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Structural Oscillatority Analysis
of Boolean Networks

Shun-ichi Azuma , Senior Member, IEEE, Takahiro Yoshida, and Toshiharu Sugie , Fellow, IEEE

Abstract—Boolean networks are system models whose
binary-state nodes are interconnected. Although a number
of studies have been conducted so far, it is usually assumed
that the full information on the target system is available for
analysis and design. This paper addresses a structural anal-
ysis problem for Boolean networks, i.e., the case when the
information on the network structure is available but that on
the node dynamics is unavailable. In particular, we consider
here oscillatority (instability). First, the notion of structural
oscillatority is formulated based on an equivalence relation
of network structures. We next present a necessary and suf-
ficient condition for the so-called cactus Boolean networks
to be structurally oscillatory. This condition captures struc-
tural oscillatority by a simple characterization in terms of
the network structure (more concretely, the number of in-
hibiting edges in each simple cycles), which enables us to
apply it to large-scale Boolean networks.

Index Terms—Boolean network, network topology,
structural oscillatority, structural stability.

I. INTRODUCTION

BOOLEAN networks [1] are system models whose binary-
state nodes are interconnected. Although the state of each

node is restricted to be either 0 (inactive) or 1 (active), the system
models are known as good approximations of various biological
networks [2], [3].

So far, a number of results have been obtained in the fields of
control and systems biology, such as stability (existence of at-
tractors) [4]–[10], oscillatority [11], controllability and observ-
ability [12]–[14], and control synthesis [13], [15]–[20]. Other
results can be found in, e.g., [21], [22]. It is assumed there (and
in other existing results) that the full information on the target
system is available, which may not fit in real situations. In fact,
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the perfect identification of a large-scale Boolean network is al-
most impossible because the required number of experimental
data exponentially grows with the maximum indegree [23]. So
it is often difficult to construct a model of the target system,
which prevents us from using the existing results. Moreover, a
Boolean network can be regarded as the combination of a net-
work structure and a node dynamics, and the former has been
considered to be more fundamental than the latter especially
in biology. This follows from the fact that the former has been
actually identified for many biological networks as an activa-
tion/inhibition relationship among the elements and the results
are archived in databases such as KEGG [24], but the latter
has been less investigated. Therefore, in biology, it is desirable
to develop a method for analyzing dynamical properties only
based on the information on the network structure, i.e., without
using the information on the node dynamics.

Motivated by this circumstance, the authors have recently
formulated a structural stability problem and derived a series
of results on the monostability, i.e., the existence of a unique
equilibrium [25], [26]. On the other hand, in addition to stability,
oscillatority (that is, instability) is also important in analyzing
dynamic functions, especially in living organisms [27], such
as circadian rhythm, cell division, and heartbeat. However, the
structural oscillatority problem for Boolean networks is still
open.

This paper, thus, addresses the structural oscillatority of
Boolean networks. In particular, we assume that the network
structure represents the interaction among the nodes with
the direction of correlation (which corresponds to the activa-
tion/inhibition in biology) and consider the problem of finding
a class of Boolean networks that are structurally oscillatory. As
a solution to the problem, we present a necessary and sufficient
condition for Boolean networks with a cactus network structure,
which is strongly connected and has no edge contained in two
or more different simple cycles, to be structurally oscillatory.
Structural oscillatority is captured by a simple characterization
in terms of the network structure (more concretely, the number
of inhibiting edges in each simple cycle), which enables us to
apply it to large-scale Boolean networks. Note that this class of
Boolean networks is specific but practically important because
cactus network structures include typical ones such as cyclic
networks, 8-shaped networks, and flower-shaped networks.

For the contribution, we would like to stress the following
points. First, our result is useful not only for verifying the struc-
tural oscillatority of a given system but also for synthesizing an
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oscillatory system with unknown nodes. Second, our result is an
important first step to establish a structure-based analysis and
design framework of Boolean networks, because it is not trivial
in the first place to determine whether there exists a structurally
oscillatory Boolean network or not, while this paper finds a
general class of such systems.

This paper is organized as follows. In Section II, the sys-
tems to be studied, i.e., Boolean networks, and the notion of
structural oscillatority are introduced. Section III presents a
necessary and sufficient condition for the structural oscillator-
ity of Boolean networks with a cactus network structure, and
Section IV gives the proof. Finally, Section V concludes this
paper.

Note that this paper is based on our preliminary version [28],
published in a conference proceedings. However, this journal
version generalizes the preliminary result and contains the fol-
lowing new materials: 1) complete proofs omitted in the confer-
ence version, 2) a generalized condition for Boolean networks
with a cactus network structure to be structurally oscillatory.

Notation: (i) Sets and vectors: The cardinality of the finite set
S is denoted by |S|. Given the numbers x1 , x2 , . . . , xn and
the set I := {i1 , i2 , . . . , im} ⊂ {1, 2, . . . , n}, we use (xi)i∈I

to represent the tuple (xi1 , xi2 , . . . , xim
). For instance, if I =

{1, 3, 4}, (xi)i∈I = (x1 , x3 , x4).
(ii) Boolean functions: For the Boolean variables x∈

{0, 1} and y∈{0, 1}, the logical OR and logical AND op-
erations are denoted by x ∨ y and x ∧ y, respectively. We
use x̄ to represent the negation of x. For the vector v
of Boolean variables, we use v̄ to express the element-
wise negation of v. The Boolean function f : {0, 1}n →
{0, 1} of x1 , x2 , . . . , xn is said to be dependent on xi if
there exists a tuple (x1 , x2 , . . . , xi−1 , xi+1 , xi+2 , . . . , xn ) ∈
{0, 1}n−1 satisfying f(x1 , x2 , . . . , xi−1 , xi , xi+1 , . . . , xn ) �=
f(x1 , x2 , . . . , xi−1 , x̄i , xi+1 , . . . , xn ). For example, x1 ∨ x2 is
dependent on x1 and x2 , while (x1 ∧ x2) ∨ (x1 ∧ x̄2) ∨ x3 is
not dependent on x2 but is dependent on x1 and x3 because it
is equal to x1 ∨ x3 . If f is dependent on all the arguments, it is
said to be minimally represented.

(iii) Graphs: For the directed graph G = (V,E), the node
sequence (i1 , i2 , . . . , im ) ∈ Vm is called a directed path from
i1 to im (or simply called a path) if (ik , ik+1) ∈ E holds
for every k ∈ {1, 2, . . . ,m − 1}, where m ∈ {2, 3, . . .}. The
path (i1 , i2 , . . . , im ) is called a simple cycle if i1 = im and
i1 , i2 , . . . , im−1 are distinct from each other. If node i ∈ V
is a part of the path (i1 , i2 , . . . , im ) (or the simple cy-
cle (i1 , i2 , . . . , im ) with i1 = im ), i.e., i = ik for some k ∈
{1, 2, . . . ,m}, the node is said to be contained in the path
(or contained in the simple cycle). The same terminology is
applied to edges. The graph G is said to be strongly con-
nected if there exists a directed path from i to j for each pair
(i, j) ∈ V × V. These notions are similarly defined for edge-
labeled directed graphs, denoted by G = (V,E, L) with a la-
beling function L for edges. Next, consider the directed graphs
G1 = (V1 ,E1) and G2 = (V2 ,E2) where V1 and V2 are node
sets and E1 and E2 are edge sets. If there exists a one-to-one
mapping h : V1 → V2 such that (h(v), h(w)) ∈ E2 for each
(v, w) ∈ E1 , the graphs are said to be isomorphic.

