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A Finite-Time Protocol for Distributed
Time-Varying Optimization over a Graph
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Abstract— In this paper we address a time-varying
quadratic optimization problem over a graph under the
assumption that the problem shares the same sparsity
pattern as the static graph encoding the undirected network
topology over which the multi-agent systems interacts. No-
tably, this framework allows to effectively model scenarios
in which the optimization problem is inherently embedded
within the network topology, e.g., flow balancing, electrical
power system managements or packet routing problems. In
this regard, we propose a finite-time distributed algorithm
which allows the multi-agent system to track the time-
varying optimal solution over time. Specifically, we first
solve the frozen-time optimization problem, providing a
necessary and sufficient condition for a solution to be glob-
ally optimal. Then, based on such condition, a continuous-
time distributed nonsmooth algorithm is developed. Numer-
ical simulations are provided to corroborate the theoretical
findings.

Index Terms— Distributed Time-Varying Optimization,
Graph Sparsity, Finite-Time Protocol, Nonsmooth Analysis.

I. INTRODUCTION

IN recent years, a lot of attention has been devoted to
multi-agent systems in several fields, including Internet

of Things, social dynamics, or precision farming. In par-
ticular, multi-agent systems have been successfully adopted
for solving distributed optimization problems [1], [2]–[14].
Generally speaking, in these settings the network mainly acts
as a distributed computational resource over which the given
optimization problem is solved. Differently, in our context
we focus on optimization problems which are inherently
embedded within the network topology, e.g., flow balanc-
ing [15], electrical power system management [16] or packet
routing [17] problems. In this view, it is reasonable to assume
that the matrices involved within the optimization problem
are indeed sparse and their sparsity shares the underlying
sparsity pattern of the network topology, while the time-
varying terms in both the constraints and objective function
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account for the variability due to external factors. Notably,
this setting is fundamentally different from classical distributed
optimization approaches (e.g., see [18] and references therein).
Our strategy to achieve finite-time tracking consist in deriving
a nonsmooth algebraic optimality condition for the “frozen-
time" problem, i.e., for the problem obtained by considering
the actual values of the formulation at a specific time instant,
and then developing a distributed algorithm able to track the
time-varying solution of the nonsmooth algebraic optimality
condition in finite-time. We resort to nonsmooth stability
theory to prove convergence and finite-time tracking. To the
best of our knowledge, this is the first work where finite-time
tracking of a quadratic optimization problem with time-varying
and coupling objective function and time-varying inequality
constraints is obtained.

In the literature there has been a large deal of work related
to time-varying optimization for the centralized (e.g, see [20]–
[22]) and distributed settings [1], [2]–[14], even though
very few works were able to provide finite-time convergence
guarantees [8], [13]. In particular, some approaches address
time-invariant problem over a time-varying graph [1], [2]–
[4], [23], while others focus on problems with time-varying
objective functions and/or constraints [5]–[14]. Let us now
briefly discuss the state of the art for the case of asymptotic
convergence; existing works with asymptotic convergence
are compared in Table I. Notably, discrete-time approaches
[1], [7], [10], besides considering a distributed interaction

protocol, rely on the iterative solution of local optimization
problems and on additional local computations to be executed
at each step, and only guarantee boundedness of the tracking
error. Concerning continuous-time, except for [8], [13] and
for the proposed algorithm, approaches in the literature either
guarantee boundedness of the tracking error [9], [11] or
asymptotic convergence [1], [5], [6], [12], [20]. It is notewor-
thy that [12] is the only work to guarantee asymptotic tracking
in the general case of convex programming, under suitable
assumptions; moreover, only [9] developed an algorithm that
deals with directed communication between agents. Let us now
discuss the algorithms with finite-time tracking capabilities,
which are compared in Table I. In [19] an unconstrained
optimization problem with time-varying objective functions is
considered, where the agents are able to reach and maintain
a consensus on their decision variables in finite time, but
convergence to the time-varying optimal solution is asymp-
totic. Notice that [8] considers a particular resource allocation
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Asymptotic Convergence

Rahili and Ren, 2016 [5] 3 3 3
Sun et al., 2017 [6] 3 3 3 3 3

Vaquero and Cortés, 2018 [9] 3 3 3 3 3 3 3
Hosseinzadeh et al., 2018 [11] 3 3 3 3 3 3

Sun and Ren, 2020 [12] 3 3 3 3 3
Sun et. al, 2022 [14] 3 3 3 3 3

Finite-time Consensus Only B. Ning, et al., 2017 [19] 3 3 3

Finite-time Convergence
Bai et al., 2018 [8] 3 3 3 3 3

Santilli et al., 2020 [13] 3 3 3 3 3
Proposed Algorithm 3 3 3 3 3 3 3

TABLE I: Comparison of the proposed algorithm against the state of the art.

problem with quadratic, invariant and decoupled objective
functions, while time variance only occurs in an equality
constraint that couples the variables. Moreover, [13] focuses
on a particular quadratic problem where the aim is to minimize
the square norm of the agents’ variables, while the agents are
coupled by a linear inequality constraint with time varying
known term. However, [13] requires 2-hop information, while
[8] relies on 1-hop information; such a 2-hop information
can be retrieved by resorting to a state of the art finite-time
k-hop distributed observer which can be implemented using
only 1-hop information [24]. To summarize, most of previous
literature is not able to provide finite-time convergence guar-
antees, while the few works that have this property are tailored
to a particular class of problems [8] or consider simple and
invariant objective functions [13]. In this paper, we aim to
fill this gap. Specifically, this paper represents an extension
of [13]; in fact, we introduce a number of improvements: a) we
extend the setting to quadratic programming problems having
objective function that is also time-varying; b) the objective
function considered in this paper couples the agents, while
in [13] the agents only aim to minimize the square norm of
the decision variables; c) we allow the time-varying constraint
vector to possess non derivable points; d) we provide a
finite upper bound on the convergence time; e) we provide
a computationally efficient bound on the gain required to
guarantee finite-time tracking.

