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Distributed Value Function Approximation for
Collaborative Multiagent Reinforcement

Learning
Miloš S. Stanković , Marko Beko, and Srdjan S. Stanković

Abstract—In this article, we propose several novel dis-
tributed gradient-based temporal-difference algorithms for
multiagent off-policy learning of linear approximation of the
value function in Markov decision processes with strict in-
formation structure constraints, limiting interagent commu-
nications to small neighborhoods. The algorithms are com-
posed of the following: first, local parameter updates based
on the single-agent off-policy gradient temporal-difference
learning algorithms, including the eligibility traces with
state-dependent parameters and, second, linear stochastic
time-varying consensus schemes, represented by directed
graphs. The proposed algorithms differ in their form, defi-
nition of eligibility traces, selection of time scales, and the
way of incorporating consensus iterations. The main con-
tribution of this article is a convergence analysis based on
the general properties of the underlying Feller–Markov pro-
cesses and the stochastic time-varying consensus model.
We prove under general assumptions that the parameter
estimates generated by all the proposed algorithms weakly
converge to the corresponding ordinary differential equa-
tions with precisely defined invariant sets. It is demon-
strated how the adopted methodology can be applied to
temporal-difference algorithms under weaker information
structure constraints. The variance reduction effect of the
proposed algorithms is demonstrated by formulating and
analyzing an asymptotic stochastic differential equation.
Specific guidelines for the communication network design
are provided. The algorithms’ superior properties are illus-
trated by characteristic simulation results.

Index Terms—Collaborative networks, convergence anal-
ysis, decentralized algorithms, distributed consensus,
multi-agent systems, reinforcement learning, temporal dif-
ference learning, value function, weak convergence.
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I. INTRODUCTION

INTEREST in decentralized multiagent algorithms for auto-
matic decision-making in uncertain and dynamically chang-

ing environments has dramatically increased in recent times,
mainly due to the fundamental role of these algorithms in design
and operation of the cutting edge technologies and concepts
such as cyber-physical systems (CPS), Internet of Things (IoT),
swarm robotics, smart grids, smart mobile networking, and In-
dustry 4.0. Distributed estimation, optimization, and adaptation
methods play an essential role in the development of these
algorithms; a large class of them is based on the dynamic collab-
oration, often aimed at achieving consensus on certain variables
(e.g., [1]–[11] and references therein). The main underlying
idea is to use an interagent communication network [typically,
wireless sensor network (WSN)] to achieve global consensus in
a completely decentralized and distributed way.

Reinforcement learning (RL) is a powerful methodology for
decision-making in uncertain environments, which typically
uses Markov decision process (MDP) modeling, providing ef-
ficient approximate solutions for complex optimization prob-
lems involving dynamic programming [12], [13]. One of the
most important tools generated within the RL field is temporal-
difference (TD) learning, typically used to learn approximations
of the value function of a given MDP [12], [14]. This problem
is especially acute in complex systems with a very large state
space and presence of uncertainty. It is frequently desirable
to evaluate a given target policy by implementing different
behavior policies (off-policy learning, e.g., [15]). In [16]–[21],
several fast gradient-based algorithms for TD learning have been
proposed, successfully handling most practical aspects.

Distributed multiagent RL methods have recently received
a lot of attention due to their high potential to solve essential
problems within complex, intelligent, and networked systems
belonging to CPS, IoT, swarm robotics, and the other men-
tioned emerging areas (see, e.g., [22]–[24] and the numerous
references therein). The problem of distributed multiagent value
function approximation has attracted great attention either per
se, e.g., [25]–[33], or within the actor/critic algorithms, as their
critic part, e.g., [34]–[37]. Typically, a specific distributed setup
is adopted in which it is assumed that each agent can access (ob-
serve transitions) a given MDP independently, without mutual
interaction with other agents through the MDP environment.
We have adopted in this article, the line of thought that has

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9064-7059
mailto:milstank@gmail.com
mailto:beko.marko@gmail.com
mailto:stankovic@etf.rs
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connections to several recent contributions related to the dis-
tributed multiagent RL relying on consensus-like collaborations
between the agents. [25] relates to our approach from the point of
view of information structure constraint (ISC). In [27], the mean
square convergence of a distributed-gradient-based algorithm
without eligibility traces has been proved, assuming independent
sampling, while in [26], a proof of almost sure convergence of a
distributed on-policy TD(0) algorithm is provided for gossip-like
communications. In [32], [33], weaker ISC has been assumed,
allowing a continuous insight into the states and actions of all the
MDPs in the system. The last assumption related to the weak ISC
applies to the majority of the available distributed actor/critic
algorithms [34]–[37], as well as to the approach to the distributed
RL proposed in [38], where the set of the estimates of all the
possible state-action pairs (which is typically very large) of the
so-calledQ function is maintained, not involving any parametric
approximation, which is essential for this article.

The main general motivation for this article has been the
desire to provide new tools, with strictly provable properties, for
an efficient collaborative exploration of the large state spaces,
for variance reduction under strict ISC, and for computation
parallelization. We propose several new algorithms for dis-
tributed multiagent off-policy gradient TD learning of linear
approximation of the value function in MDPs, starting from
the single-agent off-policy gradient-based algorithms proposed
in [16]–[20] and [39], and using linear dynamic consensus
iterations based on local communications according to a strict
ISC. The algorithms differ among themselves by the definition
of (state dependent) eligibility traces, by the way in which
the consensus scheme is applied, as well as by the way in
which the time scales (TSs) are introduced [16], [18]–[20], [39].
Only one of the algorithms that we propose is a generalization to
the one presented in [27]; the remaining ones can be considered
as new. Assuming general stochastic time-varying dynamic con-
sensus scheme and nonrestrictive assumptions concerning the
MDP properties, a rigorous proof of the weak convergence of the
parameter estimates to consensus is provided for all the proposed
algorithms, based on appropriately defined ordinary differential
equations (ODEs) with specified limit sets [4], [10], [20], [40];
this proof represents the central point of this article. The proof is
based on general properties of the Feller–Markov chains [20] and
the properties of distributed stochastic approximation [4], [10],
[40]. Notice that the algorithms discussed in [16], [28], [27], and
[30] are based on unrealistic data independence assumptions.
The weak convergence methodology has been adopted, keeping
in mind its intuitive appeal closely connected to the practical
reasoning and the fact that the imposed restrictions are by
far weaker than in the case of alternative methodologies [20],
[40]–[42]. It will be shown that the proposed methodology of the
algorithm design and convergence analysis can be extended to
a weaker ISC, adopted in the algorithms from, e.g., [32]–[37].
The effect of variance reduction introduced by the proposed
algorithms is verified by an analysis based on the construction
of a stochastic differential equation (SDE), which models the
asymptotic behavior of the estimates. Specific guidelines are
given on how to design the communication network in order

to ensure the desired sets of convergence points and fast con-
vergence rate. Finally, selected simulation results illustrate the
main concepts and properties of the algorithms, providing a
comparison that demonstrates the superiority of the proposed
schemes compared to the existing ones.

