24812

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 24, 15 DECEMBER 2022

Synthetic LiDAR-Labeled Data Set Generation to

Train Deep Neural Networks for Object
Classification 1n IoT at the Edge

Cristian Wisultschew™, Rogelio Herndndez™', Carlos Pastor, and Jorge Portilla™, Senior Member, IEEE

Abstract—Light detection and ranging (LiDAR) sensors are
increasing in popularity due to the advantages they provide over
2-D sensors in IoT object detection and classification applica-
tions, because of their ability to provide very precise distances to
objects. Deep learning algorithms need a huge amount of data
during training to obtain high accuracy results. When using 2-D
images, a vast quantity of data sets are publicly available, but
this is not the case for LiDAR point clouds. Each LiDAR model
generates a point cloud with unique properties, which causes the
data sets not to be compatible between different LiIDAR models.
As a result, when using deep learning with LiDARs, it is nec-
essary to generate the data sets manually. For this purpose, the
data must be captured and then labeled one by one, which is
a very time and cost-consuming process. To overcome this issue
and to reduce the development time when using LiDAR sensors
with deep learning algorithms, a methodology is proposed in this
article to automatically generate point cloud data sets using a 3-D
simulator for autonomous cars. In this regard, a data set can be
generated for any LiDAR model by adding the specific LIDAR
parameters to the simulator. Besides, custom scenarios can be
designed and generated, based on the final deployment location,
to provide a simulated solution very close to the final imple-
mentation. With the proposed methodology, a simulation can be
performed to select the LiDAR that best fits certain application
requirements, in contrast to the traditional approach where the
LiDAR must first be purchased.

Index Terms—3-D simulator, deep neural networks (DNNs),
light detection and ranging (LiDAR), object classification, simu-
lated data set.

I. INTRODUCTION

HE CURRENT high demand for autonomous systems
T that are capable of recognizing the scenario in which they
are located, requires the use of sensors that are as accurate as
possible for this task. Nowadays, there is a trend of merging
the information coming from several sensors of different types

Manuscript received 25 March 2022; revised 24 June 2022; accepted
25 July 2022. Date of publication 28 July 2022; date of current version
7 December 2022. This work was supported by the InSecTT European
Project. InSecTT (www.insectt.eu) has received funding from the ECSEL Joint
Undertaking (JU) under Agreement 876038. The JU receives support from
the European Union’s Horizon 2020 Research and Innovation Programme
and Austria, Sweden, Spain, Italy, France, Portugal, Ireland, Finland,
Slovenia, Poland, The Netherlands, and Turkey. (Corresponding author:
Cristian Wisultschew.)

The authors are with the Centro de Electrénica Industrial, Universidad
Politécnica de Madrid, 28006 Madrid, Spain (e-mail: cristian.wpuigdellivol @
upm.es; rhlorite@upm.es; carlos.pastor.molina@upm.es; jorge.portilla@
upm.es).

Digital Object Identifier 10.1109/JI0T.2022.3194716

to obtain a very accurate scenario representation [1]. However,
when IoT edge devices are considered, computational and
power consumption constraints appear and, therefore, the num-
ber of sensors must be limited. In systems where a single
sensor can be used, the use of 3-D sensors instead of 2-D
sensors is essential to obtain precise spatial information. This
is a critical requirement in applications that have to precisely
locate objects in the space, such as autonomous vehicles or
surveillance systems.

Among 3-D sensors, light detection and ranging (LiDAR)
sensors are currently the most outstanding technology for
several reasons. First, they provide very accurate distance
measurements, which improves the detection and location
of objects in the scene. This is the result of generating
information about the scenario in the form of point clouds.
Second, since they are based on laser technology, they are
very robust in a variety of conditions: day or night, with or
without reflections and shadows, rainy, and foggy [2], [3].
Third, regarding its price, even though some models are still
very expensive today, their price is decreasing due to new
technologies such as in the case of solid-state LiDARs [4].
Additionally, with this new solid state technology, it is also
possible to reduce the power consumption, which allows
LiDARs implementation in edge systems in a competitive
manner.

In order to perform object classification tasks when process-
ing the large amount of information generated by the LiDARs,
deep neural networks (DNN5) are the primary solution adopted
in the state of the art [5]. The reason for this is the high level
of abstraction they provide when working with large amounts
of data [6]. When working with DNNs, an initial stage of
training with labeled data must be performed. To obtain high
accuracy when classifying objects, DNNs require to be trained
with a large amount of data [7].

When using RGB cameras, there are a wide variety of pub-
licly available labeled data sets that can be used to train the
DNN. However, there are not many data sets for LiDARs
and, additionally, as each LiDAR generates a point cloud with
different densities, the data sets are not compatible between
different models of LiDARs. For this reason, when working
with LiDARs, it is common to create a labeled data set from
scratch for each LiDAR and for different scenarios. Thus, the
LiDAR first has to be deployed, data have to be collected, and
then the data have to be manually labeled one by one with
all the objects within the scenario. Unfortunately, this labeling

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1434-9516
https://orcid.org/0000-0003-3670-589X
https://orcid.org/0000-0003-4896-6229

WISULTSCHEW et al.: SYNTHETIC LiDAR LABELED DATA SET GENERATION TO TRAIN DEEP NEURAL NETWORKS

process is extremely time and cost consuming. Besides, a large
number of objects must be labeled to train the network and to
obtain accurate results [7].

In this work, a LiDAR point cloud generation methodol-
ogy for automatically producing synthetic high-fidelity-labeled
data sets is presented. Thus, the DNN training stage is car-
ried out only with simulated data, significantly reducing the
development time when implementing object classification
applications with LiDAR sensors. Additionally, the cost is
reduced since the most affordable LiDAR that meets the
requirements of the application can be selected before the
deployment stage, in contrast to the traditional approach where
the LiDAR must be purchased first. The accuracy results
obtained training the DNN with synthetic data are almost iden-
tical compared to the results achieved when training with real
data. As far as the authors know, there are no works in the
state of the art that propose this solution for training DNN
only using simulated data and providing high accuracies for
LiDAR sensors. In this regard, the main contributions of this
article are described as follows.

1) Automation of the process of labeling synthetic data sets

for LiDARs.