II. NOTATION AND PRELIMINARIES

We denote vectors by boldface lowercase letters and matri-
ces with uppercase letters. We refer to the (i, j)-th entry of a
matrix A by Aij . We represent by 0n and 1n vectors with n
entries, all equal to zero and to one, respectively. We use 2R

n

to denote the power set, i.e., the set of all subsets of Rn. We
denote with In the identity matrix of size n and with On×m the
zeros matrix with dimension n×m. Given two vectors x,y∈
Rn, we use max{x,y} ∈Rn and min{x,y} ∈Rn to denote
the component-wise maximum and minimum, respectively. We
denote with λi(A) (σi(A)) the i-th largest eigenvalue (singular
value) of the matrix A ∈ Rn×n, respectively. Moreover, we
use λmax(A) (σmax(A)) and λmin(A) (σmin(A)) to denote

the maximum and minimum eigenvalue (singular value) of A,
respectively. We use ∥A∥ and ∥A∥F to denote the 2-norm
and the Frobenius norm of a matrix A, respectively, while we
use ∥x∥ and ∥x∥∞ to denote the Euclidean and the infinity
norm of a vector x, respectively. In addition, we introduce
the discontinuous sign function sign(·) ∈ R :

sign(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0;

and the discontinuous set-valued sign function SIGN(x) ⊂ R:

SIGN(x) ∈


{1} if x > 0,

[−1, 1] if x = 0,

{−1} if x < 0,

and also define their respective vector forms:

sign(x) = [sign(x1), ..., sign(xn)]
T ∈ Rn,

SIGN(x)=[SIGN(x1), ..., SIGN(xn)]
T⊂ Rn.

Let G = {V, E} be an undirected graph with node
set V={1, . . . , n} with |V| = n and edges E ⊆ V ×V , where
(i, j)∈E captures the existence of a link from node i to node j.
Note that, since the graph is undirected, the existence of an
edge (i, j) ∈ E implies the existence of the edge (j, i) ∈ E .
Let us define a path between agents i and j as the set of edges
through which an agent j can be reached by an agent i; in the
following we will denote a path which involves k edges from
agent i to reach agent j as a k-hop path between agents i
and j. Let N k

i denote the k-hop neighborhood of an agent i,
that is the set of agents j for which there exists a p-hop path
from agent j to i with p ≤ k. In addition, given a graph G,
let AG be the set of matrices compatible with it defined as

AG =
{
Γ∈ Rn×n : Γij=0,∀(i, j) ̸∈ E ∪ C

}
,

with C = {(i, i)}, i = 1, . . . , n. Note that by definition the
matrix Γ ∈ AG is not required to be symmetric and can
have nonzero diagonal entries. The degree di of a node vi
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is the number of its incoming edges, i.e., di = |Ni|. Given
an undirected graph G = {V, E} with n nodes, we define the
Laplacian matrix L as the n× n matrix such that

Lij =


di, if i = j

−1, if (vj , vi) ∈ E ,
0, otherwise.

It is well known [25] that when G is connected L has a
unique eigenvalue equal to zero and that the corresponding
left eigenvector is 1T

n .
Let us now review the Filippov solution concept for dif-

ferential equations with discontinuous right-hand side, the
nonsmooth analysis of Clarke’s Generalized Gradient, and the
chain-rule for differentiating regular functions along Filippov
solution trajectories. The reader is referred to [26]–[28] and
references therein for a comprehensive overview of the topic.
Let us consider the differential equation

ż(t) = f(z(t), t), (1)

with f : Rn × R → Rn a measurable and essentially locally
bounded function. In the following, where understood, we omit
the time-dependency. First, we need to clarify what it means
to be a solution of this equation.

Definition 1 (Filippov Solution): A vector function z(·) is
called solution of Eq. (1) on a time interval [t0, t1] if z(·) is
absolutely continuous on [t0, t1] and for almost all t ∈ [t0, t1]
it holds ż ∈ K[f ](z, t), with

K[f ](z, t) =
∩
δ>0

∩
µ{H}=0

co{f(B(z, δ) \H, t)},

where
∩

µ{H}=0 denotes the intersection over all sets H of
Lebesgue measure zero, B(z, δ) denotes the ball of radius δ
centered at z and co the convex closure.
The ability to disregard sets of measure zero represents an
interesting feature of the above definition that makes it possible
to identify solutions even at locations where the vector field
is not defined.

We now recall from [28] the conditions for the existence
and the uniqueness of the Filippov solutions.

Proposition 1 (Existence and Uniqueness [28]): Let
f(z, t) : Rn ×R → Rn be measurable and locally essentially
bounded. Assume that ∀ z ∈ Rn there exists ϵ > 0 such that
f(·) is essentially one-sided Lipschitz on B(z, ϵ). Then, for
all z0 ∈ Rn, there exists a unique Filippov solution of Eq. (1)
with initial condition z(0) = z0.

We now review the concept of Clarke’s Generalized Gradi-
ent, an essential tool in the machinery of nonsmooth analysis.

Definition 2 (Clarke’s Generalized Gradient): Consider a
locally Lipschitz function V : Rn × R → R. Then, the gen-
eralized gradient at (z, t) is defined as

∂V (z, t) = co

{
lim
k→∞

∇V (zk, tk) : ΩV ̸∋ (zk, tk) → (z, t)

}
,

where ΩV is the set of measure zeros where the gradient of V
is not defined. Note that the gradient ∇ includes the derivative
with respect to time (∂/∂t).

We now review the chain rule which allows to differenti-
ate Lipschitz regular functions along the Filippov’s solution

trajectories.
Theorem 1 (Chain Rule [27]): Let z(·) be a Filippov

solution to Eq. (1) on an interval containing t and
V : Rn × R → R be a Lipschitz and, in addition, reg-
ular function. Then V (z(t), t) is absolutely continuous,
d
dt (V (z(t), t)) exists almost everywhere (i.e., save for a set
of measure zero) and

d

dt
V (z(t), t) ∈a.e. ˙̃

V (z(t), t),

where a.e. is a shorthand for “almost everywhere" (The
reader is referred [29] for a more comprehensive overview
on nonsmooth analysis) and ˙̃

V (z, t) is defined as

˙̃
V (z, t) =

∩
ξ∈∂V (z(t),t)

ξT
(
K[f ](z, t)

1

)
.

Let us now recall a revised version of the Generalized Lya-
punov theorem given in [26] based on the results given in [27].
This will prove useful to establish finite-time stability results
for dynamical systems described by differential equations with
discontinuous right-hand side.

Theorem 2 (Finite-Time Stability Theorem): Consider
a Filippov solution z(t) : R → Rn to Eq. (1) and let
V (z, t) : Rn × R→R, be a time dependent regular function
such that V (z, t) = 0 ∀z ∈ C(t) and V (z, t) > 0 ∀z ̸∈ C(t),
with C(t) ⊂ Rn a compact set. Furthermore, let z(t) and
V (z, t) be absolutely continuous on [t0,∞) with

d
dt (V (z, t)) ≤ −ϵ < 0

almost everywhere on {t : z(t) ̸∈ C(t)}. Then, V (z(t), t)
converges to 0 in finite-time and z(t) reaches the compact set
C(t) in finite-time as well.

