
GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017 1

Distributed Reinforcement Learning for
Networked Dynamical Systems

Tomonori Sadamoto, Member, IEEE , Ayafumi Kikuya, and Aranya Chakrabortty, Senior Member, IEEE

Abstract— We propose a scalable algorithm for learn-
ing distributed optimal controllers for networked dynami-
cal systems. Assuming that the network is comprised of
nearly homogeneous subsystems, each sub-controller is
trained by the local state and input information from its
corresponding subsystem and filtered information from its
neighbors. Thus, the costs of both learning and control be-
come independent of the number of subsystems. We show
the optimality and convergence of the algorithm for the
case when the individual subsystems are identical, based
on an algebraic property of such networks. Thereafter, we
show the robustness of the algorithm when applied to
general heterogeneous networks. The effectiveness of the
design is investigated through numerical simulations.

Index Terms— Distributed Reinforcement Learning, Scal-
ability, Distributed Control, Networked Dynamical Systems

I. INTRODUCTION

D ISTRIBUTED control is a widely used control method-
ology for networked dynamic systems (NDS), with ex-

amples such as multi-agent networks [1]–[3], robotic networks
[4], social networks [5], transportation networks [6] and smart
grids [7]. With the recent emergence of advanced machine
learning techniques for control [8], especially of reinforcement
learning (RL) [9], several papers have been written on develop-
ing RL-based distributed control of networked systems [10]–
[12]. The majority of these studies, however, only consider
distributing the actuation of the learned controllers while the
learning process itself still remains centralized. Due to this
centralized structure, the computational complexity of learning
increases notably as the number of subsystems in the network
increases.

The limitation in scaling up RL algorithms has spurred
recent developments in model-free distributed design [13] of
controllers, whereby multiple subsystems can independently
learn their local controllers through intercommunication. For
the sake of convenience, we will hereafter refer to these
methodologies as distributed RL [14]–[16]. A significant ad-
vantage of distributed RL is that computational complexity
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remains invariant to the number of subsystems as learning can
be executed in parallel. However, guaranteeing the optimality
and stability of the closed-loop system for any generic NDS
with any arbitrary topology still remains an open question.
One approach that has been proposed in the recent literature
to make the problem tractable is to exploit the structure of the
network or of the control objective. For example, [17], [18]
have developed distributed RL for linear multi-agent systems
when the agent dynamics are decoupled, assuming that the
reward function depends on a global state that is accessible
by every agent. The authors of [14], [19], [20] have extended
this to cases when the agent dynamics are interconnected.
The approach relies on an exponential decay property of
networks such that the effects of local decisions act only
locally. However, this approach would not be practical when
the network of interest does not have the exponential decay
property, e.g., for networks with short average distances.

In this paper we present an alternative approach for ex-
ploiting network structure for distributed RL, based on an
algebraic property of networks that are composed of identical
subsystems connected over a complete graph [21], [22]. We
refer to this type of NDS as a homogeneous NDS. Our main
contributions are as follows:
• Starting with the ideal case of a homogeneous NDS,

we first develop a centralized RL algorithm that finds a
distributed optimal controller. The optimality of the distributed
controller relies on the fact that the overall Riccati equation
can be separated into two independent Riccati equations - one
for the intra-subsystem dynamics and another for the inter-
subsystem dynamics. These two dynamics respectively obey
the difference and the average of subsystem states. Therefore,
by applying an existing RL algorithm such as Off-Policy
Iteration (Off-PI) [23], which is a one-shot and quadratic-
convergent algorithm, to the state and input data, we can find
a distributed optimal controller. However, this algorithm by
itself is not completely scalable because it requires average
data across all subsystems.
• To solve the scalability issue, we augment our method

with a consensus-based model-free distributed observer [24]
to estimate the average state instead of the entire state. The
distributive nature of the observer allows the subsystems to
have their own individual learning algorithm that can learn
the RL controller distributively as well, requiring state in-
formation from only their neighboring subsystems over any
connected and undirected network graph. The convergence of
the proposed scheme, along with the optimality and stability
of the learned distributed controller, is theoretically guaranteed
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due to the finite-time convergence of the distributed observer.
The communication topology of the distributed observer is
independent of that of the plant NDS. Sparser communication
topologies, however, as will be shown later in simulations,
require longer time of convergence for the learning phase.
• Finally, we consider the heterogeneous case, i.e., when

the network is comprised of subsystems with different dynamic
models, connected over any arbitrary network topology. Direct
extension of our distributed RL design to such networks while
guaranteeing stability and convergence, however, unfortunately
is not possible. We, therefore, establish the applicability of the
design to heterogeneous NDS using a robustness approach.
We specificaly derive a numerical bound on how different the
individual subsystems are allowed to be while the proposed
algorithm can still guarantee stability and convergence. We
validate our claims using numerical simulations.

To the best of our knowledge, this is the first distributed
learning method that allows for designing the network struc-
ture among learners, and at the same time guarantees con-
vergence to the optimal controller. Although this theoretical
guarantee is limited to nearly-homogeneous NDS, the pro-
posed method has a scale-free property. For linear NDSs
consisting of κ subsystems each of whose dimension is n, the
computational complexity of one of the computationally effi-
cient RL algorithms [23] is of the order (κn)6 [25], whereas
that of the proposed method is of the order n6. Therefore,
the proposed method is effective for NDSs consisting of a
large number of (relatively small dimensional) subsystems.
The most relevant existing works, as indicated above, are [14],
[19], [20], which address weakly-coupled networks such that
the effects of local decisions act only locally. In contrast,
the proposed method targets strongly-coupled networks where
local actions have global impacts, two leading examples being
consensus networks [26] and power networks [7]. Integration
of these two different methods is one of our future goals.

The rest of the paper is organized as follows. Section
II describes the problem setting. Section III-A presents the
centralized RL algorithm. A way of distributing the algorithm
is described in Section III-B. Section IV shows a robustness
of the proposed algorithm to general network systems where
heterogeneous subsystems are interconnected via any graph
structure. Section V shows the effectiveness of the proposed
algorithm through simulations, and Section VI concludes this
paper.

Notation: We denote the set of n-dimensional real vectors
as Rn, the set of integers as Z, the positive (semi)definiteness
of a symmetric matrix A by A > 0 (A ≥ 0), the negative
(semi)definiteness of A by A < 0 (A ≤ 0), the n-dimensional
column vector whose every entry is 1 by 1n, the n-dimensional
identity matrix as In, the set of a1, . . . an by {ai}i∈{1,...n},
the block-diagonal matrix having matrices M1, · · · ,Mn on
its diagonal blocks by diag(M1, . . . ,Mn), and the finite-
length sequence of x(t) for t ∈ [t1, t2] by {x(t)}t1≤t≤t2 . The
subscript n is omitted if obvious. Given A, let sym(A) :=
A + AT. The operator ⊗ denotes the Kronecker product.
For a matrix P := [p1, . . . , pn], vec(P ) := [pT1 , . . . , p

T
n]

T.
For x ∈ Rn, the 2- and infinity-norm are denoted by ∥x∥2
and ∥x∥∞. For functions f(x), g(x), if there exist M and

Fig. 1. An example of the interconnection of Σ1, · · · ,Σκ when n =
4 and κ = 4. For simplicity, we omit

∑κ
l=1(Ab + Ãkl)xl for l ∈

{2, 3, 4}.

