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Abstract—As the fifth-generation (5G) and beyond (5G+/6G)
networks move forward, and a wide variety of new advanced
Internet of Things (IoT) applications are offered, effective
methodologies for discovering time-relevant information, services,
and resources are being demanded. To this end, computing-,
storage-, and battery-constrained IoT devices are progressively
augmented via digital twins (DTs) hosted on edge servers.
According to recent research results, a further feature these
devices may acquire is social behavior; this latter offers enormous
possibilities for fast and trustworthy service discovery, although
it requires new orchestration policies of DT's at the network edge.
This work addresses the dynamic placement of DTs with social
capabilities [social digital twins (SDTs)] at the edge, by providing
an optimal solution under IoT device mobility and by accounting
for edge network deployment specifics, types of devices, and their
social peculiarities. The optimization problem is formulated as
a particular case of the quadratic assignment problem (QAP);
also, an approximation algorithm is proposed and two relaxation
techniques are applied to reduce computation complexity. Results
show that the proposed placement policy ensures a latency among
SDTs up to 1.4 times lower than the one obtainable with a
traditional proximity-based only placement while still guaran-
teeing appropriate proximity between physical devices and their
virtual counterparts. Moreover, the proposed heuristic closely
approximates the optimal solution while guaranteeing the lowest
computational time.

Index Terms—Digital twin (DT), edge computing, orchestra-
tion, Social Internet of Things (SIoT).
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I. INTRODUCTION

Y 2050, there will be 24 billion interconnected

devices [1], meaning almost every object around us will
be connected to the Internet, such as wearable devices, mobile
phones, robots, electric meters, cars, and streetlights. Such
devices will allow end users to enjoy a wide variety of inno-
vative applications, ranging, for instance, from augmented
reality (AR)/extended reality (XR) to autonomous assistance
navigation [2], demanding high throughput, low latency, high
reliability, and pervasive availability.

Although several countries are rolling out the fifth-
generation (5G) network, the requirements of most of the
applications mentioned above are still hardly supported, hence
motivating the research community to look ahead to beyond-
5G solutions toward 2030. Among them, digital twins (DTs),
acting as high-fidelity digital mirrors of physical entities,
appear as the game changer to fully enable the digital transfor-
mation and cope with the increasing connectivity, computing,
and storage demands of massively deployed heterogeneous
Internet of Things (IoT) devices in 5G and beyond network
scenarios [3].

As examined in [4], connectivity between physical and
virtual counterparts, i.e., DTs, is an open issue attracting
considerable interest, especially with a view to guaranteeing
real-time data transfer [5]. To this aim, there is a wide con-
sensus on placing DTs at the network edge so to ensure low-
latency interactions with their physical counterparts located
in proximity [6], [7]. However, the decision about the proper
placement of DTs has to account for the limited and heteroge-
neous resources at edge servers. Such decision becomes even
more complicated when considering mobile devices in the
physical realm that constantly trigger DT migrations among
edge servers to ensure proximity to the physical devices.
Recent works have addressed these issues; for instance, deep
reinforcement learning (DRL) and an algorithm based on iter-
atively solving a series of minimum graph cuts have been
leveraged, respectively, in [8] and [9], to approximate the
optimal placement solution.

A further feature, which adds constraints to the place-
ment policy, is the possibility for physical devices to establish
mutual social relationships, e.g., according to the Social IoT
(SIoT) paradigm, which has gained great popularity in recent
years in the IoT research arena [10], [11]. A social network
of devices is created by establishing and maintaining different
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types of relationships, such as co-location, ownership, and
parental, among others [10]. Indeed, IoT applications can
be conceived so to leverage data and services provided by
“friend” devices. Their discovery, by navigating the social
network graph, may be facilitated if we introduce so-called
social DTs (SDTs) at the edge, used to expose the mentioned
resource/services on behalf of the physical devices and also to
keep trace of the social relationships dynamically established
among their physical counterparts. As a consequence, a wise
placement of SDTs must also be implemented to make the
social network browsing quicker and more effective.

In light of the above, it is clear that the dynamic placement
of DTs with social capabilities at the edge is a challenging
decision to be taken when both user- and operator-centric
requirements need to be simultaneously satisfied. In our
previous work in [12], the issue has been addressed through
the formulation of an initial optimization problem under basic
conditions and without considering SDT mobility, as the main
objective was to provide a proof of concept of the introduced
paradigm. Differently, in this work, we propose a significantly
extended study, which accounts for more realistic opera-
tional conditions and provides the contributions summarized
as follows.