II. PROBLEM FORMULATION

A. System Description

Consider the Boolean network with n nodes, given by

xi(t + 1)=fi((xj (t))j∈N i
, (x̄j (t))j∈N̄ i

) (i=1, 2, . . . , n) (1)

where xi(t)∈{0, 1} is the state of node i. The set Ni ⊆
{1, 2, . . . , n} contains the indices of activating neighbor nodes
whose state affects the update of the state of node i, while
N̄i ⊆ {1, 2, . . . , n} contains those of inhibiting neighbor nodes
whose negated state affects the update of the state of node
i. When (1) represents a gene regulatory network, the acti-
vating neighbor nodes and inhibiting ones correspond to ac-
tivating genes and inhibiting genes, respectively. The function
fi : {0, 1}|N i | × {0, 1}|N̄ i | → {0, 1} is a Boolean function as-
sumed to

(a) be not dependent on xj (t) and its negation x̄j (t) at the
same time (i.e., Ni ∩ N̄i = ∅);

(b) be minimally represented [under (a)];
(c) be composed of logical AND and OR operators; and
(d) be identical to 0 or 1 if Ni = N̄i = ∅.

Under (a), (c), and (d), fi is a sign-definite function.1 The
Boolean networks composed of sign-definite functions are of-
ten called regulatory Boolean networks [7], which are rather
restrictive but are known to be an important class of systems.
Meanwhile, (b) implies that each Boolean function fi does not
contain any redundant argument.

For the Boolean network given by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(t + 1) = x2(t)

x2(t + 1) = x4(t) ∨ x̄3(t)

x3(t + 1) = x4(t)

x4(t + 1) = x̄1(t)

(2)

we have N1 = {2}, N̄1 = ∅, N2 = {4}, N̄2 = {3}, N3 = {4},
N̄3 = ∅, N4 = ∅, N̄4 = {1}, f1(x2) = x2 , f2(x4 , x̄3) = x4 ∨
x̄3 , f3(x4) = x4 , and f4(x̄1) = x̄1 . It is clear that (a)–(d) hold
for fi (i = 1, 2, 3, 4).

Note here that, for instance, fi((xj (t))j∈N i
, (x̄j (t))j∈N̄ i

)
:= (x1(t) ∨ x2(t)) ∧ (x̄1(t) ∨ x̄2(t)), which corresponds to the
exclusive-OR operation for x1(t) and x2(t), is excluded in this
paper because (b)–(d) hold but (a) does not hold.

The Boolean network in (1) can be regarded as the combina-
tion of a network structure and a node dynamics. So we denote
the system by

Σ(G,F )

where G and F represent the network structure and node dy-
namics, respectively, which are defined based on (1) as follows.

1In general, the Boolean function f : {0, 1}n → {0, 1} is said
to be monotone with respect to i ∈ {1, 2, . . . , n} if (a) f (x1 , x2 ,
. . . , xi−1 , 0, xi+1 , . . . , xn ) ≤ f (x1 , x2 , . . . , xi−1 , 1, xi+1 , . . . , xn ) for ev-
ery (x1 , x2 , . . . , xi−1 , xi+1 , xi+2 , . . . , xn ) ∈ {0, 1}n−1 or (b) f (x1 ,
x2 , . . . , xi−1 , 0, xi+1 , . . . , xn ) ≥ f (x1 , x2 , . . . , xi−1 , 1, xi+1 , . . . , xn ) for
every (x1 , x2 , . . . , xi−1 , xi+1 , xi+2 , . . . , xn ) ∈ {0, 1}n−1 . In particular, f
is said to be sign-definite if it is monotone for every i ∈ {1, 2, . . . , n} [7].
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Fig. 1. Network structure G of the Boolean network in (2).

1) G = (V,E, L) is the edge-labeled directed graph with
the node set V := {1, 2, . . . , n}, the edge set E :=
{(j, i) ∈ {1, 2, . . . , n}2 |j ∈ Ni ∪ N̄i}, and the labeling
function L : E → {−1, 1} satisfying L(j, i) = 1 for j ∈
Ni and L(j, i) = −1 for j ∈ N̄i .

2) F : {0, 1}|
⋃n

i = 1 N i | × {0, 1}|
⋃n

i = 1 N̄ i | → {0, 1}n is the
collection of the Boolean functions f1 , f2 , . . . , fn .

The network structure G is the information on whether a
certain node affects the update of another one via its logical
state or the opposite of it. The node dynamics F , on the other
hand, is the information about the explicit logical expression
of each function fi . For example, for system (2), G is given
by Fig. 1 and F is the tuple (f1 , f2 , f3 , f4) for the functions fi

(i = 1, 2, 3, 4) shown after (2). Note in Fig. 1 that the edges with
label 1 are depicted by → and those with −1 are denoted by �.

In the following part, the edges with label 1 are called acti-
vating edges, while those with −1 are called inhibiting edges.
Moreover, if node j is an activating or inhibiting neighbor node
of node i, i.e., j ∈ Ni ∪ N̄i , node j is called a neighbor node of
node i. And also, the node dynamics F is said to be regular if
the Boolean functions fi (i = 1, 2, . . . , n) satisfy the conditions
(a)–(d).

B. Attractors and Structural Equivalence

In considering the behavior of Σ(G,F ) as a structural
property, we need the notions of attractors and structural
equivalence.

Since Σ(G,F ) has only 2n possible state values, the
trajectory reaches a set in the state space. Such a set is
called an attractor. More precisely, the notion is defined as
follows. Let x(t) ∈ {0, 1}n be the state of Σ(G,F ), i.e.,
x(t) = [x1(t) x2(t) · · · xn (t)]�. For each initial state
x(0) ∈ {0, 1}n , there exist a finite time t ∈ {0, 1, . . .} and a
sequence (a1 , a2 , . . . , al) ∈ {0, 1}n × {0, 1}n × · · · × {0, 1}n

of distinct Boolean vectors such that x(t + 1) = a1 , x(t + 2) =
a2 , . . ., x(t + l) = al , x(t + l + 1) = a1 , x(t + l + 2) = a2 ,
. . .. The sequence (a1 , a2 , . . . , al) is called an attractor of
length l. For instance, the system in (2) has the following
three attractors of length 1, length 2, and length 4, respec-
tively: ([1 1 0 0]�), ([0 1 1 0]�, [1 0 0 1]�), and
([1 1 1 0]�, [1 0 0 0]�, [0 1 0 0]�, [1 1 0 1]�). In particular,
we call here an attractor of length 1 a point attractor.

