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Consensus-based Distributed Intentional Controlled
Islanding of Power Grids

Francesco Lo Iudice, Ricardo Cardona-Rivera, Antonio Grotta, Marco Coraggio, Mario di Bernardo†

Abstract—The problem of partitioning a power grid into a
set of islands can be a solution to restore power dispatchment
in sections of a grid affected by an extreme failure. Current
solutions to this problem usually involve finding the partition of
the grid into islands that minimizes the sum of their absolute
power imbalances. This combinatorial problem is often solved
through heuristic centralized methods. In this paper, we propose
instead a distributed online algorithm through which nodes can
migrate among islands, self-organizing the network into a suitable
partition. We prove that, under a set of appropriate assumptions,
the proposed solution yields a partition whose absolute power
imbalance falls within a given bound of the optimal solution. We
validate our analytical results by testing our partitioning strategy
on the IEEE 118 and 300 benchmark problems.

I. Introduction

The penetration of renewable and distributed generation, e.g.,
[1]–[3], and the possible occurrence of cascading failures [4]
have made the problem of devising control strategies to govern
the operation of power grids of crucial concern. Examples of
problems of interest include those reported in [5]–[7], [8], [9]
and [10]–[12].
When the control architecture fails to guarantee reliable op-

eration of the transmission grid, last resort strategies have been
devised so as to ensure power dispatchment across at least some
of its sections. Strategies for Intentional Controlled Islanding
(ICI) address this issue [13]–[17] by identifying sections of
the grid (or islands) that can isolate and operate independently
from the rest of the network. Recently, intentional islanding has
also been proposed in the framework of distribution networks—
see [18] and references therein—as the presence of storage
devices and renewable energy generation allow these grids
to be partitioned into networks of microgrids, e.g., [19]–[21].
Finally, sectioning a grid into islands can be instrumental for
Parallel Power System Restoration where, to accelerate recovery
after a blackout, the islands are restored in parallel and then
reconnected [22].
The problem of partitioning a grid into a set of islands (that

do not exchange power among each other) is usually posed as a
combinatorial problem—see for example [19], [23]–[25]—and
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sometimes is recast as a graph optimization problem [15]–
[17]. Solving this problem numerically can be computationally
expensive, so that heuristic strategies are frequently used
to seek a suboptimal solution, while meeting the required
computational time that allows the network to stabilize after a
contingency [13], [26]–[28]. The centralized techniques used
to solve the islanding problem include spectral clustering over
simple [22] or multi-layer graphs [29], ant colony optimization
algorithms [30], or particle swarm optimization [31]. Recently,
different scientists and institutions have encouraged a shift
towards more distributed operation of the power infrastructure,
to facilitate the inclusion of distributed energy resources
(DERs). Examples include self-organizing capacity for open,
distributed, and clean energy communities [32], changes in
the regulatory structure and the role of network operators
[33], [34], and the distributed control of microgrids [35]–
[37]. To the best of our knowledge, no distributed Intentional
Controlled Islanding techniques have been proposed in the
current literature.
In this paper, we bridge this gap and propose a distributed

approach to solve the ICI problem, where network nodes
can migrate from an island to another so as to self-organise
into a partition minimizing the power imbalance between
different islands and avoiding large amounts of load shedding.
Specifically, starting from some initial partition of the grid,
we endow the nodes with the ability of locally estimating the
power imbalance of their island and of those neighboring it,
and decide whether to migrate or not to a different island from
their own. The estimation strategy is completely distributed and
decentralized and relies on nodes running a virtual consensus
dynamics parameterized so that the consensus equilibrium the
nodes reach can be used to estimate the power imbalance of the
island of interest. Under suitable assumptions, we analytically
show that our migration strategy generates a sequence of
partitions that converge in finite time to a configuration whose
average absolute power imbalance falls within a certain bound
of the minimal one. We validate our strategy by partitioning
the IEEE 118 and IEEE 300 test systems, comparing the viable
partitions we obtain to others suggested in previous papers in
the Literature.
A concise list of our contributions is as follows:
i. we present a novel decentralized consensus-based estima-
tion rule for the nodes of a grid to accurately estimate the
power imbalance of the island to which they belong. It is
worth noting that our strategy can be applied to estimate
any property of a subgraph that is obtained as the sum of
the contributions of the nodes belonging to that subgraph.
This makes our approach versatile and applicable to a
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range of scenarios beyond power imbalance estimation;
ii. we provide a migration rule allowing the nodes of a grid
to self-organize into a partition whose average power
imbalance falls within a precomputable distance from the
minimal one.

The remainder of the manuscript is organized as follows: in
Section II we introduce some notation and give our problem
statement, in Section III we give our decentralized ICI strategy
whose convergence is then proved in Section IV, while its
effectiveness is validated numerically in Section V. We then
apply our strategy in a realisic case study presenting the results
in Section VI, and discuss the perspectives and limitations of
our work in Section VII. Finally, conclusions are drawn in
Section VIII.

II. Preliminaries and problem statement
Notation: Given a set Q, we denote by |Q| its cardinality; 1

is the column vector of ones, with appropriate dimension.
Power grid: We model a power grid as an undirected

connected graph G = (V, E), where V is the set of 𝑛 ∈ N>0
grid nodes (loads or generators) and E is the set of edges
representing transmission lines interconnecting them. Without
loss of generality, the 𝑛g ∈ N>0 generators are labeled as nodes
1, . . . , 𝑛g, while the 𝑛l ∈ N>0 loads as nodes 𝑛g + 1, . . . , 𝑛. We
let 𝑝𝑖 ∈ R be the active power generated or consumed at node
𝑖; 𝑝𝑖 > 0 if 𝑖 is a generator, while 𝑝𝑖 ≤ 0 if 𝑖 is a load. We
let 𝐴 be the (symmetric) adjacency matrix associated to the
graph G; its (𝑖, 𝑗)-th element 𝑎𝑖 𝑗 being 1 if {𝑖, 𝑗} ∈ E or 0
otherwise.

Islands and neighbors: We define an island as a connected
subgraph M𝑙 = (V𝑙 , E𝑙) of G, where V𝑙 ⊆ V and E𝑙 =

(V𝑙 ×V𝑙) ∩ E. Given a set of nodes V𝑙 , we denote by N(V𝑙)
the set of neighbors of the nodes in V𝑙 , i.e., N(V𝑙) B {𝑖 ∈
V \ V𝑙 | ∃ 𝑗 ∈ V𝑙 : {𝑖, 𝑗} ∈ E}. We say that island M𝑚 is
a neighbor of island M𝑙 if and only if N(V𝑚) ∩ V𝑙 ≠ ∅.
Moreover, we denote by N𝑖 the set of neighbors of node 𝑖.

Grid partitions: We say that the grid is partitioned into 𝑛𝜇 ∈
N>0 islands, described by the subgraphs M𝑙 , . . . ,M𝑛𝜇 , with
corresponding node sets V1, . . . ,V𝑛𝜇 , if Π = {V1, . . . ,V𝑛𝜇 }
is a partition of V. Additionally, a node, say 𝑖, in an island, say
M𝑙 , is a boundary node if N𝑖∩ (V\V𝑙) ≠ ∅. Furthermore, we
define the condensed graph GΠ = (VΠ , EΠ) induced by the
partition Π, where node 𝑙 in VΠ is associated to V𝑙 in Π, and
an edge {𝑙, 𝑚} exists in EΠ if and only if V𝑙 ∩ N(V𝑚) ≠ ∅.

Power imbalance: The power imbalance of an island M𝑙 is
defined as

𝑃𝑙 B
∑︁
𝑖∈V𝑙

𝑝𝑖 , (1)

while the overall grid’s power imbalance is given by

𝑃tot B
𝑛∑︁
𝑖=1

𝑝𝑖 =

𝑛𝜇∑︁
𝑙=1

𝑃𝑙 . (2)

The power imbalance in (1) is associated to the deviation of the
synchronous frequency of the island from its nominal value,
which in turn is related to its stability [9], [38]. Indeed, if
the generated power exceeds loads’ demand, the frequency
increases, while it decreases otherwise. Excessively large

variations in the operating frequency with respect to the nominal
one can cause faults.