1) The design of an SIoT-Edge framework, closely aligned
with the multiaccess edge computing (MEC) architec-
ture, standardized by the European Telecommunications
Standards Institute (ETSI) [13], wherein the proposed
SDT placement, named enhanced social-aware closest
edge placement (eSoCEP), is conceived as a functional-
ity of the ETSI mobile-edge (ME) orchestrator.

2) The formulation of the optimal placement of SDTs as a
quadratic assignment problem (QAP), which extends the
preliminary formulation in [12] by accounting for differ-
ent types of IoT devices, their social features, mobility
patterns, and the limited computing resources of edge
Sservers.

3) The design of an approximation scheme to find near-
optimal solutions and the application of approximation
techniques addressing the challenge of the NP-hardness
of the formulated optimization problem.

4) The evaluation of the performance of the proposed algo-
rithm against the formulated optimal solution through
joined CPLEX and MATLAB simulations.

5) The analysis of the time-dependent behavior of the SIoT-
Edge system under conditions of device mobility for the
dynamic SDT placement problem, and the consequent
selection of the proper time interval duration between
consecutive runs of the SDT placement strategy for the
scenario of interest.

6) The implementation of an extensive performance eval-
uation campaign aiming at studying the impact of the
input parameters and of the social relationship types and
device categories on meaningful performance metrics.

The remainder of this work is organized as follows.
An overview of related work is provided in Section II.
In Section III, we illustrate the SIoT-Edge framework. In
Section IV, we present the reference system model used for the
solution of the dynamic SDT placement problem. Section V
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formulates the optimization problem as a particular case of
the QAP. Section VI proposes an approximation algorithm
and describes relaxation techniques for the SDT placement.
Simulation results are reported in Section VII. The main find-
ings of the study are summarized in Section VIII. Finally, in
Section IX, conclusions are drawn and hints on future works
are provided.

II. BACKGROUND AND MOTIVATIONS

Most existing works on the SIoT have focused on smart
objects and their interconnection via social relationships, as
well as on specific requirements and constraints raised in
this domain. Examples of addressed research on this topic
are IoT objects’ social behavior understanding [14], service
discovery [15], trustworthiness management [16], and critical
security and privacy provisioning [17], among others. Thanks
to more recent frameworks, platforms, and architectures [11],
this research orientation is solid in its current form, as knowl-
edge has already been accumulated through both theoretical
and experimental studies.

As for DTs, in [3], its general concept has been examined by
considering different functions, configurations, and patterns.
In [18], a DT wireless network model has been designed to
transfer data processing and computation to the network edge
in real time. A vision of DT edge networks has been proposed
in [19], where the offloading scheme is based on DRL, and
DTs aid the offloading decision by estimating the states of
edge servers. In [20], a framework has been introduced for
improving the energy efficiency of services in a MEC system,
where DTs are used to train the deep learning algorithm. A
framework to track mobility has been presented in [21], where
DTs retrieve mobility data of physical entities. In [22], a con-
tent caching mechanism with DT support has been designed
for socially oriented vehicular edge networks.

A. Placement at the Edge

The problem of service placement, both in general and in
the specific case of DTs, has been widely discussed in the
scientific literature, and numerous solutions have appeared.
Some existing works have investigated the possibilities of
edge infrastructures to satisfy the latency constraints between
a physical device and its DT [12]. In [7], a cloudlet place-
ment strategy has been proposed, taking into account the
cost of deploying edge servers and the end-to-end latency
between physical objects and their virtual entities. In [23], a
service placement framework has been designed to achieve
a tradeoff between latency and migration costs. In [24], a
joint optimization on the service placement and access network
selection has been studied to improve the Quality of Service
(QoS). In [9], a service entity placement problem consider-
ing activation, placement, proximity, and co-location costs has
been formulated and solved with an iterative algorithm.

