TV method over the TI method and the
statistical characterizations would be addressed in future work.

VI. CONCLUSION

This article analyzed two node scheduling problems that
are related to the minimum eigenvalue of the controllability
Gramian and the volume of the reachable set. This framework
enables us to find an activation schedule of control inputs that
steer the system while saving energy. Taking the number of
control nodes and the time length of activation into account, our
optimization problem newly includes two types of constraints
on sparsity. We showed a sufficient condition under which our
sparse optimization problems can be solved by convex optimiza-
tion. With numerical examples, we illustrated the advantage of
the proposed method over the conventional TI method. In this
article, we introduced the approximated controllability metrics
J1 andJ2 to mathematically prove the equivalence of the relaxed
problems. From an optimization perspective, the maximization
of the exact cost function log det(G), which is convex, is
tractable once the L0/�0 constraints are replaced by L1/�1 ones
(see also Remark 4). Theoretical analysis for these relaxation
is currently under investigation. In another direction, while this
article assumes that the network topology among nodes is given
and fixed, the design of the TV topology based on the multiple
sparsity would be included in future work.

APPENDIX A
PROOF OF PROPOSITION 1

The relation (4) follows from:

xf =

∫ T

0

eA(T−t)BS(t)u(t)dt

= V

∫ T

0

eΛ(T−t)W�BS(t)u(t)dt

= V
[
d1, d2, . . . , dn

]�

=

n∑
i=1

divi.

In addition, it follows from the Schwarz inequality and
‖u‖L2 ≤ 1 that we have:

|di| ≤
∫ T

0

eλi(T−t)|w�
i BS(t)u(t)|dt

≤
∫ T

0

eλi(T−t)‖S(t)B�wi‖‖u(t)‖dt
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≤
{∫ T

0

e2λi(T−t)‖S(t)B�wi‖2dt
}1/2

‖u‖L2

≤ d̄i

for all i. Note that the equality |di| = d̄i holds for some i if
and only if ‖u‖L2 = 1 and u(t) = ceλi(T−t)S(t)B�wi almost
everywhere for some constant c, where c is determined by
c = ±d̄−1

i .
We finally show that the hyperplane H±

i is the tangent hyper-
plane to the convex setR at a point inR, for all i ∈ {1, 2, . . . , n}.
Without loss of generality, we here show this statement for H+

i′

with some i′. Take any x ∈ H+
i′ . Then, there uniquely exists

a set of real numbers {c1, . . . , ci′−1, ci′+1, . . . , cn} such that
x = d̄i′vi′ +

∑
i�=i′ civi. Since W� = V −1, we have w�

i′ vi = 1

for i = i′ and 0 for i �= i′. Hence, w�
i′ x = d̄i′ . In other words,

H+
i′ ⊂ {x ∈ Rn : w�

i′ x = d̄i′ }. On the other hand, take any x ∈
Rn such thatw�

i′ x = d̄i′ . Since {v1, v2, . . . , vn} is a basis, there
uniquely exists a set of real numbers {c1, c2, . . . , cn} such that
x =

∑n
i=1 civi. Then, we have d̄i′ = w�

i′ x = ci′ , which implies
x ∈ H+

i′ . Therefore, the hyperplane H+
i′ is given by

H+
i′ =

{
x ∈ Rn : w�

i′ x = d̄i′
}
.

Let us denote by x(i
′) the state at time T corresponding to

the control u(i
′)(t) � d̄−1

i′ e
λi′ (T−t)S(t)B�wi′ . Then, we have

x(i
′) ∈ H+

i′ ∩ R from (4) and statement 2). It also follows
from (4) and statement 2) that w�

i′ x ≤ d̄i′ for any x ∈ R. Thus,
H+

i′ is a supporting hyperplane to the convex set R at x(i
′) ∈ R.

Since the convex function x�G−1x : Rn → R is differentiable,
such a supporting hyperplane is unique [33] and gives the tangent
hyperplane [34].