Next, the notion of structural equivalence is given. Consider
two Boolean networks Σ(G1 , F1) and Σ(G2 , F2) with regular
node dynamics F1 and F2 (see the end of Section II-A for the
definition of regular node dynamics). If the systems share the

Fig. 2. Network structure G of the Boolean network in (4).

same network structure, i.e., G1 = G2 , they are said to be struc-
turally equivalent. For instance, the system in (2) is structurally
equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(t + 1) = x2(t)

x2(t + 1) = x4(t) ∧ x̄3(t)

x3(t + 1) = x4(t)

x4(t + 1) = x̄1(t).

(3)

In fact, both (2) and (3) have the same network structure as
shown in Fig. 1 and have regular node dynamics, although their
dynamics of node 2 are different from each other.

Note here that a Boolean network is structurally equivalent to
itself.

C. Notion of Structural Oscillatority

Now, the notions of oscillatority and structural oscillatority
are introduced for the Boolean network Σ(G,F ).

Definition 1: (i) The Boolean network Σ(G,F ) is said to
be oscillatory if there exists no point attractor in Σ(G,F ).

(ii) The Boolean network Σ(G,F ) is said to be structurally
oscillatory if all the Boolean networks which are structurally
equivalent to Σ(G,F ) are oscillatory.

Two remarks are given.
First, oscillatority and structurally oscillatory imply that the

system oscillates for any initial state. These notions are useful
for, e.g., the case when one needs an oscillator but the initial state
cannot be configured or an unexpected state jump sometimes
occurs due to disturbances.

Second, oscillatority is a system property depending on both
the network structure G and the node dynamics F . In contrast,
structural oscillatority depends only upon G. So structural os-
cillatority is a useful concept when the node dynamics F is
unknown.

Oscillatority and structural oscillatority are illustrated in the
following.

Example 1: Consider the following Boolean network
Σ(G,F ) whose network structure is shown in Fig. 2:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(t + 1) = x3(t) ∧ x̄4(t)

x2(t + 1) = x1(t)

x3(t + 1) = x̄2(t)

x4(t + 1) = x1(t).

(4)

There exist only two systems which are structurally equivalent to
Σ(G,F ): itself and the system obtained by replacing∧with∨ in
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Fig. 3. Example of cactus network structures.

Fig. 4. Genetic network of Laci-Arac oscillator.

(4). By calculating the state transition for each x(0) ∈ {0, 1}4 ,
it turns out that the former system has the attractor of length 5,
that is, ([0 0 0 0]�, [0 0 1 0]�, [1 0 1 0]�, [1 1 1 1]�,
[0 1 0 1]�), as a unique attractor, which implies that it is
oscillatory. In a similar way, it follows that the latter has the
attractor ([0 0 0 0]�, [1 0 1 0]�, [1 1 1 1]�, [1 1 0 1]�,
[0 1 0 1]�) of length 5, as a unique attractor. So it is also
oscillatory. Since both the structurally equivalent systems are
oscillatory, Σ(G,F ) is structurally oscillatory.

Note that if Σ(G,F ) is not oscillatory, it is not structurally
oscillatory, but not vice versa. Note also that if Σ(G,F ) is struc-
turally oscillatory, any system which is structurally equivalent
to Σ(G,F ) is structurally oscillatory, and vice versa.

III. STRUCTURAL OSCILLATORITY CONDITION FOR CACTUS

BOOLEAN NETWORKS

Consider the Boolean network Σ(G,F ) in (1). If the network
structure G is strongly connected and has no edge contained in
two or more different simple cycles as illustrated in Fig. 3, then
G is said to be a cactus and Σ(G,F ) is called a cactus Boolean
network (see the notation part in Section I for the definitions of
strongly connected graphs and simple cycles). For example, the
network structure G in Fig. 2 is a cactus, while G in Fig. 1 is not
a cactus because edge (4, 1) [and (1, 2)] belongs to both simple
cycles (1, 2, 4) and (1, 2, 3, 4).

This notion is a directed variant of cactus graphs studied in
[29], and, in the directed case, it is well known that G is com-
posed of simple cycles in which two simple cycles have at most
one node in common [29], [30]. This class of network structures
includes typical networks such as cyclic networks, 8-shaped net-
works, and flower-shaped networks [26]. For example, cactus
network structures are found in biology, as illustrated in Fig. 4.

For cactus Boolean networks, a necessary and sufficient con-
dition for structural oscillatority is obtained as follows.

Theorem 1: The cactus Boolean network Σ(G,F ) is struc-
turally oscillatory if and only if all the simple cycles of G contain
an odd number of inhibiting edges.

Proof: See Section IV. �
Theorem 1 captures the structural oscillatority of the cactus

Boolean networks by a simple characterization in terms of the
network structure, i.e., the number of inhibiting edges. Since
this condition can be applied to large-scale Boolean networks
(i.e., with large n), it is useful not only for checking the struc-
tural oscillatority but also for designing an oscillatory Boolean
network with unknown node dynamics.

Example 2: Consider the Boolean network Σ(G,F ) in (4).
As mentioned above, the network structure G is a cactus and
both simple cycles (1, 2, 3) and (1, 4) contain a single inhibiting
edge. By Theorem 1, Σ(G,F ) is structurally oscillatory.

Example 3: Consider a Boolean network Σ(G,F ) whose
network structure is given in Fig. 3. It is not structurally os-
cillatory by Theorem 1, because there exists a simple cycle
containing an even number of inhibiting edges (in fact, a sim-
ple cycle includes two inhibiting edges and two simple cycles
include no inhibiting edge).

We next give an example of a biological network.
Example 4: Fig. 4 shows the genetic network of the Laci-

Arac oscillator [31], which is a synthetic oscillator in the bac-
terium Escherichia coli. According to the dynamics described
in [31], a Boolean network model is derived as follows:

{
x1(t + 1) = x̄1(t) ∨ x2(t)

x2(t + 1) = x̄1(t) ∧ x2(t)
(5)

where x1(t) ∈ {0, 1} and x2(t) ∈ {0, 1} are the expression
states of lacI and araC genes, respectively. As shown in the
figure, the network structure is a cactus and the self-loop on
araC contains no inhibiting edge. This fact and Theorem 1 im-
ply that the system is not structurally oscillatory. In fact, it is
easy to see that (5) has no point attractor but the structurally
equivalent system, which is obtained by replacing ∧ with ∨ in
the dynamics of node 2, has the point attractor ([1 1]�). This
consequence suggests that it is important to design the node dy-
namics carefully in order to generate oscillation in the system.
Meanwhile, another option is to remove the self-loop on araC
in some way to make the system structurally oscillatory.

IV. PROOF OF THEOREM 1

A. State-Transition Graph and Oscillatority

As a preliminary, we present the notions of state-transition
graphs and their isomorphism, and show the relation with oscil-
latority.