Let us now also introduce the concept of general-
ized Jacobian. Consider a Lipschitz vector-valued function
F : Rn × R → Rm, with F =

[
F1, . . . , Fm

]
. It follows

from [29] that the generalized Jacobian ∂F (z, t) is

∂F (z, t)=co
{
lim
i→∞

JF (zk, tk) : ΩF ̸∋ (zk, tk) → (z, t)
}
,

with JF (z, t) ∈ Rm×n the classical Jacobian whenever it
exists and ΩF the set of measure zeros where JF (z, t) is not
defined.

III. PROBLEM STATEMENT

Let us consider the following quadratic optimization prob-
lem with time-varying linear objective term and time-varying
linear constraints with the same sparsity pattern as the static
graph encoding the undirected network topology over which
the multi-agent systems interacts.

Problem 1: Consider the following optimization problem
over a graph G = {V, E} with |V| = n.

min
x∈Rn

1

2
xTQx+φT (t)x s.t. Ax ≥ b(t)

with Q ∈ AG , φ(t) ∈ Rn, b(t) ∈ Rm, and A ∈ Rm×n with
m ≤ n. In particular, A = DP , where P ∈ AG , while D ∈
Rm×n is in the form D=[ei(1), . . . , ei(m)]

T , with ej the j-th
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vector in the canonical basis in Rn and

H = {i(1), . . . , i(m)} ⊆ {1, . . . , n} = V.

In other words, the matrix A essentially amounts to a subset
of the rows of a matrix P that is compatible with the graph
underlying the agents’ interaction.

In this paper we are interested in solving Problem 1 in a
distributed manner as detailed in the following.

Problem 2: Let us consider a multi-agent system composed
of n agents interconnected by a communication network G.
Our problem consist in designing a distributed control protocol
that drives each agent i to a component of the optimal
solution x∗(t) and the optimal Lagrange multiplier ζ∗(t) of
Problem 1 in finite-time T , i.e.,

∥xi(t)− x∗i (t)∥ = 0, ∀ i ∈ V, ∀ t ≥ T,

∥ζi(t)− ζ∗i (t)∥ = 0, ∀ i ∈ H, ∀ t ≥ T.

Before moving forward with the technical derivations of the
paper, we now discuss an interesting subclass of problems that
represents a motivational example for the proposed framework.

Example 1 (Motivational Example): Let us consider a
problem where each agent has two clashing objectives: from
one side, the agents want their variables xi(t) to track a time-
varying reference signal ϕi(t), while from another side the
agents want to have values as similar as possible with each
other (e.g., [30], where multi-objective approaches are used
to drive the exploration task of mobile robots). This kind of
setting has a number of application such as in exploration
problems in the context of mobile robotics, where agents may
want to explore different zones but also to stick with each
other. Another interesting case is in the context of networks
of distributed electrical prosumers, able to consume, provide
or exchange energy with their neighbors; in this context, an
interesting feature is the ability to mediate between the local
utility of the agent, which can be considered to be time-varying
based, for instance, on the energy prices (in this context the
possibility to handle nonsmooth variation could be useful to
model abrupt price changes), and requirements that the energy
provided by the agents is is similar, in order to reduce the risk
of instability. An example in this direction is given in [31],
where prosumers interact by exchanging energy with their
neighbors, and the amount of energy produced, exchanged or
consumed is decided by solving a multi-objective optimization
problem. From a practical standpoint, the objective function
is in the form

f(x(t), t) = γ
1

2

n∑
i=1

(xi(t)− ψi(t))
2

+ (1− γ)
1

2

n∑
i=1

∑
j∈Ni

(xi(t)− xj(t))
2,

where the parameter γ is used to mediate between the two
objectives. By some algebra, the above objective function can

be equivalently expressed as

f(x(t), t) =
1

2
xT (γIn + (1− γ)L)x− γψT (t)x

+ γ
1

2
ψT (t)ψ(t)

notice that the term γψT (t)ψ(t)/2, being independent on
x(t), can be neglected, in that the optimal solution does not
change when a constant is added to the objetive function. As
a consequence, the objective function becomes

f(x(t), t) =
1

2
xT

γIn + (1− γ)L︸ ︷︷ ︸
Q

x−γψT (t)︸ ︷︷ ︸
ϕT (t)

x

and it can be noted that, within the objective function
f(x(t), t), time variability only occurs in the linear term. As
for the constraints, for simplicity, one may consider time-
varying lower limits on xi(t) ≥ bi(t), i.e., constraints in
the form Inx(t) ≥ b(t). In the case of smart grids, such
constraints can model minimum requirements for the power
generation at each agent, which are in general time-varying to
account for the demand at different time instants.

Let us now collect a set of technical assumptions that will be
required to prove convergence of the proposed algorithm.

Assumption 1: The graph G is static, connected and undi-
rected.

Assumption 2: Matrix Q is symmetric and positive definite.
Assumption 3: Matrix A is full row rank.
Assumption 4: The time-varying signals φ(t), b(t) are ab-

solutely continuous, bounded, and such that φ̇(t) = ω(t) and
ḃ(t) = χ(t) for all t with ω(t) and χ(t) locally essentially
bounded functions. Moreover, it holds ∥ψ∥ < κφ for all
ψ ∈ K[ω](t) and ∥β∥ < κb for all β ∈ K[χ](t).
We point out that, while we require φ(t) and b(t) to be
bounded, we do not need to know their actual bounds;
instead, as discussed later, the agents will need to know a
bound on their derivative. In addition, such assumption is
intrinsically satisfied for well-posed problems (i.e., when b(t)
is not bounded, the problem can be easily show to be either
unfeasible or unconstrained, while when φ(t) is not bounded
the problem reduces to finding a feasible solution).

Let us now define the set

X(t) = {y ∈ Rn |Ay + bi(t) ≤ 0m}

The next assumption is required to guarantee that the problem
at hand is feasible at all time instants.

Assumption 5: For all time instants t ∈ [0,∞) the set X(t)
is nonempty.
As discussed later in the paper, the next technical assumption
is required in order to set up a proper gain α in our algorithm.

Assumption 6: Matrix Q−ATA is positive definite.
Assumption 6 is given without loss of generality. In particular,
as discussed later in Remark 4, if the assumption is not
satisfied, it is sufficient to scale the objective function by
a constant β > 0, which can be computed in a distributed
fashion, obtaining an equivalent problem which satisfies the
assumption.
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The next assumption characterizes the information available
to each agent

Assumption 7: Each agent i knows:
• The total number n of agents
• The total number m of constraints
• the entries Qij for all j ∈ Ni

• the entries Aji for all j ∈ Ni

• the entries Aℓj for all j ∈ Ni, if the agent is responsible
for the l-th constraint

• ϕi(t) and bi(t)
• the constants κφ and κb.
• the minimum eigenvalue λmin(Q) of Q
• the minimum singular value σmin(C) of

C =

[
Om×m −A
AT Q−ATA

]
(2)

Remark 1: Knowledge of λmin(Q) and σmin(C) is required
in order to adequately choose the gain α within the proposed
algorithm. Notice that, as it will be shown later in the paper,
under Assumption 6, C is guaranteed to be nonsingular and
thus σmin(C) > 0. Notice further that, as discussed later in
the paper, the requirement to know σmin(C) can be relaxed,
as it is possible to derive a positive lower bound on σmin(C)
that only depends on λmin(Q), ∥Q∥F , σmin(A), ∥A∥F and n.
This requirement could be lifted resorting to adaptive gains,
which represent a valuable future work direction.