Control problem: The problem we study is to find a partition
of the power grid G into 𝑛𝜇 ≥ 2 islands (that do not exchange
power among each other) so as to minimize the average absolute
power imbalance, defined as

𝐽 B
1
𝑛𝜇

𝑛𝜇∑︁
𝑙=1

|𝑃𝑙 |. (3)

Note that, as
∑𝑛𝜇

𝑙=1 |𝑃𝑙 | ≥
��∑𝑛𝜇

𝑙=1 𝑃𝑙
�� = |𝑃tot |, then

𝐽 ≥ 𝐽∗ B

����𝑃tot
𝑛𝜇

���� . (4)

The cost function in (3) has been used in previous work in
the literature on grid partitioning, e.g. [13], [19], [26], as an
indicator of the ability of a power system to satisfy the loads’
demand, which is also known as adequacy [39].

III. A consensus based partitioning strategy
We propose a strategy that, given an initial partition

Π(0) of the power grid into 𝑛𝜇 islands, uses a consensus
algorithm to let the nodes self-organise into a new partition
that minimizes 𝐽, as defined in (3). In particular, at each step
𝑘 of the algorithm, one node can migrate between islands.
We denote by Π(𝑘) the partition after 𝑘 migrations have
occurred; M𝑙 (𝑘) = (V𝑙 (𝑘), E𝑙 (𝑘)), 𝑙 ∈ {1, . . . , 𝑛𝜇} being
the corresponding islands, 𝑃𝑙 (𝑘), 𝑙 ∈ {1, . . . , 𝑛𝜇} their power
imbalances, and 𝐽 (𝑘) the corresponding value of the cost
function.
Our strategy is based on two fundamental ingredients:
1) a distributed dynamic estimator based on average consen-
sus dynamics that nodes can use to estimate the power
imbalance in their island and in those of their neighbors;

2) a migration condition according to which a boundary
node can decide whether to migrate from its island to a
neighboring one.

Next, we describe the two elements above.

A. Distributed power imbalance estimation
At any step 𝑘 , each node, say 𝑖, can obtain an estimate of

the power imbalance, say 𝑃𝑙 (𝑘), of the island it belongs to or
of an island neighboring it, say M𝑙 (𝑘) = (V𝑙 (𝑘), E𝑙 (𝑘)), by
running a consensus based estimation strategy.
Specifically, let us define the auxiliary graph M̂𝑙 (𝑘) B

(V̂𝑙 (𝑘), Ê𝑙 (𝑘)) with

V̂𝑙 (𝑘) B
{
V𝑙 (𝑘) \ 𝑖, if 𝑖 ∈ V𝑙 (𝑘),
V𝑙 (𝑘) ∪ 𝑖, if 𝑖 ∉ V𝑙 (𝑘),

(5)

and Ê𝑙 (𝑘) B (V̂𝑙 (𝑘) × V̂𝑙 (𝑘)) ∩ E. To estimate 𝑃𝑙 (𝑘), node
𝑖 must trigger the distributed solution of the two virtual
continuous-time consensus dynamics given by

¤𝑥ℎ (𝑡) = 𝑝ℎ +
∑︁

{ 𝑗 ,ℎ}∈E𝑙 (𝑘)
(𝑥 𝑗 (𝑡) − 𝑥ℎ (𝑡)), ∀ℎ ∈ V𝑙 (𝑘), (6a)
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¤̂𝑥ℎ (𝑡) = 𝑝ℎ +
∑︁

{ 𝑗 ,ℎ}∈Ê𝑙 (𝑘)

(�̂� 𝑗 (𝑡) − �̂�ℎ (𝑡)), ∀ℎ ∈ V̂𝑙 (𝑘), (6b)

starting from null initial conditions. Here, 𝑥ℎ (𝑡) and �̂�ℎ (𝑡)
are the virtual states associated to each node ℎ ∈ V𝑙 (𝑘) and
ℎ ∈ V̂𝑙 (𝑘), respectively.

Remark 1. To run the consensus dynamics (6) in a distributed
manner, we assume the virtual states 𝑥ℎ and �̂�ℎ are broadcast
to all neighboring nodes Nℎ ∩V𝑙 (𝑘).

Now, dynamics (6a) can be recast in matrix form as

¤𝑥𝑥𝑥(𝑡) = p − 𝐿𝑥𝑥𝑥(𝑡), (7)

where 𝑥𝑥𝑥 is the stack vector of the virtual states 𝑥ℎ, p is the
stack vector of the power values 𝑝ℎ, and 𝐿 is the (symmetric)
Laplacian matrix associated to M𝑙 (𝑘). Let us recall that 1T

is an eigenvector of the symmetric Laplacian 𝐿, with 0 as an
associated eigenvalue. To obtain the asymptotic behaviour of
(7), we premultiply (7) by 1T, obtaining, for all time 𝑡,

1T ¤𝑥𝑥𝑥(𝑡) = 1Tp = 𝑃𝑙 (𝑘). (8)

Moreover, differentiating (7), we obtain the dynamical system
¥𝑥𝑥𝑥(𝑡) = −𝐿 ¤𝑥𝑥𝑥(𝑡), whose dynamics, determined by the spectral
properties of 𝐿, are such that

lim
𝑡→∞

¤𝑥𝑥𝑥(𝑡) ∈ span(1). (9)

Altogether, (8) and (9) imply that lim𝑡→∞ ¤𝑥𝑥𝑥(𝑡) = 1𝜔𝑙 , where

𝜔𝑙 B
𝑃𝑙 (𝑘)
|V𝑙 (𝑘) |

, (10)

Similarly, from (6b), we obtain that lim𝑡→∞ ¤̂𝑥𝑥𝑥(𝑡) = 1𝜔𝑙 , with

𝜔𝑙 B
1

|V̂𝑙 (𝑘) |

∑︁
𝑗∈V̂𝑙 (𝑘)

𝑝 𝑗 . (11)

Exploiting (5), (11) can be recast as

𝜔𝑙 =

{ 1
|V𝑙 (𝑘) |−1 (𝑃𝑙 (𝑘) − 𝑝𝑖) , if 𝑖 ∈ V𝑙 (𝑘),

1
|V𝑙 (𝑘) |+1 (𝑃𝑙 (𝑘) + 𝑝𝑖) , if 𝑖 ∉ V𝑙 (𝑘).

(12)

Then, (10) and (12) can be solved together for the unknowns
𝑃𝑙 (𝑘) and |V𝑙 (𝑘) |, obtaining

𝑃𝑙 (𝑘) = 𝑎𝑙𝜔𝑙
𝑝𝑖 − 𝜔𝑙
𝜔𝑙 − 𝜔𝑙

, (13a)

|V𝑙 (𝑘) | = 𝑎𝑙
𝑝𝑖 − 𝜔𝑙
𝜔𝑙 − 𝜔𝑙

, (13b)

with 𝑎𝑙 = −1 if 𝑖 ∈ V𝑙 (𝑘) and 𝑎𝑙 = 1 if if 𝑖 ∉ V𝑙 (𝑘).
From (13a), to estimate 𝑃𝑙 (𝑘), node 𝑖 needs to compute

𝜔𝑙 and 𝜔𝑙 . To do so in a distributed manner, node 𝑖 starts
the distributed computation of the consensus dynamics (6a)
and (6b) by broadcasting its virtual states 𝑥𝑖 and �̂�𝑖 to the
nodes in N𝑖 ∩ V𝑙 (𝑘). In turn, each of these starts sharing
its virtual state with its neighbors (within V𝑙 (𝑘)), until all
nodes in V𝑙 (𝑘) join the distributed simulation. Note that the
aforementioned procedure can be conducted through one-hop
communication if each node ℎ has knowledge of the index
𝑙 ∈ {1, ..., 𝑛𝜇} of the island it belongs to, and of its consumed or
generated power 𝑝ℎ. Obviously, in a practical implementation,

ℳ1

𝑥6𝑥1

𝑥2 𝑥3 𝑥4

𝑥5 ℳ2

ෝ𝜔1

𝜔1

𝜔2

ෝ𝜔2

Distributed estimation

ℳ1

ො𝑥6ො𝑥1

ො𝑥2

ℳ2
ො𝑥5

ො𝑥4ො𝑥3

𝑃1 = −
𝑝3 − ෝ𝜔1
ෝ𝜔1 − 𝜔1

𝑃2 =
𝑝3 − ෝ𝜔2
ෝ𝜔2 − 𝜔2

Migration 

rule (14) 

Migration strategy

ෝ𝜔1

𝜔1

𝜔2

ෝ𝜔2

(a)

(c)

(b)

(d)

ℳ1

ℳ2

1

2 3 4

5

6

ℳ1

ℳ2

Fig. 1: (a) Initial partition of the power network, with dashed
lines representing the communication links among nodes; the
topology being equal to that of the power network itself. (b)
Boundary node 3 triggers the distributed simulation of the
virtual consensus dynamics in (6) for both islands M1 and
M2. (c) The migration rule (14) is used to decide whether
to migrate from island M1 to M2 and (d) a new partition is
eventually generated.

the grid nodes should be equipped with sufficient computational
and communication capabilities to run the virtual consensus
dynamics on a timescale that is compatible with the grid
requirements.
In what follows, we will show how the network nodes can

exploit this estimation process to self-organise into a partition
of the power network whose power imbalance (3) is rendered
minimal.