2) Addition of different types of LiDAR models for evalu-
ating in predeployment which LiDAR model best fits
the accuracy and cost requirements for each specific
application.

3) Integration of custom scenarios to simulate the final
location, which maximize the accuracy of the classifi-
cation algorithm.

4) Addition of custom 3-D objects of new classes to the
simulated scenario to better fit with the real scenario,
aiming to improve the classification accuracy in the
deployment stage.

5) To maximize the accuracy when performing object
classification tasks using the point-cloud-based DNN
implemented in this work, a methodology to calculate
the DNN parameters is proposed.

This work is used as part of a project in which objects that
pass through a railway level crossing have to be detected and
classified. A static LiDAR will be used as an input sensor as
it provides very accurate spatial information, which is essen-
tial to ensure a robust and reliable solution. The system has to
run on an IoT node, therefore, computing resources and power
consumption constraint limitations have to be considered. This
work is an improvement of the work presented in [8], in which
the detection of objects crossing a certain critical region sur-
rounding a railway level crossing is performed using a LiDAR
sensor and processing the information in an IoT node. The
detection starts by projecting the LIDAR point cloud into a
2-D image and then this image is used as input of an object
detection and tracking algorithm. This algorithm detects the
objects by identifying the changes compared to a previously
generated background image. This processing was performed
using an IoT edge node with a 32-bit medium-performance,
low-power ARM Cortex-AS5 core. In this regard, with the sim-
ulated data sets generated in this work, the aim is to train a
DNN to add the object classification capability to the system
proposed in [8].

24813

The remainder of this article is structured as follows. In
Section II, related works which generate simulated data sets
to train DNN are described. The technical background about
the real point cloud data sets used to evaluate the system,
the different LiDAR types involved, 3-D design platforms,
and the DNN algorithm implemented for point cloud object
classification tasks are presented in Section III. The process
for the generation of the simulated data sets is detailed in
Section IV. Experimental results are discussed in Section V.
Finally, conclusions and future lines of work are provided in
Section VI.

II. RELATED WORK

With the increasing number of applications that use DNN
with LiDARs as input for object classification and detection
tasks, there is an increasing effort to address the lack of
labeled point cloud data sets. With the additional challenge
that each data set depends on each specific LIDAR brand and
model, they have different properties [9]. This section aims
to present the current state of the art about LiDAR synthetic
data sets used for object classification, object detection, and
scene segmentation tasks.

The first simulated LiDAR data set generated automatically
used for augmenting real training data sets on scene segmen-
tation applications is presented by Yue et al. [10]. For the
simulator, they select the virtual world in Grand Theft Auto V
(GTA V), a popular video game, to obtain high fidelity simu-
lated point clouds. Their analysis is based on SqueezeSeg [11],
a DNN-based model for point cloud segmentation. They show
improvements in the accuracy when augmenting the KITTI
data set [12] with their simulated LiDAR point clouds before
the training stage. Additionally, the scene images can be cap-
tured simultaneously for future sensor fusion tasks. The results
show that for a point cloud segmentation task, synthesized data
help improve the Intersection-over-Union metric [10] by 9%
on the KITTI benchmark. However, when using the methodol-
ogy proposed by Yue et al. [10], the data set generation stage
is still maintained, as opposed to the methodology proposed
in this work in which the data set generation stage is com-
pletely avoided. The goal of the work proposed in [10] is to
increase the accuracy of the model by using simulated data
along with real data. However, the goal proposed in this work
is to remove the data set generation step while maintaining
the same accuracy compared to using real data.

A LiDAR simulator that augments real point cloud with
synthetic obstacles (e.g., cars, pedestrians, and other movable
objects) is presented by Fang ef al. [13]. The augmented simu-
lator avoids the requirement to create background 3-D models,
unlike other simulators that entirely rely on 3-D models and
game engines. Instead, a vehicle with a LiDAR scanner can
be deployed to scan the region of interest and obtain the
background. Then, a labeled point cloud object can be auto-
matically generated and added to the data set of the previously
scanned scenario. The specific LIDAR properties for the sim-
ulated data can be modified, such as the channels number,
range, horizontal and vertical filed-of-view, and angular and
vertical resolution. Their solution is evaluated for 3-D object

24814

detection and scene segmentation tasks using real and sim-
ulated data. The DNN used in their experiments are based
on SECOND [14] for 3-D object detection, while for scene
segmentation, an accelerated version of MV3D [15] is used.
Fang et al. [13] showed that the accuracies obtained with
real data can be slightly improved by training with simu-
lated data together with real data. They also prove that by
using real background data augmented with simulated data
during training, accuracies close to those achieved by train-
ing with real data can be obtained. However, extremely low
accuracies are obtained when training only with simulated
data and without real backgrounds. In the work carried out
by Fang et al. [13], real data were combined with simulated
data aiming to increase the accuracy of the model compared
to the one trained only with real data. However, when test-
ing the same DNN model trained using only simulated data,
the accuracy of the model is drastically reduced in contrast to
this work in which very similar accuracies are obtained when
training only with simulated data compared to train with real
data.

Hurl er al. [16] provided a method to generate precise
LiDAR point clouds which accurately represent people (pedes-
trians and cyclists) using the video game GTAV. They provide
a large data set (50000+ frames) in the KITTI data set for-
mat. As Hurl et al. [16] were focused on people detection,
the AVOD-FPN [17] DNN architecture is used for testing.
AVOD-FPN is a top-5 performer on the KITTI 3-D object
detection benchmark challenge [18] under the pedestrian cat-
egory. They demonstrate the effectiveness of their simulated
data set by showing an improvement of up to 5% average
precision (metric defined in [16]) on the KITTI 3-D Object
Detection benchmark challenge when an object detection DNN
was trained with their simulated data sets along with KITTI
data sets. In contrast, in the presented work, the DNN train-
ing is performed only with simulated data sets, as opposed to
Hurl et al. [16] proposed, who obtain high accuracy results
when training with the simulated data sets along with the
KITTI data sets. In [16], the accuracies obtained when training
only with simulated data are up to 14.13% average precision.
In the proposed work, high accuracies are obtained when per-
forming object classification tasks training only with simulated
data sets. This has the advantage of avoiding the dependence
on real data to obtain high accuracy, which means not having
to rely on the availability of a labeled data set or to create a
data set from scratch. Furthermore, the proposed work focuses
on object classification tasks, opposed to [16] in which object
detection is performed. So, they are not directly comparable
according to the metrics used in each case.

