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Majority Determination in Binary-Valued
Communication Networks

Shun-ichi Azuma , Senior Member, IEEE, and Masaaki Nagahara , Senior Member, IEEE

Abstract—Majority determination is one of the funda-
mental problems in multiagent systems. It aims to cooper-
atively and distributedly determine the majority opinion of
agents in a network, where the agents initially vote “in favor
of” or “opposed” a proposal. An interesting aspect of this
issue is to clarify the lowest resolution of communication
required among the agents to determine the majority. In this
study, we address this problem with binary-valued commu-
nication. To overcome the limitation of the finite capacity
of communication channels, we exploit randomized com-
munication, i.e., sending binary values (0 or 1), which are
selected according to a probabilistic distribution. Based on
this idea, we develop consensus-type algorithms that ap-
proximately solve the problem with an arbitrarily prescribed
accuracy.

Index Terms—Binary-valued communication, decision
making, majority determination, multiagent system.

I. INTRODUCTION

MAJORITY determination is one of the fundamental prob-
lems in multiagent systems. The problem is quite simple:

When the agents initially vote “in favor of” or “opposed” a
proposal, how can they cooperatively and distributedly deter-
mine the majority opinion? Such cooperative decision-making
is required for several applications, especially in distributed sys-
tems, e.g., system-level diagnosis, fault tolerance enhancement,
database management, and fault-local mending [1]. Moreover,
it typically appears in the decision-making algorithms of dupli-
cated systems.

Majority determination is closely related to the so-called
average consensus [2]. If the opinions in favor and opposed are
encoded as 1 and 0, respectively, it is obvious that the majority is
determined by comparing the average of the encoded opinions
with the value 0.5. Therefore, a promising method for majority
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determination is to construct an average consensus algorithm
for multiagent systems. On the other hand, it should be noted
that majority determination is a weaker objective than average
consensus.

Here, we are interested in the lowest resolution of communi-
cation required among agents for majority determination. This
is motivated by the fact that the capacity of communication
channels is finite in practice and the finite capacity becomes
a considerable limitation when the agents have a small memory.

Several solutions to this issue have been obtained as results
of quantized consensus control. For example, consensus control
with quantized states has been examined in [2]–[4]. In these
studies, quantized states were exchanged among agents, which
resulted in quantized communication. On the other hand, con-
sensus control with real-valued states and quantized commu-
nication has been addressed in [5]–[13]. From the viewpoint
of the number of quantization levels, i.e., the resolution of
communication, the above studies can be classified into [3], [4],
[6], [8]–[10], and [13] for an unbounded number, [2], [7], and
[11] for a bounded number greater than or equal to three, [5] for
a bounded number greater than or equal to two, and [12] for two.
Since at least two quantization levels are needed for consensus
(and any other purpose), the results in [5] and [12] are notable in
terms of the lowest resolution. However, the method employed
in [5] is not applicable to the majority determination problems
because it achieves the consensus to a quantized value, i.e., 0
or 1 in the case of binary-valued communication, which is not
always the majority opinion (though the expected value of the
resulting consensus is equal to the average of the initial states).
Meanwhile, the method in [12] does not guarantee that the states
converge to a constant value, due to which it remains unclear
whether the majority opinion has been determined.

On the other hand, majority determination with quantized
communication has been studied in [14]–[17]. In [14] and [15],
binary-valued communication was considered, but their methods
were limited to complete graphs or a special class of initial states
to guarantee the consensus. Meanwhile, the methods in [16] and
[17] were based on four-level communication.

Overall, the existing methods require at least three-level
communication (e.g., [2], [7] for three-level communication),
which motivates us to clarify the possibility of the majority
determination with lower resolution of communication.

Therefore, in this study, we address the majority determina-
tion problem for multiagent systems where each agent has a 1-D
memory and communicates through a binary-valued signal. To
overcome the limitation of communication under the minimal
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memory, we exploit randomized communication, i.e., sending
either 0 or 1, selected according to a probabilistic distribution.
Based on this idea, we propose consensus-type algorithms, and
clarify the relationship among the number of agents, the distribu-
tion of opinions, and the accuracy of the method. Furthermore,
the previous framework is applied to anomaly detection by a
sensor network, which demonstrates its potential for practical
use.

Finally, we remark on two things about our contribution.
First, if each agent has a sufficiently large memory, then it
does not matter that the communication is binary valued. This
is because each agent can send any information as a sequence
of binary numbers to an agent, and the receiver agent can save
the sequence in its large memory. In contrast, in our case with
a limited amount of memory, binary-valued communication be-
comes a considerable limitation. Second, the idea of randomized
communication has been employed in some earlier studies [5],
[9]–[11]. However, to the best of our knowledge, a method
for majority determination with binary-valued communication
has never been presented. In this study, we have established a
framework with binary-valued communication, which is used
to reveal the lowest resolution of communication. In this sense,
our result is distinguished from the others.

This article is based on our preliminary version [18], pub-
lished in a conference proceedings. This journal version contains
a full explanation about our result and complete proofs, which
are omitted in the conference version.