δ such that ∥x∥ < δ ⇒ ∥f(x)∥ ≤ M∥g(x)∥, then we say
f(x) = O(g(x)). Given systems Σ1 : u→ y and Σ2 : y → u,
we denote the closed-loop system of those as (Σ1,Σ2).

II. PROBLEM SETUP

A. Networked Dynamical Systems
Consider a network system where κ subsystems are coupled

through a graph. For k ∈ {1, . . . , κ}, the k-th subsystem
dynamics are described as

Σk : ẋk = (Aa + Ãkk)xk +

κ∑
l=1

(Ab + Ãkl)xl + (Ba + B̃k)uk

(1)
where xk ∈ Rn is a state, uk ∈ Rm is a control input. In
(1), {Aa, Ab, Ba} represents a nominal dynamical state-space
model for the subsystems, while {Ãkk, Ãkl, B̃k} represents a
perturbation from that model for each subsystem. Throughout
the paper, we suppose that the perturbation is small, i.e., indi-
vidual subsystems are nearly homogeneous, and the weights
of interconnection are close to each other. Later in Section
IV, we will discuss how the perturbation affects our learning
algorithm.

Let Ã ∈ Rκn×κn be such that the (k, l)-th n-by-n block
matrix is Ãkl for k ̸= l while the (k, k)-th block matrix is∑κ

l=1 Ãkl, and B̃ := diag(B̃1, . . . , B̃κ). Using the notation

A := (I ⊗Aa + (11T)⊗Ab) + Ã, B := (I ⊗Ba) + B̃,
x := [xT

1 , . . . , x
T
κ ]

T, u := [uT
1 , . . . , u

T
κ ]

T,
(2)

the interconnected network can be written as

Σ : ẋ = Ax+Bu. (3)

Our objective is to develop a distributed learning algorithm
for designing a distributed optimal controller for the system
Σ in (3). We make the following assumptions.

Assumption 1: The matrices Aa, Ab, Ba, Ãkl, and B̃k are
unknown.

Assumption 2: The matrix A is Hurwitz.
Assumption 1 implies that although we know that the system
of our interest is a network of κ subsystems coupled together
via a graph we do not know its state-space model. Assumption
2 is usually satisfied in many real-world networks. Under these
settings, we formulate a distributed learning problem in the
next section.
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[Learning phase            ]

[Control phase            ]

Fig. 2. A schematic diagram of the problem for the case where κ = 4,
L1 = {1, 2}, L2 = {1, 2, 3}, L3 = {2, 3, 4} and L4 = {3, 4}. In
addition, Kini

k is defined in (9), and uk is given in feedforward.

B. Problem Formulation

For k ∈ {1, . . . , κ}, let Lk ⊆ {1, . . . , κ} be a given
index set of neighboring sub-controllers, such that the graph
corresponding to {Lk}k∈{1,...,κ} is connected and undirected.
We impose this distribution structure to both the learning
phase and control phase. In other words, each subsystem can
only use its own and its neighbors’ information for learning its
sub-controller and for computing the input of the learned sub-
controller. We suppose that both phases are performed within
a single episode, i.e., the learning is performed for t ∈ [0, T ]
with a given parameter T while the control is for t > T . A
schematic picture of the two phases is shown in Fig. 2. Each
phase is formulated as follows.
• Control phase: Let the k-th sub-controller be described

as [
uk(t)
yk(t)

]
= Kk(xk(t), {yj(t)}j∈Lk

), t > T (4)

where yk ∈ Rr is the output used for communicating neigh-
boring sub-controllers, xk and uk are defined in (1), and Kk

is a dynamical map to be designed. The control objective of

the set {Kk}k∈{1,...,κ} is to minimize the cost function

J :=

∫ ∞

T

xT(t)Qx(t) + uT(t)Ru(t)dt, (5)

with

Q := I ⊗Qa + (11T)⊗Qb, R := I ⊗Ra (6)

where Qa ∈ Rn×n, Qb ∈ Rn×n, and Ra ∈ Rm×m are given
such that

Qa ≥ 0, Qa + κQb ≥ 0, Ra > 0 (7)

to ensure Q ≥ 0 and R > 0. Using these structured Q and
R, we can construct a distributed RL algorithm while appro-
priately controlling the behavior of the nearly-homogeneous
network Σ.
• Learning phase: The requirements for designing Kk in

(4) are twofolds: First, it should be data-driven due to the As-
sumption 1. The second requirement is that only neighboring
information

Dk := {xk(t), uk(t), {yinij (t)}j∈Lk
}0≤t≤T (8)

should be available for the design, where yinik is defined as

yinik (t) = Kini
k (xk(t), {yinij (t)}j∈Lk

), t ∈ [0, T ] (9)

for a given Kini
k . Note that uk is not generated by Kini

k , but will
be given in feedforward mode. In this setting, the controller
design can be described as a map A from the neighbors’ data
to the k-th sub-controller, i.e.,

Kk = A(Dk;Q,R), k ∈ {1, . . . , κ} (10)

where the weights Q and R are assumed to be shared among
subsystems. In conclusion, our problem is summarized as
follows.

Problem 1: Consider Σ in (3) and J in (5) with Q and
R in (6), where Qa, Qb and Ra are given such that (7)
holds. Let Assumptions 1-2 be held. Given {Lk}k∈{1,...,κ},
T and {uk(t)}k∈{1,...,κ} for t ∈ [0, T ], find A in (10) and
{Kini

k }k∈{1,...,κ} in (9) such that the resultant {Kk}k∈{1,...,κ}
makes J small as much as possible.
Owing to the distribution architecture of both learning and
control phases as shown in Fig. 2, the complexity for comput-
ing Kk in (10) and {uk, yk} in (4) is entirely independent from
the number of subsystems. The main challenge of Problem 1
lies in the distributive nature of the learning phase.

III. PROPOSED METHOD

We first present a centralized RL algorithm to design a dis-
tributed optimal controller. Later, by distributing the algorithm,
we show a solution to Problem 1. Throughout this section, for
developing the algorithm, we impose the following assumption
on Σ in addition to Assumptions 1-2.

Assumption 3: Ã = 0, B̃ = 0 in (2).
Assumption 3 implies that the dynamics of individual subsys-
tems are identical while their interconnections are symmetri-
cally identical. In other words, under this assumption, Σ is a
network of homogeneous subsystems coupled together via a
complete graph. Later in Section IV, we will investigate the
heterogeneous case.
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A. Centralized RL Algorithm of Designing Distributed
Optimal Controller

We start from the following lemma.
Lemma 1: Consider Σ in (3) with J in (5). Let Pa > 0 and

P̄ > 0 be solutions of

AT
aPa + PaAa − PaBaR

−1
a BT

aPa +Qa = 0 (11)
ĀTP̄ + P̄ Ā− P̄BaR

−1
a BT

a P̄ + Q̄ = 0 (12)

respectively, where

Ā := Aa + κAb, Q̄ := Qa + κQb. (13)

Then the control law u = −Kx with

K = I ⊗Ka + (11T)⊗
(
K̄ −Ka

κ

)
(14)

where Ka := R−1
a BT

aPa and K̄ := R−1
a BT

a P̄ , minimizes J .
Proof: Note that the positive-definite solution of

Ric : ATP + PA− PBR−1BTP +Q = 0. (15)

is unique because A is stable. We will show that the solution
can be described as

P = I ⊗ Pa + (11T)⊗ Pb (16)

where Pb := (P̄ − Pa)/κ. The positive-definiteness of P
in (16) follows if P̄ > 0 and Pa > 0 because P is
block-diagonally-dominant. The n-by-n block-diagonal and
off-diagonal parts of Ric can be written as

sym((Aa +Ab)
T(Pa + Pb) + (κ− 1)AT

b Pb)

− (Pa + Pb)BaR
−1
a BT

a (Pa + Pb)

− (κ− 1)PbBaR
−1
a BT

aPb +Qa +Qb = 0 (17)

and

sym((Aa +Ab)
TPb +AT

b (Pa + Pb) + (κ− 2)AT
b Pb

−(Pa + Pb)BaR
−1
a B⊤

a Pb)− (κ− 2)PbBaR
−1
a BT

aPb +Qb = 0

(18)

respectively. We see that (17) is equivalent to the sum of (11)
multiplied by κ− 1 and (12). Also, by subtracting (11) from
(12), we have (18). Therefore, P in (16) is the unique solution
of Ric. Using this P , the optimal gain PBR−1 can be written
as (14), which completes the proof.