Moreover, machine learning (ML) techniques for
entity/service placement at the network edge have been
recently investigated in [25] as a means to efficiently solve
complex edge placement optimization problems, instead of
formulating mathematically tractable heuristics. Decision
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TABLE I
DT PLACEMENT SOLUTIONS IN THE LITERATURE VERSUS OUR WORK: COMPARISON OF SUPPORTED FEATURES

Ref.,| Device Social fea- | Cost function to be optimized Device- Edge Device Edge Solution
year | mobility | tures DT delay | capacity hetero- hetero- to the
constraint | con- geneity geneity optimization
straints problem
Yes No Sum of cloudlet cost and device-DT | No Yes No Yes Lagrangian
7], latency heuristic
2019 algorithm
Yes No Sum of DT initialization (device- | Yes Yes Yes Yes DRL-based
(8], DT delay) and synchronization de- algorithm
2021 lay
Yes Twitter so- | Sum of activation, placement, prox- | No No Yes Yes Iterative
[91, cial graph imity (device-DT delay), and colo- solution  of
2018 cation cost a series of
minimum
graph cuts
Yes No Sum of computing and communica- | No No Yes Yes Distributed
[23], tion delay (device-DT latency) approxima-
2018 tion scheme
Yes No Sum of access, switching and com- | No Yes Yes Yes Iteration-
[24], munication (device-DT) delay based
2019 algorithm
No SIoT Sum of device-SDT delay and inter- | Yes Yes Yes No Not provided
[121, relation- friend SDT delay
2020 ships  from
Santander
dataset
Our | Yes SloT Sum of device-SDT delay and | Yes Yes Yes Yes Graph-based
workl relation- inter-friend SDTs delay, with the heuristic
ships from | latter one weighted by frequency
Santander of data exchange among friend
dataset SDTs

tree-based algorithms have shown to be the best performing
among supervised learning schemes. DRL and transfer
learning are used in [8] to find the solutions of the optimal
DT placement and migration problems, respectively.

Table I summarizes the main features of the closest related
works, by highlighting the differences with our work. It
emerges that the past literature does not cover the full conver-
gence of virtualization and socialization capabilities of future
IoT devices and applications, by also accounting for hetero-
geneous and resource-limited edge computing environments.

B. Contributions of the Work

This work aims to fill the aforementioned critical gap by
contributing a framework and methodology for the dynamic
placement of SDTs that build upon the SIoT, edge computing,
and DT concepts. More specifically, SDTs should be placed
as closer as possible to their physical counterparts to ensure
low-latency interactions between IoT objects and correspond-
ing SDTs. This can also help to reduce the amount of traffic
traversing the edge network segment. In addition, social rela-
tionships have to be accounted for, since SDTs may likely
need to interact with each other to offer SloT-based services.
SIoT objects may need to quickly interoperate and discover
services with a low data footprint on the edge infrastructure
by querying the social network. Hence, SDTs of friend SIoT
devices should preferably be placed in close edge servers.

Both aspects have been accounted for in our early study
in [12], where an optimal “static” SDT placement problem
was formulated. However, the optimization was subject to
strong assumptions which, although tolerable for carrying

out an initial proof of concept, did not allow to exploit the
proposed model in real scenarios, mainly due to the follow-
ing limitations, which this article overcomes. First, a simple
proximity-driven only SDT placement may not be feasible
due to the limited resources of edge servers; it gets increas-
ingly more difficult as the demands of the SDTs in terms
of computing/storage resources get higher and heterogeneous,
as expected under realistic circumstances. Second, the inter-
SDTs latency should be minimized not in a myopic manner,
but rather accounting for the specific relationship existing
between the corresponding physical devices, which entails the
exchange of data with different intensiveness. Third, efficient
use of available resources plays a key role in satisfying the
requirements of both users and operators. Fourth, a place-
ment decision cannot be static. Instead, it shall account for
the mobility patterns of physical IoT devices that may trigger
repeated migrations of SDTs among different edge servers.
Finally, the design and validation of an efficient heuris-
tic solution were missing there, which are, instead, among
the additional contributions of the present work toward the
practical deployments of the proposed framework.

III. SIOT-EDGE FRAMEWORK: OVERVIEW

This section presents a general overview of the proposed
SIoT-Edge framework for the dynamic placement of SDTs.
Similarly to our early study [12], the reference architecture
consists of a real-world layer and a virtualization layer [see
Fig. 1(a)].!

IThe description of the architecture is here briefly reported to make this
article self-contained.
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Fig. 1.

The real-world layer represents the physical world that
accommodates [oT objects interconnected with each other and
to other entities through connectivity facilities. Social relation-
ships among objects are assumed, which are set up according
to the SIoT paradigm [10]. For instance, the co-location object
relationship (C-LOR) is established among objects located
in the same place. The ownership object relationship (OOR)
specifies connections among objects that belong to the same
owner. The parental object relationship (POR) is defined
among objects belonging to the same production batch. Social
object relationships (SOR) is established due to sporadic or
continuous contact of users/devices.

