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Abstract—Pandemic simulation is considered to be crucial
as a scenario simulation and it is performed by many kinds
of methods; the classical ordinary differential models (SIR
model), agent-based models, internet-based models, and etc are
among them. The SIR model is one of the fundamental methods
to see the behavior of the pandemic with easy computation.
However, there are no stochastic variation in the equations.
The stochastic differential equations (SDE) can provide such
kind of variations. Although the SDE are applied to many
fields such as economics, less attention has been paid to the
SIR simulations. In this paper, we propose a SDE version of
the SIR simulation model with application to SARS (Severe
Acute Respiratory Syndrome) case in 2003 in Hong Kong.
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I. INTRODUCTION

Pandemic simulation is considered to be crucial as a

scenario simulation because we have very limited experience

of real pandemics such as a newly emerged infectious

disease spread or an infectious disease spread by terrorism.

Considering the social impact due to this could be immense,

to reduce the risk of pandemic, it is strongly recommended

that we obtain information on the spread of diseases in as

many as situations we can imagine in the real world.
A classical method to perform pandemic simulations is

to use the ordinary differential equations, called the SIR

or SEIR [11], [4], [10], [15]. The SEIR model, where

S, E, I , and R denote susceptible, exposed, infected and

removed populations respectively, is an extension of the

SIR epidemiological model, which computes the number

of people infected with a contagious disease in a closed

population over time. The SEIR model can quickly deal

with simulations of infectious disease spread among ho-

mogeneous populations using simple simultaneous ordinary

differential equations and a few parameters. However, there

are no stochastic variation terms in the equations.
The stochastic differential equations (SDE) [1], [3] play

an important role in a variety of fields such as physical,

economical, and medical phenomena. Using the SDE, we

can consider the confidence intervals to the predicted values.

However, less attention has been paid to the SIR simulations

with the the SDE [5], [6]. The objective of our study is to

obtain the confidence intervals for the predicted values using

a real world case. In this paper, we propose a SDE version of

the SIR simulation model with application to SARS (Severe

Acute Respiratory Syndrome) case in 2003 in Hong Kong.

II. THE SIR STOCHASTIC DIFFERENTIAL EQUATION

A. Deterministic SIR Model

The original SIR model, in which a Malthusian growth

model has been adjusted to by Kermack and McKendrick,

is a well-known model for simulating an epidemic growth

using the ordinary differential equations (ODE) (1), where

S, I , and R are the susceptible, infectious and removed

populations, and the parameters β, and γ are the infection

rate, and the removal rate (recovery rate) rate. For each time

t the equations are described as follows:

dS(t)/dt = −βS(t)I(t),
dI(t)/dt = βS(t)I(t) − γI(t),
dR(t)/dt = γI(t).

(1)

We can obtain the cumulative number of infected persons

with this model and some numerical method, e.g., the

Runge-Kutta method.

B. The SIR model in SDE

We now consider the stochastic version for the SIR model.

First, the Ito SDE is defined as

dXt = b(t,Xt)dt + σ(t,Xt)dWt. (2)

We will discuss the SDE based on this formula. Adding

diffusion coefficients to the three ODE, several patterns

might be considered. However, considering that

S(t) + I(t) + R(t) = N, (3)

where N is a constant number which denotes the summation

of all groups, we can also see that

dS(t)/dt + dI(t)/dt + dR(t)/dt = 0.

Hence, the SIR SDE’s model may have one or two diffusion

coefficients. Here, we propose, first, a simple case because

the study here is mainly focused on to suggest the SIR model
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with SDE method. For dI(t) term, adding the diffusion

coefficient, we have

dI(t) = βγI(t)dt − γI(t)dt + σ(t, I(t))dWt (4)

where

σ(t, I(t)) = αI(t).

The α is a constant, and Wt denotes 1-dimensional Wiener

process.

C. Estimation of Parameters for the Model

The original deterministic model has two parameters.

These parameters can be estimated using difference equation

methods.

β(ti) =
S(ti) − S(ti+1)

S(ti)I(ti)
, γ(ti) =

R(ti+1) − R(ti)
I(ti)

. (5)

To estimate the parameters of SDE, a well-known property

of the quadratic variation associated with the stochastic

process for I(t) as follows:

α̂2 =
∑

({I(ti+1) − I(ti)}2

∑
(ti+1 − ti)I2(ti)

. (6)

Many researchers use this kind of formula, e.g., [8], [9]

III. NUMERICAL PROCEDURE

The important part of this argument is to give a stochastic

variation to the original SIR model. As noted previously, we

now can simulate the pandemic growth with random process

in the SIR model. We will show next how we proceed the

simulation and how we define the confidence intervals for

simulated process.

A. Numerical method for SDEs

Many numerical methods for SDEs have been studied:

Euler-Maruyama method, Milstein method, Stochastic Heun

method, and stochastic Runge-Kutta method [7], [12], [3].

We use Euler-Maruyama method as a simple numerical

method.