This lemma means that the κn-by-κn Riccati equation
Ric in (15) can be decomposed into two n-by-n Riccati
equations (17)-(18), each of whose size is independent of the
number of subsystems κ. In other words, constructing (14) via
solving those two equations is scalable in κ. We note that the
resultant controller u = −Kx has a distributed structure that
is compatible with the structure of Σ. To solve (17)-(18) in a
model-free way, we define the arithmetic averages of x and u
as

x̄ :=

κ∑
k=1

κ−1xk ∈ Rn, ū :=

κ∑
k=1

κ−1uk ∈ Rm (19)

and the differences from the averages as

x̃k := xk − x̄, ũk := uk − ū, k ∈ {1, . . . , κ}. (20)

Then, taking the coordinate transformation of x and u to

ξ := [x̄T, x̃T
1 , . . . , x̃

T
κ−1]

T, µ := [ūT, ũT
1 , . . . , ũ

T
κ−1]

T,

the system Σ in (3) can be rewritten as

ξ̇ = diag(Ā, Aa, . . . , Aa)ξ + (I ⊗Ba)µ. (21)

Let us focus on the first n equations of (21). The Riccati
equation of the dynamics with the cost J̄ :=

∫∞
0

x̄TQ̄x̄ +
ūTRaūdt coincides with (12). Therefore, by applying any one-
shot Q-learning algorithm such as Off-Policy Iteration (Off-PI)
[23] to a finite-length data-set {x̄, ū} with J̄ , we can find K̄
in (14) without knowing the system model. Similarly, for any
choice of k ∈ {1, . . . , κ−1}, we can find Ka by applying the
same algorithm to the data of {x̃k, ũk} with the cost Ja :=∫∞
0

x̃T
kQax̃k + ũT

kRaũkdt. Also, we can see that this result
holds when k = κ by redefining ξ and µ such that x̃κ and ũκ

are included. The brief summary of the design steps can be
written as follows:

1. Collect a finite-length data-set {x, u}
2. Choose k ∈ {1, . . . , κ}. Compute {x̄, ū} and {x̃k, ũk}

in (19)-(20).
3. Learn K̄ and Ka by applying Off-PI to the data-sets

with J̄ and Ja, respectively.
4. Construct K in (14)

The details of the Off-PI and condition on data for guaran-
teeing convergence will be shown later in Section III-C. The
above algorithm has a structure in which the information of all
subsystems is sent to one place, and then the learned control
gains are distributed to individual subsystems.

The above algorithm, however, is not completely scalable
because it requires all-to-all communications among subsys-
tems for computing x̄ and ū in (19). To overcome this
difficulty, we aim to estimate the averages by a model-free
consensus-type distributed observer in [24], which is described
in the next subsection.

B. Average State Estimation

Unlike the original average-state observer in [24] estimating
a scalar-valued average of multiple scalar valuables, we need
to estimate the n-dimensional vector x̄. Thus, for each n
entry, we construct a distributed observer composed of κ sub-
observers.

Let xi
k ∈ R be the i-th entry of the k-th subsystem’s state

xk ∈ Rn in (1). Our objective here is to estimate the average

x̄i :=

κ∑
k=1

xi
k/κ. (22)

Let the graph structure among sub-observers be specified by
{Lk}k∈{1,...,κ} introduced in Section II-B. Also, let L ∈ Rκ×κ

be its graph-Laplacian matrix whose (k, j)-entry is defined as

Lkj :=

{
−1, if j ∈ Lk

0, otherwise for j ̸= k, Lkk := −
∑
j ̸=k

Lkj .

(23)
Though the graph can be different for each i, for simplicity
we suppose that the graphs of all distributed observers are
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. . .

. . .

. . .

Fig. 3. An illustrative example of the sub-observer Ok when Σk is
4-dimensional.

identical. Following [24], the i-th entry of the k-th sub-
observer dynamics is described as

oik :

{
q̇ik = −γi

ksgn
(∑κ

j=1 Lkjp
i
j

)
pik = xi

k +
∑

j ̸=k Lkjq
i
j

(24)

where qik ∈ R is the state, pik ∈ R is the output, γi
k is the

observer gain. If γi
k satisfies

γi
k ≥
√
nαi

λ2(L)
+ 1, (25)

where αi := max{|ẋi
1|, . . . , |ẋi

κ|} and λ2(L) is the second
smallest eigenvalue of L, then

pi1(t) ≡ · · · ≡ piκ(t) ≡ x̄i(t), ∀t ≥ ti∗ (26)

where
ti∗ =

√∑κ
k=1

(
pik(0)− x̄i

)2
/λ2(L). (27)

The relation (26) implies that the outputs of all sub-observers
for any t after the finite time ti∗ become identical to the true
average; please see [24] for details of this proof.

Remark 1: The output pij in reality contains chattering
noise due to the sign function in (24). One way to mitigate
the noise is to replace it by the sigmoid function

sig(x;σ) := −1 + 2 (1 + exp(−σx))−1 (28)

where σ is a sufficiently large parameter [24].
Finally, the set {oik}i∈{1,...,n} can be described as

yk = Ok(xk, {yj}i∈Lk
), yk :=

[
pk
qk

]
,

{
pk := [p1k, . . . , p

n
k ]

T

qk := [q1k, . . . , q
n
k ]

T.
(29)

An illustrative example of Ok is shown in Fig. 3. The
distributed observer {Ok}k∈{1,...,κ} has a feature that

p1(t) ≡ · · · ≡ pκ(t) ≡ x̄(t), ∀t ≥ t∗ := max{t1∗, . . . , tn∗}.
(30)

Remark 2: Although the exact computation of t∗ in (30) is
difficult because the true average x̄i appears in (27), an upper
bound of t∗, denoted as T , can be estimated as follows. Let
qk(0) = 0 in (29). From a simple calculation, t∗ is shown to
satisfy t∗ ≤ max{∥x1(0)∥, . . . , ∥xn(0)∥}/λ2(L) where xi :=
[xi

1, . . . , x
i
κ]

T. Even though ∥xi(0)∥ is still difficult to know,
one would be possible to estimate its upper bound in advance.

Assume ∥xi(0)∥ ≤ βi and βi is a known parameter. Then we
have

t∗ ≤ max{β1, . . . , βn}/λ2(L) =: T . (31)

Later in our simulations, we use T as the time of convergence.
Remark 3: The right-hand side of (24) changes significantly

near the true value, even if the sgn function is replaced by
the sigmoid function. Therefore, in numerical simulations, the
step-size parameter of numerical integration methods to solve
(24) should be small enough. Consequently, the computational
complexity for numerical integration is often large; however,
it is different from the computation cost for the learning
algorithm.