Notation: Let R, R+, and Z0+ be a set of real numbers, a
set of positive real numbers, and a set of non-negative integers,
respectively. We use 0n×m and 1n to represent an n×m zero
matrix and an n-dimensional vector whose elements are all one,
respectively. For a matrix M , round(M) represents the matrix
obtained by rounding off each of its elements to an integer. The
matrix M is said to be irreducible if there exists no permuta-
tion matrix P such that P−1MP is a block upper-triangular
matrix. The cardinality of a finite set S is expressed by |S|. The
probability of an event A to occur is represented by P [A]. The
expectation and variance of a random variable x are denoted
by E[x] and V [x], respectively. The conditional expectation of
x with respect to a random variable y is expressed as E[x|y].
Furthermore, the conditional expectation of x with respect to
a filtration F is denoted by E[x|F]. For a function f(x) of the
random variable x, the expectation of f(x) is often denoted by
Ex[f(x)] to stress that Ex[f(x)] is the expectation of f(x) with
respect to the random variable x. Finally, “w.p.p” stands for
“with probability p” in this article.

II. PROBLEM FORMULATION

A. System Description

Consider a multiagent system with n agents in which the
dynamics of agent i ∈ {1, 2, . . . , n} is governed by{

xi(t+ 1) = fi(xi(t), ui(t))
yi(t) = gi(xi(t), ui(t))

(1)

where xi(t) ∈ R is the state, ui(t) ∈ Z0+ is the input, and
yi(t) ∈ {0, 1} is the binary-valued output, and fi : R× Z0+ →
R and gi : R× Z0+ → {0, 1} are functions.

Agent i receives the information of the sum of the outputs of
the neighbors as follows:

ui(t) =
∑
j∈Ni

yj(t) (2)

where Ni ⊆ {1, 2, . . . , n} is the index set of the neighbors
of agent i, i.e., the agents connected to agent i. Note that, in
general, under (2), agent i cannot know the outputs of individual
neighbors, which protects the privacy of the neighbors.

The network structure of the aforementioned multiagent sys-
tem is represented by a directed graphG = (V,E)with the node
set V := {1, 2, . . . , n} and the edge set E := {(j, i) ∈ V ×
V | j ∈ Ni}. We useΔ ∈ {0, 1, . . . , n} to express the maximum
in-degree of the network structure G, i.e., Δ := maxi∈V |Ni|.

B. Majority Determination Problem

In the multiagent system, we assume that the agents initially
vote opposed or in favor for some proposal, and the opinion of
agent i is stored in its initial state xi(0) as a binary value (0 or 1).
The values 0 and 1 represent opposed and in favor, respectively.

The sets of agents who voted opposed and in favor are denoted
by I0 ⊆ V and I1 ⊆ V, respectively, i.e., I0 := {i ∈ V|xi(0) =
0}, I1 := {i ∈ V|xi(0) = 1}, and |I0|+ |I1| = n. The sets I0
and I1 are called the opposition group and the supportive group,
respectively.

We consider the problem of determining the majority opinion
for xi(0) (i = 1, 2, . . . , n), i.e., determining whether |I0| > |I1|
or |I0| < |I1|, in a distributed manner. The problem is formulated
as follows.

Problem 1: For the multiagent system given by (1) and (2),
assume that the opinions xi(0) ∈ {0, 1} (i = 1, 2, . . . , n) are
fixed (but unknown) and n is odd (|I0| > |I1| or |I0| < |I1|).
Find functions fi and gi (i = 1, 2, . . . , n) such that the following
statements hold.

(S1) fi (i = 1, 2, . . . , n) are of the form f(xi(t), ui(t),
|Ni|) with a common function f : R× Z0+ ×
{0, 1, . . . , n} → R, and also gi (i = 1, 2, . . . , n) are of
the form g(xi(t), ui(t), |Ni|) with a common function
g : R× Z0+ × {0, 1, . . . , n} → {0, 1}.

(S2) There exists a number γ ∈ R satisfying{
lim sup
t→∞

xi(t) < γ, if |I0| > |I1|
lim inf
t→∞ xi(t) > γ, if |I0| < |I1| (3)

for every i ∈ V. �
In this problem, (S1) specifies that the agents basically follow

the same type of algorithm for scalability reasons. However, it
may be noted that each agent is connected to a different number
of neighbors, as mentioned in Section II-A. Consequently, it can
design fi and gi depending on the number |Ni| of neighbors.
Such a specification is typical in control problems in multiagent
systems, such as consensus control and coverage control. Mean-
while, (S2) is concerned with determining the majority opinion.
If (S2) holds, the states of all the agents remain either less than
or more than γ after a while. Thus, the majority opinion can
be determined by checking the relationship between the state of
any agent and γ after a certain time, e.g., after a certain period
when the state remains either less than or more than γ.
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III. DISTRIBUTED ALGORITHM FOR MAJORITY

DETERMINATION

A. Algorithm Based on Randomized Communication

If a real-valued output is available for (1), Problem 1 can be
easily solved by constructing an average consensus algorithm. In
fact, the average consensus for xi(0) ∈ {0, 1} (i = 1, 2, . . . , n)
indicates (3) for γ = 0.5. However, the output has a binary value
in our problem. Thus, we propose an algorithm with randomized
communication, which results in an approximation of the typical
consensus algorithm.