Let us express the Boolean network Σ(G,F ) in (1) as

x(t + 1) = f(x(t), x̄(t))

where f : {0, 1}n × {0, 1}n → {0, 1}n , and x(t) = [x1(t)
x2(t) · · · xn (t)]� ∈ {0, 1}n and x̄(t) is the element-wise
negation of x(t) as defined before. The state transition of
Σ(G,F ) can be represented by the directed graph with node
set {0, 1}n and edge set {(x, x+) ∈ {0, 1}n × {0, 1}n |x+ =
f(x, x̄)}. This graph is called the state transition graph.
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Fig. 5. State transition graph of the Boolean network in (4).

For instance, the state transition graph of (4) is given in
Fig. 5 where S0 , S1 , . . . , S15 correspond to the state values
[0 0 0 0]�, [0 0 0 1]�, . . . , [1 1 1 1]�, respectively. Since
Σ(G,F ) is a finite-state machine, the state transition graph has
at least one cycle, and Σ(G,F ) is oscillatory if and only if the
state transition graph has no cycle of length 1.

Based on the state transition graphs, we can introduce an
equivalence relation for Boolean networks. Two Boolean net-
works Σ(G1 , F1) and Σ(G2 , F2) are said to be state-transition-
isomorphic if their state transition graphs are isomorphic. The
relation is denoted by Σ(G1 , F1) ∼ Σ(G2 , F2) or Σ(G2 , F2) ∼
Σ(G1 , F1).

The following result is a straightforward consequence of the
definitions of oscillatority [Definition 1(i)] and state-transition
isomorphism.

Lemma 1: Assume Σ(G1 , F1) ∼ Σ(G2 , F2). The system
Σ(G1 , F1) is oscillatory if and only if Σ(G2 , F2) is oscillatory.

It is remarked that a similar statement may not hold for the
structural oscillatority because the isomorphism is not on net-
work structures but on state-transition graphs (more precisely,
it is an open problem whether a similar statement holds or not
for the structural oscillatority).

B. Main Part of Proof

We first prove the necessity of Theorem 1 by showing the
contraposition: if G has a simple cycle including an even number
of inhibiting edges, then Σ(G,F ) is not structurally oscillatory.

Consider the cactus Boolean network Σ(G,F ) where G has
a simple cycle including an even number of inhibiting edges.
For the system, we introduce three cactus Boolean networks
Σ(G∗, F1), Σ(G∗, F2), and Σ(G,F3) (i.e., introduce a tuple
(G∗, F1 , F2 , F3)) such that they satisfy the following conditions:

(C1) Σ(G,F ) ∼ Σ(G∗, F1) and Σ(G∗, F2) ∼ Σ(G,F3);
(C2) G∗ is a cactus satisfying the following two properties:

(a) there exists no node such that the indegree is greater than 1
and the incoming edges are all inhibiting, (b) for each node of
indegree 1, the incoming edge is activating;

(C3) F2 contains only logical AND operators (i.e., contains no
logical OR operator);

(C4) Fi (i = 1, 2, 3) are regular.

Fig. 6. Relation among Σ(G, F ), Σ(G∗, F1 ), Σ(G∗, F2 ), and Σ(G, F3 ).

Note here that, Σ(G,F ) and Σ(G,F3) are structurally equiv-
alent and also Σ(G∗, F1) and Σ(G∗, F2) are structurally equiv-
alent under (C4). The relation among Σ(G,F ) and the other
three systems is shown in Fig. 6. We show in Appendix I that
there exist Σ(G∗, F1), Σ(G∗, F2), and Σ(G,F3) (i.e., G∗, F1 ,
F2 , and F3) satisfying (C1)–(C4) if G is a cactus, which has a
simple cycle including an even number of inhibiting edges.

Since (C3) implies that the dynamics of Σ(G∗, F2) is de-
scribed only with the logical AND operators, it turns out from
(C2) and (C3) that ([0 0 · · · 0]�) is an attractor of Σ(G∗, F2),
which implies that Σ(G∗, F2) is not oscillatory. So it follows
from the latter condition of (C1) (i.e., Σ(G∗, F2) ∼ Σ(G,F3))
and Lemma 1 that Σ(G,F3) is not oscillatory. This fact, the
structural equivalence between Σ(G,F3) and Σ(G,F ) (see
Fig. 6), and the definition of structural oscillatority [Defini-
tion 1(ii)] prove that Σ(G,F ) is not structurally oscillatory.

On the other hand, the sufficiency is proven by the existing
result in [7] ([7, Theorem 2]). The result has shown that the
following fact holds for the regulatory Boolean networks: if
Σ(G,F ) has a point attractor, then there exists a simple cycle
containing an even number of inhibiting edges in G. Moreover,
Σ(G,F ) is a regulatory Boolean network as stated in Section II-
A. These prove the sufficiency of Theorem 1.

V. CONCLUSION

In this paper, structural oscillatority has been discussed for
Boolean networks. A necessary and sufficient condition has
been presented for the class of Boolean networks with a cactus
network structure. It characterizes the structural oscillatority
by a simple characteristic (the number of inhibiting edges) of
the network structure. This result allows us not only to verify
the structural oscillatority but also to synthesize an oscillatory
Boolean network with unknown nodes.

In the future, we plan to generalize our framework to handle
a more general class of Boolean networks. We have recently
found that a general class of Boolean networks can be equiva-
lently transformed into a Boolean network with a cactus network
structure [32], and such an idea may be useful for the generaliza-
tion. Meanwhile, it is also interesting to address design problems
for Boolean networks with unknown nodes.

APPENDIX I
EXISTENCE OF BOOLEAN NETWORKS Σ(G∗, F1), Σ(G∗, F2),

AND Σ(G,F3) IN SECTION IV-B

As stated in Section IV-B, there exist cactus Boolean networks
Σ(G∗, F1), Σ(G∗, F2), and Σ(G,F3) satisfying (C1)–(C4) if
the cactus Boolean network Σ(G,F ) has a network structure
G with a simple cycle including an even number of inhibiting
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Fig. 7. Undirected graph Ĝ and spanning tree G̃ for G in Fig. 2.

edges. To prove this fact, we show here how to derive Σ(G∗, F1),
Σ(G∗, F2), and Σ(G,F3).

Before moving to the main part, we describe a brief outline
of this section. As a preliminary, we first present some notions
for cactus network structures in Appendix I-A. They are useful
for addressing the connection among simple cycles contained
in a cactus network structure. In Appendix I-B, we introduce a
transformation (Algorithm 1), denoted by Ti , for Boolean net-
works in the form of (1), from which a transformation, called
the cycle transformation and denoted by C�i , is defined for cac-
tus Boolean networks. Several properties of the transformations
Ti and C�i are given in Lemmas 3–9. The cycle transforma-
tion C�i is used for obtaining Σ(G∗, F1) (in Algorithm 2) and
the transformation Ti is used for obtaining Σ(G,F3). Finally,
Appendix I-C provides the systems Σ(G∗, F1), Σ(G∗, F2), and
Σ(G,F3) satisfying (C1)–(C4) by using Lemmas 2– 4, 6, 8, and
9 (some of which are derived by Lemmas 5 and 7).