Remark 2: The objective function of Problem 1 is convex
by construction and the constraints are linear. Therefore,
assuming a feasible solution exists at all time instants, the
Slater’s Constraint qualification holds true at all times [32].

Remark 3: In this paper, for the sake of simplicity, we
assume each agent is associated to a scalar choice variable.
However, the approach can easily be extended to the vectorial
case where each agent is associated to vectorial variables
xi(t) ∈ Rh and time-varying signals bi(t),ϕi(t) ∈ Rm and
the aim is to solve a problem where Q ∈ Rnh×nh is positive
definite and A ∈ Rℓ×nh, with ℓ ≤ nh is full row rank. In
particular, in order to generalize the approach, matrices Q
and A should exhibit the same sparsity pattern as the graph.
For instance, it is possible to consider matrices Q with the
following structure

Q = In ⊗Qlocal +Qinteraction ⊗Qcoupling,

where Qlocal ∈ Rm×m models a local term that only depends
on the choice variables available at each agent, while the sec-
ond term is the combination of Qinteraction ∈ Rn×n, which
accounts for the agents’ interaction and has the same structure
as the communication graph, and Qcoupling ∈ Rm×m, which
models the influence among pairs of agents.

IV. FROZEN-TIME GLOBAL OPTIMAL SOLUTION

Let us now characterize the structure of the global optimal
solution at a given time instant t, which we refer to as the
frozen-time solution at time t. The result will be a system of
nonsmooth algebraic equations in the Lagrangian multipliers,
which will be the basis for the proposed algorithm.

Theorem 3: Consider Problem 1 under Assumptions 1–5;
the frozen-time formulation at any time instant t ≥ 0 has a
unique global optimal solution x∗(t) and Lagrange multipliers
ζ∗(t) ∈ Rm for the inequality constraint that satisfy[

min {ζ∗(t), Ax∗(t)− b(t)}
Qx∗(t)+φ(t)−AT ζ∗(t)

]
︸ ︷︷ ︸

h(x∗(t),ζ∗(t),t)

= 0n+m. (3)

Proof: The proof follows by classical KKT theory (e.g.,
see [32], [33]). In particular, we have that the Lagrangian
function is

L(x, ζ)= 1

2
xTQx+φT (t)x+ (b(t)−Ax)

T
ζ,

ζ being the vector of Lagrange multipliers associated to the
constraint. Moreover, x∗(t), ζ∗(t) are globally optimal and,
in particular, x∗(t) is unique, if and only if the following
conditions hold true:

1) ∇xL(x∗(t), ζ∗(t))= 0n;
2) Ax∗(t)− b(t) ≥ 0m;
3) ζ∗(t) ≥ 0m;
4) ζ∗(t)⊙ (Ax∗(t)− b(t)) = 0m,

where ⊙ denotes the Hadamard product.The proof follows
noting that points 2)–4) and 1) correspond, respectively, to the
first and second block of h(·) in Eq. (3).

We now establish two results on the Lagrange multiplier
vector corresponding to the optimal solution of the frozen-time
problem. We will utilize these results later to prove the finite-
time convergence and tracking properties of our protocol.

Proposition 2: Under Assumptions 1–5, the set of Lagrange
multiplier vector ζ∗(t) corresponding to the global optimal
solution x∗(t) is unique for all t ≥ 0.

Proof: To prove the result, as described in [34] and
references therein, it is sufficient to show that the Linear-
Independence Constraint Qualification (LICQ) holds true, i.e.,
the fact the gradients of the constraints evaluated at x∗(t) are
linearly independent. Notably, in our case the matrix having
such gradients as columns corresponds to AT . Therefore, by
Assumption 3, LICQ is verified. The proof is complete.

V. DISTRIBUTED OPTIMIZATION ALGORITHM DESIGN

In this section, we develop a distributed algorithm to solve
the time-varying optimization problem illustrated in Prob-
lem 2. Note that, from Theorem 3, at each time instant t the
optimal solution x∗(t) and the optimal Lagrange multipliers
ζ∗(t) satisfy Eq. (3). Therefore, our goal is to enforce this
condition for any t ≥ T , with T > 0. To achieve this goal, let
us introduce the stacked vector z(t) ∈ Rn+m collecting the
set of Lagrangian multipliers ζ(t) and the state x(t) as

z(t) =
[
ζ(t)T , x(t)T

]T
.

Notably, based on the definition of A in Problem 2, we have
that only the subset H ⊆ V of agents is in charge of handling
a constraint and it is thus associated to a variable ζi(t), which
models the corresponding Lagrange multiplier. Conversely,
each agent i ∈ V is associated to a variable xi(t).
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For the sake of readability let us introduce the functions

w : Rn+m× R → Rm and g : Rn+m× R → Rn,

defined as

w(z, t) = min {ζ(t), Ax(t)− b(t)} , (4)

g(z, t) = Qx(t) +φ(t)−AT ζ(t), (5)

and the function y : Rn+m × R → Rm defined as

y(z, t) = Ax(t)− b(t)− ζ(t).

Furthermore, let S(z, t) be the diagonal m×m matrix such
that Sii(z, t) = 1 if yi(z, t) ≤ 0, 0 otherwise. and let also
S(z, t) be the set of diagonal matrices S(z, t) ∈ Rm×m with
structure

Sii(z, t)∈


{1} if yi(z, t) < 0,

[0, 1] if yi(z, t) = 0,

{0} if yi(z, t) > 0,

∀ i=1, . . . ,m. (6)

Matrices S(z, t) and S(z, t) will be used later to compute the
derivative of the minimum function in Eq. (4).

We now outline our distributed protocol. Specifically, from
the perspective of the i-th agent, the proposed algorithm reads
as follows (we omit dependencies on the state z and on time t
for the sake of readability)

ζ̇i =− α (1− Sii) sign(wi) + α

n∑
j=1

Aij sign(gj), ∀ i ∈ H,

ẋi =− α

m∑
j=1

AjiSjj sign(wj)− α

n∑
j=1

Qij sign(gj), ∀ i ∈ V.