This article is organized as follows. In Section II, we for-
mulate the problem and define the algorithms. The first part
of Section III is devoted to the preliminary results, including
some basic properties of the Feller–Markov state-trace processes
and of the incorporated consensus scheme. In the second part
of Section III, a proof of weak convergence to consensus is
presented for all the proposed algorithms. Section IV is devoted
to a discussion on several important issues, such as a possibility
to introduce constraints on the parameter vector, the overall
impact of consensus and the application of the algorithm in
the case of a weaker ISC, the communication network design,
and the variance reduction effect. In Section V, the results of
simulations are shown. Finally, Section V I concludes this article.

II. DISTRIBUTED GRADIENT-BASED TD ALGORITHMS

A. Problem Formulation and Definition of the Algorithms

Consider N autonomous agents, each acting on a separate
MDP, denoted as MDP(i), i = 1, . . . , N , characterized by the
quadruplets Qi = {S, A, p(s′|s, a), Ri(s, a, s

′)}, where S =
{s1, . . . , sM} is a finite set of states, A is a finite set of ac-
tions, p(s′|s, a) defines probabilities of moving from s ∈ S to
s′ ∈ S by applying action a ∈ A, and Ri(s, a, s

′) are random
rewards distributed according to q(·|s,′ a, s); let MDP(0) rep-
resent a fictitious reference MDP characterized by Q0. Each
MDP(i), i = 0, 1, . . . , N , applies a fixed stationary behavior
policy π(i)(a|s) (probability of taking action a at state s),
implying that the state processes {Si(n)} and the state-action
processes {Si(n), Ai(n)}, where n ≥ 1 is an integer denoting
transition time, represent time homogenous Markov chains. The
goal of the agents is to learn the state-value function for a given
target policy π(0) = π formally corresponding to MDP(0), using
the information of state transitions and rewards in MDP(i),
i = 1, . . . , N . Therefore, we are dealing with a cooperative
off-policy RL problem.

Let P (i) denote the transition matrices of the Markov chains
{Si(n)}, with P (i)

ss′ being the probabilities of transitions from
state s ∈ S to s′ ∈ S , i = 0, . . . , N . The desired state-value
function is defined using discount factors γ(s) ∈ [0, 1], s ∈ S
[12], [43]. If the expected discounted total reward is denoted as
vπ(s), s ∈ S , the M -vector vπ = [vπ(s1) · · · vπ(sM )]T , defin-
ing the value function for all s ∈ S , uniquely satisfies the Bell-
man equation

vπ = rπ + PΓvπ (1)

where rπ = [rπ(s1) · · · rπ(sM )]T , rπ(s) represents the one-
stage expected rewards at each state s ∈ S under policy π,
P = P (0) and Γ denotes the M ×M diagonal matrix with
γ(s), s ∈ S , as diagonal entries. Besides (1), vπ also satisfies a
family of generalized Bellman equations, vπ = T (λ)vπ , where
T (λ) is the generalized Bellman operator T (λ)v = r

(λ)
π + P (λ)v,
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∀v ∈ RM , for a given vector r(λ)π and a substochastic matrix
P (λ), where λ ∈ [0, 1] are the so-called λ-parameters [20],
[43]. Analogously, the affine Bellman operators for MDP(i),
i = 1, . . . , N , can be defined as T (λi), with vector r(λi)

π and a
substochastic matrix P (λi). Introduce the local importance sam-
pling ratios ρi(s, s′) = Pss′/P

(i)
ss′ for s, s′ ∈ S (with 0/0 = 0).

The following assumption ensures a well-defined value function
and importance ratios [12], [30].

(A1) (Assumptions on target and behavior policies) a) P is
such that I − PΓ is nonsingular. b)P (i) are irreducible and such
that for all s, s′ ∈ S , P (i)

ss′ = 0⇒ Pss′ = 0, i = 1, . . . , N .
Let φ : S → Rp be a function that maps each state to a p-

dimensional feature vector φ; let the subspace spanned by these
vectors be Lφ. Our goal is to find v = [v(s1) · · · v(sM )]T ∈
Lφ that satisfies v ≈ T (λ)v. Introduce vθ = Φθ, where Φ is an
M × p matrix composed of p-vectors φ(s) as row vectors, and
θ ∈ Rp is a parameter vector.

Introduce the global parameter vector Θ = [θT1 · · · θTN ]T and
define the following constrained optimization problem:

Minimize J(Θ) =

N∑
i=1

qiJi(θi)

Subject to θ1 = · · · = θN = θ (2)

where Ji(θi) = ‖Πξi{T (λi)vθi − vθi}‖2ξi are the local objective
functions, qi > 0 a priori defined weighting coefficients, λi the
local λ-parameters, and Πξi{·} the projection onto the subspace
Lφ w.r.t. the weighted Euclidean norm ‖v‖2ξi =

∑
s∈S ξi;sv(s)

2

for a positive M -dimensional vector ξi with components ξi;s,
s = s1, . . . , sM (see [20] and [30]). In accordance with [20],
[43], we take ξi to be the invariant probability distribution
for the local Markov chain {Si(n)}, with the transition matrix
P (i) induced by π(i), satisfying ξTi P

(i) = ξTi , i = 1, . . . , N . It
follows that

∇J(θ) =
N∑
i=1

qi(Φ
TΞi(P

(λi) − I)Φ)Twi(θ) (3)

where ∇J(θ) = ∇J(Θ)|θ1=···=θN=θ, Ξi is the M ×M diago-
nal matrix with the components of ξi on the diagonal, andwi(θ)
represents the unique solution (in wi) of the equation Φwi =
Πξi{T (λi)vθ − vθ}, assuming that wi ∈ span{φ(S)}; it is pos-
sible to show that this equation is equivalent to ΦTΞiΦwi =
ΦTΞi(T

(λi)vθ − vθ) [20].
Alternatively, one can reformulate (3) in the following way:

∇J(θ) =
N∑
i=1

qi[− ΦTΞi(T
(λi)vθ − vθ)

+ (ΦTΞiP
(λi)Φ)Twi(θ)]. (4)

Let ρi(n) = ρi(Si(n), Si(n+ 1)) and γi(n) = γ(Si(n)),
while

δi(vθ;n) = ρi(n)(Ri(n+ 1)

+ γi(n+ 1)vθ(Si(n+ 1))− vθ(Si(n)))
(5)

represents the local TD term [20], [43].
We propose below several algorithms composed of the fol-

lowing two main parts: 1) local parameter updates based on the
gradient descent methodology developed for single-agent case,
using local state transition and reward observations from MDPs,
and 2) convexification of current parameter estimates based on
interagent communications.