A. Parent, Child, and Depth of Simple Cycles in Cactus
Network Structures

We first present several notions for cactus network structures.
Consider the cactus network structure G = (V,E, L), where

V := {1, 2, . . . , n} is the node set, E ⊆ V × V is the edge
set, and L : E → {−1, 1} is the labeling function. As stated in
Section III, G is composed of simple cycles in which two simple
cycles have at most one node in common. This implies that each
block2 of G is a simple cycle [29], [30]. So we call each simple
cycle of G cycle � (� = 1, 2, . . . , s) in this section (throughout
Appendix I), where s is the number of simple cycles.

In the cactus network structure G, cycles �1 and �2 are said
to be adjacent if they are distinct and have a node in common.
Let Ĝ = (V̂, Ê) be the undirected graph, which describes the
adjacency relation of simple cycles in G, i.e., V̂ := {1, 2, . . . , s}
and Ê is defined as the set of unordered pairs {�1 , �2} such that
cycles �1 and �2 are adjacent. Since Ĝ is a connected undirected
graph by definition, Ĝ has a spanning tree. So we arbitrarily
pick a spanning tree from the undirected graph Ĝ and denote
it by G̃. For example, both Ĝ and G̃ are given by Fig. 7 for
the cactus network structure G in Fig. 2, where cycles 1 and 2
indicate (1, 2, 3, 1) and (1, 4, 1), respectively.

Now, we introduce the notions of a parent, a child, and depth
for simple cycles of G, in a similar way to the well-known
notions for an undirected tree with a root. Assume that a cycle
�0 ∈ {1, 2, . . . , s} is arbitrarily chosen and referred to as the
root cycle. Cycle �1 is called a parent of cycle �2 if node �1 is
a parent of node �2 in the undirected tree G̃ with the root �0 . In
a similar way, cycle �1 is called a child of cycle �2 if node �1 is
a child of node �2 in the rooted tree G̃. The depth of cycle �1 in

2A graph G = (V, E) is said to be biconnected if, for each pair (i, j) ∈
V × V, there exist two directed paths from i to j which have no node in
common other than i and j . For a graph H , a maximal biconnected subgraph is
called a block[33].

G is defined as the depth of node �1 in the rooted tree G̃. Note
that these depend on the choice of the root cycle �0 .

The following lemma is straightforwardly obtained from a
well-known property of rooted trees [33].

Lemma 2: For the cactus network structure G, let cycle �0 ∈
{1, 2, . . . , s} be the root cycle. Each cycle � ∈ {1, 2, . . . , s}\
{�0} (except for the root cycle) has a unique parent.

B. Transformations of Boolean Networks Preserving
State-Transition Isomorphism

1) Transformation Ti : For the Boolean network Σ(G,F )
in (1) (whose network structure is not necessarily a cactus),
consider the following transformation with respect to node
i ∈ V.

Algorithm 1 (Transformation Ti):
(Step 1) Invert the labels (i.e., change 1 into −1 and con-

versely) of the edges connected to node i (the incoming and
outgoing edges of node i).

(Step 2) In the dynamics of node i, i.e., in the function fi ,
convert each logical AND operator, logical OR operator, binary
number 0, and number 1 into a logical OR operator, logical AND

operator, number 1, and number 0, respectively.
The resulting system is denoted by Ti(Σ(G,F )).
For instance, we obtain T1(Σ(G,F )) as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(t + 1) = x4(t) ∨ x̄3(t)

x2(t + 1) = x̄1(t)

x3(t + 1) = x̄2(t)

x4(t + 1) = x̄1(t)

for the system Σ(G,F ) in (4).
The composition Tj (Ti(Σ(G,F ))) is denoted by Tj ◦

Ti(Σ(G,F )). Similarly, the composition of multiple transfor-
mations Ti1 , Ti2 , . . . , Tiν

is expressed by Tiν
◦ Tiν −1 ◦ · · · ◦

Ti1 (Σ(G,F )).
The following lemmas show basic properties of the transfor-

mation Ti .
Lemma 3 ([26]): For the Boolean network Σ(G,F ), sup-

pose that i ∈ V is given. Then, Σ(G,F ) ∼ Ti(Σ(G,F )).
Note here that this lemma and the definition of the state-

transition isomorphism imply that

Σ(G,F ) ∼ Tiν
◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G,F )) (6)

for any ν ∈ {1, 2, . . .} and (i1 , i2 , . . . , iν ) ∈ Vν .
Lemma 4: For the Boolean network Σ(G,F ) (with G =

(V,E, L)), suppose that i ∈ V is given. Let G� = (V� ,E� , L�)
and F� be the network structure and node dynamics of
Ti(Σ(G,F )), respectively. Then, the following statements hold.

(i) F� is regular.
(ii) V� = V and E� = E.

Proof: Let f1 , f2 , . . . , fn and f�
1 , f�

2 , . . . , f�
n denote the

Boolean functions contained in F and F� , respectively.
(i) It is trivial from the two steps of Algorithm 1 that if the con-

ditions (a), (c), and (d) in Section II-A hold for f1 , f2 , . . . , fn ,
they also hold for f�

1 , f�
2 , . . . , f�

n .
Next, consider the condition (b) in Section II-A for

f�
1 , f�

2 , . . . , f�
n . From Algorithm 1, node i of Ti(Σ(G,F ))
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has the dynamics xi(t + 1) = f�
i ((x̄j (t))j∈N i

, (xj (t))j∈N̄ i
). It

follows from Step 2 of Algorithm 1 and De Morgan’s laws
that f�

i ((x̄j (t))j∈N i
, (xj (t))j∈N̄ i

) is equal to the negation of
fi((xj (t))j∈N i

, (x̄j (t))j∈N̄ i
) [26]. Thus, if the condition (b)

holds for fi , it also holds for f�
i . On the other hand, for node

j ∈ V\{i}, fj and f�
j are the same from Algorithm 1, while

their arguments are not necessarily the same in the following
sense: if node i is a neighbor node of node j, one of fj and
f�

j includes xi(t) and the other includes x̄i(t). In this case, by
considering the definition of minimal representation, it is clear
that if (b) holds for fj , it also holds for f�

j . So we can conclude
that F� is regular.

(ii) It is trivial that Step 1 of Algorithm 1 converts only the
labeling function L to L� . On the other hand, Step 2 and the
former statement, i.e., (i), imply that, for each j ∈ V, f�

j is
minimally represented with the state or negated state of the
same neighbor nodes as of the node j of Σ(G,F ) (see the end
of Section II-A for the definition of neighbor nodes). So we
obtain (ii). �

This lemma implies that the transformation Ti converts a
Boolean network into a Boolean network while preserving the
regularity of node dynamics and the neighbor nodes for each
node (where note that Ti may change how the neighbor nodes
affect each node, i.e., activation or inhibition). So if Σ(G,F ) is
a cactus Boolean network, then Ti(Σ(G,F )) is a cactus Boolean
network. Moreover, it turns out from (ii) that if Σ(G,F ) has a
simple cycle, then Ti(Σ(G,F )) has the same simple cycle. So,
in the following part, when a simple cycle of Σ(G,F ) is called
cycle �, the corresponding cycle of Ti(Σ(G,F )) is also called
cycle �, and vice versa.