B. Migration condition
A boundary node (see § II), say 𝑖, in island M𝑚 (𝑘), can

decide whether to migrate to a neighboring island M𝑙 (𝑘) (see
Figure 1) by assessing the power imbalances 𝑃𝑙 (𝑘) and 𝑃𝑚 (𝑘)
(computed through our estimation strategy in § III-A).
Specifically, at step 𝑘 , node 𝑖 will migrate from M𝑚 (𝑘) to

M𝑙 (𝑘) if and only if{ min(𝑃𝑙 (𝑘), 𝑃𝑚 (𝑘)) < min(𝑃𝑙 (𝑘 + 1), 𝑃𝑚 (𝑘 + 1)), (14a)
M𝑚 (𝑘 + 1) is connected, (14b)

with

𝑃𝑙 (𝑘 + 1) = 𝑃𝑙 (𝑘) + 𝑝𝑖 , (15a)
𝑃𝑚 (𝑘 + 1) = 𝑃𝑚 (𝑘) − 𝑝𝑖 , (15b)
V𝑙 (𝑘 + 1) = V𝑙 (𝑘) ∪ 𝑖, (15c)
V𝑚 (𝑘 + 1) = V𝑚 (𝑘) \ {𝑖}. (15d)

Remark 2. Condition (14b) concerning connectivity can be
ensured using the estimation strategy in § III-A. Indeed, given
an island M𝑙 (𝑘), if there exists a node 𝑖 ∈ V𝑙 (𝑘) such that
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M𝑙 (𝑘) \ {𝑖} is not connected, the virtual derivatives ¤̂𝑥ℎ of its
neighbors in M̂𝑙 (see (6b)) will in general converge to different
values, thus providing a warning signal.

C. Migration algorithm
According to our decentralized partitioning strategy, starting

from some initial partition at step 𝑘 = 0, each boundary node
must trigger the distributed estimation of the power imbalance
of the island it belongs to and of its neighboring islands by
running the virtual consensus dynamics (6). Then, depending
on these power imbalances, exploiting the migration condition
(14), the boundary nodes will decide whether to migrate or
not to neighboring islands.
For the sake of clarity, we illustrate the process by referring

to the exemplary situation depicted in Figure 1, where a grid
with 𝑛 = 6 nodes is initially partitioned in 𝑛𝜇 = 2 islands,
M1 (0) and M2 (0) (Figure 1(a)). Then, each boundary node,
as for instance node 3 ∈ V1 (0), must decide whether to migrate
to the other island (M2) or not. To this aim, node 3 triggers
the distributed estimation of the power imbalances 𝑃1 (0) and
𝑃2 (0) in both the islandsM1 (0) andM2 (0) (see Figure 1(b)),
by running two virtual consensus processes of the form (6)
involving all nodes belonging to each of the islands. Once
a steady state in the distributed simulation of (6) has been
reached, node 3 uses the pairs (𝜔1, �̂�1) and (𝜔2, �̂�2) to estimate
𝑃1 (0) and 𝑃2 (0), which it then uses to evaluate the migration
condition (14) (Figure 1(c)) to assess whether to migrate from
M1 to M2. Once this decision is taken, a new partition is
generated (Figure 1(d)).
In general, our strategy prescribes that the grid nodes get

involved in all the (possibly multiple) distributed consensus
processes invoked according to (6) by the boundary nodes of
their island or of neighboring ones so as to allow the estimation
of the power imbalances of interest. Hence, at any time, each
node will have a number of virtual states corresponding to
the number of estimation processes it is asked to contribute
to. These steps are summarized in Algorithm 1. Additionally,
as soon as a node becomes a boundary node (see § II), it
must trigger additional virtual dynamics to decide whether
to migrate or not from its island to a neighboring one. This
additional procedure is summarized in Algorithm 2.

IV. Proof of convergence
The following Lemma and Theorem state that the migration

process governed by rule (14) generates a finite sequence
{Π(𝑘)}𝑘∈{0,...,𝐾 } of 𝐾 ∈ N migration steps, and give a bound
on the difference between the cost 𝐽 (𝐾) of the final partition
and the optimal cost 𝐽∗ computed in (4). To give their proof, we
must first define the stack vector P(𝑘) B [𝑃1 (𝑘) · · · 𝑃𝑛𝜇 (𝑘)]T

and P∗ B 𝑝∗1.

Lemma 1. If

|𝑃𝑙 (𝑘) − 𝑃𝑚 (𝑘) | ≤ 𝑝 ∀𝑙, 𝑚 : N(V𝑚 (𝑘)) ∩V𝑙 (𝑘) ≠ ∅, (16)

where 𝑝 B max𝑖∈V |𝑝𝑖 |, then

𝐽 (𝑘)−𝐽∗ ≤ 2
𝑛𝜇

(
𝑛𝜇∑︁

𝑙=𝑙∗+1
𝑝∗ + 𝑝

(
𝑙 −

𝑛𝜇 + 1
2

))
−(𝑝∗+|𝑝∗ |), (17)

with
𝑙∗ =

⌈
− 𝑝

∗

𝑝
+
𝑛𝜇 + 1

2

⌉
, (18)

and 𝑝∗ B 𝑃tot/𝑛𝜇.

Proof. From (3), we have that

𝐽 (𝑘) = 1
𝑛𝜇

©«
∑︁

𝑙:𝑃𝑙 (𝑘)>0
𝑃𝑙 (𝑘) −

∑︁
𝑙:𝑃𝑙 (𝑘) ≤0

𝑃𝑙 (𝑘)
ª®¬ . (19)

Moreover, as∑︁
𝑙:𝑃𝑙 (𝑘)>0

𝑃𝑙 (𝑘) +
∑︁

𝑙:𝑃𝑙 (𝑘) ≤0
𝑃𝑙 (𝑘) = 𝑃tot = 𝑛𝜇𝑝

∗,

we can recast (19) as

𝐽 (𝑘) = 1
𝑛𝜇

©«2
∑︁

𝑙:𝑃𝑙 (𝑘)>0
𝑃𝑙 (𝑘) − 𝑛𝜇𝑝∗ª®¬ .

Hence, as 𝐽∗ = |𝑝∗ | [from (4)], we obtain

𝐽 (𝑘) − 𝐽∗ = 2
𝑛𝜇

∑︁
𝑙:𝑃𝑙 (𝑘)>0

𝑃𝑙 (𝑘) − (𝑝∗ + |𝑝∗ |). (20)

Without loss of generality, let us relabel the islands so that
𝑃1 (𝑘) ≤ 𝑃2 (𝑘) ≤ · · · ≤ 𝑃𝑛𝜇 (𝑘). Then, as the graph G (defined
in § II) and all the islands remain connected for all 𝑘 , at each
step also the graph GΠ (𝑘) (defined in § II) will be connected
and thus (16) implies that

𝑃𝑙+1 (𝑘) ≤ 𝑃𝑙 (𝑘) + max
𝑖∈V

|𝑝𝑖 |, ∀𝑙 ∈ {1, . . . , 𝑛𝜇 − 1}. (21)

Note that, from (2),
∑𝑛𝜇

𝑙=1 𝑃𝑙 (𝑘) = 𝑃tot = 𝑛𝜇𝑝
∗, and hence from

(21) we obtain

𝑃𝑙 (𝑘) ≤ 𝑝∗ + 𝑝
(
𝑙 −

𝑛𝜇 + 1
2

)
, ∀𝑙 ∈ {1, . . . , 𝑛𝜇}, (22)

with 𝑝 B max𝑖∈V |𝑝𝑖 |. From (20), 𝐽 (𝑘) − 𝐽∗ is maximized
(worst case) when (22) is an equality. In such a case, to compute
𝐽 (𝑘) − 𝐽∗ by leveraging (20), we must first find

𝑙∗ : 𝑃𝑙 (𝑘) ≥ 0, ∀𝑙 ∈ {𝑙∗, . . . , 𝑛𝜇}. (23)

Hence, to find 𝑙∗ we must find the smallest integer 𝑙 such that

𝑝∗ + 𝑝
(
𝑙 −

𝑛𝜇 + 1
2

)
≥ 0, (24)

yielding (18). Then, from (23), (22), and (20), we obtain (17)
and the Lemma is proved. □

Theorem 1. Assume that at each step 𝑘 there exist a node 𝑖
and islands M𝑙 (𝑘) and M𝑚 (𝑘) (that is a triplet (𝑙, 𝑚, 𝑖)) such
that 

𝑖 ∈ {V𝑚 (𝑘) ∩ N (V𝑙 (𝑘))}
∧

M𝑚 (𝑘) \ 𝑖 is connected
(25a)

and 
𝑃𝑙 (𝑘) > 𝑃𝑚 (𝑘) ∧ 𝑝𝑖 < 0

∨
𝑃𝑙 (𝑘) < 𝑃𝑚 (𝑘) ∧ 𝑝𝑖 > 0.