In summary, every work that can be found in the state
of the art related to object detection and classification tasks
using LiDAR simulated data sets aiming to increase the accu-
racy provided by the DNNs by using simulated data along
with real data during the training stage. When using sim-
ulated data together with real data, there are works that
significantly improve the object detection by improving param-
eters such as Intersection-over-Union [10]. Additionally, other
works improve the accuracy during object classification stage
[13], [16]. In all these works, an improvement in accuracy is

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 24, 15 DECEMBER 2022

achieved, however, the data labeling stage remains, which is
the most time and cost-consuming stage. The problem arises
when using only simulated data to train the DNNs as the model
accuracies drop drastically [13], [16]. As far as the authors
know, no work obtains high accuracy results when perform-
ing object classification tasks using only simulated data sets
for the training stage contrary to the methodology proposed
in this work in which high accuracies are obtained by using
only simulated data for the training stage. Besides, the prop-
erties of each LiDAR along with the scenarios and objects of
the simulated data can be customized in this work, to be as
similar as possible to the final deployment.

In summary, every work that can be found in the state of the
art related to object detection and classification tasks, using
LiDAR-simulated data sets aiming to increase the accuracy
provided by the DNNs by using simulated data along with
real data during the training stage, obtain high-accuracy results
by augmenting real data with simulated data. However, the
data labeling stage remains, which is the most time and cost-
consuming stage. As far as the authors know, no work obtains
high-accuracy results when performing object classification
tasks using only simulated data sets for the training stage.
Besides, the properties of each LiDAR along with the scenar-
ios and objects of the simulated data can be customized in this
work, to be as similar as possible to the final deployment.

III. TECHNICAL BACKGROUND

In this section, an overview of the LIDAR sensor technology
considered along with the data sets generated by them is pro-
vided. Additionally, the object classification DNN architecture
implemented and the reasons for its selection are detailed.

A. LIDAR Sensor

A LiDAR is a device that measures the distance from the
laser emitter to a target using a laser beam. The distance to the
object is determined by measuring the time between the emis-
sion of the pulse and its detection through the reflected signal.
In the case of 3-D-LiDAR, there are several lasers placed in
a column configuration. The column rotates 360° to generate
a point cloud map of the surrounding scenario. This sensor
provides information about the coordinates of each point in
XYZ format along with the reflectivity value.

In this work, the Velodyne VLP-16 [19] was used to col-
lect real data in the railway-level crossing scenario, which is
the same location for the final deployment of this system as
shown in Fig. 1(a). The VLP-16 is a low-resolution mechanical
LiDAR with a reduced price compared to other high-resolution
LiDARs from Velodyne. The LiDAR configuration properties
for the VLP-16 are presented in Table 1.

B. Data Sets From Real Data

Two different point cloud data sets containing real data are
used in this work to validate the DNN trained with simu-
lated data. On the one hand, a data set was generated with
the Velodyne VLP-16, which has been manually collected and
labeled. On the other hand, the KITTI data set will be used to

WISULTSCHEW et al.: SYNTHETIC LiDAR LABELED DATA SET GENERATION TO TRAIN DEEP NEURAL NETWORKS

TABLE I
VELODYNE VLP-16 CONFIGURATION PROPERTIES

Properties VLP-16

Measurement range
Points per second

up to 100 m
up to 0.3 x 106

Lasers number 16
Accuracy +/- 3 cm
Sensor Horizontal field of view 360°
Horizontal resolution 0.1° - 0.4°
Vertical field of view 30° (-15° to 15°)
Vertical resolution 2°
Rotation rate 5-20 Hz
Laser safety Class 1
Laser Laser wavelength 903 nm
Pulse duration 6 ns
Power consumption 8 W
Mechanical Operating voltage 9 - 32 VDC
and Weight 830 g
electrical Size (diameter x height) 103 x 72 mm
specifications Spin rate 300 - 1200 rpm

Operating temperature -10 °C to +60 °C

compare the results of this work with a data set widely used
in the state of the art.

The VLP-16 data set was collected in the railway-level
crossing scenario shown in Fig. 1(a) which is situated next to
the train station of Langau, which is a town in the district of
Horn in Lower Austria. This data set contains different object
classes, such as pedestrians, bicycles, cars, trucks, and buses.
Once the data set was collected, 3000 frames were randomly
selected. Then, all the objects that appeared in each frame
were manually labeled. For this purpose, the LiDARLabeler
tool [20] was used, which is specific for the labeling of point
clouds. This tool is a MATLAB package that allows interactive
point cloud labeling of Velodyne LiDARSs. These data will later
be exported to be used with the DNN. The average labeling
time when using this tool on data generated by the Velodyne
VLP-16 is 80 labeled objects per hour. Additionally, it is nec-
essary to take into account the time it took to capture the
data during the deployment, which was 4 h for this data set.
Therefore, the total amount of time used for the generation of
this manually labeled data set took 26 h approximately.

Once all the objects in the frame were labeled, the objects
outside a certain critical region were removed. This region
consists of a rectangular region of 200-m long by 6-m wide,
covering the road in the railway level crossing. This region was
selected as it is where vehicles and pedestrians circulate in the
real scenario of the railway level crossing. In the 3000 selected
frames, a total of 1739 objects, including 1291 pedestrians,
59 cyclists/motorcycles, 368 cars, and 21 trucks/buses were
labeled inside the critical region. The cyclists and motorcycles
are grouped in the same class as they are extremely difficult
to distinguish by the DNN since they share a high level of
similarity. Besides, the low resolution provided by VLP-16
also increases the difficulty to distinguish them. This grouping
is also applicable to truck and bus classes for the same reason.
The object classification DNN implemented in this work uses

24815

objects as inputs instead of a complete point cloud from a
scenario as object detection DNN use. For this reason, the
data-set objects were separated from their scenario.