The next lemma presents useful properties of the transforma-
tion Ti for cactus Boolean networks.

Lemma 5: For the cactus Boolean network Σ(G,F ), sup-
pose that i ∈ V is given. Then, the following statements hold.

(i) Assume that node i is contained in a simple cycle, called
cycle �. Cycle � of Σ(G,F ) contains an even number of inhibit-
ing edges if and only if cycle � of Ti(Σ(G,F )) contains an even
number of inhibiting edges.

(ii) Let G� be the network structure of Ti(Σ(G,F )). Suppose
that a regular node dynamics F̃ is given so that Σ(G�, F̃ ) is a
Boolean network in the class of Section II-A. Then, the network
structure of Ti(Σ(G�, F̃ )) is equal to G.

Proof: (i) Consider Σ(G,F ). Since G is a cactus and node
i is contained in cycle �, node i has only one incoming edge and
only one outgoing edge in cycle � (if it has other incoming or
outgoing edges, the edges are contained in other simple cycles).
On the other hand, the transformation Ti inverts the labels of
the incoming and outgoing edges of node i. These imply that
the transformation Ti adds two inhibiting edges, subtracts two
inhibiting edges, or does not change the number of inhibiting
edges, in cycle �. This proves (i).

(ii) Step 1 of Algorithm 1 is a mapping, which is a one-
to-one correspondence between G and G� and whose inverse
mapping is itself. Moreover, it follows from Step 2 that each
node of Ti(Σ(G�, F̃ )) has the same neighbor nodes as of the
corresponding node of Σ(G�, F̃ ), and then it turns out from
Lemma 4(i) and the regularity of F̃ that all the Boolean func-

tions of Ti(Σ(G�, F̃ )) are minimally represented. Thus, (ii) is
given. �

Moreover, Lemma 5(ii) is extended as follows.
Lemma 6: For the cactus Boolean network Σ(G,F ),

suppose that ν ∈ {1, 2, . . .} and (i1 , i2 , . . . , iν ) ∈ Vν are
given. Let G� be the network structure of Tiν

◦ Tiν −1 ◦ · · · ◦
Ti1 (Σ(G,F )). Suppose that a regular node dynamics F̃ is
given so that Σ(G�, F̃ ) is a Boolean network in the class of
Section II-A. Then, the network structure of Ti1 ◦ Ti2 ◦ · · · ◦
Tiν

(Σ(G�, F̃ )) (which is in the inverse order of Tiν
◦ Tiν −1 ◦

· · · ◦ Ti1 ) is equal to G.
Proof: For k ∈ {1, 2, . . . , ν}, let G�

k be the network struc-
ture of Tik

◦ Tik −1 ◦ · · · ◦ Ti1 (Σ(G,F )) and let G�
0 be the net-

work structure of Σ(G,F ). Then, G�
ν = G� and G�

0 = G. We
prove the statement by mathematical induction.

First, we prove that Tiν
(Σ(G�, F̃ )) has the network structure

G�
ν−1 . By definition, Tiν

(Tiν −1 ◦ Tiν −2 ◦ · · · ◦ Ti1 (Σ(G,F )))
has the network structure G�

ν (i.e., G� ), in which Tiν −1 ◦ Tiν −2 ◦
· · · ◦ Ti1 (Σ(G,F )) has the network structure G�

ν−1 . Hence, it
turns out from Lemma 5(ii) and G�

ν = G� that Tiν
(Σ(G�, F̃ ))

has the network structure G�
ν−1 .

Next, we show that, for each k = ν − 1, ν − 2, . . . , 1, Tik
◦

Tik + 1 ◦ · · · ◦ Tiν
(Σ(G�, F̃ )) has the network structure G�

k−1 un-
der the assumption that Tik + 1 ◦ Tik + 2 ◦ · · · ◦ Tiν

(Σ(G�, F̃ )) has
the network structure G�

k . By the definition of G�
k , Tik

(Tik −1 ◦
Tik −2 ◦ · · · ◦ Ti1 (Σ(G,F ))) has the network structure G�

k . By
applying this fact, the above assumption, and Lemma 5(ii)
to the systems Tik

(Tik + 1 ◦ Tik + 2 ◦ · · · ◦ Tiν
(Σ(G�, F̃ ))) and

Tik
(Tik −1 ◦ Tik −2 ◦ · · · ◦ Ti1 (Σ(G,F ))), the network structure

of the former system is equal to that of Tik −1 ◦ Tik −2 ◦ · · · ◦
Ti1 (Σ(G,F )), i.e., G�

k−1 . �
2) Cycle Transformation C�i : Next, we introduce a trans-

formation along a simple cycle of the cactus network structure
G, which is called the cycle transformation.

Consider the cactus Boolean network Σ(G,F ). For a cycle
� and a node i in the cycle, let T̄�i be the transformation of
Σ(G,F ) defined as follows: if node i has an inhibiting incoming
edge in cycle �, T̄�i is equal to Ti ; otherwise (if node i has an
activating incoming edge in cycle �), it is equal to the identity
transformation, which transforms Σ(G,F ) into itself. Note here
that node i has only one incoming edge in cycle � because G
is a cactus. The resulting system is denoted by T̄�i(Σ(G,F ))
and the composition of multiple transformations is defined in a
similar way to the case of Ti .

The cycle transformation C�i with respect to cycle � and node
i (in cycle �) is defined as T̄�jm �

◦ T̄�jm � −1 ◦ · · · ◦ T̄�j1 , where
m� ∈ {1, 2, . . . , n} is the positive integer and j1 , j2 , . . . , jm�

∈
V are the nodes such that (i, j1 , j2 , . . . , jm�

, i) corresponds
to cycle �. The resulting system is denoted by C�i(Σ(G,F )).
Note that the cycle transformation C�i does not contain the
transformation T̄�i , i.e., Ti , which is with respect to node i.
Fig. 8 illustrates the network structure for the cycle transforma-
tion with respect to cycle 1, defined as (2, 3, . . . , 7, 1, 2), and
node 2.

The following lemma shows that C�i corresponds to the com-
position of Tj for some nodes j.



AZUMA et al.: STRUCTURAL OSCILLATORITY ANALYSIS OF BOOLEAN NETWORKS 471

Fig. 8. Cycle transformation C12 (Σ(G, F )) where cycle 1 is
(2, 3, . . . , 7, 1, 2). (a) Σ(G, F ). (b) T̄13 (Σ(G, F )). (c) T̄14 ◦ T̄13 (Σ(G, F )).
(d) T̄15 ◦ T̄14 ◦ T̄13 (Σ(G, F )). (e) T̄16 ◦T̄15 ◦ · · · ◦T̄13 (Σ(G, F )). (f) T̄17 ◦
T̄16 ◦ · · · ◦ T̄13 (Σ(G, F )). (g) C12 (Σ(G, F )) [i.e., T̄11 ◦ T̄17 ◦ T̄16 ◦ · · · ◦
T̄13 (Σ(G, F ))].