(25b)
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Then, the sequence Π(𝑘) obtained under the migration rule
(14) is finite and converges in 𝐾 < +∞ steps to a partition
Π(𝐾) such that 𝐽 (𝑘) fulfills (17) at 𝑘 = 𝐾 .

Proof. Consider a triplet (𝑙, 𝑚, 𝑖) fulfilling (25), and

|𝑃𝑚 (𝑘) − 𝑃𝑙 (𝑘) | > |𝑝𝑖 |; (26)

we start by showing that, when assuming (25), (26) is equivalent
to (14), i.e., a migration of node 𝑖 from islandM𝑚 toM𝑙 will
occur.
Firstly, we show that (14) implies (26). When 𝑃𝑚 (𝑘) <

𝑃𝑙 (𝑘), we have 𝑝𝑖 < 0 from (25b), and from (14) we have that

𝑃𝑚 (𝑘) < 𝑃𝑙 (𝑘 + 1). (27)

Differently, when 𝑃𝑙 (𝑘) < 𝑃𝑚 (𝑘), we have 𝑝𝑖 > 0 from (25b),
and from (14) we have that

𝑃𝑙 (𝑘) < 𝑃𝑚 (𝑘 + 1). (28)

From (27) and (28), recalling (15a) and (15b), we have{
𝑃𝑚 (𝑘) − 𝑃𝑙 (𝑘) < 𝑝𝑖 , if 𝑝𝑖 < 0,
𝑃𝑚 (𝑘) − 𝑃𝑙 (𝑘) > 𝑝𝑖 , if 𝑝𝑖 > 0.

(29)

As (29) implies (26), we have proved that (14) implies (26).
Now, let us prove that (26) implies (14). To do so, note that

(26) is equivalent to{
𝑃𝑙 (𝑘) > 𝑃𝑚 (𝑘) + |𝑝𝑖 |, if 𝑃𝑙 (𝑘) > 𝑃𝑚 (𝑘),
𝑃𝑚 (𝑘) > 𝑃𝑙 (𝑘) + |𝑝𝑖 |, if 𝑃𝑙 (𝑘) < 𝑃𝑚 (𝑘).

(30)

Moreover, exploiting (25b) and recalling (15a) and (15b), (30)
can be recast as{

𝑃𝑚 (𝑘) < 𝑃𝑙 (𝑘) + 𝑝𝑖 = 𝑃𝑙 (𝑘 + 1), if 𝑃𝑙 (𝑘) > 𝑃𝑚 (𝑘),
𝑃𝑙 (𝑘) > 𝑃𝑚 (𝑘) − 𝑝𝑖 = 𝑃𝑚 (𝑘 + 1), if 𝑃𝑙 (𝑘) < 𝑃𝑚 (𝑘).

(31)
It is straightforward to see that (31) immediately leads to
(14). Therefore, we have proved that (when (25) holds) (26)⇔
(14).As (14) is equivalent to (26) and (25), then if at some step,
say 𝐾 , no triplet (𝑙, 𝑚, 𝑖) existed fulfilling (26), the migration
process would stop and, as the network G is connected and so
is the graph GΠ (𝐾) at that step, we would have

|𝑃𝑙 (𝐾)−𝑃𝑚 (𝐾) | ≤ max
𝑖∈V

|𝑝𝑖 | ∀𝑙, 𝑚 : V𝑚 (𝐾)∩N (V𝑙 (𝐾)) ≠ ∅.
(32)

As from Lemma 1, (32) implies that the bound (17) holds, to
prove our thesis we are left with showing that a stopping time
instant 𝐾 exists. Firstly, note that such a step 𝐾 exists if (14)
fulfills

∥P(𝑘 + 1) − P∗∥2 ≤ 𝛼 ∥P(𝑘) − P∗∥2 ∀𝑘 ∈ {0, ..., 𝐾 −1} (33)

for some positive scalar 𝛼 < 1 as if (33) were satisfied, then
our migration rule would be a contraction mapping. In such
case, from the Banach-Caccioppoli theorem [40], there would
be no limit cycles in the sequence {P(𝑘)} and thus also in
{Π(𝑘)}. Hence, as the number of possible partitions is finite,
so would be the sequence {P(𝑘)} and thus, to complete our
proof, we need to show that (14) implies (33). As we have
enforced that only one migration occurs at each step 𝑘 , then

Algorithm 1: Default routine for any node ℎ.
1 Broadcast all virtual states to neighboring nodes
2 Obtain virtual states from neighboring nodes
3 Integrate (6) for all simulations where ℎ is involved

Algorithm 2: Additional steps for a boundary node ℎ ∈ V𝑚.
1 Communicate with the nodes in Nℎ ∩V𝑚 to trigger a
distributed simulation of (6)

2 for 𝑙 : Nℎ ∩V𝑙 ≠ ∅ do
3 Communicate with the nodes in Nℎ ∩V𝑙 to trigger a

distributed simulation of (6)
4 Wait for steady state in such simulations
5 Estimate 𝑃𝑚 and 𝑃𝑙 , ∀𝑙 : Nℎ ∩V𝑙 ≠ ∅ using (13)
6 Decide whether to migrate from M𝑚 to M𝑙 via (14)

P(𝑘 + 1) only differs from P(𝑘) for the 𝑙-th and 𝑚-th entries.
Hence, proving (33) only requires showing that

(𝑃𝑙 (𝑘 + 1) − 𝑝∗)2+(𝑃𝑚 (𝑘 + 1) − 𝑝∗)2

< (𝑃𝑙 (𝑘) − 𝑝∗)2 + (𝑃𝑚 (𝑘) − 𝑝∗)2 (34)

for all 𝑘 ∈ {0, ..., 𝐾 − 1}. After a few algebraic simplifications,
(34) can be rewritten as

𝑝𝑖 (𝑃𝑙 (𝑘) − 𝑃𝑚 (𝑘) + 𝑝𝑖) < 0 𝑘 ∈ {0, ..., 𝐾 − 1}, (35)

which is trivially fulfilled by any triplet (𝑙, 𝑚, 𝑖) fulfilling (25)
and (26), yielding that (25) and (26) imply (33). In turn, as
(25) and (26) imply (14), the existence of 𝐾 and thus our thesis
remains proved. □

Remark 3. A sufficient (but not necessary) condition to fulfill
the assumption of Theorem 1 is that neighboring islands have
at least a load on the boundary between them.

In the following section, we validate the strategy numerically.

V. Numerical validation

We demonstrate the effectiveness of our algorithm by
deploying it to partition the IEEE 118 and 300 testbed
cases [41]. The nodal power values 𝑝𝑖 are computed by
solving an Optimal Power Flow (OPF) problem on the whole
non-partitioned grid, leveraging Matpower 6.0 [42]. As the
test cases include nodes with null nodal power 𝑝𝑖 = 0,
we allow for these nodes to migrate from their island, say
M𝑚 (𝑘), to a neighboring island, say M𝑙 (𝑘), as long as (i)
their migration does not render M𝑚 (𝑘) disconnected and (ii)
𝑃𝑙 (𝑘) ≠ 𝑃𝑙 (𝑘 ′),∀𝑘 ′ < 𝑘 : 𝑖 ∈ V𝑙 (𝑘 ′).
To apply our partitioning strategy (Algorithms 1 and 2), we

need some initial partitions Π(0). To test our algorithm under
different conditions, we considered different choices Π(0). In
some cases, we took as Π(0) some selected partitions from
[13], [27], [43]. In other cases, to generate Π(0), we first
employ the Search Space Reduction Procedure (SSRP) [27],
which generates a spanning tree connecting groups of coherent
generators (these are taken from [27]). Then, the remaining
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nodes are aggregated to the tree using the Breadth-First Search
(BFS) algorithm [44].