The proposed algorithm is given as follows:⎧⎨
⎩

xi(t+ 1) = xi(t) + ε(t) (ui(t)− |Ni|xi(t))

yi(t) =

{
0 w.p. 1− xi(t)
1 w.p. xi(t)

(4)

where ε(t) ∈ [0,Δ] is the time-varying gain of this algorithm,
ui(t) is the neighbors’ information given in (2), and yi(t) is a
random variable obtained from the Bernoulli distribution. Note
that (S1) in Problem 1 holds for this algorithm. This algorithm
is called the majority determination algorithm.

This algorithm is in a similar form as that of the typical
consensus algorithm. In fact, (2) is equivalent to

ui(t)− |Ni|xi(t) =
∑
j∈Ni

(yj(t)− xi(t))

which enables us to rewrite the state equation in (4) as

xi(t+ 1) = xi(t) + ε(t)
∑
j∈Ni

(yj(t)− xi(t)).

However, it should be noted that yj(t) (j ∈ Ni) are binary-
valued and random.

In this algorithm, xi(t) must take a value from [0,1] because
the probability distribution of the random variable yj(t) is spec-
ified by xi(t) and 1− xi(t) in (4). Under the aforementioned
condition ε(t) ∈ [0,Δ], it is guaranteed that xi(t) ∈ [0, 1] for
every i ∈ V and t ∈ {1, 2, . . .}.

Lemma 1: Consider the multiagent system with the majority
determination algorithm in (4). If xi(0) ∈ {0, 1} for every i ∈
V, then xi(t) ∈ [0, 1] for every i ∈ V and t ∈ {1, 2, . . .}.

Proof: This lemma can be proved by mathematical induction.
In particular, by noting that xi(0) ∈ {0, 1} (i = 1, 2, . . . , n), we
show thatxi(t+ 1) ∈ [0, 1] (i = 1, 2 . . . , n) underxi(t) ∈ [0, 1]
(i = 1, 2 . . . , n).

For an arbitrary i ∈ V, consider the state equation in (4).
If xj(t) ∈ [0, 1] for every j ∈ {1, 2, . . . , n}, then ui(t) ≤ |Ni|
from (2). Moreover, ε(t) ∈ [0,Δ] implies that ε(t)|Ni| ≤ 1.
Applying these facts to the state equation in (4), we obtain

xi(t+ 1) = xi(t) + ε(t) (ui(t)− |Ni|xi(t))

≤ xi(t) + ε(t) (|Ni| − |Ni|xi(t))

≤ xi(t) + (1− xi(t))

≤ 1.

On the other hand

xi(t+ 1) = xi(t) + ε(t) (ui(t)− |Ni|xi(t))

Fig. 1. Network structure in example (n = 100 and Δ = 42).

= (1− ε(t)|Ni|)xi(t) + ε(t)ui(t)

≥ 0

because ε(t)|Ni| ≤ 1 as shown earlier, xi(t) ∈ [0, 1], ε(t) > 0,
|Ni| > 0, and ui(t) ≥ 0 by definition.

Thus, xi(t+ 1) ∈ [0, 1]. �

B. Example

Before showing the theoretical results for the majority deter-
mination algorithm in (4), we demonstrate the performance of
the algorithm through simulations.

Consider a multiagent system with n = 100 and network
structureG, as shown in Fig. 1. ForG, the maximum in-degreeΔ
is 42 and the average in-degree (1/100)

∑100
i=1 |Ni| is 27.74.

This graph is randomly generated in such a way that its adjacent
matrix is given by round(M +M�) for a random matrix M ∈
R100×100 whose diagonal elements are zero and off-diagonal
elements are independently drawn from the uniform distribution
on [0, 0.4]. Note that the matrix M +M� is symmetric and the
graph is undirected.

For this system, we apply the majority determination algo-
rithm in (4) with the gain

ε(t) =
1.5

Δ(2 + t)
.

Fig. 2 shows the result for the case where 59% of the agents
are in favor and 41% oppose. It is clear that the states xi(t)
(i = 1, 2, . . . , 100) converge to a value between 0.5 and 0.6.
On the other hand, Fig. 3 shows the result for the case where
37% agents in favor and 63% oppose. Here, the states xi(t)
(i = 1, 2, . . . , 100) converge to a value between 0.35 and 0.45.

These results suggest that (3) is satisfied for γ = 0.5, and the
algorithm solves Problem 1 in the earlier cases.

IV. PERFORMANCE ANALYSIS OF MAJORITY DETERMINATION

ALGORITHMS

Here, we present theoretical results for validating the perfor-
mance of the majority determination algorithm in (4).
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Fig. 2. Majority determination for the case where 59% of the agents
are in favor.

Fig. 3. Majority determination for the case where 37% of the agents
are in favor.