Next, we show how to incorporate this distributed observer
with the RL algorithm presented in the previous section.

C. Proposed Algorithm
This section presents a solution to Problem 1. By choosing

Kini
k := Ok, yinik := yk (32)

where Ok and yk are defined in (29), we can estimate x̄
in a distributed manner, as shown in (30). Although we can
estimate ū by a similar procedure, for simplicity we assume
that ū is shared in advance among subsystems. This sharing
can be done because uk is a feedforward signal. From (30),
the signal

x̂k(t) := xk(t)− pk(t), (33)

coincides with x̃k(t) in (20) if t ≥ t∗. This fact and (30) imply
that {pk, x̂k}, which is accessible in a distributed manner, is
available as an alternative data for {x̄, x̂k} without errors.
Therefore, replacing {x̄, x̃k} by {pk, x̂k} in the centralized
RL algorithm in Section III-A, we obtain a distributed RL
algorithm, whose pseudo-code is summarized as follows.

Algorithm 1: Proposed Distributed Learning Algorithm

Let Qa, Qb, Ra satisfy (7). Give {Lk}k∈{1,...,κ} such that the
graph is connected and undirected, {βi}i∈{1,...,n} in Remark
2, and {uk}k∈{1,...,κ}. Compute L in (23) and T in (31),
and choose T > T and a natural number N . Share these
information among subsystems in advance.
For k ∈ {1, . . . , κ}, do the following:
Initialization:
Give ū and ũk in (19)-(20). Construct Kini

k in (9) with (32)
where γi

k satisfies (25). Give δ ≥ 0 and {tj}j∈{1,...,N} such
that T = tN > · · · > t1 = T .
Data Collection:

1. Start the estimation by Kini
k from t = 0.

2. Collect data {xk, uk, {yinij }j∈Lk
} for t ∈ [T , T ] and

compute pk and x̂k in (33).

Policy Improvement (A):
3. Compute ϕ• for • ∈ {pk, x̂k} and ρ•◦ for {•, ◦} ∈
{{pk, pk}, {pk, ū}, {x̂k, x̂k}, {x̂k, ũk}} as the stacked
versions of ϕ•

j and ρ•◦j for j ∈ {1, . . . , N} defined as

ϕ•
j := (•(tj)⊗ •(tj)− •(tj−1)⊗ •(tj−1))

T (34)

ρ•◦j :=

∫ tj

tj−1

(•(t)⊗ ◦(t))T dt. (35)
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4. Let K̄ [0]
k = 0, K [0]

a,k = 0 and i← 0.
5. Find {P̄ [i]

k , K̄
[i+1]
k } and {P [i]

a,k,K
[i+1]
a,k } minimizing∥∥∥∥∥Θ̄[i]

k

[
vec(P̄ [i]

k )

vec(K̄ [i+1]
k )

]
+ ρpkpkvec(Q̄+ K̄

[i]T
k RaK̄

[i]
k )

∥∥∥∥∥ (36)∥∥∥∥∥Θ[i]
a,k

[
vec(P [i]

a,k)

vec(K [i+1]
a,k )

]
+ ρx̂kx̂kvec(Qa +K

[i]T
a,k RaK

[i]
a,k)

∥∥∥∥∥ (37)

where

Θ̄
[i]
k :=

[
ϕpk − 2ρpkū(I ⊗Ra)− 2ρpkpk(I ⊗ K̄

[i]T
k Ra)

]
Θ

[i]
a,k :=

[
ϕx̂k − 2ρx̂kũk(I ⊗Ra)− 2ρx̂kx̂k(I ⊗K

[i]T
a,k Ra)

]
.

6. Exit if ∥K̄ [i+1]
k − K̄

[i]
k ∥ ≤ δ and ∥K [i+1]

a,k −K
[i]
a,k∥ ≤ δ,

otherwise let i← i+ 1 and return to Step 5.
7. Construct

K[i]
k :

{
yk = Ok(xk, {yj}i∈Lk

)

uk = K
[i]
a,kxk + (K̄

[i]
k −K

[i]
a,k)ckyk

(38)

where ck := [In, 0]. Return K[i]
k as Kk in Problem 1.

In Data Collection, the learner collects Dk in (8) and
computes {pk, x̂k} by communicating with only its neighbors.
Clearly, Policy Improvement is the procedure A in (10)
because that outputs the controller Kk by processing the data
based on Dk. In Policy Improvement, steps 4-6 are equivalent
to a data-driven implementation of Kleinman’s algorithm [27],
which is an iterative scheme for solving the Riccati equation of
Σ. The reason why we construct K[i]

k as (38) is as follows. Note
that the control u = −Kx with K in (14) can be rewritten as

uk = −Kaxk −
(
K̄ −Ka

)
x̄. (39)

If
K̄

[i]
k = K̄, K

[i]
a,k = Kk, (40)

we can replace x̄ and {K̄,Ka} in (39) by pk and {K̄ [i]
k ,K

[i]
a,k}

for t ≥ T while keeping the output uk same. As a result, we
obtain K[i]

k in the form of (38). Next, we show that (40) is
indeed satisfied when i → ∞. In other words, we show the
convergence of the algorithm and stability/optimality of the
resultant closed-loop system.

Theorem 1: Consider Problem 1 under Assumptions 1-3,
and consider Algorithm 1. If

rank[ρpkpk , ρpkū] = rank[ρx̂kx̂k , ρx̂kũk ] =
n(n+ 1)

2
+mn

(41)
then following statements are true:

i) The closed-loop (Σ, {K[i]
k }k∈{1,...,κ}) is globally asymp-

totically stable for any i.
ii) Let K⋆

k := limi→∞K[i]
k . The set {K⋆

k}k∈{1,...,κ} mini-
mizes J in (5).
Proof: Under the condition (41), there exists a unique

pair {P̄ [i]
k , K̄

[i+1]
k } (resp. {P [i]

a,k,K
[i+1]
a,k }) making the term (36)

(resp. (37)) exactly zero [23]. Moreover, the solution satisfies

sym(P̄
[i]
k Ā

[i]
k ) = −(Q̄+ (K̄

[i]
k )TRaK̄

[i]
k ), K̄

[i+1]
k = R−1

a BaP̄
[i]
k

and

sym(P
[i]
a,kA

[i]
a,k) = −(Qa + (K

[i]
a,k)

TRaK
[i]
a,k), K

[i+1]
a,k = R−1

a BaP
[i]
a,k

respectively, where Ā
[i]
k := Ā − BaK̄

[i]
k and A

[i]
a,k := Aa −

BaK
[i]
a,k. Thus, the solution is independent from k, i.e.,

P
[i]
a,1 = · · · = P

[i]
a,κ =: P

[i]
a , P̄

[i]
1 = · · · = P̄

[i]
κ =: P̄ [i],

K
[i]
a,1 = · · · = K

[i]
a,κ =: K

[i]
a , K̄

[i]
1 = · · · = K̄

[i]
κ =: K̄ [i].

Using these symbols we define

P [i] := I ⊗ P
[i]
a + (11T)⊗

(
P̄ [i] − P

[i]
a

)
/κ,

K [i] := I ⊗K
[i]
a + (11T)⊗

(
K̄ [i] −K

[i]
a

)
/κ.