We first propose two algorithms, which differ in the first part.
The first one is derived from (3) and denoted as D1-GTD2(λ)
(according to the GTD2 algorithm proposed in [16])

θ′i(n) = θi(n) + αi(n)qiρi(n)(φ(Si(n))

− γi(n+ 1)φ(Si(n+ 1)))ei(n)
Twi(n) (6)

w′
i(n) = wi(n) + βi(n)(ei(n)δi(vθi(n);n)

− φ(Si(n))φ(Si(n))
Twi(n)) (7)

and the second one derived from (4), denoted as D1-TDC(λ)
(according to the TDC algorithm from [16])

θ′i(n) = θi(n) + αi(n)qi[ei(n)δi(vθi(n);n)− ρi(n)

× (1−λi(n+1))γ(n+1)φ(Si(n+1))ei(n)
Twi(n)]

(8)

with the same relation forw′
i(n)given by (7); in (6)–(8), vθi(n) =

vθ (Si(n))|θ=θi(n) = vθi(n) (Si(n)) = φ(Si(n))
T θi(n), and

ei(n) is the eligibility trace vector generated by

ei(n) = λi(n)γi(n)ρi(n− 1)ei(n− 1) + φ(Si(n)). (9)

The initial values θi(0) are chosen arbitrarily; however, wi(0),
as well as ei(0), have to satisfy wi(0), ei(0) ∈ span{φ(S)}
[20]. Sequences {αi(n)} and {βi(n)} are positive step-size
sequences, which can be either of the same order of magnitude
(single TS) or satisfying αi(n) << βi(n) (two TS), see [20].

The second part of the algorithms is given, for both D1-
GTD2(λ) and D1-TDC(λ), by

θi(n+ 1) =

N∑
j=1

aij(n)θ
′
j(n), wi(n+ 1) = w′

i(n). (10)

If we apply the consensus convexifications also towi(n), instead
of (10), we have

θi(n+ 1) =

N∑
j=1

aij(n)θ
′
j(n); wi(n+ 1) =

N∑
j=1

aij(n)w
′
j(n)

(11)
and we denote the corresponding algorithms as D2-GTD2(λ)
and D2-TDC(λ). In (10) and (11), aij(n) ≥ 0 are random
variables, elements of a time-varying random matrix A(n) =
[aij(n)] [10], [30]. If one adopts that the agents are connected
by communication links in accordance with a directed graph
G = (N , E), where N is the set of nodes and E the set of
arcs, then matrix A(n) has zeros at the same places as the
graph adjacency matrixAG(n) = AG , and is row-stochastic, i.e.,∑N

j=1 aij(n) = 1, i = 1, . . . , N , ∀n ≥ 0.
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III. CONVERGENCE ANALYSIS

A. Preliminaries

1) Properties of the State-Trace Processes: The state-
trace processes {Si(n), ei(n)} are Markov chains with the
weak Feller property (see [20] and [43] for details). In order
to formulate candidates for the asymptotic mean ODEs that
should be attached to the abovementioned algorithms, define
Zi(n) = (Si(n), ei(n), Si(n+ 1)) ⊂ Zi. According to (6), for
D1-GTD2(λ) and D2-GTD2(λ), after denoting z = (s, e, s′), we
introduce functions

gi(θ, w, z) = ρi(s, s
′)(φ(s)− γ(s′)φ(s′))eTw (12)

and

ki(θ, w, z) = eδ̄i(s, s,
′ vθ)− φ(s)φ(s)Tw (13)

where δ̄i(s, s,
′ vθ) = ρi(s, s

′)(ri(s, s′) + γ(s′)vθ(s′)− vθ(s))
and ri(s, s′) is the one-step expected reward following policy
π(i) when transitioning from s to s′. Notice that δi(vθi(n);n)
and δ̄i(Si(n), Si(n+ 1), vθi(n)) differ by the zero-mean noise
term ei(n)ωi(n+ 1), where

ωi(n+ 1) = ρi(n)(Ri(n+ 1)− ri(Si(n), Si(n+ 1))). (14)

We have further equations as follows:

ḡi(θ, w) = (ΦTΞi(I − P (λi))Φ)Tw (15)

k̄i(θ, w) = ΦTΞi(T
(λi)vθ − vθ)− ΦTΞiΦw. (16)

As for any given θi, there is a unique solutionw = wθi = w̄i(θi)
to the linear equation k̄i(θi, w) = 0, w ∈ span{φ(S)}, we ob-
tain that ḡi(θi, w̄i(θi)) = −∇Ji(θi) [see (4)]. In the case of
D1-TDC(λ) and D2-TDC(λ), we have

gi(θ, w, z) = eδ̄i(s, s,
′ vθ)− ρi(s, s

′)

× (1− λi(s
′))γ(s′)φ(s′)eTw (17)

together with the corresponding mean values.
The following result is fundamental for our analysis.
Lemma 1 (see [20]): Under (A1), the following holds for

each θi and wi and each compact set Di ⊂ Zi:
a)

lim
m,n→∞

1

m

n+m−1∑
s=n

En{ki(θi, wi, Zi(s))− k̄i(θi, wi)}

× I(Zi(n) ∈ Di) = 0

in mean;
b)

lim
m,n→∞

1

m

n+m−1∑
s=n

En{gi(θi, wi, Zi(s))− ḡi(θi, wi)}

× I(Zi(n) ∈ Di) = 0

in mean;
where En{·} denotes the conditional expectation given
(Zi(0), . . . , Zi(n), Ri(0), . . . , Ri(n)), i = 1, . . . N , and I(·) is
the indicator function.

2) Global Model: Let X(n) = [Θ(n)T
...W (n)T ]T , Θ(n) =

[θ1(n)
T · · · θN (n)T ]T , W (n) = [w1(n)

T · · ·wN (n)T ]T , and

X ′(n) = [Θ′(n)T
...W ′(n)T ]T . Then, we have

X ′(n) = X(n) + Γ(n)F (X(n), n)

X(n+ 1) = diag{(A(n)⊗ Ip), INp}X ′(n) (18)

X(0) = X0, where ⊗ denotes the Kronecker’s product, while
Γ(n) = diag{α1(n), . . . , αN (n), β1(n), . . . , βN (n)} ⊗Ip,
F (X(n), n)=[F θ(X(n), n)T

...Fw(X(n), n)T ]T ,F θ(X(n), n)
=[F θ

1 (X(n), n)T · · ·F θ
N (X(n), n)T ]T , Fw(X(n), n) =

[Fw
1 (X(n), n)T · · ·Fw

N (X(n), n)T ]T , with F θ
i (X(n), n) =

qigi(θi(n), wi(n), Zi(n)) and Fw
i (X(n), n) = ki(θi(n),

wi(n), Zi(n)) + ei(n)ωi(n+ 1) for the algorithms of
GTD2-type, and F θ

i (X(n), n) = qigi(θi(n), wi(n), Zi(n)) +
ei(n)ωi(n+ 1) for the algorithms of TDC-type (in the latter
case gi(·) is defined by (17) and Fw(X(n), n) remains
the same as in the case of GTD2-type algorithms). For the
algorithms D2-GTD2(λ) and D2-TDC(λ), we have a modified
model (18), in which, instead of diag{(A(n)⊗ Ip), INp}, we
have diag{(A(n)⊗ Ip), (A(n)⊗ Ip)}. Also, we introduce

F̄ (X) = [F̄ θ(X)T
...F̄w(X)T ]T , where F̄ θ

i (X) = qiḡi(θ, w)
and F̄w

i (X) = qik̄i(θ, w), i = 1, . . . , N .
3) Consensus Part: Define Ψ(n|k) = A(n) · · ·A(k) for

n ≥ k, Ψ(n|n+ 1) = IN . Let Fn be an increasing sequence of
σ-algebras such thatFn measures{X(k), k ≤ n,A(k), k < n}.