Additionally, the KITTI point cloud data set has also been
used in this work to compare the results obtained when
using simulated data. The KITTI data set was generated using
the Velodyne HDL-64 [19], which is a high-resolution 360°
mechanical LiDAR. The scenarios captured in the KITTI
data set are diverse, covering real-world traffic situations, rang-
ing from freeways over rural areas to inner city scenes with
many static and dynamic objects. This data set contains dif-
ferent classes of labeled objects, such as pedestrians, cyclists,
cars, vans, trucks, and trams. The presented work is focused
on object classification purposes, for this reason, this data set
was preprocessed to obtain the objects separated from the sce-
narios. As well as for the VLP-16 data set, the vans and truck
classes are grouped in the same class as they are extremely
difficult to distinguish using point clouds due to their high
level of similarity. Besides, the trams class is discarded since
it is not found in the data sets collected with the VLP-16.

It should be noted that the KITTI data set is generated with
the Velodyne HDL-64, differently from the presented work,
which uses the VLP-16, being a lower cost and lower resolu-
tion version. It provides similar properties as the VLP-16 but
with a higher resolution since it has 64 lasers instead of 16.
As a result, the point clouds have a different density, which
means that the data sets cannot be directly compared. To solve
this issue, the HDL-64 point cloud has been transformed to be
compatible with the VLP-16 by taking the information from
16 of the 64 available lasers. The 16 lasers selected are in
the same arrangement as the VLP-16 lasers, making them
fully compatible. For this reason, this adaptation of the KITTI
data set is called KITTI16 in this work.

C. DNN

For the DNN selection, it must be taken into account that
the DNN will be implemented on an IoT edge node that has
limited computational resources. Thus, it is essential to select
a lightweight DNN that provides high performance. Among
the point cloud-based DNN architectures studied in [21], the
one that offers the highest performance along with the smaller
size in memory is the VoxNet architecture. For this reason,
it is the DNN architecture selected for the implementation of
this work.

VoxNet was presented in [22] by Maturana and Scherer
aiming to classify 3-D volume objects with the minimum res-
olution using a voxel grid representation [23]. The voxel grid
representation is a 3-D matrix space composed of a fixed num-
ber of voxels. A voxel consists of a representation similar to
a pixel, but instead of representing a 2-D plane, it represents
a volume feature on a 3-D grid.

When using point cloud as voxels there is a prepro-
cessing stage required to convert the point cloud into vox-
els as it is explained in [22]. This preprocessing stage is
extremely lightweight in computational terms, which is essen-
tial for systems with low computational resources. When using
VoxNet it is necessary to define the voxel grid representation

24816

size, which will be the same for all objects in the data set
since the input size when working with DNNs is fixed. This
size is quantitatively calculated in Section V-B.

To carry out the training of the DNNs used in this work, the
TensorFlow framework [24] is selected since it provides tools
to create complex topologies such as 3-D point cloud-based
DNNs. TensorFlow was created by Google and is one of the
most widely used frameworks to design, train, validate, and
deploy DNNs. TensorFlow supports Python, C++, and Java
programming languages. However, its Python API is much
more efficient when developing an end-to-end solution as it
provides a large number of libraries for data preprocessing.
For this reason, in this work, both training and inference stages
are performed using Python.

IV. GENERATION OF THE SIMULATED DATA SET
A. SVL Simulator

As it was mentioned before, the data labeling process is
extremely time and cost consuming. To solve this issue, a
simulator is used to automatically generate a labeled data set.
When selecting the simulator, certain basic requirements must
be taken into account. First, an opensource simulator is
required, since it allows the modification of the source code to
adapt it to the requirements of this work. Second, it is essen-
tial that it can be controlled with an API since the process
must be fully automatic. Third, it has to be based on a game
engine for interactive media creation. Thus, it will be possi-
ble to implement custom objects and scenarios according to
the specifications of each specific problem. Fourth, it has to
allow the parameter customization of the LiDAR sensors. In
this regard, any LiDAR model can be implemented.

SVL [25] and CARLA [26] simulators are similar and both
meet the requirements for this work, however, they are built
with different game engines. SVL Simulator has been selected
since it is Unity based [27], which is more user friendly and
accessible than CARLA that uses the Unreal Engine [28]. The
SVL Simulator is an end-to-end autonomous vehicle simula-
tion platform developed by LG Electronics America Research
and Development Lab. This simulator has been selected also
because it is opensource and has a Python API for its use.
This simulator includes predefined objects, such as pedestri-
ans, cars, trucks, and buses that can be controlled. Being Unity
based, it also supports the creation of custom objects, scenar-
ios, and sensors. The SVL simulator provides a Python API
to allow the automation of the entire process.

B. Simulated Sensors

To generate a simulated data set, two different kinds of sim-
ulated sensors must be used. First, a simulated LiDAR, and
second, a ground truth sensor. The LiDAR will provide point
cloud information from its surroundings that can be stored
using the Python API. The timing of the point cloud cap-
ture can be controlled. Velodyne VLP-16 has been selected as
LiDARs, as was explained in Section III-A. The LiDAR model
configuration properties have to be provided to the simulator.
These parameters are shown in the sensor section of Table I.
Moreover, the ground-truth sensor will provide information

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 24, 15 DECEMBER 2022

about the location, size, and orientation for each of the objects
presented in the simulation. The output of this sensor is only
available through ROS [29]. Combining the data from these
two simulated sensors, it is possible to identify whether a point
from the point cloud belongs to any of the objects of the sim-
ulation or if it is just background. This is essential in order to
be able to label the data.

C. Virtual Scenarios and Objects Creation

Game engines, such as Unity, allow importing 3-D objects
previously modeled in external programs. These objects can
be vehicles, pedestrians, sensors, or any custom object.
Additionally, maps can be imported as well. Adding 3-D
objects stored in Unity to the simulator is straightforward. The
simulator recognizes the names of each object and then allows
them to navigate through the maps.

To create a realistic environment faster and in a sys-
tematic way, the blender-osm plugin [30] has been used.
Blender-osm provides one-click download and import of
OpenStreetMap [31] and terrain data from satellite information
with global coverage. This information is easily transferable to
a 3-D model. The information obtained through this process is
insufficiently accurate, but it provides a basis to start working.
The final adjustments and details are modeled manually.