(42)

From a procedure similar to the proof of Lemma 1, it is shown
that {P [i],K [i],K [i+1]} satisfies

sym(P [i]A[i]) = −(Q+ (K [i])TRK [i]), K [i+1] = R−1BP [i]

(43)
with K [0] = 0, where A[i] := A − BK [i]. This is the i-th
step of the Kleinman’s algorithm [27] to Σ. Therefore, A[i]

is stable for any i. Because the behavior of the closed-loop
(Σ, {K[i]

k }k∈{1,...,κ}) coincides with ẋ = A[i]x for t ≥ t∗,
Property i) is proven. Following [27], Property ii) holds. This
completes the proof.

It should be noted here that the proposed algorithm is
parallelly computable among subsystems. In other words, its
computational cost is scalable in κ, and yet another benefit is
that the resultant fully distributed controller {Kk}k∈{1,...,κ} is
shown to be optimal. Moreover, owing to the advantage of the
Off-PI [23], the algorithm is one-shot, i.e., we do not need to
re-collect data by using an updated control gain K [i+1].

Finally, we summarize the impact of the design parameters
of Algorithm 1 on the learning/control phases and a guideline
for parameter selection as follows:
• Note that the Riccati equations (11)-(12) correspond to the
behavior of the average x̄ in (19) and x̃k in (20) for any k.
Therefore, similarly to the standard optimal control, we can
individually regulate {x̃k}k∈{1,...,κ} and x̄ by tuning Qa and
Qb with Ra while satisfying (7).
• The graph structure {Lk}k∈{1,...,κ} does not have any impact
on the resultant control performance as long as the graph
is strongly connected. However, as we can see in (27), the
structure affects the time to start learning. When the graph
is sparse (resp. dense), the second smallest eigenvalue of the
associated Laplacian will be small (resp. large). As a result, t∗
in (30) where ti∗ is defined in (27) becomes large (resp. small).
Therefore, the sparser the communication graph is, the slower
will be the time to learn. This implicit impact on control phase
will be demonstrated in the later numerical simulations.
• The impact of choosing βi in (31) only affects the time to
start learning T used in Step 2. Note that βi should satisfy
∥xi(0)∥ ≤ βi as described in Remark 2. Therefore, one can
choose a larger βi depending on the confidence of the prior
knowledge regarding ∥xi(0)∥. The tradeoff, however, is that
T becomes slower in that case.
• The gain γi

k in (24) should satisfy only (25). Therefore, a
guideline for choosing γi

k would be to assign it an adequately
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high value. In practice, the larger the gain, the more significant
the impact of chattering noise on the estimated average state.
However, as shown in continuous-time numerical simulations
in Section V-A, the choice of large γi

k has little impact on the
learning results in continuous-time settings. For the case when
Algorithm 1 is time-discretized for implementation to digital
computers, please see the next subsection.
• The choice of N , {tj}j∈{1,...,N} and {uk}k∈{1,...,N} used in
Steps 2-3 does not have any impact on the learned controller
as long as the condition (41) is satisfied. In Algorithm 1, the
parameters are assumed to be given according to the setting of
Problem 1. Determining these parameters, particularly for N ,
may appear to be difficult. However, they can be determined
through a data-driven approach by incrementally repeating
Steps 2-3 with increasing N until (41) is met, as it can only
be verified using the estimated data.
• The parameter δ utilized in Step 6 should be chosen to
be sufficiently small, such as 10−6. As Kleinman’s algorithm
is known to exhibit quadratic convergence [28], selecting a
sufficiently small δ will not significantly impact the iteration
count for learning.

Remark 4: One can rewrite (36) (resp. (37)) as a linear
matrix equation form because there exists a unique solution
making the evaluation cost (36) (resp. (37)) exactly zero,
as shown in the proof. However, the existence of such a
solution is limited to the case for homogeneous networks.
In the following section we consider applying the algorithm
to general heterogeneous network systems, and therefore, we
describe Step 6 as a minimization problem.

Remark 5: The number of data samples N to satisfy (41)
is in order of n2 while the computational cost for executing
Step 6 is in order of n6, where n is the dimension of each
subsystem. Even if n is large, by preconditioning the data pk
and x̂k based on the singular value decomposition, we can
reduce the cost to the order of n3; see [25] for more details.

D. Time-Discretization for Implementation
Algorithm 1 contains two continuous-time calculations, i.e.,

the continuous-time evolution of oik in (24) used for Kini
k and

Kk and the continuous-time integral (35). For implementing
this algorithm in a digital computer it will be necessary
to discretize. One approach is replacing oik with the time-
discretized sub-observer with the sampler and zero-order-hold
(ZOH), described as

oik :


qik(t+ 1) = qik(t)−∆γi

ksig
(∑κ

j=1 Lkjp
i
j(t);σ

)
pik(t) = xi

k(t∆) +
∑

j ̸=k Lkjq
i
j(t)

pik(t) = pik(t), ∀t ∈ [t∆, (t+ 1)∆)
(44)

where ∆ > 0 is the sampling interval and t ∈ Z. Note
that the sign function in (24) is replaced with the sigmoid
function defined as (28). In addition, one may replace (35) by
its trapezoidal approximant

ϱ•◦j :=
∆

2
(•(t∆)⊗ ◦(t∆) + •(t∆+∆)⊗ ◦(t∆+∆))

T
.

(45)
When oik and ρ•◦j in Algorithm 1 are replaced with oik and
ϱ•◦j , we refer to the revised algorithm as Algorithm 1D.

Due to the replacement of oik by oik, the estimated signal pik
will be chattering around the true average, which may result
in failure of learning. One way to avoid this phenomenon is to
choose an appropriately small γi

k by monitoring the level of
chattering noise on qik. One heuristic procedure of choosing
γi
k is as follows: When the estimate pik is around the true

average,
∑κ

j=1 Lkjp
i
k ≈ 0 holds. Therefore, one can see from

(44) that qik(t+1)−qik(t) is chattering depending on the value
of γi

k, and vise versa. Based on this observation, we can tune
γi
k such that the chattering noise of qik(t+1)−qik(t) is small.
The trapezoidal approximation (45) leads to a ∆-dependent

error between ρ•◦j and ϱ•◦j . As the error become smaller as
∆ becomes smaller, we can expect that stability and sub-
optimality by the learned controller will be guaranteed as long
as ∆ is sufficiently small. The effectiveness of the discrete-
time algorithm Algorithm 1D as well as selecting appropriate
value of γi

k will be verified through a numerical simulation
in Section V-C. A rigorous robustness analysis necessitates
the extension of our result to an entirely discrete-time version
based on the discrete-time consensus observer [29] and the
discrete-time RL method [30], which is out of the scope of
this paper.

IV. ROBUSTNESS ANALYSIS FOR HETEROGENEOUS
NDSS

In this section, we consider a general NDSs without impos-
ing Assumption 3 on Σ in (3). For the following arguments,
we define

A := I ⊗Aa + (11)T ⊗Ab, B := I ⊗Ba (46)

and let a homogeneous network system be denoted as

Σ : ẋ = Ax+Bu (47)

where x := [xT
1 , . . . ,x

T
κ ]

T. We assume Assumptions 1-2 and
the following.

Assumption 4: The matrix A is Hurwitz.

Assumptions 2 and 4 imply that both of heterogeneous and
homogeneous networks are stable. Let

ϵ := max{∥Ã∥, ∥B̃∥} (48)

denote the degree of heterogeneity. If ϵ is small, one can expect
that applying the proposed algorithm to the heterogeneous
network Σ will yield a sub-optimal distributed controller. In
the remainder of this section, we verify this expectation math-
ematically. To this end, we introduce the following lemma.