(A2) There is a scalar α0 > 0 such that aii(n) ≥ α0, and, for
i �= j, either aij(n) = 0 or aij(n) ≥ α0.

(A3) Graph G is strongly connected.
(A4) There are a scalar p0 > 0 and an integer n0 such that

for all n PFn
{agent j communicates to agent i on the interval

[n, n+ n0]} ≥ p0, i = 1, . . . N , j ∈ Ni.
Lemma 2 (see [4], [10]): Let (A2)–(A4) hold. Then,

Ψ(k) = limn Ψ(n|k) exists with probability 1 (w.p.1) and its
rows are all equal; moreover, E{|Ψ(n|k)−Ψ(k)|} → 0 and
EFk

{|Ψ(n|k)−Ψ(k)|} → 0 geometrically as n− k → ∞,
uniformly in k (w.p.1); also, EFk

{Ψ(n|k)} converges to Ψ(k)
geometrically, uniformly in k, as n→ ∞ (| · | denotes the infin-
ity norm).

(A5) There is an N ×N matrix Ψ̄ such that
E{|EFk

{Ψ(n)} − Ψ̄|} → 0 as n− k → ∞, which, according
to Lemma 2, has the form Ψ̄ = [Ψ̂T · · · Ψ̂T ]T , where
Ψ̂ = [ψ̄1 · · · ψ̄N ]T .

(A6) Sequence {A(n)} is independent of the processes in
MDP(i), i = 1, . . . , N .

Remark 1: Assumptions (A2)–(A6), formulated according
to [4], are essentially very mild and do not impose any signif-
icant restrictions in practice. They allow different time-varying
network models such as asynchronous broadcast gossip schemes
including possible communication failures [10].

B. Convergence Proofs

In the sequel, we pay attention to several characteristic cases.
Theorems 1 and 2 are related to GTD2(λ) based algorithms in
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one TS. Theorem 1 deals with D1-GTD2(λ) (consensus only on
θ), whereas Theorem 2 deals with D2-GTD2(λ) (consensus on
both θ andw). Theorem 3 treats D1-GTD2(λ) in two TSs. Using
the preliminaries from Section III-A1, it is straightforward to
analogously formulate convergence theorems for D1-TDC(λ),
D2-TDC(λ), and D2-GTD2(λ) (all in two TSs) and prove them
using the same arguments as in the proofs of the provided
theorems.

(A7) Sequence {X(n)} is tight (for definition and theoretical
background see, e.g., [40]).

Remark 2: Assumption (A7) is frequent for weak conver-
gence proofs in different contexts. As stated in [4] and [40], one
can achieve, without loss of generality, that {X(n)} is tight by
adequate projection or truncation (see Sec. IV-A). In this article,
our aim is to place focus on other aspects of the convergence of
the proposed algorithms.

Following [4], let nα be a sequence tending to ∞ and satis-
fying α

1
2nα → 0 as α→ 0. Define

Xα
0 = diag{Ψ(nα|0)⊗ Ip, INp}X0

+ α

nα−1∑
k=0

diag{Ψ(k)⊗ Ip, INp}F (X(k), k). (19)

For t ≥ 0, t ∈ R, defineXα(·) asXα(t) = X(n) for t ∈ [(n−
nα)α, (n− nα + 1)α) (for details, see [4]).

Theorem 1: Let (A1)–(A7) hold. Let Xα(n) be gen-
erated by (6), (7), and (10), with αi(n) = βi(n) = α >
0. Let wα

i (0) = wα
i,0, ei(0) = ei,0 ∈ span{φ(S)}. Define

Xα(0) by limα→0X
α
0 = [θT0 · · · θT0 wT

1,0 · · ·wT
N,0]

T . Then,
Xα(·) is tight and converges weakly to a process Xα(·) =
[θ(·)T · · · θ(·)Tw1(·)T · · ·wN (·)T ]T , where θ(·), w1(·), . . . ,
wN (·) satisfy the following ODEs

θ̇ =

N∑
j=1

ψ̄jqj ḡj(θ, wj), ẇi = k̄i(θ, wi) (20)

i = 1, . . . , N , with initial conditions θ0, w1,0, . . . , wN,0.
Moreover, for any integers n′α such thatαn′α → ∞ asα→ 0,

there exist positive numbers {Tα}withTα → ∞ asα→ 0, such
that for any ε > 0

lim sup
α→0

P{Xα(n′α+k) /∈ Nε(Σ̄) for some k ∈ [0, Tα/α]}=0,

(21)

where Nε(·) denotes the ε-neighborhood, while Σ̄ =
Σ̄θ̄ × · · · Σ̄θ̄ × Σ̄w̄1

× · · · Σ̄w̄N
is the set of points

θ̄, . . . , θ̄, w̄1, . . . , w̄N satisfying

N∑
j=1

ψ̄jqjG
T
j w̄j = 0, Giθ̄ + bi −Hiw̄i = 0 (22)

i = 1, . . . , N , where Gi = ΦTΞi(P
(λi) − I)Φ, bi =

ΦTΞir
(λi)
π , r(λi)

π is a constant M -vector in the affine function
T (λi)(·), while Hi = ΦTΞiΦ.

Proof: Part 1. Iterating (18) back, one obtains

X(n+ 1) = Xα
0

+ α

n∑
k=nα

diag{Ψ(k)⊗ Ip, INp}F (X(k), k) + α�(n)

+ diag{[Ψ(n|0)−Ψ(nα|0)]⊗ Ip, INp}Xα
0 (23)

where �(n) =
∑n

k=0 diag{[Ψ(n|k)−Ψ(k)]⊗ Ip, INp}
F (X(k), k). At this point, it is essential to verify the
basic assumptions from [4, Th. 3.1]. Using the preliminary
part of this section, we conclude that Lemma 1, together
with the results from [20], imply that the Assumptions
C(3.2) and C(3.3’) from [4, Sec. 3] are satisfied.
Therefore, supα,n≥nα

1
α2E{|X(n+ 1)−X(n)|2} <∞

and { 1
α |X(n+ 1)−X(n)|, n ≥ nα} is uniformly integrable,

{Xα(·)} is tight and the limit paths Lipschitz continuous [4,
Th. 3.1, Part 1].