APPENDIX B
PROOF OF LEMMA 1

Fix any γ ∈ E and take any δ ∈ NL
E (γ). Then, there exist

sequences {δ(i)} ⊂ Rm+n and {ω(i)} ⊂ Rm+n such that

δ = lim
i→∞

δ(i), δ(i) ∈ NP
E (ω(i)) ∀i ∈ N

lim
i→∞

ω(i) = γ, ω(i) ∈ E ∀i ∈ N.
(26)

For any i ∈ N, by definition, there exists a constant σ(i) ≥ 0
such that

δ(i)
�
(ω′ − ω(i)) ≤ σ(i)‖ω′ − ω(i)‖2 ∀ω′ ∈ E. (27)

Fix any ε > 0, j0 ∈ {1, 2, . . . ,m+ n}, and i ∈ N. Take
ω′ ∈ E such that ω′

j0
= ω

(i)
j0

− ε and ω′
j = ω

(i)
j for j �= j0,

where ω(i)
j denotes the jth component of ω(i) ∈ Rm+n. From

inequality (27), we have δ(i)j0
≥ −σ(i)ε, which gives δ(i)j ≥ 0

for all j ∈ {1, 2, . . . ,m+ n} and i ∈ N from the arbitrariness
of ε > 0, j0, and i. Hence, δj ≥ 0 for all j by (26), which shows
inequality (6).

Similarly, we have δj ≤ 0 for all j ∈ {m+ 1,m+
2, . . . ,m+ n}. Indeed, we fix j0 ∈ {m+ 1,m+ 2, . . . ,m+

n} and take ω′ ∈ E such that ω′
j0

= ω
(i)
j0

+ ε and ω′
j = ω

(i)
j for

j �= j0. From inequality (27), we have δ(i)j0
≤ σ(i)ε, which gives

δ
(i)
j0

≤ 0. Hence, δj ≤ 0 for all j ∈ {m+ 1,m+ 2, . . . ,m+ n}
from (26). This gives inequality (7).

We next show equality (5). If γj0 − αj0 �= 0 for some j0 ∈
{1, 2, . . . ,m}, then we have γj0 < αj0 since γ ∈ E. It follows

from (26) that there existsN ∈ N such thatω(i)
j0
< αj0 for all i ≥

N . Hence,ω′ ∈ Rm+n defined byω′
j0

= ω
(i)
j0

+ ε andω′
j = ω

(i)
j

for j �= j0 satisfiesω′ ∈ E for sufficiently small ε > 0. Then, we
have δ(i)j0

≤ σiε from (27). This with δ(i)j0
≥ 0 implies δ(i)j0

= 0,
which holds for all i > N . From (26), we have δj0 = 0, which
shows (5).

Finally, note that we have ∂Lf = ∂f since f is convex [22,
Proposition 11.12]. Then, (8) follows from [35].

APPENDIX C
PROOF OF LEMMA 2

Fix any vector b ∈ Rn. Then, there exists a unique vector ρ =
[ρ1, ρ2, . . . , ρn]

� ∈ Rn such that b = V ρ =
∑n

k=1 ρkvk, since
{v1, v2, . . . , vn} is a basis. Then

[b, Ab, . . . , An−1b] = [b, V ΛV −1b, . . . , V Λn−1V −1b]

= V [ρ,Λρ, . . . ,Λn−1ρ]

= V diag(ρ)

⎡
⎢⎢⎢⎢⎣
1 λ1 · · · λn−1

1

1 λ2 · · · λn−1
2

...
... · · · ...

1 λn · · · λn−1
n

⎤
⎥⎥⎥⎥⎦ .

This gives

det
(
[b, Ab, . . . , An−1b]

)
= det(V )

n∏
k=1

ρk
∏

1≤k<l≤n

(λl − λk).

Hence, the system (A, b) is controllable if and only
if ρk �= 0 for all k and λk �= λl for all k, l with k �= l.
For any j ∈ {1, 2, . . . ,m}, we take a unique vector ρ(j) =
[ρ

(j)
1 , ρ

(j)
2 , . . . , ρ

(j)
n ]� ∈ Rn such that bj = V ρ(j). It follows

from the observation above that if the system (A, bj) is con-
trollable, then:

ρ
(j)
k �= 0 ∀k (28)

λk �= λl ∀k,∀l with k �= l. (29)

In addition, for any i ∈ {1, 2, . . . ,m}with i �= j, if the system
(A, bi ± bj) is controllable, then we also have

|ρ(i)k | �= |ρ(j)k | ∀k (30)

since bi ± bj = V (ρ(i) ± ρ(j)).

Note that w�
k bj = ρ

(j)
k for any k, j. Hence

det(Mj) =

n∏
k=1

λk

∏
1≤k<l≤n

(λl − λk)

n∏
k=1

ρ
(j)
k

2

det(Mi −Mj) =

n∏
k=1

λk

∏
1≤k<l≤n

(λl − λk)
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n∏
k=1

(
ρ
(i)
k

2 − ρ
(j)
k

2)
.

Hence, from the nonsingularity of A and (28)–(30) we have
det(Mj) �= 0 and det(Mi −Mj) �= 0 for all j and for all i, j
with i �= j.
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