Lemma 2: Consider Σ in (3) and Σ in (47). Let Assump-
tions 1-2 and 4 be held. Define

x̄ :=

κ∑
k=1

κ−1xk, x̃k := xk − x̄. (49)

Additionally, consider Ok in (29), and define x̂k in (33). Then,
it follows that

◦(t) = •(t) +O(ϵ), ∀t ≥ t∗ (50)

where {◦, •} ∈ {{pk, x̄}, {x̂k, x̃k}}, for any k.
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Proof: From a simple calculation, we have

x(t) =
∫ t

0
e(A+Ã)τ (B + B̃)u(t− τ)dτ

=
∫ t

0
(I + Ãτ + · · · )eAτ (B + B̃)u(t− τ)dτ

= x(t) +
∫ t

0
eAτ B̃u(t− τ)dτ

+ Ã
∫ t

0
τeAτ (I + 1

2 Ãτ + · · · )Bu(t− τ)dτ.
(51)

Due to Assumptions 2 and 4, the signals x(t) and x(t) are
bounded. Therefore, the second and third terms in the RHS
of (51) are also bounded. Thus, from (48), we have x(t) =
x(t)+O(ϵ). Moreover, from the definition (49), we have (50)
for {◦, •} ∈ {{x,x}, {x̄, x̄}, {x̃k, x̃k}} and for any t, where
x̄ and x̃k are defined in (19)-(20). Finally, from (30), the claim
follows.

This lemma characterizes the average estimate pk (resp.
the difference estimate x̂k) of the heterogeneous system Σ
by the actual average x̄ (resp. the actual difference x̃) of the
homogeneous system Σ with the degree of heterogeneity ϵ.
Since pk and x̂k are used for the k-th learner, the learning
results will be characterized by heterogeneity. This can be
summarized in the theorem below, where we denote the data
matrices ϕ• and ρ◦• in (37) constructed from {x, u} in the
bold font, i.e., ϕ• and ρ◦•, for clarifying the representation.

Theorem 2: Consider Σ in (3), Σ in (47), J in (5), and
Proposed Algorithm. Assume Assumptions 1-4, (41), and

rank[ρx̄x̄,ρx̄ū] = rank[ρx̃kx̃k ,ρx̃kũk ] =
n(n+ 1)

2
+mn (52)

where x̄ and x̃ are defined in (49). Consider P [i] > 0 and
K [i] satisfying

sym(P [i]A[i]) = −(Q+ (K [i])TRK [i]), K [i+1] = R−1BP [i]

(53)
where, A[i] := A−BK [i] and K [0] = 0. Then, the followings
hold.

i) The Lyapunov function candidate V [i](x) := xTP [i]x
satisfies

V̇ [i] = xT
(
−(K̃ [i]

)TRK̃
[i] − P [i]BTR−1BP [i] −Q+O(ϵ)

)
x

(54)
where x follows (Σ, {K[i]

k }k∈{1,...,κ}), and K̃
[i]

:=

K [i] −K [i+1].
ii) Let J [i] be J when the controller {K[i]

k }k∈{1,...,κ} is used.
If ϵ is sufficiently small such that V̇ [i] < 0 for any x ̸= 0,
then we have

J [i] = J [i] +O(ϵ), J [i] := x(T )TP [i]x(T ). (55)
Proof: First, we show

P
[i]
a,k = P

[i]
a,k +O(ϵ), K

[i+1]
a,k = K

[i+1]
a,k +O(ϵ) (56)

where {P [i]
a,k,K

[i+1]
a,k } is a solution minimizing (37) while

{P [i]
a,k,K

[i+1]
a,k } is a solution satisfying

Θ
[i]
a,k

[
vec(P [i]

a,k)

vec(K [i+1]
a,k )

]
= −ρx̃kx̃kvec(Qa +K

[i]T
a,kRaK

[i]
a,k)

(57)

with Θ
[i]
a,k = [ϕx̃k −2ρx̃kũk(I⊗Ra)−2ρx̃kx̃k(I⊗K [i]T

a,kRa)].
Note here that (57) has a unique solution for any i because
of (52). From Lemma 2, ϕx̂k , ρx̂kũk and ρx̂kx̂k satisfy (50)
for {◦, •} = {{ϕx̂k ,ϕx̃k}, {ρx̂kũk ,ρx̃kũk}, {ρx̂kx̂k ,ρx̃kx̂k}}.
Therefore, for i = 0, (37) can be written as∥∥∥∥∥(Θ[0]

a,k +O(ϵ))

[
vec(P [0]

a,k)

vec(K [1]
a,k)

]
+ (ρx̃kx̃k +O(ϵ))vec(Qa)

∥∥∥∥∥ .
(58)

Note here that K
[0]
a,k = 0 was used for deriving (58). The

solution minimizing (58) can be written as[
vec(P [0]

a,k)

vec(K [1]
a,k)

]
= −

(
(Θ

[0]
a,k +O(ϵ))T(Θ

[0]
a,k +O(ϵ))

)−1

× (Θ
[0]
a,k +O(ϵ))(ρx̃kx̃k +O(ϵ))vec(Qa). (59)

From a simple calculation, for any two matrices A and Aϵ

whose sizes are identical, we have(
(A+Aϵ)

T(A+Aϵ)
)−1

= (ATA)−1−(ATA)−1(I+Xϵ)
−1Xϵ

where Xϵ := ATAϵ+AT
ϵ A+AT

ϵ Aϵ. By applying this formula
to (59), we have[

vec(P [0]
a,k)

vec(K [1]
a,k)

]
= −(Θ[0]

a,k)
†ρx̃kx̃kvec(Qa) +O(ϵ),

which implies that the pair {P [0]
a,k,K

[1]
a,k} minimizing (58) is

shown to satisfy (56) for i = 0. By repeating the above
procedure, we have (56) for any i. Similarly, we have

P̄
[i]
k = P̄

[i]
k +O(ϵ), K̄

[i+1]
k = K̄

[i+1]
k +O(ϵ) (60)

where {P̄ [i]
k , K̄

[i+1]
k } is a solution minimizing (36) while

{P̄ [i]
k , K̄

[i+1]
k } is that when ϵ = 0.

We now show the claim i). We define

F [i] = diag(K
[i]
a,1, . . . ,K

[i]
a,k) +


K̄

[i]
1 −K

[i]
a,1

κ · · · K̄
[i]
1 −K

[i]
a,1

κ
...

. . .
...

K̄[i]
κ −K[i]

a,κ

κ · · · K̄[i]
κ −K[i]

a,κ

κ


(61)

Let K[i]
k be given by (38) with the replacement of Ka,k and

K̄k by K
[i]
a,k and K̄

[i]
k . For t ≥ t∗, it follows from (30) that

u = [uT
1 , . . . , u

T
κ ]

T where uk is given by K[i+1]
k coincides with

−F [i+1]x. Thus, for the following stability analysis, we focus
on the closed-loop ẋ = (A−BF [i+1])x. It follows from (56),
(60) and the proof of Theorem 1 that F [i] = K [i] +O(ϵ). Let
AF [i] := A−BF [i]. Note that

P [i]AF [i+1] = P [i](A+ Ã+ (B + B̃)(K [i+1] + K̃ [i+1]))

=P [i](A[i] +BK [i] −BK [i+1] +O(ϵ))

=P [i]A[i] + (K [i+1])TRK [i] − (K [i+1])TRK [i+1] +O(ϵ).