A. Collective Dynamics and Properties

Let us first derive the collective dynamics of the multia-
gent system. For the network structure G, the adjacency ma-
trix, the degree matrix, and the graph Laplacian are denoted
by A ∈ Rn×n, D ∈ Rn×n, and L ∈ Rn×n, respectively, i.e.,
L = D −A [19]. Let also x(t) := [x1(t)x2(t) · · · xn(t)]

�.
We introduce the following variables to represent the differ-

ence between xi(t) and yi(t):

wi(t) := yi(t)− xi(t). (5)

Using these variables and (2), the state equation of (4) can be
rewritten as

xi(t+ 1) = xi(t) + ε(t)
∑
j∈Ni

(xj(t)− xi(t) + wj(t)).

Combining the aforementioned equations for i = 1, 2, . . . , n,
we eventually obtain

x(t+ 1) = (I − ε(t)L)x(t) + ε(t)Aw(t) (6)

where w(t) := [w1(t)w2(t) · · · wn(t)]
�. It is clear that (6) cor-

responds to the collective dynamics of the typical discrete-time

consensus algorithm, but with a time-varying gain ε(t) and an
additional term ε(t)Aw(t).

By considering the probabilistic properties of w(t) (given in
Appendix II), we can derive several results on the steady-state
behavior of the multiagent system with the majority determina-
tion algorithm in (4).

First, the following result is related to the consensus of xi(t)
(i = 1, 2, . . . , n).

Lemma 2: For the multiagent system with the majority deter-
mination algorithm in (4), suppose that the opinions xi(0) ∈
{0, 1} (i = 1, 2, . . . , n) are fixed. If the following statement
holds.

(A1) The network structure G is strongly connected.
(A2) The gain ε(t) is given by

ε(t) =
1

Δ
c(t)

for a sequence c(t) ∈ R+ such that

sup
t∈Z0+

c(t) < 1,

∞∑
t=0

c(t) = ∞,

∞∑
t=0

(c(t))2 < ∞

then x(t) converges to the set1span(1n) w.p.1.
Proof: See Appendix III. �
Note that (A2) implies that ε(t) ∈ [0,Δ]. This lemma guar-

antees that the states xi(t) (i = 1, 2, . . . , n) reach the consensus
almost surely, i.e.,

lim
t→∞(xi(t)− xj(t)) = 0 w.p.1 (7)

for every (i, j) ∈ V ×V. However, the result does not indicate
that the states converge to a constant value.

Now, we present the results for the average of the states xi(t)
(i = 1, 2, . . . , n), i.e.,

μ(t) :=
1

n

n∑
i=1

xi(t). (8)

Lemma 3: For the multiagent system with the majority de-
termination algorithm in (4), suppose that the opinions xi(0) ∈
{0, 1} (i = 1, 2, . . . , n) are given. If

(A1’) the network structure G is balanced,
and (A2) holds, then

E[μ(t)] = μ(0) (9)

V [μ(t)] ≤ δ

4n

t∑
τ=0

(c(τ))2 (10)

hold for every t ∈ {1, 2, . . .}, where

δ :=
1

n

n∑
i=1

( |Ni|
Δ

)2

(11)

is the average of the squares of the ratio of in-degree to the
maximum in-degree.

Proof: See Appendix IV. �

1Consider a vector sequence x(t) ∈ Rn (t = 0, 1, . . .) and a set S ⊆ Rn.
For each ε ∈ R+, if there exists a τ ∈ Z0+ satisfying infy∈S ‖x(t)− y‖ < ε
for every t ∈ {τ, τ + 1, . . .}, then we say that the vector sequence x(t) (t =
0, 1, . . .) converges to the set S.
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This lemma provides the expectation and variance of the
average of the states. If the states xi(t) (i = 1, 2, . . . , n) reach
the consensus [i.e., (7) holds for every (i, j) ∈ V ×V], this
result facilitates the characterization of the limit of the states
xi(t) (i = 1, 2, . . . , n).

We comment on the tightness of the upper bound in (10). As
easily seen in the proof in Appendix IV-B, the variance V [μ(t)]
is expressed as

V [μ(t)] =
1

n

t−1∑
τ=0

(
(c(τ))2

(
1

n

n∑
i=1

( |Ni|
Δ

)2

E[(wi(τ))
2]

))
.

Then, 0 ≤ E[(wi(τ))
2] ≤ 1/4 for every i ∈ V and τ ∈ Z0+.

The upper bound 1/4 will be given in Lemma 5(iii) and it is a
tight bound in the sense that E[(wi(τ))

2] = 1/4 if xi(τ) = 0.5
[see (4) and (5)]. Note that xi(τ) = 0.5 often occurs, e.g., as
illustrated in Figs. 2 and 3. Thus, the upper bound in (10) is
loose for the replacement of E[(wi(τ))

2] by 1/4.