Remark 4. Throughout our numerical analysis, whenever a
node, say 𝑖 ∈ V𝑚 (𝑘), can choose to migrate to more than one
island, it will select the one maximizing the difference

Δ𝑃𝑙 = min{𝑃𝑙 (𝑘) + 𝑃𝑖 , 𝑃𝑚 (𝑘) − 𝑃𝑖} − min{𝑃𝑙 (𝑘), 𝑃𝑚 (𝑘)}.

This choice ensures a maximal improvement of the average
absolute power imbalance after the migration.

A. IEEE 118 bus system
We used our algorithm to partition the IEEE 118 test system

in 𝑛𝜇 = 2 and 𝑛𝜇 = 3 islands, considering only 𝑛g = 19
generators (excluding the reactive compensators). We assume
that the migration process is triggered by a three phase solid
ground fault at bus 15 forcing line 14-15 to disconnect. With
𝑛𝜇 = 2, we ran the algorithm first by considering as initial
partition Π(0) the one generated by SSRP+BFS and then
using as Π(0) the final partition reported in [13] to evaluate
how it performed when started from different initial partitions.
For the case 𝑛𝜇 = 3, we considered as Π(0) the partition
generated via SSRP+BFS and then the final one obtained in
[27]. All relevant information and the results of our distributed
partitioning strategy are reported in Table I.
We observe that the proposed algorithm is indeed capable of

converging in all cases towards partitions that minimize 𝐽, as
𝐽 (𝐾) = 𝐽∗. As a representative example, we depict in Figure
2 the case that 𝑛𝜇 = 2 and Π(0) is generated by SSPR+BFS;
namely, Figure 2a portrays the power imbalances 𝑃1 (𝑘) and
𝑃2 (𝑘) at the various steps, while the final partition Π(𝐾) is
reported in Figure 2b. Note that from the OPF results we have
max𝑖 |𝑝𝑖 | = 542.78 MW and 𝐽∗ = 58.25 MW and thus the
bound given in Theorem 1 is satisfied as |𝐽 (𝐾) − 𝐽∗ | = 0 (see
Table I).

B. IEEE 300 bus system
We used Algorithms 1 and 2 to partition the IEEE 300 test

system in 𝑛𝜇 = 3 and in 𝑛𝜇 = 4 islands, assuming a failure
affects line 194-195. With 𝑛𝜇 = 3, as Π(0) we considered
the partition obtained via SSRP+BFS. We also repeat the
partitioning starting from the arbitrary initial partition reported
in Table II. When 𝑛𝜇 = 4, as initial partition Π(0) we consider
one obtained via SSRP+BFS and one from [27]. In both cases,
the groups of coherent generators were selected as in Table II
of [27]. All relevant information and the results are reported
in Table II.
Again, in all cases, our algorithm is capable of finding an

optimal partition, as 𝐽 (𝐾) = 𝐽∗. Additionally, we note that the
initial partitions obtained via SSRP+BFS and that from [27]
are already optimal with respect to minimizing 𝐽; however, by
performing a few more migration steps, our algorithm is able
to further decrease the standard deviation between the power
imbalances of the three islands (compare 𝑃𝑙 (0) and 𝑃𝑙 (𝐾) in
Table II). This happens routinely, as the migration law (14)
aims at equalizing the power imbalances in all the islands (with
the result of minimizing 𝐽).

0 2 4 6 8 10
-100

-50

0

50

100

150

200

(a)

(b)

Fig. 2: Partitioning of the IEEE 118 test system into 𝑛𝜇 = 2
islands, through Algorithms 1 and 2. (a) 𝑃1 (𝑘) (red squares),
𝑃2 (𝑘) (green circles), 𝐽 (𝑘) (black stars), and 𝐽∗ (dashed
line); all are in MW. (b) Final network partition Π(𝐾); red
square denoteV1 (𝐾), while green circles denoteV2 (𝐾). Nodes
72, 24, 23, 22, 21, 39, 20, 19, 38 migrated from M1 to M2 in
the given order, while node 43 migrated from M2 to M1 at
𝑘 = 9. Note that the last migration does not change the power
imbalances as it involves node 38 whose nodal power is zero.

In Figure 3, we report the representative case where 𝑛𝜇 = 3
and Π(0) is the arbitrary partition. The power imbalances
𝑃1 (𝑘), 𝑃2 (𝑘), 𝑃3 (𝑘) are depicted in Figure 3a, while the final
partition Π(𝐾) is portrayed in Figure 3b. Interestingly, across
all our numerical experiments, not only does our algorithm
ensure fulfillment of the bound given in Theorem 1, but it
also always ensures 𝐽 (𝐾) = 𝐽∗, and in all cases it succeeds in
reducing the standard deviation among the power imbalances
of the islands with respect to that of the initial partition (see
Table II).

VI. Case study
As shown in our numerical analysis, our decentralized

strategy is not only capable of minimizing (3), but also of
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Case 𝑛𝜇 𝐾 Cut-set at Π (0) Π (0) Cut-set at Π (𝐾) 𝐽 (0) 𝐽 (𝐾) 𝐽∗ 𝑃𝑙 (0) 𝑃𝑙 (𝐾) Bound (17)

IEEE 118 2 10
{24-70, 34-43,
37-40, 38-65,
39-40, 71-72}

SSRP+BFS

{15-19, 18-19,
19-34, 23-25,
23-32, 30-38,
37-38, 37-39,
37-40, 43-44}

120.5 58.25 58.25 {−74.26,
190.75}

{53.74,
62.75} 213.14

IEEE 118 2 9

{1-2, 3-12,
5-8, 6-7,
11-12, 15-17,
15-19, 24-70,
30-38, 34-36,
44-45, 70-71}

[13]

{4-5, 5-11,
11-12, 15-17,
15-19, 30-38,
34-37, 35-37,
43-44, 69-70,
70-75, 74-75}

265.5 58.25 58.25 {−258.25,
374.74}

{65.75,
50.74} 213.14

IEEE 118 3 7

{24-70, 34-43,
37-40, 38-65,
39-40, 68-81,
69-77, 71-72,
75-77, 76-118}

SSRP+BFS

{19-34, 21-22,
23-25, 23-32,
30-38, 34-36,
34-37, 37-38,
37-39, 37-40,
68-81, 69-77
75-77, 76-118}

80.34 38.83 38.83
{−74.26,
1.98,
188.77}

{53.74,
1.98,
60.77}

335.97

IEEE 118 3 8

{24-70, 24-72,
38-65, 40-42,
41-42, 44-45,
69-77, 75-77,
81-80, 118-76}

[27]

{24-70, 42-49,
44-45, 61-64,
63-64, 65-66,
65-68, 69-77,
71-72, 75-77,
76-118, 80-81}

147 38.83 38.83
{−199.26
313.77
1.98}

{83.66,
30.86,
1.98}

335.97

TABLE I: Results after applying Algorithms 1 and 2 to the IEEE 118 test case, considering different initial partitions Π(0).
Power values are reported in MW. Note that bound (17) is computed for 𝑘 = 𝐾 .

diminishing the standard deviation between power imbalances;
thus making the islands equally robust to unforeseen power
fluctuations. Unsurprisingly, this comes at the price of cutting
several lines, as minimization of the power imbalance and
of the power flow disruption are known to be conflicting
goals [13]. While both could benefit from some load shedding,
ultimately, a partition with high power imbalance and/or power
flow disruption leads to the existence of islands where the the
power flow is unfeasible and thus loads will not be served.
Our migration strategy does not take explicitly into account
the number of lines cut. We present here a case study to show
that, nevertheless, it can still lead to nodes self-organising
into a partition where power is not only available but can be
dispatched, i.e., the power flow is feasible for all the islands.
To this aim, we consider the problem of refining the partition

of the IEEE 118 test case into 𝑛𝜇 = 3 islands proposed in
[27], to react to a failure in bus 261. Solving the power
flow for the test case in the absence of a fault shows that
this generator is responsible for 7.2% of the total active
power generated and, consistently, post-fault, an island of the
partition will be endowed with negative power imbalance. To
overcome this problem, we apply our strategy using the partition
proposed in [27] as initial partition Π(0) for our distributed
algorithm. We take the groups of coherent generators as in
[27], this time assuming these nodes cannot change island
throughout the migration process. Furthermore, following [22],
we assume that post-fault load can be shed by 15%2 in non-

1For the purpose of this case study, it is irrelevant whether islanding is
performed to avoid a blackout or for Parallel Power Grid Restoration purposes.