(7)
Note that, in order to implement Eq. (7), each agent i is

required to collect the following information:

i) the state variables zl(t) = [ζl(t) xl(t)]
T of the agents

l ∈ N 2
i belonging to its 2-hop neighborhood (i.e., in

order to compute the functions wj and gj for each 1-hop
neighbor j ∈ N 1

i );
ii) the elements Aji for the agents j ∈ N 1

i belonging to its
1-hop neighborhood;

iii) the elements Ajl, Alj , and Qjl for the 2-hop neighbors
l ∈ N 1

j such that j ∈ N 1
i ;

iv) the time-varying values φj(t), bj(t) for the agents
j ∈ N 1

i belonging to its 1-hop neighborhood.

For point i) we notice that the states zl(t) of the 2-hop
neighborhood can be locally estimated by agent i through
1-hop local interactions by resorting to the state of the art
finite-time k-hop distributed observer proposed in [24]; while
for points ii) and iii) we observe that since the required
elements are constant, they can be exchanged once before the
execution of the proposed algorithm; finally, for point iv), we
assume that the values φj(t), bj(t) of the 1-hop neighborhood
can be exchanged through 1-hop communication.

Stacking Eq. (7) ∀ i ∈ V yields the following matrix form

ż(t) = f(z, t) = −αM(z, t)

[
sign(w(z, t))
sign(g(z, t))

]
= −αM(z, t) sign(h(z, t)),

(8)

with h(z, t) defined in Eq. (3) and M(z, t) ∈ R(n+m)×(n+m)

the matrix defined as

M(z, t) =

[
Im − S(z, t) −A
ATS(z, t) Q

]
. (9)

In the sequel, we will analyze the convergence properties
of our proposed algorithm given in Eq. (7) considering its
equivalent matrix version given in Eq. (8). Moreover, we
will show how to choose the gain α in order to guarantee
convergence, based on the information available to the agents
as per Assumption 7. Finally, we will also demonstrate how to
relax the assumption that the agents need to know σmin(C).

A. Convergence Analysis
In order to establish convergence of the proposed algorithm,

let us first introduce a preliminary result. In this view, let

M(z, t) = {MS(z, t) : S(z, t) ∈ S}

be the set collecting all matrices MS(z, t)∈R(n+m)×(n+m)

defined as

MS(z, t) =

[
Im − S(z, t) −A
ATS(z, t) Q

]
. (10)

Lemma 1: Let Assumptions 2 and 3 hold. Then, every ma-
trix MS(z, t) ∈ M(z, t) defined as in Eq. (10) is nonsingular.

Proof: In order to prove the result we observe that, by
Assumption 2, the lower diagonal block of MS is invertible
and its Schur complement with respect to such a block
is MS/Q = Im − S +AQ−1ATS. It is well known, e.g.,
[35], that it holds det(MS) = det(Q) det(MS/Q). Since by
construction det(Q) ̸= 0, we have that det(MS) ̸= 0 if and
only if det(MS/Q) ̸= 0. In view of a contradiction, suppose
det(MS/Q) = 0. This means there is v ̸= 0m such that

(MS/Q)Tv = (Im − S + SAQ−1AT )v = 0m. (11)

Notice that if the diagonal entries of S are all zero we have
that Eq. (11) is satisfied only for v = 0m, i.e., we reach
a contradiction. Hence, let us assume that S has 0 < ℓ ≤ m
nonzero diagonal entries and let P be the m×m permutation
matrix such that

Ŝ = PSPT =

[
Ŝ1 Oℓ×(m−ℓ)

O(m−ℓ)×ℓ O(m−ℓ)×(m−ℓ)

]
, (12)

has the first ℓ diagonal entries that are positive, i.e.,
Ŝ11 ∈ (0, 1], . . . , Ŝℓℓ ∈ (0, 1]. Since v ̸= 0m, we can write
v = PT v̂, for some v̂ ̸= 0m; therefore, noting that
PPT = Im, by premultiplying Eq. (11) by P we obtain

0m = P (Im − S + SAQ−1AT )PT v̂ (13)

= (Im−Ŝ+PSAQ−1ATPT ) v̂ =(Im−Ŝ+ŜÂQ̂−1ÂT ) v̂,

where Â and Q̂ are obtained by permutation of rows and
columns of A and Q, respectively. Let us now partition v̂
as v̂ = [v̂T1 , v̂

T
2 ]

T , with v̂1 ∈ Rℓ and v̂2 ∈ Rm−ℓ. Such a
decomposition induces the following block decomposition for
the matrix ÂQ̂−1ÂT

ÂQ̂−1ÂT =

[
(ÂQ̂−1ÂT )11 (ÂQ̂−1ÂT )12
(ÂQ̂−1ÂT )21 (ÂQ̂−1ÂT )22

]
, (14)
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With this decomposition, Eq. (13) corresponds to

(Iℓ − Ŝ1)v̂1 + Ŝ1(ÂQ̂
−1ÂT )11v̂1 + Ŝ1(ÂQ̂

−1ÂT )12v̂2=0ℓ,
(15)

and v̂2 = 0m−ℓ. Therefore, Eq. (15) corresponds to

(Iℓ − Ŝ1 + Ŝ1(ÂQ̂
−1ÂT )11)v̂1 = 0ℓ. (16)

Since Ŝ1 is nonsingular by construction, Eq. (16) can be
rearranged as

Ŝ1

(
Ŝ−1
1 −Iℓ+(ÂQ̂−1ÂT )11

)
v̂1= Ŝ1Ĥv̂1=0ℓ.

At this point we observe that (ÂQ̂−1ÂT )11 is the lead-
ing principal minor of ÂQ̂−1ÂT of size ℓ. Notice that by
Assumptions 2 and 3, AQ−1AT is symmetric and positive
definite; therefore, by construction, ÂQ̂−1ÂT is symmetric
and positive definite. As a consequence, by the Sylvester’s
Criterion [36], also (ÂQ̂−1ÂT )11 is symmetric and positive
definite. Furthermore, we observe that Ŝ−1

1 − Iℓ is diagonal
and positive semidefinite since its diagonal entries are

(Ŝ−1
1 − Iℓ)ii = (Ŝ1)

−1
ii − 1 ≥ 0, (17)

being 0 < (Ŝ1)ii ≤ 1. Therefore Ĥ is the sum of a positive
semidefinite and a positive definite matrix and is thus positive
definite. Moreover, since Ŝ1 is positive definite, Ŝ1Ĥ is
nonsingular. Hence, Eq. (16) is satisfied only for v̂1 = 0ℓ. This
implies that Eq. (11) is satisfied only for v = 0m. We reached
a contradiction; therefore, the Schur complement MS/Q is
nonsingular, and this implies that MS is nonsingular.