B. Performance of Majority Determination Algorithm

Based on Lemmas 2 and 3, the following result is obtained.
Theorem 1: For the multiagent system with the major-

ity determination algorithm in (4), suppose that the opinions
xi(0) ∈ {0, 1} (i = 1, 2, . . . , n) are fixed. Moreover, suppose
thatσ ∈ (0, 1] and θ ∈ (0, 1) are arbitrarily given. If (A1), (A1’),
and (A2) are true, and

(A3) either the opposition group I0 or the supportive group
I1 outnumbers the other in the sense that∣∣|I1| − |I0|

∣∣
n

≥ σ (12)

(A4) the number n of agents is sufficiently large such that

n >
δ

(1− θ)σ2

∞∑
t=1

(c(t))2 (13)

then there exists a time T ∈ Z0+ such that⎧⎪⎪⎨
⎪⎪⎩

P

[
sup
t≥T

xi(t) < 0.5

]
≥ θ, if |I0| > |I1|

P

[
inf
t≥T

xi(t) > 0.5

]
≥ θ, if |I0| < |I1|

(14)

for every i ∈ V.
Proof: See Section 1. �
Theorem 1 provides an approximate solution to Problem 1

in the sense that the states of all the agents remain less than
or more than 0.5 after some time T in a probabilistic sense. In
fact, supt≥T xi(t) < 0.5 implies that lim supt→∞ xi(t) < 0.5
and its converse is also true. Therefore, (14) means that (3)
holds with probability greater than or equal to θ. Thus, if θ
is sufficiently large, there is a sufficiently high probability that
the majority opinion of xi(0) (i = 1, 2, . . . , n) is determined.
Hence, the parameter θ corresponds to the level of confidence
of the solution. Meanwhile, the parameter σ corresponds to the
resolution of distinguishing two groups: If σ is smaller, the
algorithm can be applied to the case in which the two groups
have more identical sizes.

For this result, three remarks are given.

TABLE I
LOWER BOUNDS OF σ SATISFYING (13) FOR δ = 0.752 AND∑∞

t=1
(c(t))2 = 0.9

First, the parameters σ and θ, which specify the accuracy of
this algorithm, can be arbitrarily selected. However, as shown
in (A4), if the gain sequence ε(t) (t = 0, 1, . . . ,) is fixed [i.e.,∑∞

t=1(c(t))
2 is fixed in (13)], the applicable size (i.e., n) of the

multiagent system becomes more limited as σ → 0 and θ → 1.
Table I shows the lower bounds of σ satisfying (13) for δ =
0.752 and

∑∞
t=1(c(t))

2 = 0.9. If (A4) does not hold for given
parameters n, δ, σ, θ, and c(t), an alternative is to reselect the
design parameter c(t) so as to satisfy (13). In fact, c(t) in the
form of

c(t) =
c1

c0 + t
(15)

satisfies the three conditions in (A2) and
∑∞

t=1(c(t))
2 < 2c1

subject to 0 < c1 < c0. Thus, by appropriately selecting c1, we
can satisfy (13) for the given parameters. In this sense, the
proposed method approximately solves the problem with an
arbitrarily prescribed accuracy.

Second, the convergence rate of xi(t), which is useful for
the (rough) estimation of the length of T , is given as fol-
lows. If c(t) is given by (15) and x(t) converges to the set
span(1n) w.p.1. as shown in Lemma 2, the convergence rate is
O(1/

√
t), more precisely, E[‖xi(t)− xj(t)‖2] = O(1/

√
t) for

every (i, j) ∈ V ×V. This is the straightforward consequence
from the convergence rate analysis of classical stochastic ap-
proximation (Robbins–Monro algorithms) for finding roots (see,
e.g., [20] and [21]) and the fact that (6) is a Robbins–Monro
algorithm, as shown in Appendix III. It should be remarked that
the convergence rate does not depend on the network structure
unlike the typical consensus algorithm whose convergence rate
depends on the network structure (i.e., the eigenvalues of graph
Laplacian). This property may be useful in the sense that the
convergence rate is known in advance even when we do not
have the exact information on the network structure.

Finally, in Figs. 2 and 3, it seems that the states do not
reach the consensus, although the consensus is guaranteed by
Lemma 2. However, it is not the case. This is because the
convergence rate is O(1/

√
t) as mentioned earlier and it is

not so fast. In fact, we can observe the consensus after a long
time in both the cases; for example, in the case of Fig. 2,
we obtain max(i,j)∈{1,2,...,n} |xi(300)− xj(300)| � 0.047 and
max(i,j)∈{1,2,...,n} |xi(3000)− xj(3000)| � 0.011.

C. Proof of Theorem 1

Theorem 1 is a straightforward consequence of the following
three facts.

(i) For every t ∈ {1, 2, . . .}, P [|μ(t)− μ(0)| < σ/2] ≥ θ.
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(ii) For every t ∈ {1, 2, . . .}, the following relation holds:
If |I0| > |I1|, |μ(t)− μ(0)| < σ/2 implies that μ(t) < 0.5; if
|I0| < |I1|, it implies that μ(t) > 0.5.