The asymptotic mean ODE (20) follows, according to [4],
from

Mf (t) = f(X(t))− f(X(0))

+

∫ t

0

f ′X(X(s))diag{Ψ̄⊗ Ip, INp}F̄ (X(s))ds

(24)

where t is continuous time and f(·) is a real valued function
with compact support and continuous second derivatives. Ap-
plying the Skorokhod embedding to the limit process Xα(·) →
X(·), one can show that Mf (t) is a continuous martingale [4].
Consequently, Mf (t) = 0, having in mind that X(·) is Lips-
chitz continuous and that Mf (0) = 0. This implies that Ẋ =
diag{Ψ̄⊗ Ip, INp}F̄ (X). By Lemma 2 and (A2)–(A5), all the
rows of Ψ̄ are equal. It follows that the p-dimensional vector
components of Θ must be equal, i.e., we obtain that Θ(·) is in
the form Θ(·) = [θ(·)T · · · θ(·)T ], and that θ(·) satisfies the first
ODE from (20). The remaining ODEs related towi immediately
follow [40, Th. 8.2.2].

Part 2: In order to study the limit set of the ODE (20), we
shall follow [20, Proposition 4.1], and introduce the Lyapunov
function

V (θ, w1, . . . , wN ) =
1

2
‖θ − θ̄‖2 + 1

2

N∑
i=1

qiψ̄i‖wi − w̄i‖2

(25)
where θ̄ and w̄i are given by (22). We have directly

V̇ (θ, w1, . . . , wN ) = −
N∑
i=1

qiψ̄i〈wi − w̄i, Hi(wi − w̄i)〉
(26)

where 〈·, ·〉 denotes the scalar product. Reasoning as in [20], we
infer that for wi(0) ∈ span{φ(S)}, the set Σ̄ satisfies (22).

The remaining steps of the proof are standard for the applied
methodology (see [20] and [40, Th. 8.2.2]). �

To deal with D2 algorithm types, we define Xα
0 and Xα(·)

in the same way as mentioned above, but with replacing
diag{(A(n)⊗ Ip), INp} by diag{(A(n)⊗ Ip), (A(n)⊗ Ip)}
in the corresponding equations.

Theorem 2: Let (A1)–(A7) hold. Let Xα(n) be gener-
ated by (6), (7), and (11), with αi(n) = βi(n) = α > 0, and
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let both wα
i (0) = wα

i,0 and ei(0) = ei,0 ∈ span{φ(S)}. De-
fine Xα(0) by limα→0X

α
0 = [θT0 · · · θT0 wT

0 · · ·wT
0 ]

T . Then,
Xα(·) is tight and converges weakly to a process Xα(·) =
[θ(·)T · · · θ(·)Tw(·)T · · ·w(·)T ]T , where θ(·) and w(·) satisfy
the following ODE:

[
θ̇
ẇ

]
=

N∑
i=1

ψ̄iqi

[
ḡi(θ, w)
k̄i(θ, w)

]
(27)

with initial conditions θ0 and w0.
Moreover, for any integers n′α such thatαn′α → ∞ asα→ 0,

there exist positive numbers {Tα} with Tα → ∞ as α→ 0 such
that for any ε > 0

lim sup
α→0

P

{[
θαi (n

′
α + k)

wα
i (n

′
α + k)

]
/∈ Nε(Σ̄)

for some k ∈ [0, Tα/α]

}
= 0, (28)

i = 1, . . . , N , where Σ̄ = Σ̄θ × Σ̄w is the set of points x̄ =
[θ̄T w̄T ]T ∈ R2p satisfying

Ḡθ̄ + b̄− H̄w̄ = 0, ḠT w̄ = 0 (29)

where Ḡ =
∑N

i=1 ψ̄iqiΦ
TΞi(P

(λi) − I)Φ, b̄ = ΦT
∑N

i=1

ψ̄iqiΞir
(λi)
π , r(λi)

π is a constant M -vector in the affine function
T (λi)(·), while H̄ =

∑N
i=1 ψ̄iqiΦ

TΞiΦ.
Proof: The proof follows closely the proof of Theorem 1.

In order to analyze the limit set of (27), we introduce the Lya-
punov function V (θ, w) = 1

2‖θ − θ̄‖2 + 1
2‖w − w̄‖2, where θ̄

and w̄ are given by (29). We have directly V̇ (θ, w) = −〈w −
w̄, H̄(w − w̄)〉, wherefrom the result follows. �

The next theorem deals with two TS versions of the algo-
rithms.

Theorem 3: Let (A1)–(A7) hold. Let Xα,β(n) be gen-
erated by (6), (7), and (10), with αi(n) = α > 0, βi(n) =
β > 0, β >> α, and let both wα,β

i (0) = wα,β
i,0 and ei(0) =

ei,0 ∈ span{φ(S)}. Define Xα,β(0) by limβ→0,α/β→0X
α,β
0 =

[θT0 · · · θT0 wT
1,0 · · ·wT

N,0]
T . Then,Xα,β(·) is tight and converges

weakly at the fast TS to a processW (·) = [w1(·)T · · ·wN (·)T ]T
generated by

ẇi = k̄i(θi, wi) (30)

for any given θ1, . . . , θN , with wi,0 ∈ span{φ(S)}, i =
1, . . . , N , and at the slow TS toΘ(·) = [θ(·)T · · · θ(·)T ]T , where

θ̇ =
N∑
i=1

ψ̄iqiḡi(θ, w̄i(θ)) (31)

with the initial condition θ0, where w̄i(θ) is the unique solution
(w.r.t. wi) of the equation

k̄i(θ, wi) = Giθ + bi −Hiwi = 0. (32)

Moreover, for any integers n′α such that αn′α → ∞ as α→
0, there exist positive numbers {Tα,β} with Tα,β → ∞ as

(β, α/β) → 0 such that for any ε > 0

lim sup
β→0,αβ →0

P{θα,βi (n′α + k) /∈ Nε(Σ̄θ̄)

for some k ∈ [0, Tα,β/α]} = 0, (33)

i = 1, . . . , N , where Σ̄θ̄ is the set of points θ̄ ∈ Rp defined by∑N
i=1 ψ̄iqiG

T
i w̄i(θ̄) = 0.

Proof: The proof can be derived using [4, Sec. 3], proof
of Theorem 1 and the general results on weak convergence
of two TS stochastic approximation algorithms [40, para-
graph 8.6], [44], [45]. The first part of the proof is analogous
to the first part of the proof of Theorem 1. As far as the invariant
set of the mean ODEs is concerned, for the fast TS, we have
(30), since (α/β)ḡi(θ, w) is negligible when β, α/β → 0. As
for any given θ, there is a unique solution w̄i(θ) to the linear
equation k̄i(θ, wi) = 0,wi ∈ span{φ(S)}, we have (31) for the
slow TS.