Let us now to prove that our distributed algorithm intro-
duced in Eq. (8) allows our system to reach the compact
set C(t) = {z∗(t)}, i.e., the singleton corresponding to the
unique optimal solution at time t, in finite-time T and then
remain contained therein for t ≥ T , i.e., is able to solve
Problem 2 in finite-time.

Theorem 4: Consider the settings of Problem 2 and let the
agents run the proposed protocol in Eq. (8). Let Assump-
tions 1–7 hold and suppose that the coefficient ϵ > 0 and ρ
are known to the agents. Assume also that the gain α satisfies

α >

√
n (κb + κφ) + ϵ

ρ2
, (18)

where ϵ > 0 is a design parameter used to impose arbitrary
convergence time and ρ > 0 is

ρ = min
MS∈M

(σmin(MS)) , (19)

with σmin(MS) the smallest singular value of the matrix MS
introduced in Eq. (10). Then, there exits T (ϵ)>0 such that the
stacked vector h(z, t) introduced in Eq. (3) converges to zero
in finite-time, that is, ∥h(z, t)∥1 = 0, for all t ≥ T (ϵ), where
the convergence time T (ϵ) is upper bounded by a positive
finite value Tmax = 1

ϵ ∥h(z(0), 0)∥1.
Proof: Consider the following generalized time-varying

Lyapunov-like function V (z, t) : Rn+m × R → R

V (z, t) = ∥h(z, t)∥1 , (20)

which, by Proposition 2, satisfies V (z, t)=0 for z = z∗(t)
and V (z, t) > 0 for all z ̸= z∗(t). We now prove that the

Lyapunov-like function introduced in Eq. (20) reaches zero in
finite-time T (ϵ) and remains zero ∀ t ≥ T (ϵ).

In order to apply Theorem 1, let us now compute the
generalized gradient ∂V (z, t) as

∂V (z, t)⊂
[
∂h

∂z

∂h

∂t

]T
SIGN(h(z, t)) =

[
∂zV
∂tV

]
, (21)

from the application of [29, Thereom 2.6.6] and [26, The-
orem 1]. It can be noticed how the co{·} in Eq. (21) is
superfluous, since [∂h/∂z ∂h/∂t]T SIGN(h) is a vector of
closed intervals [37] and thus convex by construction.

Since h(z, t) can be discontinuous for some i when
yi(z, t) = 0, in general the terms ∂h/∂z and ∂h/∂t are not
singletons and generate the following structure for ∂V (z, t)

∂V (z,t)⊂


In − S −A
ATS Q

−βTS ψT

SIGN(h) :

S∈S,
β∈K[χ](t),

ψ∈K[ω](t)

. (22)

In order to analyze the structure of a generic element
ξ∈∂V , let us introduce the matrix Mz

S ∈ Rn+m×n+m and
the vector M t

S ∈R1×n+m defined as

Mz
S =

[
Im − S −A
ATS Q

]
and M t

S =
[
−βTS ψT

]
,

(23)
with S ∈ S, β ∈ K[χ](t), and ψ ∈ K[ω](t). An element
ξ ∈ ∂V can then be expressed as

ξ =

[
ξz
ξt

]
=

[
Mz

S
M t

S

]
η, with η ∈ SIGN(h). (24)

In virtue of the above equations, we can now restate ˙̃
V (z, t)

as
˙̃
V (z, t) =

∩
[ξT

z ξT
t ]

T∈∂V

ξTz K[f ](z, t) + ξTt 1 .

Now, since the proposed control law is the nonsmooth
version of the classical gradient descent flow of a differentiable
function, an element v ∈ K[f ](z, t) is in the form

v ∈ −α∂zV,

thus ˙̃
V (z, t) can be further developed as

˙̃
V (z, t) =

∩
[ξT

z ξt]
T∈∂V

−α ξTz ∂zV + ξt,

where we point out that ξt is a scalar in virtue of Eqs. (23)
and (24). At this point we can proceed by applying a similar
reasoning as in [27]. In particular, since ∂zV is convex, it
follows that for all z ̸= z∗(t) there exists

ξ̂ = [ξ̂Tz ξt]
T ∈ ∂V

such that

−α ξTz ξ̂z + ξt ≤ −α ∥ξ̂z∥2 + ξt, ∀ ξ ∈ ∂V.

Considering now ξ̂z =Mz
Ŝ
η̂ and ξt =M t

S η, we obtain the
following bound on the generalized time-derivative

d

dt
(V (z, t))∈a.e. ˙̃

V (z, t)
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as
d

dt
(V (z, t)) ≤ −α η̂TMz

Ŝ
TMz

Ŝ η̂ +M t
S η

≤ −α ρ2 ∥η̂∥2∞ + ∥β∥∥S∥∥η1∥+ ∥ψ∥∥η2∥
≤ −α ρ2 +

√
n (κb + κφ) , (25)

where ρ defined as in Eq. (19) is positive in virtue of Lemma 1,
κb, κφ are the positive bounds on the possible values of the
derivatives (whose knowledge is required to set an adequate
gain α) of the signals b(t) and φ(t), respectively, ∥S∥ ≤ 1
from its structure detailed in Eq. (6), and we used the fact
that whenever h ̸= 0n+m, i.e., z ̸= z∗(t), η̂ has at least one
component with |η̂i|=1 while in general all other components
satisfy |η̂j | ≤ 1 and thus it holds ∥η̂∥2∞=1. At this point, by
choosing α according to Eq. (18) the following holds true

d

dt
(V (z, t)) < −ϵ < 0,

thus from Theorem 2, noting that in our case C(t) = {z∗(t)}
is compact by definition (i.e., by Proposition 2 z∗(t) is unique
and thus {z∗(t)} is compact at each t), it follows that V (z, t)
converges to 0 in finite-time and ∥z(t)−z∗(t)∥ reaches zero in
finite-time too (and remains equal to zero). A characterization
on the convergence time T (ϵ) can be computed as

V (z(t), t)=V (z(0), 0) +

∫ t

0

d

dt
(V (z(τ), τ))dτ

< V (z(0), 0)−
∫ t

0

ϵ dτ = V (z(0), 0)− ϵ t.

An upper bound on the convergence time T (ϵ) ≤ Tmax is

Tmax =
1

ϵ
V (z(0), 0).

The result follows.
Having proven finite-time convergence of the func-

tion h(z, t) to the origin, we can now prove that Problem 2
is solved in finite-time as well.

Corollary 1: Let the conditions of Theorem 4 hold. Then
Problem 2 is solved for all t ≥ T (ϵ).

Proof: The results follows from the application
of Theorem 4. In particular, for z(t) = z∗(t) it holds
h(z∗(t), t) = 0n+m and thus the optimality condition in
Eq. (3) is satisfied, proving that x(t)= x∗(t) for each time
instant t ≥ T (ϵ).