(iii) For every i ∈ V, limt→∞(μ(t)− xi(t)) = 0 w.p.1.
Note that (iii) implies that if there exists a time T1 ∈ Z0+

such thatμ(t) < 0.5 for every t ∈ {T1, T1 + 1, . . .}, there exists
a time T2 ∈ Z0+ such that xi(t) < 0.5 for every t ∈ {T2, T2 +
1, . . .}. A similar proposition holds for μ(t) > 0.5 and xi(t) >
0.5.

Now, we prove (i)–(iii).
(i) For the random variable μ(t), Chebyshev’s inequality is

given by

P
[∣∣μ(t)− E[μ(t)]

∣∣ < ω
√
V [μ(t)]

]
≥ 1− 1

ω2
(16)

where ω ∈ [1,∞) is an arbitrary number. Applying Lemma 3 to
(16) with ω :=

√
1/(1− θ) (≥ 1), we have

P

[
|μ(t)− μ(0)| <

√
1

1− θ

√
δ

4n

∑t
τ=0(c(τ))

2

]

≥ 1− (1− θ). (17)

The right-hand side is equal to θ. In addition, (A2) and (A4) (in
particular, c(t) ∈ R+) imply that√

1

1− θ

√
δ

4n

∑t
τ=0(c(τ))

2 <
σ

2

on the left-hand side of (17). Hence, we obtain (i).
(ii) First, consider the case |I0| < |I1|. The inequality |μ(t)−

μ(0)| < σ/2 implies that

μ(t) > μ(0)− σ

2
. (18)

On the other hand, if |I0| < |I1|, the left-hand side of (12) is
equal to

|I1| − |I0|
n

=
|I1| − (n− |I1|)

n
=

2|I1|
n

− 1 = 2μ(0)− 1

because |I0| = n− |I1| and |I1|/n = μ(0). Applying this result
and (12)–(18), we have

μ(t) > μ(0)− σ

2
> μ(0)− 2μ(0)− 1

2
= 0.5.

The other case, i.e., |I0| > |I1|, can be proved in a similar way.
(iii) According to Lemma 2, (7) holds for every (i, j) ∈ V ×

V under (A1) and (A2). From (7) and (8), we have

lim
t→∞(μ(t)− xi(t)) = lim

t→∞

⎛
⎝
⎛
⎝ 1

n

n∑
j=1

xj(t)

⎞
⎠− xi(t)

⎞
⎠

= lim
t→∞

1

n

n∑
j=1

(xj(t)− xi(t))

=
1

n

n∑
j=1

lim
t→∞(xj(t)− xi(t))

= 0 w.p.1.

Fig. 4. Network structure of the sensor network (n = 50 and Δ = 49).

V. APPLICATION TO ANOMALY DETECTION BY

SENSOR NETWORK

An application of majority determination is anomaly detec-
tion by a sensor network. In this section, we demonstrate our
framework through this application.

Consider a sensor network composed of n sensor nodes,
which aims at detecting anomaly of a target system. In this net-
work, binary-valued communication is available among nodes.
At a certain moment, each node measures the state of the system,
which is either normal or anomaly; however, the measurements
are not accurate, e.g., in the sense that the measurement is
false with a probability. In this case, it is reasonable to exploit
the majority of the measurements as the output of the sensor
network. This is exactly our case.

Now, let us illustrate how the above anomaly detection is per-
formed by the majority determination algorithm in (4). Consider
a sensor network with n = 50 and network structure G whose
adjacency matrix is given by

A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 · · · · · · 1

1 0 1 0 · · · 0

1 0 0 1
. . .

...
...

...
...

. . .
. . . 0

... 0
...

. . . 1

1 1 0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

The network structure G is illustrated in Fig. 4, where node 1
bidirectionally communicate with all other nodes, node i+ 1 is
connected to node i (i = 2, 3, . . . , 49), and node 50 is connected
to node 1. Note that G is directed but balanced, Δ = 49, and
δ � 0.0216. The measurement of sensor node i is stored in its
initial state xi(0) as a binary value. The values 0 and 1 represent
normal and anomaly, respectively. It is assumed that we have
the prior information σ = 0.65 for the collective measurements.

For determining the majority in the sense of (14) with the
confidence level θ = 0.95, we apply the majority determination
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Fig. 5. Majority determination for the case where 90% of the measure-
ments are anomaly.

algorithm in (4) with the gain

ε(t) =
23

Δ(1 + t)
.

In this case, the right-hand side of (13) is less than 47.11, which
implies that (13) holds.

Fig. 5 shows the result for the case where 10% of the measure-
ments are normal and 90% anomaly. It is observed that the states
xi(t) (i = 1, 2, . . . , 50) are more than 0.5, from which the sensor
network outputs anomaly. Note that the consensus among nodes
is achieved as guaranteed by Lemma 2 but the consensus value
is not always equal to the average of xi(0) (i = 1, 2, . . . , n) [see
(9) and (10)].

In this way, our framework is useful for cooperative decision
making in sensor networks.

VI. CONCLUSION

We developed distributed algorithms for a majority deter-
mination problem with binary-valued communication. Based
on randomized communication, our algorithms approximately
solved the problem with an arbitrarily prescribed accuracy. We
also clarified the relationship among the number of agents, the
distribution of opinions, and the accuracy of the method. Our
results revealed that the lowest resolution required for majority
determination is two-level.