In order to prove (33), we introduce the Lyapunov func-
tion V (θ) =

∑N
i=1 ψ̄iqiJi(θ), using (2), so that V̇ (θ) =

−‖∑N
i=1 ψ̄iqiḡi(θ, w̄i(θ))‖2. It follows that V̇ (θ) = 0 if θ ∈

Σ̄θ̄; if θ /∈ Σ̄θ̄, then,
∑N

i=1 ψ̄iqiḡi(θ, w̄i(θ)) �= 0, and hence,
V̇ (θ) < 0. �

Remark 3: Algorithm GTD2(λ) has been originally pro-
posed in the form of an one TS algorithm [16]; in [20], it has
been defined and analyzed as a two TS algorithm. Algorithm
TDC(λ) has been proposed and analyzed only as a two TS
algorithm [16], [20]. In general, the two TS setting is natural,
having in mind properties of w as a faster auxiliary variable. By
our experience, the algorithms of GTD2-type can be efficient
in both cases, while those of TDC-type perform well only in
the two TS case. See the simulation section for a performance
comparison.

Remark 4: Algorithms with or without consensus w.r.t. wi

have, in general, different convergence points for θ. Consider,
for example, algorithms D1-GTD2(λ) and D2-GTD2(λ). If
θ̄ denotes a convergence point, it can be easily seen from
the Theorems 1 and 2 that, in the first case, θ̄ follows
from

∑
i ψ̄iG

T
i H

−1
i (Giθ̄ + bi) = 0, and, in the second, from

ḠT H̄−1(Ḡθ̄ + b̄) = 0 (assuming that Hi and H̄ are nonsingu-
lar). The solutions are equal in the case of equalλ-parameters and
equal behavior policies for all the agents. Notice that in the case
of D1-GTD2(λ) θ̄ corresponds to the strictly optimal solution
w.r.t. (2). However, D2-GTD2(λ) is practically more favorable
in the cases of significantly different behavior policies, reducing
the estimation variance (see Section V for an example). In
general, consensus on w may cause somewhat slower response,
more visible in the one TS setting. The two TS setting allows
getting faster response and lower variance for θ.

Remark 5: Following [20], it is possible to obtain conver-
gence results for diminishing step-sizes converging to zero at
a rate lower than 1/n. We have selected constant step-sizes
motivated by practical applications to slowly time-varying cases.
It is also possible to extend the results and to prove convergence
w.p.1 at the expense of additional constraints, see, e.g., [4] and
[20].
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Remark 6: It is possible to generalize the problem setting
by assuming that the quadruplets Qi have the same state and
action spaces, but that the probabilities characterizing the en-
vironment and the reward distribution are agent dependent
(pi(s′|a, s) and qi(·|s,′ a, s)). The optimization problem from
(2) becomes multicriterial, providing the figure of merit of
a given target policy applied in parallel in different environ-
ments. The abovementioned derivations basically hold; how-
ever, the interpretation of the results is not as straightforward as
above.

IV. DISCUSSION

A. Constrained Algorithms

It is possible to formulate constrained versions of all the pro-
posed algorithms and to prove their weak convergence follow-
ing the methodology developed for the single-agent case [20].
Formally, the constrained form of the algorithms is obtained
by applying projections ΠBθ

{·} and ΠBw
{·} of the right-hand

sides of (6), (7), and (8) on predefined constraint setsBθ andBw,
respectively, w.r.t. ‖ · ‖2 [20]. Notice also that a general analysis
of constrained distributed stochastic approximation algorithms
is presented in [4] and [40]. Assumption (A7) should be removed
in this case.

B. Asymptotic Convergence Rate: Covariance
Reduction

Consider D2-GTD2(λ) in the light of [4, Sec. 6]. Define

Uα(n) =
Y α(n)− Ȳ√

α
(34)

where Y α(n) follows from the global model Y α(n) =
[x1(n)

T · · ·xN (n)T ]T , xi(n) = [θi(n)
Twi(n)

T ]T and Ȳ =
[x̄T · · · x̄T ]T , x̄ = [θ̄T w̄T ]T , and assume it is tight for n ≥ NT .
Define also

V α(n) =
√
α

n∑
k=N ′

T+nα+1

(Ψ(k)⊗ I2p)F
Y (Ȳ , n) (35)

where FY (Ȳ , n)=[FY
1 (Ȳ , n)T · · ·FY

N (Ȳ , n)T ]T , FY
i (Ȳ , n)=

[qigi(θ̄i, w̄i, Zi(n))
T

... qiki(θ̄i, w̄i, Zi(n))
T +qiei(n)

Tωi(n+
1)]T , and N ′

T ≥ NT .
Following [4, Sec. 5.1], it is possible to show that whenXα(n)

converges weakly to X(·) = [θ(·)T · · · θ(·)Tw(·)T · · ·w(·)T ]T
(according to Theorem 2), we have also weak conver-
gence of Y α(n) to Y (·) = [x(·)T · · ·x(·)T ]T , as well as of
Uα(n) and V α(n) to U(·) = [u(·)T · · ·u(·)T ]T and V (·) =
[v(·)T · · · v(·)T ]T , respectively. It is also possible to show that
vectors u(·) and v(·) asymptotically satisfy the following Itô
SDE

du = Qudt+ dv (36)

where matrix Q is the Jacobian matrix of (Ψ̂⊗ I2p)F̄
Y (Ȳ )

(F̄Y (Ȳ ) follows from FY (Ȳ , n) in the same way as F̄ (X)
follows from F (X,n) in the global model description) and v(·)

a Wiener process satisfying

cov{v(1)} = R̄

=

k=∞∑
k=−∞

E

⎧⎨
⎩
[

N∑
i=1

ψi(k)F
Y
i (x̄, k)

][
N∑
i=1

ψi(k)F
Y
i (x̄, k)

]T
⎫⎬
⎭

where ψ1(k), . . . , ψN (k) are the elements of each row of the
row-stochastic time-varying random matrix Ψ(k) (E{·} is un-
derstood in the sense of the ergodic mean).

The stationary covariance Ru =
∫∞
0 eQtR̄eQ

T tdt can be
taken as a measure of noise influence. For the sake of clarity, we
shall consider a very simple case assuming thatFY

i (·) = FY (·),
cov{FY (Ȳ , n)} = Ri = R and p = 1. Then, cov{v(1)} =

R
∑N

i=1E{ψi(n)
2}. In the case of no network, the SDE model

has the same form (36), but with cov{v(1)} = R. The advantage
of the consensus based algorithm is obvious, having in mind that
ΣN

i=1E{ψi(n)
2} < 1.