B. Choice of the gain α

According to Theorem 4, for each given Tmax there is a
sufficiently large choice of α such that the system achieves
convergence in finite-time that is upper bounded by Tmax.
However, choosing α via Eq. (18) may look very hard at first
glance, since computing ρ requires to evaluate an infinity of
matrices MS ∈ M.

In this subsection, in order to simplify this endeavor, we first
provide a practical way to choose α based on the information
available to the agents as per Assumption 7, without the need
to consider the different matrices in M; then, with the aim to
further simplify the task of choosing α, we show how to lift
the assumption that the agents need to know σmin(C).

In the following proposition we derive a lower bound for
ρ, trading easiness of computation for: i) a slight increase in
the magnitude of the resulting gain α and ii) an additional
assumption which, as it will be shown later in Remark 4, can
always be satisfied by considering an equivalent formulation
of the problem at hand.

Proposition 3: Let Assumptions 2, 3 and 6 hold true. Then,
we have that ρ ≥ ρ > 0, where ρ is defined as in Eq. (19)
whereas ρ is

ρ =
σmin(C)√

n+m+ ∥A∥2F
,

with C defined in Eq. (2).

Proof: In order to prove the result, let us introduce the
matrices CS , X ∈ Rn+m×n+m defined as

CS =

[
Im − S −A
AT Q−ATA

]
, X =

[
Im 0m×n

AT In

]
. (26)

By construction, it follows that CS = XMS . Therefore, as
shown in [38], it holds σmin(CS) ≤ ∥X∥σmin(MS), and, thus,

σmin(MS) ≥ σmin(CS)∥X∥−1.

At this point, by resorting to the properties of the Shur
complement of block matrices, since Sii ∈ [0, 1] for all i
and due to the fact, by Assumption 6, Q − ATA is positive
definite, we have that

det(CS) = det(Q−ATA)︸ ︷︷ ︸
>0

×

× det

Im − S +A(Q−ATA)−1AT︸ ︷︷ ︸
R


= det(Q−ATA)

m∏
i=1

1− Sii︸ ︷︷ ︸
≥0

+λi(R)


≥ det(Q−ATA)

m∏
i=1

λi(R)

= det(Q−ATA)det (R)

= det(Q−ATA)det
(
A(Q−ATA)−1AT

)
= det(C),

where the last equation holds in virtue of the properties of
the Schur complement [35] A(Q − ATA)−1AT of C. To
conclude our proof we observe that, since A is full row rank
and Q−ATA is positive definite, also A(Q−ATA)−1AT is
positive definite: in fact, for all x ∈ Rm with x ̸= 0m we
have y = ATx ̸= 0n and thus

xTA(Q−ATA)−1ATx = yT (Q−ATA)−1y > 0,

where the latter inequality holds since y ̸= 0n and
since Q−ATA is positive definite (which implies that also
(Q − ATA)−1 is positive definite). Therefore, we have that
σmin(MS) ≥ σmin(C)/∥X∥ > 0. The proof is complete since
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it holds

∥X∥ ≤ ∥X∥F =
√
∥In∥2F + ∥Im∥2F + ∥A∥2F

=
√
n+m+ ∥A∥2F .

We point out the above lower bound is remarkably easier
to compute than ρ, as it requires only knowledge of just
σmin(C), n,m and ∥A∥F without the need to inspect the set of
all MS ∈ M. Interestingly, as discussed later in this section,
∥A∥F can be computed in a distributed way, based on the
information available to the agents as per Assumption 7.

Remark 4: Proposition 3 requires Q−ATA to be positive
definite. Since for symmetric matrices U, V ∈ Rn×n, it is well
known [39] that λmin(U + V ) ≥ λmin(U) − ∥V ∥, we have
that, scaling Q by β > ∥A∥2F /λmin(Q), it holds

λmin

(
βQ−ATA

)
≥ βλmin(Q)− ∥A∥2

> ∥A∥2F − ∥A∥2 ≥ ∥A∥2F − ∥A∥2F = 0,

where we used the property that ∥A∥F ≥ ∥A∥. Notably, an
optimization problem is equivalent under positive scaling of
the objective function; hence given Q,A we can consider the
equivalent formulation

x∗(t)= argmin
x∈Rn

β

(
1

2
xTQx+φT (t)x

)
s.t. Ax ≥ b(t),

which satisfies Assumption 6.
Interestingly, the Frobenius norm of A can be computed

in a distributed way in finite time. In particular, assuming
each agent i knows the entries Aij corresponding to its
neighbors (if an agent is not in charge of a constraint, it
simply assumes Aij = 0 for all its neighbors), it is sufficient to
run a finite-time distributed average consensus procedure [40]
with initial condition yi(0) =

∑
j∈Ni

A2
ij , which converges to

y = 1
n

∑
i yi(0) =

1
n∥A∥

2
F . Then, based on knowledge on n,

each agent can compute ∥A∥F =
√
ny. Similarly, the agents

are able to compute ∥Q∥F in a distributed way. Therefore,
∥A∥F , ∥Q∥F can be computed during an initialization phase.

To conclude the section, with the aim to further reduce the
amount of information required for the agents in order to
choose the gain α, let us discuss a way to relax the assumption
that the agents need to know σmin(C). Specifically, we now
show that there is a positive lower bound of σmin(C) which
is based on ∥A∥F , ∥Q∥F , n,m, σmin(A), λmin(Q).

Proposition 4: Let Assumptions 1–6 hold true. Then, it
holds

σmin(C) ≥
(
λmin(Q)− ∥A∥2F

)n−m
σmin(A)

2m ×

×
(

n+m− 1

∥Q∥2F + 4∥A∥2F

)n+m−1
2

.

Proof: In order to prove the result we resort to the lower
bound in [41], where it is shown that, for a given nonsingular
square matrix U ∈ Rn×n it holds

σmin(U) ≥ |det(U)|
(
n− 1

∥U∥2F

)n−1
2

> 0,

from which we have that

σmin(C) ≥ |det(C)|
(
n+m− 1

∥C∥2F

)n+m−1
2

> 0. (27)

Notice that, since Q−ATA is nonsingular, by resorting to the
properties of the Schur complement of block matrices [35],
we have that

det(C) = det(Q−ATA)det(A(Q−ATA)−1AT )

=

n∏
i=1

λi(Q−ATA)

m∏
j=1

σ2
i ((Q−ATA)−1/2AT ),

where we used the well known properties that, for Y ∈ Rn×n

and G ∈ Rm×n with m ≤ n, it holds det(Y ) =
∏n

i=1 λi(Y )
and det(GGT ) =

∏m
i=1 σ

2
i (G) (see, for instance, [42]). At

this point, noting that λi(Q− ATA) ≥ λmin(Q− ATA) and
that [43]

σi(UV ) ≥ σmin(U)σmin(V ),

we have that

det(C) ≥ λnmin(Q−ATA)σ2m
min((Q−ATA)−1/2)︸ ︷︷ ︸

=λ−m
min(Q−ATA)

σ2m
min(A)

= λn−m
min (Q−ATA)σ2m

min(A)

≥
(
λmin(Q)− ∥A∥2

)n−m
σ2m
min(A)

≥
(
λmin(Q)− ∥A∥2F

)n−m
σ2m
min(A).