In future, we hope to extend our framework to the case with
malicious agents. Moreover, it may be interesting to handle time-
varying opinions.

APPENDIX I
ROBBINS–MONRO ALGORITHM

A. Cooperativity and Irreducibility of Vector-Valued
Functions

We introduce the notions of cooperativity and irreducibility
for vector-valued functions, according to [22, Sec. 4].

Definition 1: Consider a function h : Rn → Rn.

(i) The function h is said to be cooperative if it is continuously
differentiable and the off-diagonal elements of the Jacobian
matrix ∂h(x)/∂x are non-negative for every x ∈ Rn.

(ii) The function h is said to be irreducible if the Jacobian
matrix ∂h(x)/∂x is irreducible for every x ∈ Rn. �

B. Robbins–Monro Algorithm and Convergence

The Robbins–Monro algorithm is given as

x(t+ 1) = x(t) + a(t) (h(x(t)) + e(t)) (20)

where x(t) ∈ Rn is the state, a(t) ∈ R is the time-varying gain,
e(t) ∈ Rn is a random vector, and h : Rn → Rn is a function.

The following result is a straightforward consequence of [23,
Th. 2], and [22, Th. A, Th. 4.4, and Corollary 4.6].

Lemma 4: Consider the Robbins–Monro algorithm in (20). If
the following conditions hold, then the state x(t) converges to
the set of zeros of the function h.

(B1) h is Lipschitz, cooperative, and irreducible.
(B2) a(t) > 0 for every t ∈ Z0+,

∑∞
t=0 a(t) = ∞, and∑∞

t=0(a(t))
2 < ∞.

(B3) The stochastic process e(t) (t = 0, 1, . . .) is a martin-
gale difference sequence with respect to the filtration
Ft−1 generated by {x(0), e(0), e(1), . . . , e(t− 1)},
i.e.,

E[e(t)|Ft−1] = 0 w.p.1.

Moreover, the stochastic process e(t) is square-
integrable martingale, i.e.,

E[‖e(t)‖2|Ft−1] ≤ d(1 + ‖x(t)‖2) w.p.1
for some d ∈ R+.

(B4) supt∈Z0+
‖x(t)‖ < ∞ w.p.1. �

APPENDIX II
PROBABILISTIC PROPERTIES OF VARIABLES wi(t)

It is important to clarify the probabilistic properties of the
variables wi(t) (i = 1, 2, . . . , n) in (5). The following lemma
provides the expectations of wi(t) and their products.

Lemma 5: For the multiagent system with the majority de-
termination algorithm in (4), suppose that the opinions xi(0) ∈
{0, 1} (i = 1, 2, . . . , n) are fixed. Then, the following statements
hold.

(i) E[wi(t)] = 0 for every i ∈ V and t ∈ Z0+.
(ii) E[wi(t1)wj(t2)]

=

{
E[(1− xi(t1))xi(t1)] if i = j and t1 = t2,

0 otherwise

for every (i, j) ∈ V ×V and (t1, t2) ∈ Z0+ × Z0+.
(iii) E[(wi(t))

2] ≤ 1/4 for every i ∈ V and t ∈ Z0+.
Proof: (i) Considering that wi(t) only depends on xi(t)

according to (4), it is straightforward to calculateE[wi(t)] using
(4) and (5). In fact

E[wi(t)] = Exi(t)[E[wi(t)|xi(t)]]

E[wi(t)|xi(t)] = E[yi(t)− xi(t)|xi(t)]
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= (0− xi(t))(1− xi(t)) + (1− xi(t))xi(t)

= 0

which implies that E[wi(t)] = Exi(t)[0] = 0.
(ii) We first consider the former case, i.e., i = j and t1 = t2. In

this case, we have E[wi(t1)wj(t2)] = E[(wi(t1))
2] and wi(t1)

only depends on xi(t1) as in (4). Thus

E[(wi(t1))
2] = Exi(t1)[E[(wi(t1))

2|xi(t1)]],

E[(wi(t1))
2|xi(t1)]

= E[(yi(t1)− xi(t1))
2|xi(t1)]

= (0− xi(t1))
2(1− xi(t1)) + (1− xi(t1))

2xi(t1)

= (1− xi(t1))xi(t1)

according to (4) and (5), which prove that

E[wi(t1)wj(t2)] = E[(1−xi(t1))xi(t1)].

We next consider the case where i �= j or t1 �= t2. Using straight-
forward calculation based on (4) and (5), we have

E[wi(t1)wj(t2)|xi(t1), xj(t1)]

= (0− xi(t1))(0− xj(t2))(1− xi(t1))(1− xj(t2))

+ (0− xi(t1))(1− xj(t2))(1− xi(t1))xj(t2)

+ (1− xi(t1))(0− xj(t2))xi(t1)(1− xj(t2))

+ (1− xi(t1))(1− xj(t2))xi(t1)xj(t2)

= 0.