Lemma 7: For the cactus Boolean network Σ(G,F ), sup-
pose that � ∈ {1, 2, . . . , s} and i ∈ V are given so that node
i is contained in cycle �. Then, there exist a positive integer
ν ∈ {1, 2, . . .} and node sequence (i1 , i2 , . . . , iν ) ∈ Vν such
that C�i(Σ(G,F )) is equal to Tiν

◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G,F )).
Proof: Let (i, j1 , j2 , . . . , jm�

, i) denote cycle �.
We first consider the case when there exists no node j ∈

{j1 , j2 , . . . , jm�
}, which has an inhibiting incoming edge in

cycle �. Then, C�i is equal to the identity transformation from
the definitions of C�i and T̄�i . On the other hand, for any i ∈ V,
Ti ◦ Ti is equal to the identity transformation from the definition
of Ti (Algorithm 1). These imply that C�i(Σ(G,F )) is equal to
Ti ◦ Ti(Σ(G,F )) for any i ∈ V.

Next, consider another case (when there exists a node j ∈
{j1 , j2 , . . . , jm�

}, which has an inhibiting incoming edge in
cycle �). Without loss of generality, assume that j1 < j2 < · · · <
jm�

. From the node set {j1 , j2 , . . . , jm�
}, let us extract the

nodes, which have an inhibiting incoming edge in cycle �, and
let i1 , i2 , . . . , iν denote the extracted nodes so that i1 < i2 <
· · · < iν , where ν is the number of the extracted nodes. Then, it
follows from the definitions of C�i and T̄�i that C�i(Σ(G,F ))
is equal to Tiν

◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G,F )). �
From this result and Lemma 4, it turns out that the resulting

system C�i(Σ(G,F )) is a cactus Boolean network, which has
the same simple cycles as of Σ(G,F ). In a similar way to the
case of Ti , when a simple cycle of Σ(G,F ) is called cycle �, the
corresponding cycle of C�i(Σ(G,F )) is also called cycle �, and
vice versa.

From (6) and Lemma 7, we obtain the following result
on the state-transition isomorphism between Σ(G,F ) and
C�i(Σ(G,F )).

Lemma 8: For the cactus Boolean network Σ(G,F ), sup-
pose that � ∈ {1, 2, . . . , s} and i ∈ V are given so that node i is
contained in cycle �. Then, Σ(G,F ) ∼ C�i(Σ(G,F )).

Moreover, the following lemma is concerned with the edge
labels of the network structure of C�i(Σ(G,F )).

Lemma 9: For the cactus Boolean network Σ(G,F ), sup-
pose that � ∈ {1, 2, . . . , s} and i ∈ V are given so that node
i is contained in cycle �. Let σ� ∈ {0, 1, . . .} be the number
of inhibiting edges in cycle �. Then, the following statements
hold for edges (and their labels) of the network structure of
C�i(Σ(G,F )).

(i) If σ� is odd, node i of C�i(Σ(G,F )) has an inhibiting in-
coming edge in cycle �; otherwise, it has an activating incoming
edge in cycle �. The other nodes in cycle � have an activating
incoming edge in cycle �.

(ii) For Σ(G,F ), assume that cycle � has a parent and node
i is shared by cycle � and its parent (if a parent exists, it is
unique from Lemma 2 and there exists a parent of cycle � in
C�i(Σ(G,F ))). In the parent of cycle � of C�i(Σ(G,F )), the
label of any edge is equal to the label of the corresponding edge
of Σ(G,F ).

Proof: (i) Let (i, j1 , j2 , . . . , jm�
, i) denote cycle �. First,

consider the system T̄�j1 (Σ(G,F )). By the definition of T̄�i ,
node j1 (of T̄�j1 (Σ(G,F ))) has an activating incoming edge
in cycle �. Next, consider k ∈ {1, 2, . . . ,m� − 1} and the
system T̄�jk

◦ T̄�jk −1 ◦ · · · ◦ T̄�j1 (Σ(G,F )). By the definition
of T̄�i , the transformed system T̄�jk + 1 (T̄�jk

◦ T̄�jk −1 ◦ · · · ◦
T̄�j1 (Σ(G,F ))) has the following properties: (a) node jk+1
has an activating incoming edge in cycle �; (b) each node
j ∈ {j1 , j2 , . . . , jk} has an incoming edge with the original la-
bel (of T̄�jk

◦ T̄�jk −1 ◦ · · · ◦ T̄�j1 (Σ(G,F ))) in cycle �. These
facts (including the facts for each k ∈ {1, 2, . . . ,m� − 1}) and
the definition of C�i(Σ(G,F )) prove the latter statement. More-
over, the former statement is straightforwardly obtained from the
latter statement, Lemma 5(i), and Lemma 7.

(ii) From Lemma 2, node i is the only common node of cycle �
and its parent in Σ(G,F ). Furthermore, the cycle transformation
C�i corresponds to the composition of the transformations T̄�j

for some nodes j but except for i. Therefore, C�i does not affect
any nodes in the parent of cycle � of C�i(Σ(G,F )). So we
obtain (ii). �

The results are illustrated in Fig. 8(a) and (g) for the case
when � = 1, i = 2, and σ1 is odd.

C. Derivation of Σ(G∗, F1), Σ(G∗, F2), and Σ(G,F3)

Now, we consider the cactus Boolean network Σ(G,F ) such
that G has a simple cycle including an even number of inhibiting
edges. Boolean networks Σ(G∗, F1), Σ(G∗, F2), and Σ(G,F3)
satisfying (C1)–(C4) are derived from Σ(G,F ) (i.e., G and F )
in the following way.

1) If G itself satisfies the two properties in (C2), Σ(G∗, F1)
is given by G∗ := G and F1 := F (i.e., Σ(G∗, F1) is
equal to Σ(G,F )); otherwise, Σ(G∗, F1) (i.e., the pair
(G∗, F1)) is given as Tiν

◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G,F ))
for some positive integer ν ∈ {1, 2, . . .} and node se-
quence (i1 , i2 , . . . , iν ) ∈ Vν (which is detailed later).
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2) Σ(G∗, F2) is given by G∗ in the previous step and F2 ,
which is given by modifying F1 in the previous step so
that all the logical OR operators are replaced with the
logical AND operators in F1 .

3) If G itself satisfies the two properties in (C2), Σ(G,F3)
is given by G of the original system Σ(G,F ) and
F3 := F2 (i.e., Σ(G,F3) is equal to Σ(G,F2)); other-
wise, Σ(G,F3) (i.e., the pair (G,F3)) is given as Ti1 ◦
Ti2 ◦ · · · ◦ Tiν

(Σ(G∗, F2)) for ν and (i1 , i2 , . . . , iν ) in
the first step, where note that the network structure of
Ti1 ◦ Ti2 ◦ · · · ◦ Tiν

(Σ(G∗, F2)) becomes equal to G of
the original system Σ(G,F ), as explained later.