Remark 7: Variance reduction is one of the general problems
in TD algorithms [12], [14], [46], [47]. The abovementioned
result shows that the consensus-based averaging may provide
significant improvements of asymptotic covariance w.r.t. the
single-agent case. In this sense, the “denoising” phenomenon
may represent one of the motivations for adopting a consensus-
based approach to value function approximation (see also the
results from [4] and [10]). Of course, rigorous treatment of more
general cases requires additional effort (see Sec. V for some
examples).

C. Interagent Communications and Network Design

In general, the agents have specifically tailored behavior
policies (including different ways of defining the local λ-
parameters), having in mind that complementary exploration
can contribute significantly to the overall rate of convergence.
Factors in ψ̄iqi, i = 1, . . . , N , allow placing more emphasis on
selected agents. Generically, qi is chosen a priori, while ψ̄i

depends solely on the network properties through the definition
of matrixA(n). There is a great flexibility from the point of view
of network design. For example, if one adopts thatA(n) = A, the
problem reduces to the definition of a constantN ×N matrixA
satisfying a given topology (defined by AG), which provides
ψ̄i = 1/N . Formally, one has to solve for A, the standard
equation 1TA = 1T , where 1T = [1 · · · 1]T , which always has
a solution in our case [10]. Furthermore, the adopted algorithm
formulation allows random matrices A(n), and treatment of
communication dropouts and asynchronous communications. A
detailed analysis of this problem is given in [10] for broadcast
gossip.

D. Algorithms Under Weak ISC

Following a number of recent papers devoted to distributed
value function estimation [29], [32], [33], [35]–[37], it is pos-
sible to assume that the adopted ISC allows accessibility of
all the states and actions by all the agents. This assumption
may appear to be unrealistic for standard WSNs; however,
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Fig. 1. Diagram of the simulated MDP.

the abovementioned results can be easily extended to this
case.

Assume that a multiagent system is defined by the quadruplets
Q̄i = {S,A, P (s′|a, s), Ri(s,

′ a, s)}, i = 1, . . . , N , whereS =∏
i Si, A =

∏
i Ai (Si and Ai are finite local state and action

spaces), tensor P (s′|a, s) defines the global probabilities for
all s,′ s ∈ S and a ∈ A, while Ri(s,

′ a, s) are the local random
rewards with probability distributions qi(·|s,′ a, s) depending, in
general, on i. The global behavior policy is b(a|s) = ∏

i bi(a|s)
and the global target policy π(a|s) = ∏

i πi(a|s), s,′ s ∈ S ,
a ∈ A, where bi and πi are local behavior and target policies,
respectively. The value function follows directly from (1), as
well as its linear approximation. The steps leading to dis-
tributed algorithms are identical as mentioned above; formally
one comes to (6)–(8), (10), and (11), where index i remains
only in the stochastic reward term Ri(n). Weak convergence to
consensus can be proved similarly as mentioned above. Notice
only that the proposed algorithms provide an estimate of the
global value function for the fictitious global random reward∑

i qiψ̄iRi(s,
′ a, s).

V. SIMULATION RESULTS

In this section, we illustrate the main properties of the pro-
posed algorithms by applying them to a version of the Boyan’s
chain, an environment frequently used in the literature, e.g., [16],
[30], [48]. The diagram of the underlying Markov chain is shown
in Fig. 1 [30].

The chain has 15 states with one absorbing state. We assume
that γ = 0.85. The chain can be interpreted as a decision mak-
ing problem on a highway, with possibilities of exiting (using
alternative roads). The policy which a driver can choose at each
state is the probability of selecting the exit action aexit at state
s: π(s, aexit). The reward for exiting is r(s, aexit, s′) = −4 for
all s and s′ (can be interpreted as the consumed fuel), but
the probability of staying in the same state (jammed) is fixed
to 0.2. If we choose action ah (to stay on the highway), the
reward is r(s, ah, s′) = −1 for all s and s′, but the probability
of staying in the same state grows with the state number as 1− 1

s ,
where s is the state number. The target policy is the stationary
policy π(s, aexit) = 0.8. We assume that there are ten agents
with a time-invariant communication graph, such that the agents
communicate only with three randomly chosen neighbors, all
taken with equal weights. The agents are only able to obtain
seven-features Gaussian radial basis representations of the state
vector as functions of distances to the states 1, 3, 5, 7, 9, 11, and

13 (φi(s) = e
−(s−zi)

2

2σ2 , i = 1, . . ., 7, zi ∈ {1, 3, 5, 7, 9, 11, 13},
with σ2 = 2). Note that the chain has an absorbing state (it does
not satisfy the conditions for convergence); hence, we run the
algorithms in multiple episodes by resetting the states back to 1
when the absorbing state is reached.

Fig. 2. Value function approximation obtained by one agent using
D2-TDC(λ) in which the agents have behavior policies such that they
can individually visit only a subset of the states. True value function is
shown using purple line. Different colors of the obtained approximations
correspond to different network connectivity levels.

In the first experiment, we demonstrate the case in which
the agents, individually, are not able to estimate the value
function due to their restrictive behavior policies; however, they
are able to obtain convergent estimates of the value function
using the proposed consensus algorithm. We assume that these
policies are such that the agents can individually visit only a
subset of the states, with the following agents’ starting and
stopping states [(1,3),(2,4),(4,7),(5,15),(5,14),(3,14),(8,14),
(1,6),(5,10),(6,11)], i.e., the first agent always starts in
state 1 and stops in state 3, and so on. Formally, we
model this situation by assuming a possibility of choosing
the third action (besides ah and aexit), which makes the
current state absorbing. While visiting the allowed subsets
of the states, the agents have the following stationary
behavior policies [π1(s, aexit), π2(s, aexit), . . ., π10(s, aexit)] =
[0.64, 0.75, 0.5, 0.81, 0.85, 0.8, 0.3, 0.55, 0.45, 0.6]. In Fig. 2,
the value function approximations obtained by the agent 10
(which is only capable of visiting states from 6 to 11) using
D2-TDC(λ) algorithm, for λi = 0.5, i = 1, . . ., 10, using
constant step-sizes α = 0.3 and β = 2 (two TSs), are shown.
The true value function is depicted using the purple line, while
the other colors correspond to the obtained approximations
assuming the following three different network connectivities:

1) sparse, neighborhood based connectivity introduced ear-
lier;

2) no connectivity (single-agent case);
3) fully connected graph (all-to-all connectivity).

Similar results for the final estimates in the described case
are obtained for the rest of the proposed algorithms. It can be
observed that, in the two connected cases, better approximation
of the value function is obtained for the latter states, because
the behavior policies of the agents are such that overall they
visit these states more frequently (with higher probability), and,
hence, they will have higher weights in the overall criterion (2).
Obviously, in the case in which there are no consensus-based
collaborations, agent 10 is not capable to obtain good overall
approximation.
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Fig. 3. Mean-square error of value function approximation obtained
by one agent using D2-TDC(λ), for different network connectivities, for
the case in which the agents have behavior policies such that they can
individually visit only a subset of states. Different colors of the curves
correspond to different network connectivity levels.