Thus

E[wi(t1)wj(t2)]

= Exi(t1),xj(t2)[E[wi(t1)wj(t2)|xi(t1), xj(t2)]]

= Exi(t1),xj(t2)[0]

= 0.

(iii) By assumption, xi(0) ∈ {0, 1} for every i ∈ V. Fur-
thermore, Lemma 1 implies that xi(t) ∈ [0, 1] for every i ∈
{1, 2, . . . , n} and t ∈ {1, 2, . . .}. On the other hand, the maxi-
mum value of (1− xi(t))xi(t) with respect to xi(t) ∈ [0, 1] is
1/4. Therefore, it follows from (ii) that E[(wi(t))

2] ≤ 1/4. �

APPENDIX III
PROOF OF LEMMA 2

Here, we prove Lemma 2.
The collective dynamics in (6) corresponds to the Robbins–

Monro algorithm in (20) (see Appendix I) by considering
−Lx(t), Aw(t), and ε(t) as h(x(t)), e(t), and a(t), respec-
tively. Thus, we show that the conditions (B1)–(B4) hold for
h(x(t)) := −Lx(t), e(t) := Aw(t), and a(t) := ε(t).

(B1) Since the function −Lx is linear with respect to x,
−Lx is Lipschitz. Next, the off-diagonal elements of any graph
Laplacian are nonpositive because L = D −A, D is diago-
nal, and the elements of A are non-negative [19]. Thus, the
off-diagonal elements of the Jacobian of −Lx, i.e., −L, are
nonnegative for every x ∈ Rn, which proves that the Jacobian

of −Lx is cooperative. Finally, it is well established that the
matrix −L is irreducible under (A1). Consequently, (B1) holds
for h(x(t)) := −Lx(t).

(B2) Condition (A2) implies (B2).
(B3) For e(t) := Aw(t), the first half of (B3) is given by

Lemma 5 (i). Next, it follows from (5), yi(t) ∈ {0, 1}, and
Lemma 1 that w(t) ∈ [−1, 1]n for every xi(0) ∈ {0, 1} (i =
1, 2, . . . , n) and t ∈ Z0+. Hence, ‖Aw(t)‖ ≤ ‖A‖‖w(t)‖ ≤
‖A‖√n. This indicates that E[‖Aw(t)‖2|Ft−1] ≤ ‖A‖2n,
which establishes the second half of (B3).

(B4) This follows from Lemma 1 and the assumption that
xi(0) ∈ {0, 1} (i = 1, 2, . . . , n).

APPENDIX IV
PROOF OF LEMMA 3

Lemma 3 can be proved as follows.

A. Proof of (9)

Multiplying both sides of (6) by (1/n)1�
n from left, we obtain

1

n
1�
nx(t+1)=

1

n
1�
nx(t)− ε(t)

1

n
1�
nLx(t)+ ε(t)

1

n
1�
nAw(t).

(21)

Then, μ(t) = (1/n)1�
nx(t) from (8), 1�

nL = 01×n under
(A1’) [19], and A = D − L. Thus, (21) is equivalent to

μ(t+ 1) = μ(t) + ε(t)
1

n
1�
nDw(t)− ε(t)

1

n
1�
nLw(t)

= μ(t) + ε(t)
1

n
1�
nDw(t).

Therefore

μ(t) = μ(0) +

t−1∑
τ=0

ε(τ)
1

n
1�
nDw(τ). (22)

As only w(τ) (τ = 0, 1, . . . , t− 1) are random variables, it
follows from Lemma 5 (i) that

E[μ(t)] = μ(0) + E

[
t−1∑
τ=0

ε(τ)
1

n
1�
nDw(τ)

]

= μ(0) +

t−1∑
τ=0

ε(τ)
1

n
1�
nDE[w(τ)]

= μ(0).

B. Proof of (10)

The matrix D is diagonal with the diagonal elements |Ni|
(i = 1, 2, . . . , n). Considering this fact along with (22), (μ(t)−
μ(0))2 can be calculated as

(μ(t)− μ(0))2 =

(
t−1∑
τ=0

ε(τ)
1

n
1�
nDw(τ)

)2

=

(
1

n

t−1∑
τ=0

n∑
i=1

ε(τ)|Ni|wi(τ)

)2

(23)
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subject to (A1’). It follows from (9), (11), (23), Lemma 5 (ii)
and (iii), and (A2) that

V [μ(t)] = E[(μ(t)− E[μ(t)])2]

= E[(μ(t)− μ(0))2]

= E

⎡
⎣( 1

n

t−1∑
τ=0

n∑
i=1

ε(τ)|Ni|wi(τ)

)2
⎤
⎦

=
1

n2

t−1∑
τ=0

n∑
i=1

(ε(τ))2|Ni|2E[(wi(τ))
2]

≤ 1

n2

t−1∑
τ=0

n∑
i=1

(
1

Δ
c(τ)

)2

|Ni|2 1
4

=
1

4n2

t−1∑
τ=0

(
(c(τ))2

1

Δ2

n∑
i=1

|Ni|2
)

=
δ

4n

t−1∑
τ=0

(c(τ))2. (24)
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