Note in the second step that the regularity of the node dynam-
ics is preserved by the replacement of the logical OR operators
with the logical AND operators because the resulting node dy-
namics (of the replacement) is a constant or a product of all the
original arguments of F1 .

If G satisfies the two properties in (C2), it is easy to see that
(C1)–(C4) hold for the resulting systems Σ(G∗, F1), Σ(G∗, F2),
and Σ(G,F3) with G∗ = G, F1 = F , and F3 = F2 , and the
regularity of F2 .

In the following part, we detail how to obtain Σ(G∗, F1) and
Σ(G,F3) in the above procedure, in the case when G itself does
not satisfy the two properties in (C2).

First, Σ(G∗, F1) is given as the resulting system, denoted by
Σ(s), of the following algorithm.

Algorithm 2:
(Step 1) In Σ(G,F ), pick a simple cycle, which contains

an even number of inhibiting edges and designate it for the
root cycle. Moreover, index the simple cycles of Σ(G,F ) as
1, 2, . . . , s in an ascending order of the depth of the cycle (where
the root cycle becomes cycle 1).

(Step 2) Let Σ(0) denote the system Σ(G,F ).
(Step 3) The following procedure is executed for each � =

1, 2, . . . , s (in ascending order): If � = 1, let node i be arbitrarily
chosen in cycle �; otherwise, let node i be a common node of
cycle � and its parent. Let Σ(�) denote the system C�i(Σ(� − 1)).

This algorithm applies the cycle transformation C�i to each
cycle �. Step 1 is feasible subject to the previously given assump-
tion (G has at least one simple cycle including an even number
of inhibiting edges). Step 3 is also feasible because of Lemma 2
and the fact that cycle 1 is the root cycle. It is remarked that the
algorithm recursively applies C�i to Σ(G,F ), which, together
with Lemma 7, implies that Σ(�) (� = 1, 2, . . . , s) corresponds
to Tiν

◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G,F )) for some positive integer
ν ∈ {1, 2, . . .} and node sequence (i1 , i2 , . . . , iν ) ∈ Vν .

For the resulting system Σ(s), we obtain the following result.
Lemma 10: For the cactus Boolean network Σ(G,F ), as-

sume that G has a simple cycle including an even number of
inhibiting edges and G does not satisfy the two properties in
(C2). Let Σ(s) be the resulting system of Algorithm 2. Then,
the following statements hold.

(i) Σ(s) ∼ Σ(G,F ).
(ii) Let G∗ be the network structure of Σ(s). Then, (C2)

holds for G∗.
(iii) The node dynamics of Σ(s) is regular.
Proof: As mentioned before, Σ(s) corresponds to

Tiν
◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G,F )) for some ν ∈ {1, 2, . . .} and

(i1 , i2 , . . . , iν ) ∈ Vν . So (i), (iii), and the fact that G∗ is a
cactus are given by Lemma 8, Lemma 4(i), and Lemma 4(ii),
respectively.

Next, we prove that the cactus network structure G∗ satisfies
the two properties in (C2). In the algorithm, cycle transformation
is applied to each cycle (a) once, (b) in the order of their depth
(i.e., cycle transformations are not applied in the order of a
cycle, its parent), and (c) with respect to a common node of the
cycle and its parent. This fact, the definition of cycles 1, 2, . . . , s,
Lemma 2, and Lemma 9(ii) imply that Step 3 for cycle � does
not affect the nodes, edges, and labels in cycles 1, 2, . . . , � − 1.
So Lemma 9(i) can be applied to all the resulting cycles. Then,
the following facts are obtained for each node j in each cycle
� = 1, 2, . . . , s:

1) if node j is of indegree 1, it has an activating incoming
edge in cycle �;

2) if node j is of indegree greater than 1 and is not shared by
its parent (i.e., is shared by a child), it has an activating
incoming edge in cycle �.

The former is trivial from Lemma 9(i) and the choice of node
i in Step 3 (where C�i is for node i of indegree greater than 1).
The latter is given by Lemma 9(i), the choice of node i in Step 3
(where node i is shared by cycle � and its parent if � ≥ 2), and the
assumption that the root cycle has an even number of inhibiting
edges. On the other hand, in the cactus network G∗, each node of
indegree greater than 1 is shared by (at least) two cycles and one
of which is a child of the other, because G̃, which is introduced
in Appendix I-A, is a undirected tree. These imply that, in G∗,
each node of indegree 1 has an activating incoming edge and
each node of indegree greater than 1 has at least one activating
incoming edge. In this way, it is proven that G∗ satisfies the two
properties in (C2). �

From Lemma 10, it turns out that Σ(G∗, F1) is obtained as
Σ(s), i.e., G∗ and F1 are obtained as the network structure and
node dynamics of Σ(s).

Finally, we show how to derive Σ(G,F3) from Σ(G∗, F2),
which is given by modifying the node dynamics of Σ(G∗, F1)
as stated before. Since the resulting system Σ(s) of Algorithm 2
corresponds to Tiν

◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G∗, F2)) for some pos-
itive integer ν ∈ {1, 2, . . .} and node sequence (i1 , i2 , . . . , iν ) ∈
Vν (which are obtained by the execution process of Algo-
rithm 2), we obtain the following result from Lemmas 3, 4, and 6.

Lemma 11: For the cactus Boolean network Σ(G,F ), as-
sume that G has a simple cycle including an even number of in-
hibiting edges and G does not satisfy the two properties in (C2).
For Σ(G,F ) and the resulting system Σ(s) of Algorithm 2, let
ν ∈ {1, 2, . . .} and (i1 , i2 , . . . , iν ) ∈ Vν be a positive integer
and node sequence such that Tiν

◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G,F ))
is equal to Σ(s). Let G∗ be the network structure of Σ(s) and
suppose that a regular node dynamics F2 is (arbitrarily) given so
that Σ(G∗, F2) is a Boolean network in the class of Section II-
A. Let Σ3 be the system Ti1 ◦ Ti2 ◦ · · · ◦ Tiν

(Σ(G∗, F2)). Then,
the following statements hold.

(i) Σ3 ∼ Σ(G∗, F2).
(ii) The network structure of Σ3 is equal to G.

(iii) The node dynamics of Σ3 is regular.
Proof: Statements (i) and (iii) are trivial from the defini-

tion of Σ3 , Lemma 3 [i.e., (6)], and Lemma 4(i). Meanwhile,
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(ii) is proven as follows. By assumption, G∗ is the network
structure of Tiν

◦ Tiν −1 ◦ · · · ◦ Ti1 (Σ(G,F )). Thus, applying
Lemma 6 to Σ3 , i.e., to Ti1 ◦ Ti2 ◦ · · · ◦ Tiν

(Σ(G∗, F2)), we
obtain (iii). �

By regarding (i) and (iii) as the latter condition of
(C1) and (C4) for i = 3 and considering (ii), we can con-
clude that Σ(G,F3) is obtained as Σ3 , i.e., Ti1 ◦ Ti2 ◦ · · · ◦
Tiν

(Σ(G∗, F2)), for Σ(G∗, F2) specified in the beginning of
this section.
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