2This value is half that considered in [22] when solving the islanding
problem for Parallel Power System Restoration.

critical loads belonging to islands affected by the refinement
process, and select the set of critical loads as in [22]. Finally,
as our aim is that of refining Π(0) so as to make sure all
islands are such that 𝑃𝑙 (𝐾) ≥ 0, we enforce the additional
rule that node 𝑖 can migrate from M𝑚 (𝑘) to M𝑙 (𝑘) only if
sign(𝑃𝑙 (𝑘)) = −sign(𝑃𝑚 (𝑘)) which will cause migrations to
cease if all islands have positive power imbalance. To evaluate
the quality of the partition Π(𝐾) resulting from applying our
strategy, we will compare the properties of the power flow
solutions of the islands in Π(𝐾) to those in Π(0) in terms of
(i) minimal and maximal voltage magnitude 𝑉min and 𝑉max;
(ii) minimal and maximal voltage angles 𝛿min and 𝛿max;
(iii) active and reactive power losses 𝜆𝑃 and 𝜆𝑄.
We find that in this scenario 𝐾 = 17 migrations are required to
make sure all islands have positive power imbalance, resulting
in the nodes self-organizing into a partition defined by the cutset
{15-19, 17-113, 18-19, 23-25, 27-32, 31-32, 34-37, 35-37,
37-39, 37-40, 38-65, 69-77, 75-77, 76-118, 80-81, 114-115}.
Let us start describing the outcome of our case-study
underlining that V3 (𝐾) = V3 (0), that is, no migrations
occurred that changed island M3. For this reason, we shed
no load in this island post-fault, resulting in no changes in
its power flow. Conversely, all 17 migrations involve nodes
in islands M1 and M2. Consistently, as shown in Table III,
for these two islands we observe changes in all the variables
we chose to describe the power flow solution. However, the
only variable whose value degrades substantially is the worst
minimal voltage magnitude 𝑉min that, for island M2 (𝑘) takes
the value of 0.87, quite far from the desired value of 1 and
lower than the initial value of 0.946, but still consistent with
other islanding results available in the literature (see for
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Case 𝑛𝜇 𝐾 Cut-set at Π (0) Π (0) Cut-set at Π (𝐾) 𝐽 (0) 𝐽 (𝐾) 𝐽∗ 𝑃𝑙 (0) 𝑃𝑙 (𝐾) Bound (17)

IEEE 300 3 3

{3-129, 7-110,
40-68, 54-123,
57-66, 66-190,
67-190, 68-73,
185-186}

SSRP+BFS

{3-129, 40-68,
54-123, 57-66,
64-67, 66-190,
68-73, 109-110,
184-185, 185-187}

102.92 102.92 102.92
{6.11,
129.98,
172.65}

{6.11,
145.98,
156.65}

1254.95

IEEE 300 3 12

{40-68, 57-66,
66-190, 67-190,
68-73, 106-113,
112-116, 122-123,
185-186}

Arbitrary

{36-40, 39-40,
61-66, 64-67,
65-66, 68-73,
105-106, 106-107,
106-147, 112-116,
119-121, 121-154,
122-124, 122-128,
127-157, 154-158,
157-158, 168-189,
172-187, 177-188,
184-185}

529.49 102.92 102.92
{−639.87,
775.96,
172.65}

{129.21,
18.89,
160.65}

1254.95

IEEE 300 4 5

{3-129, 7-110,
40-68, 54-123,
61-66, 64-67
65-66, 68-73,
68-173, 174-198,
185-186}

SSRP+BFS

{3-129, 7-110,
40-68, 54-123,
57-180, 57-190,
66-190, 67-190,
68-73, 68-173,
168-187, 172-187,
174-198, 184-185}

77.187 77.187 77.187

{19.76,
6.11,
205.98,
76.9}

{114.76,
6.11,
110.98,
76.9}

1908.2

IEEE 300 4 3

{57-66, 64-67,
66-190, 68-173,
109-110, 109-129,
122-123, 174-191,
174-198, 184-185,
185-187}

[27]

{7-110, 57-66,
66-190, 67-190,
68-173, 109-129
122-123, 168-187,
172-187, 174-191,
174-198, 184-185}

77.187 77.187 77.187

{145.98,
79.76,
6.11
76.9}

{110.98,
114.76,
6.11,
76.9}

1908.2

TABLE II: Results after applying Algorithms 1 and 2 to the IEEE 300 test cases, considering different initial partitions Π(0).
Power values are reported in MW. Note that bound (17) is computed for 𝑘 = 𝐾 .

instance Figure 4 in [45]). Conversely, the largest voltage angle
(in magnitude) is comparable before and after the migration
process, and while we observe a general increase in the active
and reactive losses, the highest reactive power loss in the final
partition is just 20% larger than that pre-fault.
Overall, this case study shows that our strategy can also be

deployed for post-fault refinement of a reasonable partition.
Next, we discuss the steps required towards a real-world
implementation of such a decentralized islanding strategy.

VII. Towards a practical implementation
In this section, we discuss some issues that are important to

achieve a practical implementation of the strategy.

A. Power flow feasibility
In this work, we chose to seek a partition of a grid that

minimizes the islands’ power imbalance. As is known in the
literature [13], this can come at the price of obtaining a large
power flow disruption which can cause the power flow to be
unfeasible for some of the islands. However, this choice allowed
us to prove rigorously that nodes of a power system can self-
organize into islands that fulfill some electrical property of
interest.
The test case described in Section VI shows that our results

can also be exploited in a realistic scenario. Nevertheless, for
practical implementation, power flow disruption should also
be explicitly taken into account to systematically ensure the
available power to be dispatchable. We are currently adapting

the tools developed in this work to optimize the trade-off
between power imbalance and the power flow disruption. Our
preliminary numerical investigations are encouraging, and
suggest that a multi-objective distributed strategy based on the
same estimation tools presented in this work can consistently
lead to islands where power is both available and can be
dispatched.

B. Implementation issues
A real world implementation of the tools presented in this

paper relies on three main assumptions: the availability of
(i) computational power at each node, (ii) a communication
infrastructure between the nodes having the same topology
as the physical grid, and (iii) measurements of the gener-
ated/consumed power at each node. Which one of these
assumptions proves more restrictive depends on the reason
for which islanding is needed. In case islanding is needed to
avoid a cascading outage, the largest drawback with respect to
a centralized approach is that substantial effort must be devoted
in designing efficient distributed simulation protocols. Indeed,
to avoid a blackout, the migration process must be executed on
a timescale compatible with that of the development of post-
fault instability. In our numerical experiments, we found that
the numerical simulations required to perform a migration step
lasted around 8 ms to run (on a personal computer equipped
with an Intel Core i5 processor with six cores at 3 GHz, and
16GB of RAM memory) yielding, for the test case in section
VI, a total time of 0.12 s for the nodes to obtain the final
partition. Note that this is in line with the computational time
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Island 𝑃𝑙 [MW] 𝑉min [p.u.] 𝑉max [p.u.] 𝛿min [deg] 𝛿max [deg] 𝜆𝑃 [MW] 𝜆𝑄 [MVar]

M1 (0) −410 0.936 1.050 −20.66 21.25 6.27 59.22
M2 (0) 474 0.946 1.050 17.47 32.61 6.32 19.03
M3 (0) 216 0.943 1.040 17.13 41.77 3.96 20.18
M1 (𝐾) 14 0.955 1.050 8.51 33.68 4.94 59.22
M2 (𝐾) 58 0.874 1.050 −44.47 30.27 16.74 70.87
M3 (𝐾) 216 0.943 1.040 17.13 41.77 3.96 20.18

TABLE III: Comparison between the properties of the power flow solution pre-fault for the islands defined by the initial partition
Π(0) defined in [27] and post-fault after the initial partition is refined through our distributed strategy.