D. Simulation

The simulation consists of a setup, where a LiDAR sensor,
a scenario, and objects have to be selected. The simulator pro-
vides different road maps by default; however, custom maps
can be also be integrated. Besides, the community uploads
custom scenarios that can be used. For the proposed work, a
customized scenario of a railway level crossing was designed
based on the scenario where the real data were collected
as mentioned in Section III-B. Fig. 1(a) shows an image of
the real scenario and Fig. 1(b) shows the simulated scenario
created.

Then, objects are randomly generated according to the Al
paths that are selected for each scenario. Some new objects,
such as bicycles and motorcycles have been included due to the
simulator does not include them and these data are critical for
real usage. Fig. 1(c) shows the objects placed in the scenario.

Finally, the position where the sensor will be placed must
be defined. The sensor will be fixed and located off the road
as it will be in the final deployment. In this case, the LIDAR
was located where the real data were collected as shown in
Fig. 1(a).

E. Outputs Provided by the Simulator

The simulation outputs are generated in each frame and are
composed on the one side by the information of the complete
point cloud provided by the LiDAR in XYZ format as it is
shown in Fig. 1(d). On the other side, the location and size
of each bounding box are generated for all the objects in the
scenario as illustrated in Fig. 1(e). These data are given in
meters. Note that no information regarding reflectivity is pro-
vided by the simulator. Then, these data have to be processed
to obtain the point cloud of each object separated from the

WISULTSCHEW et al.: SYNTHETIC LiDAR LABELED DATA SET GENERATION TO TRAIN DEEP NEURAL NETWORKS

24817

(b)

Fig. 1.

Simulated data set generation workflow. (a) Real image of the railway level crossing. (b) Simulated scenario without objects. (c) Simulated scenario

with objects. (d) Simulated scenario with simulated point cloud provided by the LiDAR. (e) Simulated scenario, and LiDAR with objects inside bounding
boxes. (f) Simulated LiDAR with objects point clouds of colored objects by classes.

rest of the frame points. Fig. 1(f) shows the point clouds of
each object with a different color. Finally, each of these objects
will be converted into voxels, which is the format supported
by VoxNet.

V. OBJECT CLASSIFICATION EXPERIMENTS

In this section, experiments are carried out to demonstrate
that training exclusively with simulated data provides very
similar results in terms of accuracy compared to training with
real data. Once the simulated data are generated, the voxel
grid size together with the data set size needed to obtain the
maximum accuracy is calculated in this section.

A. Experimental Setup

The object classification performed in this work is focused
on a critical region of 10-m radius from the LiDAR center cor-
responding to the region to be analyzed in the surroundings

of the railway level crossing following the project specifica-
tions as it was explained in Section III-B. For this reason, all
objects that fall outside this critical region are not taken into
account for all data sets used, both simulated and real. In this
regard, the best results in terms of accuracy when deploying
the system at the railway level crossing will be obtained since
the network becomes more specialized in data similar to the
final deploy.

The accuracy averaged per class is used as a metric to eval-
uate each experiment. This metric is defined by the number
of correctly classified objects divided by the total number of
samples.

Training with simulated and real point cloud data sets was
carried out during the experiments of this work. For the DNN
training stage, the data sets have been divided into training and
validation. The training and validation data were split in a ran-
dom manner, representing 80% and 20% of the total data set,
respectively. The number of objects per class contained in each

24818
TABLE II
OBJECTS NUMBER BY CLASSES FOR EACH DATA SET
Datasets
Class Simulated dataset VLP-16 KITTI
Pedestrian 43683 1291 4600
Car 4805 368 1361
Truck/Bus 1624 21 469
Cyclist/Motorbike 3219 59 231
Total 53331 1739 6661
TABLE III
ACCURACIES FOR DIFFERENT VOXEL GRID SIZES
Voxel grid size Inference time Accuracy
4x4x4 4.61 ms 85.39 %
8x8x8 5.62 ms 90.51 %
12x12x12 6.35 ms 96.84 %
16x16x16 7.24 ms 95.80 %
24x24x24 8.87 ms 96.61 %
32x32x32 12.53 ms 96.03 %

data set, which is presented in Table II, impacts the learning
capability of the DNN as will be explained in the following
section.

The hardware used for the development of the experiments
presented in this section consist, on the one hand, by a desktop
PC with an Intel i5-10600K processor, 8-GB RAM memory,
and a Nvidia GeForce GTX 1060 for the generation of the
simulated data set. On the other hand, the inference time
results provided by the DNN experiments were obtained using
a desktop PC with an Intel i7-8700K processor, 32-MB RAM
memory, and without using a GPU. GPU is not used for mak-
ing inference with DNN as it requires adapting the DNN
models and is out of the scope of this work.

B. Experimental Results

Since the main goal of this work is to implement the system
on an IoT edge node, the smallest voxel grid size should be
selected as it will provide maximum performance. However,
it should be noted that a too small grid size may cause the
accuracy to drop significantly. Table III shows the experiments
when training different voxel grid size DNNs with simulated
data. The accuracy results shown in Table III are calculated
when testing the DNNs with the VLP-16 real data set. The
DNN was trained with a simulated data set of 10000 frames.
Besides, Table III shows results about the performance when
making inference with a batch size of one object in order to
analyze the influence of the processing time compared to the
size of the object. The inference times shown is an average
value of the time it takes to perform inference on the 1739
objects contained in the VLP-16 real object database. It is cal-
culated as the average value since there are slight differences
in the measurements when processing each object individu-
ally. This occurs because the experiments were executed on a
Linux operating system that performs other processes at the
same time.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 24, 15 DECEMBER 2022

TABLE IV
ACCURACIES WHEN TRAINING WITH DIFFERENT OBJECT NUMBERS

Frames Objects Generation

. Accuracy
number number time
200 1111 3 min 77.93 %
500 2402 7 min 85.28 %
1000 5359 14 min 91.37 %
5000 26440 1 h 8 min 94.08 %
10000 53338 2 h 17 min 96.84 %
15000 81448 3 h 25 min 97.18 %
20000 109148 4 h 31 min 97.24 %
35000 196957 7 h 52 min 96.01 %
50000 281919 11 h20min 96.14 %
TABLE V

ACCURACY WHEN TESTING WITH THE VLP-16 DATA SET

DNN trained with Accuracy
Simulated dataset 97.24 %
VLP-16 97.38 %*
KITTI16 83.95 %

The voxel grid size of 12 x 12 x 12 is the one that obtains
the best results in terms of accuracy, for this reason, it will
be used in the following experiments. An experiment must be
performed to select the number of frames generated by the
simulator to obtain the best results in terms of accuracy. For
this purpose, data sets have been generated using simulations
with a different number of frames. Each of these data sets was
then used to train the DNN and perform inference using the
real VLP-16 data set. The accuracy results when performing
the inferences are shown in Table IV. Additionally, results
about the times for the data set generation are presented in
Table IV. Within this time, both the simulation time and the
postprocessing time to adapt the database to the training format
are included, representing 39% and 61% of the total time,
respectively.