By the technique so-called completing the square, we have

sym(P [i]AF [i+1]) = −(K [i] −K [i+1])TR(K [i] −K [i+1])

−P [i]BR−1BTP [i] −Q+O(ϵ). (62)

Thus, Property i) follows. Next, note that the cost J when
Assumption 3 holds coincides with J [i]. Thus, Property ii)
follows. This completes the proof.
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Fig. 4. The graph structure associated with L

Property i) implies that the stability of the closed-loop
system is guaranteed when ϵ is sufficiently small if O(ϵ) is
negligible compared to the other terms in the RHS of (54).
Property ii) guarantees sub-optimality achieved by the learned
controller. As ϵ decreases, the resultant control performance of
the heterogeneous network gets closer to that for homogeneous
cases.

V. NUMERICAL SIMULATION

A. Homogeneous Case
We first consider a homogeneous NDS composed of 10

subsystems, each of which is a three-dimensional single-input
linear system. Thus, κ = 10, n = 3 and m = 1. The k-th
subsystem dynamics is described as (1) where Aa, Ab and Ba

are

Aa=

 0.5 −6.0 −3.5
−1.5 −2.5 1
6.0 1.5 −2.5

, Ab=

−0.5 −0.5 0
0.5 −2.0 0
1 1.5 0.5

, Ba=

10
1

,
B̃k = 0 and Ãkl = 0 for any l. Each entry of x(0) is
assumed to be randomly chosen from the range [−0.5, 0.5].
We construct Q and R from (6) where

Qa =

 10 0 0
0 10 0
0 0 10

 , Qb =

 2 0 0
0 3 0
0 0 2

 , Ra = 1.

(63)
Note that Q ≥ 0 and R > 0 hold. When the model information
was available, we can construct the optimal control gain by
(14) where

Ka = [1.9439, 3.3272, 3.4669], K̄ = [7.3815, 1.5936, 6.0814].
(64)

However, because the model information is not available, we
find the gain by applying Algorithm 1 to this network.

Let the structure among sub-observers be a path graph, i.e.,

L1 = {1, 2}, Lκ = {κ− 1, κ}, Lk = {k− 1, k, k+1} (65)

for k ∈ {2, . . . , κ−1}. The graph structure is shown in Fig. 4.
L is constructed using (23), yielding λ2(L) = 0.0979. We
use the exploration input as uk(t) =

∑100
h=1 sin(ωk,ht)/10

with ωk,h randomly chosen from the range (−50, 50) for
h ∈ {1, . . . , 100}. Also, let βi = 1 in (31) for any i.
Then, T = 10.22. For k ∈ {1, . . . , κ}, we construct a sub-
observer Ok := {oik}i∈{1,...,n} in (29), where oik is given
by (24) with the replacement of sgn by sig defined in (28)
to mitigate chattering noise. Let γi

k = 249 and σ = 10000.
We will later investigate how these values impact the learning
results. Additionally, we let δ = 10−8, N = 200, tj :=
T + (j − 1)(T − T )/N , and T = 12.22. From t ≥ 0
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Fig. 5. Trajectory of x1 when no input is applied for t ≥ 0 (red
chained), the exploration noise is applied for t ∈ [0, T ) (black solid),
the model-based optimal controller (yellow dotted) and the designed
controller {Kk}k∈{1,...,κ} are actuated at t ≥ T . Also, T denotes
the time to start learning.

Fig. 6. The graph structure associated with L′

we run Kini
k := Ok, and subsequently, for t ∈ [T , T ], we

collect {xk, uk, {yinij }j∈Lk
}. In this case, the condition (41) is

satisfied. The Policy Improvement in the algorithm was over
at i = 9. All codes were developed in Matlab 2021b and run
in an Intel(R) Core(TM) i9-9900K 3.60GHz, RAM 64.0GB
computer. The total computational time for running all the
iterations of Algorithm 1 was found to be only 0.00014 (sec),
which is almost negligible. The resultant control gains are

K
[∗]
a,1 ≈ · · · ≈ K [∗]

a,κ = [1.9421, 3.3016, 3.4634],

K̄
[∗]
1 ≈ · · · ≈ K̄ [∗]

κ = [7.3810, 1.5962, 6.0813].

Though differences among K
[∗]
a,1 · · ·K

[∗]
a,κ and K̄

[∗]
1 · · · K̄

[∗]
κ

exist due to the chattering noise of the estimation, those
differences are almost negligible. By comparing the resultant
gains with (64), we can see that the optimal controller is
successfully obtained. In Fig. 5, the blue solid and yellow
dotted lines depict x1(t) ∈ R3 (i.e., the state of the first
subsystem) when {Kk}k∈{1,...,κ} in (38) and the above model-
based controller are actuated at t = T , respectively. For
comparison, we show the case when no input is applied (i.e.,
u(t) ≡ 0 for t ≥ 0) by the red chained lines. The following two
observations can be made from this result. (i) The proposed
method can learn the optimal controller in a decentralized
manner. (ii) However, the performance improvement compared
to the free-response is limited due to the long time required
for learning.

For demonstrating the impact of choosing the graph struc-
ture on the control performance, we consider {L′

k}k∈{1,...,κ}
whose graph Laplacian L′ has the sparsity pattern as shown
in Fig. 6. Because the graph is more dense than Lk given
as (65), λ2(L

′) was smaller than λ2(L) = 0.0979, i.e.,
λ2(L

′) = 0.4023. As a result, the time to start learning
becomes T ′ = 2.49, which is faster than T = 10.22. As a
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Fig. 7. Trajectory of x1 of the homogeneous network when no input
is applied for t ≥ 0 (red chained), the exploration noise is applied for
t ∈ [0, T ) (black solid), {K′

k}k∈{1,...,κ} (yellow dotted) is actuated at
t = T ′, and {Kk}k∈{1,...,κ} is actuated at t = T . Also, T ′ denotes
the time to start learning {K′

k}k∈{1,...,κ}.

TABLE I
COST ACHIEVED BY THE RESULTANT CONTROLLER.

(γi
k, σ) (62, 103) (62, 104) (302, 104) (1204, 104)

xT(0)Px(0) 14.6286 14.9178 14.9227 14.9394

result, T ′ = 4.49. Let the newly learned controller be denoted
as {K′

k}k∈{1,...,κ}. The closed-loop dynamic response with
this controller is almost identical to that with {Kk}k∈{1,...,κ}
because of Theorem 1. However, owing to the fast learning,
the performance achieved by {K′

k}k∈{1,...,κ} becomes more
damped than {Kk}k∈{1,...,κ}, as shown in Fig. 7 compared to
Fig. 5. Therefore, we can see a trade-off between communi-
cation cost and the learning speed.

Next, we investigate how the choice of γi
k and σ affects

the learning results. Let the graph structure be the one shown
in Fig. 6. For simplicity we let γi

k is identical for any k and
i. Table I shows the cost achieved by the resultant controller
for four different choices of (γi

k, σ), respectively. We can see
that the resultant cost xT(0)Px(0) is almost same whereas
γi
k and σ change. This result implies that the values of γi

k

and σ have less impact on the learning. In this simulation, the
RHS of (25) for t ≤ T was 61.1268. One may think that the
model information is needed for choosing γi

k to satisfy (25);
however, the fact that choosing γi

k as approximately twenty
times the RHS value does not affect the results implies that
such an appropriate choice is not necessary.