0 2 4 6 8 10 12

-500

0

500

1000

(a)

(b)

Fig. 3: Partitioning of the IEEE 300 test system into 𝑛𝜇 = 3
islands, through Algorithms 1 and 2. (a) 𝑃1 (𝑘) (red squares),
𝑃2 (𝑘) (green circles), 𝑃3 (𝑘) (blue triangles), 𝐽 (𝑘) (black
stars), and 𝐽∗ (dashed line). (b) Final network partition Π(𝐾);
red squares denote V1 (𝐾), green circles denote V2 (𝐾), and
blue triangles denote V3 (𝐾). The nodes’ migration order is
106, 122, 185, 187, 168, 188, 127, 66, 121, 158, 67 and 40.

required to solve the islanding problem on the same test case
(the IEEE 118 bus system) in [46].
If the strategy is applied for Parallel Power System Restora-

tion, i.e., post black-out, ensuring reliable communication
among the nodes might be the most pressing issue.

Finally, in energetic communities, privacy issues may arise
and one might want to make sure nodes cannot infer the power
generated or absorbed by their peers from the communicated
signals. Furthermore, in this latter case, choosing the number
of energetic communities 𝑛𝜇 could also be exploited for opti-
mization purposes, whereas in post-fault scenarios it is usually
fixed and determined by the groups of coherent generators
and, for the case of Parallel Power System Restoration, by the
availability of blackstart units. Addressing these issues is the
subject of ongoing work and will be reported elsewhere.

C. Limitations
Although the framework we have developed offers several

advantages, such as effective power management and fault
tolerance, it does have a significant limitation. Specifically, it
requires an external initial partition to be provided, which could
be a potential bottleneck in the decentralization process. While
it is realistic to assume the availability of such a partition,
fully decentralizing the islanding process would necessitate the
development of a distributed strategy enabling generators to
self-organize into coherent groups and recursively add loads
to form the initial islands. Addressing this limitation is an
important direction for future research, as it could lead to
greater efficiency and scalability of the overall system.

VIII. Conclusions
We introduced a power network islanding algorithm that

solves the Intentional Controlled Islanding problem in a
distributed manner. Our strategy allows the network nodes
to self-organise so as to minimize the average absolute power
imbalance among islands. To allow the nodes to make informed
decisions, we devised a consensus-based estimator which is
instrumental to the migration process, as it allows nodes to
estimate the power imbalances of neighboring islands in a
distributed manner. We demonstrated analytically that our
algorithm converges in finite time to a partition whose average
absolute power imbalance is in a given neighborhood of the
optimal one. We tested the strategy on two benchmark power
networks, the IEEE 118 and 300 bus systems under different
fault conditions showing the effectiveness of the proposed
approach.

References
[1] F. Dörfler, J. W. Simpson-Porco, and F. Bullo, “Breaking the hierarchy:
Distributed control and economic optimality in microgrids,” IEEE
Transactions on Control of Network Systems, vol. 3, no. 3, pp. 241–
253, 2015.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3277805

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10

[2] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control
system,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1963–1976,
2012.

[3] P. Frasca, H. Ishii, C. Ravazzi, and R. Tempo, “Distributed randomized
algorithms for opinion formation, centrality computation and power
systems estimation: A tutorial overview,” European Journal of Control,
vol. 24, pp. 2–13, 2015.

[4] P. Pourbeik, P. S. Kundur, and C. W. Taylor, “The anatomy of a power
grid blackout-root causes and dynamics of recent major blackouts,” IEEE
Power and Energy Magazine, vol. 4, no. 5, pp. 22–29, 2006.

[5] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power
converters in ac microgrids,” IEEE Transactions on Power Electronics,
vol. 27, no. 11, pp. 4734–4749, 2012.

[6] A. Tayyebi, D. Groß, A. Anta, F. Kupzog, and F. Dörfler, “Frequency
stability of synchronous machines and grid-forming power converters,”
IEEE Journal of Emerging and Selected Topics in Power Electronics,
vol. 8, no. 2, pp. 1004–1018, 2020.

[7] C. Arghir, T. Jouini, and F. Dörfler, “Grid-forming control for power
converters based on matching of synchronous machines,” Automatica,
vol. 95, pp. 273–282, 2018.

[8] F. Milano, F. Dörfler, G. Hug, D. J. Hill, and G. Verbič, “Foundations
and challenges of low-inertia systems,” in 2018 IEEE Power Systems
Computation Conference (PSCC), 2018, pp. 1–25.

[9] F. Dörfler, S. Bolognani, J. W. Simpson-Porco, and S. Grammatico,
“Distributed control and optimization for autonomous power grids,” in
IEEE 18th European Control Conference (ECC), 2019, pp. 2436–2453.

[10] G. Lalor, A. Mullane, and M. O’Malley, “Frequency control and wind
turbine technologies,” IEEE Transactions on Power Systems, vol. 20,
no. 4, pp. 1905–1913, 2005.

[11] H. Bevrani, A. Ghosh, and G. Ledwich, “Renewable energy sources
and frequency regulation: survey and new perspectives,” IET Renewable
Power Generation, vol. 4, no. 5, pp. 438–457, 2010.

[12] A. Ulbig, T. S. Borsche, and G. Andersson, “Impact of low rotational
inertia on power system stability and operation,” Proceedings of the
19th World Congress, IFAC Proceedings Volumes, vol. 47, no. 3, pp.
7290–7297, 2014.

[13] X. Fan, E. Crisostomi, D. Thomopulos, B. Zhang, and S. Yang, “A
controlled islanding algorithm for AC/DC hybrid power systems utilizing
dc modulation,” IET Generation, Transmission & Distribution, vol. 14,
no. 26, pp. 6440–6449, 2020.

[14] S. Pahwa, M. Youssef, P. Schumm, C. Scoglio, and N. Schulz, “Optimal
intentional islanding to enhance the robustness of power grid networks,”
Physica A: Statistical Mechanics and its Applications, vol. 392, no. 17,
pp. 3741–3754, 2013.

[15] K. Sun, D.-Z. Zheng, and Q. Lu, “Splitting strategies for islanding
operation of large-scale power systems using obdd-based methods,” IEEE
Transactions on Power Systems, vol. 18, no. 2, pp. 912–923, 2003.

[16] M. Adibi, R. Kafka, S. Maram, and L. M. Mili, “On power system
controlled separation,” IEEE Transactions on Power Systems, vol. 21,
no. 4, pp. 1894–1902, 2006.

[17] P. Fernández-Porras, M. Panteli, and J. Quirós-Tortós, “Intentional
controlled islanding: when to island for power system blackout prevention,”
IET Generation, Transmission & Distribution, vol. 12, no. 14, pp. 3542–
3549, 2018.

[18] A. R. H. Ahangar, G. B. Gharehpetian, and H. R. Baghaee, “A review on
intentional controlled islanding in smart power systems and generalized
framework for ici in microgrids,” International Journal of Electrical
Power & Energy Systems, vol. 118, p. 105709, 2020.

[19] H. Haddadian and R. Noroozian, “Multi-microgrids approach for design
and operation of future distribution networks based on novel technical
indices,” Applied Energy, vol. 185, pp. 650–663, 2017.

[20] Z. Wang, B. Chen, J. Wang, M. M. Begovic, and C. Chen, “Coordinated
energy management of networked microgrids in distribution systems,”
IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 45–53, 2014.

[21] S. A. Arefifar and Y. A.-R. I. Mohamed, “DG mix, reactive sources
and energy storage units for optimizing microgrid reliability and supply
security,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1835–1844,
2014.

[22] J. Quirós-Tortós, P. Wall, L. Ding, and V. Terzija, “Determination of
sectionalising strategies for parallel power system restoration: A spectral
clustering-based methodology,” Electric Power Systems Research, vol.
116, pp. 381–390, 2014.

[23] S. A. Arefifar, A.-R. M. Yasser, and T. H. El-Fouly, “Optimum microgrid
design for enhancing reliability and supply-security,” IEEE Transactions
on Smart Grid, vol. 4, no. 3, pp. 1567–1575, 2013.

[24] S. Hasanvand, M. Nayeripour, E. Waffenschmidt, and H. Fallahzadeh-
Abarghouei, “A new approach to transform an existing distribution net-
work into a set of micro-grids for enhancing reliability and sustainability,”
Applied Soft Computing, vol. 52, pp. 120–134, 2017.

[25] S. Mohammadi, S. Soleymani, and B. Mozafari, “Scenario-based stochas-
tic operation management of microgrid including wind, photovoltaic,
micro-turbine, fuel cell and energy storage devices,” International Journal
of Electrical Power & Energy Systems, vol. 54, pp. 525–535, 2014.