Fig. 4. Value function approximation obtained using D1-GTD2(λ) in
which all the agents have behavior policies such that they can visit all the
states. True value function is shown using blue line. Different colors of
the obtained approximations correspond to different agent’s estimates,
so that it can be observed that the agents have practically achieved
consensus.

The benefit of the introduced consensus-based scheme can
also be inferred from Fig. 3, where the mean-square error (MSE)
of the value function approximation (averaged over all states), as
a function of the number of iterations, is shown for the node 10,
with the same algorithm as mentioned above. Different curves
correspond to different network connectivity levels as described
earlier.

In the second experiment, we demonstrate the denoising effect
of the introduced distributed algorithms. We assume that the
agents have the same stationary behavior policies as mentioned
above, but that they all start in state 1 and are able to advance
to the final state 15. We also assume that the agents locally
implement the algorithms with eligibility traces, with different
λ parameters: [0.6, 0.1, 0.25, 0.5, 0.05, 0.01, 0.3, 0.5, 0.4, 0.7].
In Fig. 4, the value function approximation obtained using
D1-GTD2(λ) for α = β = 0.3 (one TS) is represented. It can
be seen that the approximation is better for the states zi ∈
{1, 3, 5, 7, 9, 11, 13}, since these are references for the radial
basis representation (note that it is not possible to converge

Fig. 5. Parameter estimates for all the agents using D1-GTD2(λ) in
the second experiment. Each color corresponds to a different parameter
(with seven parameters total). Curves with the same color (which are
very close to each other due to the consensus) correspond to the
estimates of the same parameter for all the agents.

Fig. 6. Parameter estimates obtained in single-agent case using
GTD2(λ) algorithm. Each color corresponds to a different parameter
(with seven parameters total).

to the true value function because of the introduced function
approximation). As can be seen from the figure, all the agents
have achieved consensus, the final value function approxima-
tions are practically the same for all the agents. Fig. 5 shows
the parameter estimates θi(n) as functions of the number of
iterations n. Note that, in this case, 20 episodes were needed
for the obtained approximation, which is much less compared
to the single agent case (see Fig. 6), which also has much larger
variance. Note that, in the case of fully connected network (cen-
tralized case), the improvements (rate of convergence, agents’
agreement, denoising) are very slight compared to the case of
sparsely connected network (as expected, based on Fig. 3).

Finally, we have performed a test comparing the performance
of all the proposed algorithms. Note that the algorithms pre-
viously proposed and analyzed in [27], [28], and [31], which
can serve as a baseline, are actually a special case of our
work, corresponding to our D2-GTD(λ) for λ = 0 (no eligibility
traces) and implemented in one TS. For the same setup as in the
previous experiment, we run the following eight algorithms:

1) D2-GTD(0), one TS;
2) D2-GTD(0), two TS;
3) D2-GTD(λ), λi = 0.6, i = 1, . . . , 10, one TS;
4) D2-GTD(λ), λi = 0.6, i = 1, . . . , 10, two TS;
5) D2-TDC(0), two TS;
6) D2-TDC(λ), λi = 0.6, i = 1, . . . , 10, two TS;
7) D1-TDC(λ), λi = 0.6, i = 1, . . . , 10, two TS;
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Fig. 7. Comparison of the MSE of value function approximation ob-
tained by using the proposed schemes as well as the baseline from [27],
[28], and [31] (corresponding to the D2-GTD(0) in one TS). The baseline
has been outperformed by our algorithms, with D1-TDC(λ) having the
best convergence rate.

8) D1-GTD(λ), λi = 0.6, i = 1, . . ., 10, one TS.
We assume zero initial conditions for all the parameters,

and compare the rate of convergence of the value function
approximations. Fig. 7 shows the MSE of the obtained value
function approximations with respect to the true one. It can be
seen that the baseline algorithm, proposed in [27], [28], and
[31], has the worst performance, while our D1-TDC(λ) (for
λi = 0.6, with two TSs) has the best performance. Furthermore,
in general, the algorithms with eligibility traces (λi = 0.6) have
a better performance than with λi = 0, and two TS versions
also increase the rate of convergence (note that TDC algorithm
works only in two TSs). What can also be observed is that, at
least in this problem setup, the algorithms without consensus on
w (D1-types of the proposed algorithms) have slight advantage
over the D2-type algorithms.

VI. CONCLUSION

In this article, we have proposed several novel algorithms
for distributed off-policy gradient based value function ap-
proximation in a collaborative multiagent RL setting charac-
terized by strict ISC. The algorithms are based on integration of
stochastic time-varying dynamic consensus schemes into local
recursions based on off-policy gradient TD learning, including
state-dependent eligibility traces. The proposed distributed algo-
rithms differ by the algorithm form, by the choice of time scales
and by the way the consensus iterations are incorporated. Under
nonrestrictive assumptions, we have proved, after formulating
asymptotic mean ODEs for the algorithms, that the parameter
estimates weakly converge to consensus. The proofs themselves
represent the major contribution of this article. Contributions
encompass an analysis of the asymptotic convergence rate and a
demonstration of “denoising” resulting from consensus. Further-
more, we have presented a discussion on the design of the com-
munication network ensuring appropriate convergence points.
Possibilities of direct extension of the results to the case of weak
ISC have been indicated. Finally, efficiency of the proposed
algorithms have been illustrated by numerous simulations.

Further work could be devoted to the weak convergence analy-
sis of alternative multiagent TD schemes, including the emphatic
TD algorithm [46], [49] and actor-critic algorithms [36], [37].
Also, the proposed schemes could be extended to the cases of
nonlinear value function approximations (such as those using
deep neural networks [24]).
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[7] M. S. Stanković, S. S. Stanković, and K. H. Johansson, “Distributed
time synchronization for networks with random delays and measurement
noise,” Automatica, vol. 93, pp. 126–137, 2018.
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Miloš S. Stanković received the Dipl.Ing. (M.Sc.) degree in electrical
engineering, University of Belgrade, Belgrade, Serbia, and the Ph.D.
degree in systems and entrepreneurial engineering from the University
of Illinois at Urbana-Champaign, Champaign, IL, USA, in 2002 and
2009, respectively.

From 2009 to 2012, he was a Postdoctoral Researcher with the Auto-
matic Control Laboratory and the ACCESS Linnaeus Centre, KTH Royal
Institute of Technology, Stockholm, Sweden. From 2012 to 2020, he was
with the Innovation Center, School of Electrical Engineering, University
of Belgrade. In 2017, he joined the Singidunum University, Belgrade,
Serbia, where he is currently an Associate Professor. Since 2017, he
has also been with the Vlatacom Institute, Belgrade, Serbia. His re-
search interests include networked control systems, machine learning,
dynamic game theory, optimization, and decentralized decision making
with applications to big data analytics, cyber-physical systems, and the
Internet of Things.
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