Once the optimal DNN model trained with simulated data
is obtained, it is compared to models trained only with
real data. In Table V, the results when training the same
VoxNet DNN using real and simulated data sets are presented.
VLP-16 represents the data set generated and labeled in this
work with the VLP-16 LiDAR. On the other hand, KITTI16
refers to the KITTI data set adapted to 16 lasers as it was
explained in Section III-B. All the accuracy results shown
in Table V were calculated making inference using the real
data sets of the VLP-16. In this regard, an appropriate com-
parison of the results can be achieved. The real data from
VLP16 have been used for the experiments since they are
the data collected in the final deployment scenario of the use
case.

It should be noted that the accuracy results when training
with the VLP-16 data set were calculated with the valida-
tion data used during training, which represent 20% of the
total data set. The purpose of this is to avoid calculating
accuracy values with data used for training. However, for
the simulated and KITTI16 data sets results, the accuracy is

WISULTSCHEW et al.: SYNTHETIC LiDAR LABELED DATA SET GENERATION TO TRAIN DEEP NEURAL NETWORKS

calculated using the full VLP-16 data set. For this reason,
the accuracy value of VLP-16 is marked with the * symbol
in Table V.

C. Analysis of Results

The voxel grid size that provides the best results in terms
of accuracy is 12x12x12 as it is shown in Table III. It could
be expected that for larger voxel grid sizes, higher accuracies
should be obtained since they have higher resolution. However,
this is not the case due to the point cloud spreading caused
by the low resolution of the VLP-16 LiDAR. As it is shown
in Fig. 1(d), the point cloud produced by VLP-16 presents a
low resolution along the vertical axis. This fact provokes voxel
empty spaces inside the objects, resulting in a depreciation of
the DNN learning during training.

Regarding the number of simulated frames used to train
the DNN, different results in terms of accuracy were obtained
when varying the number of frames as it is shown in Table IV.
The data set size that provides the best results in terms of
accuracy depends on various factors. First, the architecture
of the DNN used, in this case, is the VoxNet architecture.
Second, the statistical characteristics of the data, which are
point clouds provided by the Velodyne VLP-16. Finally, in the
number of different classes that the DNN is trained to classify,
in this case, there are four classes. Adding more samples to
the data set when training with DNN increases the diversity
and decreases the generalization error. Thus, using more data
implies an increase in accuracy up to a certain limit. However,
using a reduced number of samples affects the accuracy. There
is a minimum sample size after which the network starts to lose
accuracy. For the simulated data set generated in this work, the
limiting size where the accuracy starts to decrease significantly
is 10000 frames as it is shown in Table IV. Beyond this limit,
the accuracy slightly oscillates.

In the use case presented in this work, it takes about 26 s to
generate and label the VLP-16 database with four classes and
obtain good results during training. By using the simulated
data set, this process is avoided and this time can be saved.
When increasing the number of classes identified by the DNN,
it is necessary to train with a data set with more samples in
each class [7]. Thus, when using the proposed methodology,
as more objects need to be classified, more time will be saved
by using simulated data.

No comparison to the impact of other data sets on DNN
accuracy is possible at this time due to their current lack of
availability for object classification applications that train the
DNN only with simulated data. Most object classification algo-
rithms use 2-D images as input and when working with this
type of data, it does not make sense to use simulated data sets
as there is a large number of labeled image data sets avail-
able online. However, it does not occur when using LiDAR
sensors, as each LiDAR model produces a point cloud with
different properties. In this regard, if an object classification
DNN should be implemented in a LiDAR system, the data set
used to train the DNN has to be generated with the same
LiDAR model that will be used in the deployment to obtain
high accuracies when classifying objects.

24819

D. Discussion of the Data Set

A fine analysis between the simulated data and the real
data reveals a few differences. The most notable one is related
with the luminosity information provided by the LiDAR sen-
sors, since in the simulated data, this information is not
available. These data are relevant because they vary depend-
ing on the type of material on which the laser is reflecting.
Aksoy et al. [32] used these data to improve the accuracy of a
point-cloud-based DNN model in object detection and classi-
fication tasks. Since this parameter cannot be simulated using
the methodology proposed in this work, these data have not
been used in the DNN models implemented in this work.

One scenario in which the simulator is not able to correctly
simulate the point cloud consists of environments with adverse
weather conditions, such as rain, snow, or fog. The number of
points generated by a real LiDAR decreases in such scenar-
ios [2], [3], which may affect the accuracy of the DNN model.
However, the LiDAR points generated by the simulator are not
affected by these factors.

The main advantages of using simulated data are related
to the reduction of development time when point-cloud-based
data sets must be generated, and the possibility to simulate the
system in the early stages of the project development. In this
regard, it is possible to provide the LIDAR model or the DNN
architecture that best suits the requirements of the application.

Besides, there are advantages when it is necessary to simu-
late objects that are difficult to record in the real world. This is
the case for certain objects, which are very difficult to record.
For instance, certain vehicles, such as large trucks, buses, or
even certain objects such as animals. In addition, by using sim-
ulated data, it is possible to make them move through the parts
of the scenario that are required. This allows to obtain a larger
amount of data of these classes from many different angles,
which allows to get a richer DNN model and, thus, improve its
accuracy. Table II shows that the number of objects from the
truck/bus and cyclist/motorbike classes are very small com-
pared to the pedestrian and car classes. This is because in
the scenario where the real data sets were generated using the
LiDAR, there were few vehicles of those classes. This is not
the case with the simulated data, since the number of objects
of each class appearing in the scenario can be controlled along
with their movements.