[26] Z. Liu, A. Clark, L. Bushnell, D. S. Kirschen, and R. Poovendran,
“Controlled islanding via weak submodularity,” IEEE Transactions on
Power Systems, vol. 34, no. 3, pp. 1858–1868, 2018.

[27] A. Kyriacou, P. Demetriou, C. Panayiotou, and E. Kyriakides, “Controlled
islanding solution for large-scale power systems,” IEEE Transactions on
Power Systems, vol. 33, no. 2, pp. 1591–1602, 2017.

[28] C. Wang, B. Zhang, Z. Hao, J. Shu, P. Li, and Z. Bo, “A novel real-
time searching method for power system splitting boundary,” IEEE
Transactions on Power Systems, vol. 25, no. 4, pp. 1902–1909, 2010.

[29] F. Znidi, H. Davarikia, K. Iqbal, and M. Barati, “Multi-layer spectral
clustering approach to intentional islanding in bulk power systems,”
Journal of Modern Power Systems and Clean Energy, vol. 7, no. 5, pp.
1044–1055, 2019.

[30] M. R. Aghamohammadi and A. Shahmohammadi, “Intentional islanding
using a new algorithm based on ant search mechanism,” International
Journal of Electrical Power & Energy Systems, vol. 35, no. 1, pp. 138–
147, 2012.

[31] M. H. Oboudi, M. Mohammadi, and M. Rastegar, “Resilience-oriented
intentional islanding of reconfigurable distribution power systems,”
Journal of Modern Power Systems and Clean Energy, vol. 7, no. 4,
pp. 741–752, 2019.

[32] E. M. Gui and I. MacGill, “Typology of future clean energy communities:
An exploratory structure, opportunities, and challenges,” Energy Research
& Social Science, vol. 35, pp. 94–107, 2018.

[33] B. Astarloa, A. Kaakeh, M. Lombardi, and J. Scalise, “Future of
electricity,” World Economic Forum, Tech. Rep., 2017.

[34] “Directive 2018/2001 of the European Parliament and of the Council on
the promotion of the use of energy from renewable sources,” 2018.

[35] A. Shrestha, R. Bishwokarma, A. Chapagain, S. Banjara, S. Aryal,
B. Mali, R. Thapa, D. Bista, B. P. Hayes, A. Papadakis, and P. Ko-
rba, “Peer-to-peer energy trading in micro/mini-grids for local energy
communities: A review and case study of nepal,” IEEE Access, vol. 7,
pp. 131 911–131 928, 2019.

[36] M. Coraggio, S. Jafarpour, F. Bullo, and M. d. Bernardo, “Minimax flow
over acyclic networks: Distributed algorithms and microgrid application,”
IEEE Transactions on Control of Network Systems, pp. 1–10, 2022.

[37] E. Espina, J. Llanos, C. Burgos-Mellado, R. Cárdenas-Dobson,
M. Martínez-Gómez, and D. Sáez, “Distributed control strategies for
microgrids: An overview,” IEEE Access, vol. 8, pp. 193 412–193 448,
2020.

[38] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares,
N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor et al., “Definition
and classification of power system stability ieee/cigre joint task force on
stability terms and definitions,” IEEE Transactions on Power Systems,
vol. 19, no. 3, pp. 1387–1401, 2004.

[39] S. A. Arefifar, Y. A.-R. I. Mohamed, and T. H. M. El-Fouly, “Supply-
adequacy-based optimal construction of microgrids in smart distribution
systems,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1491–1502,
2012.

[40] W. A. Kirk and B. Sims, “Handbook of metric fixed point theory,”
Australian Mathematical Society Gazette, vol. 29, no. 2, 2002.

[41] U. of Washington College of Engineering, “Power systems test case
archive,” http://labs.ece.uw.edu/pstca/, accessed: 2021-01-17.

[42] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on Power Systems,
vol. 26, no. 1, pp. 12–19, 2010.

[43] J. W. Bialek and V. Vahidinasab, “Tree-partitioning as an emergency
measure to contain cascading line failures,” IEEE Transactions on Power
Systems, vol. 37, no. 1, pp. 467–475, 2021.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[45] J. Quirós-Tortós, P. Demetriou, M. Panteli, E. Kyriakides, and V. Terz-
ija, “Intentional controlled islanding and risk assessment: A unified
framework,” IEEE Systems Journal, vol. 12, no. 4, pp. 3637–3648, 2017.

[46] P. Demetriou, M. Asprou, and E. Kyriakides, “A real-time controlled
islanding and restoration scheme based on estimated states,” IEEE
Transactions on Power Systems, vol. 34, no. 1, pp. 606–615, 2018.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3277805

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



11

Francesco Lo Iudice (M’21) received the master’s
degree in management engineering, and the Ph.D.
degree in automation and computer science from
the University of Naples Federico II, Naples, Italy,
in 2012 and 2016, respectively. He is currently an
Associate Professor of automatic control with the
Department of Electrical Engineering and Informa-
tion Technologies, University of Naples Federico II.
During his Ph.D. and his year as a Postdoctoral Re-
search Fellow, he spent a year with the Department of
Mechanical Engineering, University of New Mexico,

Albuquerque, NM, USA, where he was a Research Fellow in 2015. His
current research interests include synchronization, controllability and control
of complex networks, with applications to the fields of opinion dynamics in
large social groups, control of power grids, and formation control.

Ricardo Cardona-Rivera is currently a Postdoctoral
fellow with the Center of Translational Neurophys-
iology from the Italian Institute of Technology. He
received his Ph.D. degree in Information Technology
and Electrical Engineering from the University of
Naples Federico II, Naples, Italy, in 2022. He was
previously associated with the National University
of Colombia (bachelor’s degree in electronic engi-
neering and M.S. in Automation Engineering). His
current research interests include the analysis and
control of complex systems and its applications in

power systems and neuroscience.

Antonio Grotta Antonio Grotta received his mas-
ter’s degree in Automation Engineering from the
University of Naples Federico II, Naples, Italy, in
2020. In 2021, he was a Research Fellow at the
University of Naples Federico II and has been a
Ph.D. student at the Scuola Superiore Meridionale,
School for Advanced Studies, Naples, Italy, since
2021. His current research interests include complex
networks and artificial intelligence.

Marco Coraggio (M’18) received his Ph.D. degree in
Information Technology and Electrical Engineering
from the University of Naples Federico II, Naples,
Italy, in 2020. He was a visiting student at the
University of Bristol, UK, in 2016 and at the
University of California, Santa Barbara, USA, in
2019. He was a Postdoctoral Fellow at the University
of Naples Federico II, from 2020 to 2021 and has
been a Postdoctoral Fellow at the Scuola Superiore
Meridionale, School for Advanced Studies, Naples,
Italy, since 2021. Dr. Coraggio’s current research

interests include complex networks and applications, data-driven control, and
piecewise-smooth and hybrid dynamical systems.

Mario di Bernardo (SM’06–F’12) is Professor
of Automatic Control at the University of Naples
Federico II, Italy and Visiting Professor of Nonlinear
Systems and Control at the University of Bristol, UK.
He currently serves as deputy pro-Vice Chancellor
for internationalization of the University of Naples
Federico II and coordinates the research area on
Modeling and Engineering Risk and Complexity of
the Scuola Superiore Meridionale, the new School for
Advanced Studies, located in Naples, Italy. On 28th
February 2007 he was bestowed the title of Cavaliere

of the Order of Merit of the Italian Republic for scientific merits from the
President of Italy. He was elevated to the grade of Fellow of the IEEE in
January 2012 for his contributions to the analysis, control and applications
of nonlinear systems and complex networks. Prof. di Bernardo served as
President of the Italian Society for Chaos and Complexity, as a member of the
Board of Governors of the IEEE Circuits and Systems Society, Vice President
for Financial Activities of the society, and as a member of the Board of
Governors of the IEEE Control Systems Society. Prof. di Bernardo authored or
co-authored more than 220 international scientific publications including more
than 110 papers in scientific journals, a research monograph and two edited
books. According to the international database SCOPUS (January 2021), his
h-index is 49 and his publications received over 8000 citations by other authors.
His research interests include the analysis and control of collective behaviour
in complex systems; piecewise-smooth dynamical systems; nonlinear dynamics
and nonlinear control with applications to Engineering and Life Science.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3277805

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