B. Heterogeneous Case

We next investigate the heterogeneous case. Let Aa, Ab

and Ba be same as shown in the previous section while A[kl]

and Bk are given such that every their element is randomly
chosen from a range D. We take Lk as the one corresponding
to L′ in Fig. 6, Ra = 1, γi

k = 62, σ = 1000. Let Q =
qgain(I ⊗ Qa + (11T) ⊗ Qb) where Qa and Qb are given
in (63). Let other parameters be identical in Section V-A.
Table V-A shows whether the resultant closed-loop system
is stable or not for several choices of D and qgain. Due to
the reason as described in Remark 3, only in this simulation,
we have utilized the true average x̄ for learning. We can see
that the closed-loop is stabilized when qgain and the degree
of heterogeneity are small. The closed-loop response of x1 is

TABLE II
THE STABILITY/INSTABILITY BY THE RESULTANT CONTROLLER,

DEPENDING ON Q AND D. THE SIGN ◦ (RESP. −) SHOWS THAT THE

CORRESPONDING CLOSED-LOOP IS STABLE (RESP. UNSTABLE).

D
qgain 0 0.01 0.1 1 10

[−0.001, 0.001] ◦ ◦ ◦ ◦ −
[−0.005, 0.005] ◦ ◦ ◦ − −
[−0.01, 0.01] ◦ ◦ ◦ − −
[−0.05, 0.05] ◦ − − − −
[−0.1, 0.1] ◦ − − − −
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Fig. 8. Trajectory of x1 of the heterogeneous network, where the
notations are same as in Fig. 5.

shown in Fig. 8 for qgain = 1 and D = [−0.001, 0.001]. The
average-state estimation is used where the graph Laplacian is
L′. In this case, the learned controller exhibits similarly to the
ideal model-based controller. On the other hand, one can also
see that the closed-loop is closer to unstable as qgain or the
degree of heterogeneity are larger. This is because the high
control gains trigger higher levels of uncertainty for which
the robustness guarantees of Algorithm 1 can no longer catch
up. Numerical computation of the allowable ranges for qgain
and the degree of heterogeneity as well as the interdependence
between the two are open questions that will be explored in
our future work.

C. Discrete-time Simulation for Heterogeneous
Second-Order Oscillatory Networks

We show an effectiveness of the discrete-time version of
the proposed algorithm Algorithm 1D in Section III-D for a
larger complex heterogeneous NDS, where multiple second-
order oscillators are interconnected via a complete undirected
graph. Let κ = 100. For k ∈ {1, . . . , κ}, let the k-th oscillator
dynamics be described as[
θ̇k
ω̇k

]
=

[
0 1

− fk+
∑

j gkj

mk
− dk

mk

][
θk
ωk

]
+

κ∑
j=1

[
0 0
gkj

mj
0

][
θj
ωj

]
+

[
0
1

mk

]
uk

(66)
where mk and dk are the inertia and the damping coefficient,
gkj is the stiffness of the connection between the k-th and
j-th oscillators, and fk is the proportional gain introduced
for stabilizing Ā in (13). Suppose gkj = gjk. Let the values
of mk, dk, and gkj are randomly chosen from the ranges
[4.9, 5.1], [1.4, 1.6], and [0.099, 0.101], respectively. Let Lk

be given as a strongly-connected Erdos-Renyi random graph
with 300 edges. Fig. 9 shows the graph structure of a closed-
loop system. Let Qa = 10, Qb = 1, Ra = 1, σ = 106,
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...
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Distributed Learners

...

Fig. 9. The graph structure of the closed-loop system
(Σ, {Kk}k∈{1,...,100}), where Σ consists of 100 oscillators.

TABLE III
THE ITERATION-WISE LEARNING TIME [SEC] OF Cent-RL AND

Algorithm 1D. THE SIGN − SHOWS THAT THE TIME COULD NOT BE

MEASURED DUE TO THE MASSIVE AMOUNT OF COMPUTATION.

κ 30 40 100
Cent-RL 58.1 283.1 −

Algorithm 1D 9.54× 10−5 7.41× 10−5 7.46× 10−5

the sampling interval of Algorithm 1D in Section III-D be
∆ = 0.01(msec), βi = 3 in (31), and N = 400. The value of
T defined as (31) becomes T = 0.16, and the value of T is
T = 4.16.

For selecting an appropriately small value of γi
k, we plot

p11(t) and q11(t + 1) − q11(t) in Fig. 10 for two cases where
γi
k = 5 and 2. For reference, we plot the true average x̄1 in

Figs. 10(a-b). We can see from Figs. 10(a-b) that the estimate
successfully track the true average for t > T in both cases.
Furthermore, Fig. 10(c) shows that chattering noise occurs in
q11(t+1)−q11(t) after t > T in both cases, and the magnitude
of the noise when γi

k = 2 is smaller than when γi
k = 5.

As we can expect that smaller magnitude of noise will yield
better learning results, we choose γi

k = 2 for the following
demonstration.

Let γi
k = 2. Fig. 11 shows the closed-loop response of ω1

when Algorithm 1D is applied. This figure implies that the
sub-optimal controller is successfully obtained by the discrete-
time version of the proposed method even for larger and more
complex NDS in Fig. 9.

Finally, we show an advantage of Algorithm 1D over a
time-discretized version of the centralized RL algorithm in
[23], which we refer to as Cent-RL. To compare the two
algorithms, we consider three second-order oscillator networks
each of which consists of 30, 40, and 100 oscillators. Table
III shows the iteration-wise learning time, defined as the time
required for updating the controller once. The learning time
for Cent-RL when κ = 100 could not be measured due
to the massive amount of computation. The computational
complexity of Cent-RL is known to be of order (κn)6. Indeed,
as shown in Table III, the learning time increases notably
as the number of subsystems κ increases. In contrast, the
learning time of the discrete-time algorithm Algorithm 1D
remains constant as κ increases, implying the scalability of
the proposed algorithm.

Fig. 10. Trajectories of p11(t) and x̄1 (a), its enlarged figure in the
area t∆ ∈ [0.16, 0.163] (b), and q11(t + 1) − q11(t) in (44) (c) when
γi
k = 5, 2 for any k and i.
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Fig. 11. Trajectory of ω1 of the oscillatory network when κ = 100.

VI. CONCLUSION

We have proposed a scalable algorithm for learning dis-
tributed optimal controllers for generic NDSs composed of
nearly homogeneous subsystems under information constraints
that follow a given arbitrary graph structure. Each sub-
controller consists of an observer, which estimates the mean
and differential states in a distributed manner, and the static
controllers that feedback those. We have theoretically shown
the convergence of the proposed algorithm and the optimality
of the learned controller for the case where individual sub-
systems are identical. Furthermore, we have demonstrated the
robustness of that analysis to general heterogeneous networks.
The effectiveness of the proposed algorithm has been verified
through numerical simulations. An interesting observation is
that when the proposed algorithm is executed in discrete-
time with a large sampling time (in the order of ∆ = 1
msec), it could not learn a stabilizing controller. Resolving
this numerical issue would require a rigorous extension of this
result by incorporating the discrete-time consensus observer
[29] and the discrete-time RL method [30], which will be
addressed in our future work.

REFERENCES

[1] J. Shamma, Cooperative control of distributed multi-agent systems.
John Wiley & Sons, 2008.

[2] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.
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