VI. CONCLUSION

This work presented an approach for automatically gener-
ating synthetic-labeled LiDAR point cloud data sets using a
simulator. The generated data sets were ready to be used for
DNN training. It was demonstrated that using these simulated
data sets to train DNNs for point cloud object classification
tasks provides almost identical results compared to training
with real data. Besides, by using only simulated data for train-
ing, the manual data set generation and labeling step was
avoided. This leads to considerable time and costs savings
in the development stage of the traditional point cloud object
classification applications where a data set must be generated
and labeled. As far as the authors know, there is no work
in the state of the art that obtain high accuracy results when

24820

training DNN only with simulated point cloud data for object
classification tasks.

A wide range of LiDAR models is available on the cur-
rent market. Each one of them has different properties, which
imply that the point clouds generated by them are different.
This causes the generated data sets to be dependent on each
LiDAR model. In the methodology proposed in this work,
the simulated LiDAR parameters can be modified, allowing
the simulated data set to be compatible with any LiDAR
model. This methodology also allows the analysis of differ-
ent LiDARs models using simulations in order to identify
the LiDAR parameters that best fit the requirements of each
application in terms of cost and accuracy, in contrast to the
traditional approach where the LIDAR must first be purchased.

The simulated scenario design using the methodology
proposed in this work allows a very accurate estimation of the
results that will be obtained in the final deployment. In this
regard, it is also possible to select the LiDAR location that
provides the best accuracy results for each specific scenario
before the deployment.

The DNN trained with simulated data presented in this
work will be deployed in the railway level crossing shown in
Fig. 1(a). The simulated scenario was designed using this rail-
way level crossing as a reference to obtain the best accuracy
results when deploying the DNN. Additionally, the simulated
LiDAR sensor is the same model as the one that will be imple-
mented in the final deployment, the Velodyne VLP-16. The
system will be run on an edge IoT node and will be able
to detect and classify any object that passes through a certain
critical region in the surrounding of the railway level crossing.

One of the limitations of the simulated data generated with
the proposed methodology is related to the luminosity data,
which are provided by the LiDAR sensors. The information
provided by this parameter could be relevant and, therefore,
could provide higher accuracies during the object classification
stage. However, the SVL simulator currently does not allow to
simulate this information. As future work, a study of the reflec-
tivity provided by different materials will be carried out to be
able to provide a realistic value of luminosity in the simulated
data. Besides, with the new solid-state LiDARs technology,
the information provided by this parameter is richer compared
with traditional mechanical LiDARs. In this regard, using this
parameter for training the DNN may imply an increase in
classification accuracy.

In the proposed work, the main goal was to provide object
classification capabilities, however, no object detection was
performed. As future work, another goal is to validate the
methodology proposed in this work with a DNN that performs
both object classification and detection. Besides, scenarios like
those of the KITTI data set can also be simulated along with
objects of their same classes. Thus, it will be possible to use
the simulated data sets to compare them directly with the
KITTI data set and test if similar results can be obtained when
training DNNs that perform object detection and classification.

The simulator used in this article also allows the genera-
tion of RGB images around the sensor. As another future line
of work, these labeled images may be used to generate sim-
ulated data sets with any class of object moving around any

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 24, 15 DECEMBER 2022

specific scenario since some objects and scenarios are diffi-
cult to record in the real world. The 2-D simulated images
generated can be merged with the LiDAR point cloud data to
improve the accuracy obtained by the DNNss.

ACKNOWLEDGMENT

The document reflects only the author’s view and the
European Commission is not responsible for any use that may
be made of the information it contains.

REFERENCES

[1] M. Liang, B. Yang, Y. Chen, R. Hu, and R. Urtasun, “Multi-task
multi-sensor fusion for 3D object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 7345-7353.

[2] R. Heinzler, P. Schindler, J. Seekircher, W. Ritter, and W. Stork,
“Weather influence and classification with automotive lidar sensors,” in
Proc. IEEE Intell. Veh. Symp. (IV), 2019, pp. 1527-1534.

[3] A. Filgueira, H. Gonzdlez-Jorge, S. Lagiiela, L. Dfaz-Vilarifio, and
P. Arias, “Quantifying the influence of rain in LiDAR performance,”
Measurement, vol. 95, pp. 143-148, Jan. 2017.

[4] T. Raj, F. H. Hashim, A. B. Huddin, M. E Ibrahim, and A. Hussain,
“A survey on LiDAR scanning mechanisms,” Electronics, vol. 9, no. 5,
p. 741, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/
5/741

[51 Y. Li et al., “Deep learning for LiDAR point clouds in autonomous
driving: A review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 8, pp. 3412-3432, Aug. 2021.

[6] K. Ota, M. S. Dao, V. Mezaris, and F. G. B. D. Natale, “Deep learning
for mobile multimedia: A survey,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 13, no. 3s, p. 34, Jun. 2017. [Online]. Available:
https://doi.org/10.1145/3092831

[7]1 T. Liu, A. Abd-Elrahman, J. Morton, and V. L. Wilhelm, “Comparing
fully convolutional networks, random forest, support vector machine,
and patch-based deep convolutional neural networks for object-based
wetland mapping using images from small unmanned aircraft system,”
GISci. Remote Sens., vol. 55, no. 2, pp. 243-264, 2018. [Online].
Available: https://doi.org/10.1080/15481603.2018.1426091

[8] C. Wisultschew, G. Mujica, J. M. Lanza-Gutierrez, and J. Portilla, “3D-
LIDAR based object detection and tracking on the edge of IoT for
railway level crossing,” IEEE Access, vol. 9, pp. 35718-35729, 2021.

[9] D.J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and
sensor fusion technology in autonomous vehicles: A review,” Sensors,
vol. 21, no. 6, p. 2140, 2021. [Online]. Available: https://www.mdpi.
com/1424-8220/21/6/2140

[10] X. Yue, B. Wu, S. A. Seshia, K. Keutzer, and A. L. Sangiovanni-

Vincentelli, “A LiDAR point cloud generator: From a virtual
world to autonomous driving,” in Proc. ACM Int. Conf.
Multimedia Retrieval, 2018, pp. 458-464. [Online]. Available:

https://doi.org/10.1145/3206025.3206080

[11] B. Wu, A. Wan, X. Yue, and K. Keutzer, “Squeezeseg: Convolutional
neural nets with recurrent crf for real-time road-object segmentation
from 3D lidar point cloud,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), 2018, pp. 1887-1893.