Xti+1 = Xti + b(t,Xti)Δt + σ(t,Xti)ΔWti

In the case of SIR SDE, we obtain

S(ti+1) = S(ti) + {−βS(ti)I(ti)}Δti,

I(ti+1) = I(ti) + {βS(ti)I(ti) − γI(ti)}Δti

+ αI(ti)ΔWi,

R(ti+1) = N − S(ti+1) − I(ti+1), (7)

or

S(ti+1) = N − I(ti+1) − R(ti+1),
I(ti+1) = I(ti) + {βS(ti)I(ti) − γI(ti)}Δti

+ αI(ti)ΔWi,

R(ti+1) = R(ti) + {γI(ti)}Δti, (8)

where

ΔWi = Wti+1 − Wti .

Note that the random variables ΔWi are independent and

identically distributed normal random variables with ex-

pected value zero and variance Δti. The Δti is a minute time

variation. However, as far as we are concerned with SDE,

their stability is a subtle problem as the simulated pandemic

growth would be unstable if Δt is not small enough [13].
Here, we apply the method to show an example from

real world data in the SIR model. In the case of the

logistic model, the confidence intervals has been reported

via exact analysis. However, such an exact analysis for

the SIR model has not yet provided; see [2]. Therefore,

we show the confidence intervals by using the numerical

simulation approach. In each time, we obtain the distribution

for infected people R(t) via the stochastic processes. Thus,

the confidence intervals can be obtained by the simulation.

We will discuss how many runs we need to simulate in the

following section.

IV. SIMULATION WITH REAL DATA CASE: SARS

As a real world example case, we deal with the case of

SARS. We need to consider the number of simulation runs

for obtaining appropriate confidence intervals as mentioned

above. Figures 1-3 show us the difference between the

number of iterations; results by using 100, 1000, and 10000

runs are shown. In the figures, the simulated curve and its

confidence intervals of R whose significance level is 95%

with truncated data are shown; the confidence intervals are

illustrated as dashed line; the solid line is the result without

stochastic processes. The confidence intervals in SDE are

computed by combining the many solutions. The Figure 3

seems smooth enough to use 10000 runs.
Figures 3-5 show differences among the observed values

of days 1-40, 1-50, and 1-60. The significance level is 95%;

each figure has dots, open dots, and three curves. The dots

which are on the left side of the vertical line denotes the data

for estimating parameters. The open dots are observed data.

Among three curves in the figures, the curve in the middle is

drawn by using the SIR model without stochastic processes;

the others are those of confident intervals for each time.

Their confident intervals are obtained by using 10000 times

simulations. The parameters selected are, transition day of

3, N = 10000, and dt = 0.1. We see from Figures 3-5 that

the SIR model gives us the final value around 2300 at the

time of day 40. This estimated value and the observed value

of 1755 are close to each other. However, the confidence

interval show a possibility that the number of infected people

would be twice as many as the actually observed number. As

time goes on, the highest value in 95% confidence intervals,

which we can interpret the possible worst case, is becoming

lower.
Some researches has reported about the mean and the

variance of simulation for stochastic processes. They assume
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Figure 1. The simulated curve and its confidence intervals of R with 100
runs using observed values of days 1-40.

one ODE in the SIR model as an SDE, and we cannot

established theories to explain how they select functions.

We here assume two SDEs in the SIR model. In addition,

we provide each diffusive coefficients to combine the func-

tions. For instance, when dS/dt has αI(t)dWt as diffusive

coefficient. Then, we compare some cases:

1) S has diffusive coefficient for S
2) S has diffusive coefficient for I
3) S, I have diffusive coefficient for S, I each.

These simulations are shown in Figures 6-8. In Figure

7, we see that the functions in diffusive coefficient are

effective because true values that are not used for estimating

parameters are located out of confidence intervals. We can

see that the diffusive coefficient αIdWt in dS/dt is not

appropriate. In the case of two SDEs in Figure 8, the

simulated epidemic growth curves seem to be unstable due

to the width of the confidence intervals.

V. CONCLUSION

Pandemic simulation is considered to be crucial as a

scenario simulation, and its simulation is performed by many

kinds of methods. The SIR model is one of the fundamental

methods to see the behavior of the pandemic with easy

computation. However, there are no stochastic variation in

the equations. The stochastic differential equations (SDE)

can provide such kind of variations. Although the SDE are

applied to many fields such as economics, less attention

has been paid to the SIR simulations. In this paper, we

propose a SDE version of the SIR simulation model with

application to SARS (Severe Acute Respiratory Syndrome)

case in 2003 in Hong Kong. We pursued here to obtain the

Figure 2. The simulated curve and its confidence intervals of R with 1000
runs using observed values of days 1-40.

Figure 3. The simulated curve and its confidence intervals of R with
10000 runs using observed values of days 1-40.

confidence intervals for the estimates using many runs of

simulations. Using 10000 runs and selecting the diffusion

coefficient αIdWt for dS/dt may be appropriate.
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