(28)
Moreover, it holds

∥C∥2F = 2∥A∥2F + ∥Q−ATA∥2F ≤ 4∥A∥2F + ∥Q∥2F . (29)

The proof follows by plugging Eqs. (28) and (29) into Eq. (27).

VI. SIMULATIONS

For the numerical validation of the proposed protocol,
we considered a multi-agent system with n = 10 agents
interacting over an undirected graph with |E| = 14 edges.
Moreover, we consider uniformly random Q ∈ R10×10 and
A ∈ R7×10, i.e., |H| = 7. The time-varying vectors φ(t) and
b(t) are depicted in Fig. 1d and satisfy Assumption 4 with
κφ = 1.755 and κb = 1.5. The considered matrices A, Q are
reported in the following

A =


4.73 −0.06 0.36 0 0 0 0 −0.32 0 0
0.79 4.02 0 0 0 0 0.47 0 0 0.59
−0.15 0 4.64 0 0 0 0 0 0.26 0.08

0 0 0 3.63 0 0.08 0.70 0 0 0
0 0 0 0 3.74 0.01 0 0 −0.19 0
0 0 0 0.01 0.20 4.6 0.45 0 −0.08 0
0 −0.08 0 0.01 0 0.29 3.94 0 0 0



Q =



7.02 1.41 1.02 0 0 0 0 0.13 0 0
1.41 6.54 0 0 0 0 0.24 0 0 0.63
1.02 0 6.86 0 0 0 0 0 1.14 0.14
0 0 0 4.62 0 0.55 0.83 0 0 0
0 0 0 0 5.26 0.74 0 0 0.52 0
0 0 0 0.55 0.74 7.51 1.79 0 1.01 0
0 0.24 0 0.83 0 1.79 7. 0 0 0

0.13 0 0 0 0 0 0 5.25 0.62 0
0 0 1.14 0 0.52 1.01 0 0.62 8.41 0
0 0.63 0.14 0 0 0 0 0 0 7.03


.

φ(0)=[0.93, 0.92,−0.5, 0.05,−0.49,−0.6, 0.08,−0.1,−0.02,−0.19]
T
,
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b(0)=[−0.48, 0.46, 0.18, 0.72,−0.33, 0.17, 1, 0.76, 0.36, 0.14]
T
.

In order to correctly tune the gain α the results of Propo-
sition 3 can be exploited. However, since Q and A do not
satisfy the condition on the positive definiteness of Q−ATA,
the method explained in Remark 4 can be applied to scale
the matrix Q such that β Q − ATA is positive definite. In
particular, for this example, we chose β = 1.83.

The proposed algorithm was implemented in discrete time
using the forward Euler method with sampling time τ = 10−8.
Agents implement the local interaction rule given in Eq. (7)
with gain α = 1706 according to the results of Theorem 4 and
Proposition 3. Notably, the estimated bound for the minimum
singular value of the matrix MS obtained exploiting the results
of Proposition 3, i.e., ρ = 0.0781, is not far from the best
value numerically obtained via a Monte Carlo simulation
campaign featuring 106 trials. The minimum singular value
of the matrix MS , according to Monte Carlo evaluation
corresponds to a value of ρ = 0.323. The ratio between
the bound computed utilizing Proposition 3 and the Monte
Carlo minimum value is ρ/ρ = 4.1379. This implies that our
control gain α is about 17 times larger than the minimum
value required by the conditions of Theorem 4.

We remind the reader that the proposed algorithm requires
2-hop information which can be estimated in finite-time imple-
menting a 2-hop distributed observer as the one given in [24]
which requires only 1-hop information to work. For the sake
of simplicity and with no lack of generality, we assume that
at the initial time t0 the local observer tracking error has
already reached zero, i.e., all the agents for time t ≥ t0
possess the 2-hop state information required to implement the
proposed distributed strategy, and we focus only on illustrating
the properties of the proposed algorithm.

Fig. 1a and Fig. 1b show the evolution of x(t) and ζ(t),
respectively. Fig. 1c depicts the evolution of the Lyapunov-
like function V (z, t) introduced in Eq. (20) with a small
frame in the top right side of the picture showing a detail
of its convergence during the first 0.0025 seconds of the
simulation. Fig. 1d shows the evolution of the time-varying
vectors φ(t) and b(t). Fig. 1e shows the evolution of the
time-varying constraint Ax(t) − b(t) ≥ 0. Finally, Fig. 1f
show the evolution of the errors between x(t), ζ(t) and the
optimal solution x∗(t), ζ∗(t) obtained via a centralized solver
where in the top right side a detail of their convergence during
the first 1.5 seconds of the simulation is shown. According to
the figures, the proposed algorithm is able to track the global
optimal solution of the time-varying optimization problem as
expected from the results of Corollary 1.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we considered a class of quadratic opti-
mization problems with time-varying linear objective term
and time-varying linear constraints with the same sparsity
pattern as the static graph encoding the undirected network
topology over which the multi-agent systems interacts. Our
contribution is twofold. First we exploited the Karush-Kuhn-
Tucker conditions to derive a necessary and sufficient global
optimality condition for the frozen-time problem. Since the

derived optimality condition is in the form of a system of
nonsmooth equations, we developed a nonsmooth distributed
algorithm to achieve finite-time convergence and track to
the optimal time-varying solution. Furthermore, we derived a
lower bound for the minimum singular value of the family of
matrices MS ∈ M, providing a method to practically compute
the gain α required to solve optimization problem. Future work
will aim to consider more general time-varying problems, e.g.,
quadratic problems with time-varying Hessian and constraint
matrix; in this context a challenge to overcome is that the
time-variability of the aforementioned matrices would not be
dominated by a static gain, thus calling for an adaptive gain
approach. Furthermore, the introduction of adaptive gains will
also allow to lift the requirements on the information that
must be available to the nodes, e.g., the number of agents,
the bounds of the derivatives of the time-varying signals, and
σmin(C).
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Fig. 1: Results of the numerical simulations involving a team of n = 10 agents solving distributively Problem 1 with m = 7 in finite-time.
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