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231-1237,
2013. [Online]. Available: https://doi.org/10.1177/0278364913491297

[13] J. Fang et al., “Augmented LiDAR simulator for autonomous driving,”
IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 1931-1938, Apr. 2020.

[14] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional
detection,” Sensors, vol. 18, no. 10, p. 3337, 2018.

[15] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object detec-
tion network for autonomous driving,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 1907-1915.

[16] B. Hurl, K. Czarnecki, and S. Waslander, “Precise synthetic image and
LiDAR (PreSIL) dataset for autonomous vehicle perception,” in Proc.
IEEE Intell. Veh. Symp. (IV), 2019, pp. 2522-2529.

[17] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint
3D proposal generation and object detection from view aggregation,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2018, pp. 1-8.

[18] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2012, pp. 3354-3361.

WISULTSCHEW et al.: SYNTHETIC LiDAR LABELED DATA SET GENERATION TO TRAIN DEEP NEURAL NETWORKS

[19] “Velodyne: Velodyne LiDARs Documentation.” [Online]. Available:
https://velodynelidar.com/downloads/
[20] “MathWorks Team: Using Ground Truth for Object Detection.”

MATLAB Central File Exchange. Dec. 15, 2021. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/69180-using-
ground-truth-for-object-detection
[21] J.-C. Su, M. Gadelha, R. Wang, and S. Maji, “A deeper look at 3D
shape classifiers,” in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops,
Sep. 2018, pp. 1-20.
D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural
network for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), 2015, pp. 922-928.
E. Ahmed er al., “Deep learning advances on different 3D data
representations: A survey,” Aug. 2018, arXiv:1808.01462v1.
M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Oper. Syst. Design Implement.
(OSDI), Nov. 2016, pp. 265-283. [Online]. Available: https://www.
usenix.org/conference/osdil 6/technical-sessions/presentation/abadi
G. Rong et al., “LGSVL simulator: A high fidelity simulator for
autonomous driving,” in Proc. IEEE 23rd Int. Conf. Intell. Transp. Syst.
(ITSC), 2020, pp. 1-6.
A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. 1st Annu. Conf.
Robot Learn., vol. 78, 2017, pp. 1-16. [Online]. Available: https:/
proceedings.mlr.press/v78/dosovitskiy17a.html
“Unity Technologies.” Unity. [Online]. Available: https://unity.com
“Unreal Engine.” Epic Games. [Online]. Available: https://www.
unrealengine.com
A. Koubda, Robot Operating System (ROS), vol. 1. Cham, Switzerland:
Springer, 2017.
“Blender-OSM: Open Street Map and Terrain for Blender.” MATLAB
Central File Exchange. Dec. 15, 2021. [Online]. Available: https://github.
com/vvoovv/blender-osm/wiki/Documentation
[31] J. Bennett, OpenStreetMap. Birmingham, U.K.: Packt Publ., 2010.
[32] E. E. Aksoy, S. Baci, and S. Cavdar, “SalsaNet: Fast road and vehicle
segmentation in LiDAR point clouds for autonomous driving,” in Proc.
IEEE Intell. Veh. Symp. (IV), 2020, pp. 926-932.

[22]

[23]

[24]

[25]

[26]

[27]
[28]

(291

(30]

Cristian Wisultschew received the B.S. and
M.Sc. degrees in industrial electronics from the
Universidad Politécnica de Madrid (UPM), Madrid,
Spain, in 2017 and 2018, respectively, where he is
currently pursuing the Ph.D. degree.

He carries out his research activity with the Centro
de Electrénica Industrial, UPM. He is participating
in two European H2020 Research Projects, SCOTT
and InSecTT, related to real-time object detection
and classification systems deployed at the edge of
IoT for railway-level crossing applications. He is
also participating in a Spain Government Funded Project, PLATINO, related to
accelerating the processing of deep learning algorithms in embedded systems
using specific deep learning neural accelerators. He has authored four papers
published in international conferences and journals. His research interests are
focused on sensor system integration, digital embedded systems, embedded
deep learning, deep learning HW accelerators, LiIDAR sensors, and Internet
of Things.

24821

Rogelio Hernandez received the B.S. degree
in industrial electronics from the Universidad
Politécnica de Madrid (UPM), Madrid, Spain, in
2019, where he is currently pursuing the M.Sc.
degree.

He carries out his research activity with the Centro
de Electrénica Industrial, UPM. He is participating
in InSecTT Project, which is a European H2020
Project, related to real-time object detection and
classification systems deployed at the edge of IoT
for railway-level crossing applications. His research
interests are focused on simulated data set generation, 3-D design, point cloud
object classification, and LiDAR sensors.

Carlos Pastor received the B.S. and M.Sc. degrees
in industrial engineering from the Universidad
Politécnica de Madrid (UPM), Madrid, Spain, in
2020 and 2022, respectively.

He carries out his research activity with the
Centro de Electronica Industrial, UPM. His research
interests are focused on simulated data set genera-
tion using game engines, deep learning, and LiDAR
Sensors.

Jorge Portilla (Senior Member, IEEE) received
the M.Sc. degree in physics from the Universidad
Complutense de Madrid, Madrid, Spain, in 2003,
and the Ph.D. degree in electronic engineering
from the Universidad Politécnica de Madrid (UPM),
Madrid, in 2010.

He was a Visiting Researcher with the Industrial
Technology Research Institute, Hsinchu, Taiwan, in
2008, and also with the National Taipei University
of Technology (Taipei Tech), Taipei, Taiwan, in
2018, working on wireless sensor networks hardware
platforms and network clustering techniques. He is currently an Associate
Professor with UPM. He carries out his research activity with the Centro
de Electrénica Industrial, UPM. He has participated in more than 30 funded
research projects, including the European Union FP7 and H2020 Projects,
and Spain Government Funded Projects, as well as private industry funded
projects, mainly related to wireless sensor networks and Internet of Things.
He has numerous publications in prestigious international conferences as
well as in journals with impact factor. His research interests are focused on
wireless sensor networks, Internet of Things, digital embedded systems, and
reconfigurable FPGA-based embedded systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