The virtualization layer is responsible for hosting the digi-
tal counterparts of physical devices [26], i.e., the SDTs. They
offer the typical functionalities a digital counterpart provides,
including caching and aggregation of the raw data transmit-
ted by the IoT device, before IoT applications can process
them. In addition, the proposed SDT stores metadata describ-
ing the device type and the established SIoT relationships. An
IoT device, willing to query friend devices, discover services
offered by them, and/or push data to them, needs to read the
friendship information stored in its SDT. Once such a piece
of information is retrieved, the SDT itself can interact with its
peers on behalf of the physical device.

We assume that SDTs are deployed as a virtualized ME
app (e.g., through containers) and instantiated in edge servers.
The latter ones, referred to as ME hosts, in agreement with
the ETSI MEC architecture [13], may be associated with base
stations (BSs)/access points (APs).

In order to align our proposal with the ETSI MEC archi-
tecture [13], the SIoT-Edge framework components, as shown
in Fig. 1(b), are considered.

In the ETSI MEC architecture, the ME orchestrator has
visibility of the resources and capabilities of the entire edge
network, made up of several ME hosts, and determines the
most suitable ME hosts for instantiating the applications (i.e.,
ME apps) according to the application requirements (e.g.,
latency, processing, memory, etc.), available resources, and
mobility conditions. In case a virtualized application needs to
be relocated, the orchestrator triggers the migration procedure.

SIoT-Edge framework. (a) Reference architecture. (b) Envisioned components within the ETSI MEC architecture.

In the envisioned framework, the ME orchestrator is in
charge of selecting the ME hosts wherein each SDT should be
placed [see the corresponding functional module in Fig. 1(b)].
Besides, in our design, the ME orchestrator may interact with
an external SIoT server to get information about the current
social relationships established by any given physical device
to decide the most suitable placement of its SDT. In particular,
the SIoT server may record the profiles of SIoT devices, their
relationships, as well as activities. The location information
of the objects can also be managed and then updated in the
profile on the SIoT server.

IV. SYSTEM MODEL

This section outlines the reference system model and sum-
marizes our modeling assumptions. Some of them are inherited
from our previous work in [12] and shortly recalled here
to make this article self-contained. Others have been specif-
ically added to match the additional contributions of the
work. Unlike [12], the system is assumed to operate accord-
ing to a discrete timing based on a sequence of time slots
t € T = {0,...,T} with the duration of 7 (in minutes),
introduced to capture the mobility features and offer dynamic
decisions. The assumption is quite common in [7], [23], and
[27]. Table II lists the basic notations employed in this work.

A. SIoT Devices and SDTs

We consider N 10T devices within the coverage area of M
wireless APs (e.g., BSs and APs). At a given time instant, an
IoT device i is assumed to be connected to a single AP/BS,
particularly the closest one [28]. A device i can move and
change the connectivity point [see Fig. 2(b)].

Considered devices establish relationships according to the
SIoT paradigm. The resulting social network is represented by
a social-based graph Gp(f) = (Vp(1), Ep(t)). The set of ver-
tices in the graph Gp(¢), i.e., Vp(t), corresponds to the IoT
devices connected by links in set Ep(#). The probability p;;(?),
0 < p;j(®) < 1, reflects the intensiveness of the data exchange
between IoT devices i and j, and is associated with SIoT links.
It is straightforward to assume that the p;;(¢) value is strongly
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TABLE 11
SUMMARY OF THE MAIN NOTATIONS

[ Notation | Description |

N Number of IoT devices

M Number of edge servers

Gp(t) = | Weighted undirected graph of physical IoT devices

(Ve(®), Ep(t)

pij(t) Probability of data exchange between IoT devices
i,j € Vp(t)

aCPUy CPU capability of edge server k € V(1)

aDy, Disk capability of edge server k € Vg (t)

aRAMj Memory capability of edge server k € Vg (t)

CPU,(t) CPU requirement to execute the SDT of physical
IoT device ¢ € Vp(t)

D;(t) Disk requirement to execute the SDT of physical
IoT device i € Vp(t)

RAM;(t) Memory requirement to execute the SDT of phys-

ical IoT device i € Vp(t)
Weighted undirected graph of edge servers

Gs(Vs(1), BEs(?))

L (t) Latency between physical device ¢ € Vp(t) and
its SDTs placed at edge server k € Vg (t)

Ly (t) Latency between edge servers k,l € Vg ()

d; (1) Physical distance between IoT device ¢ € Vp(t)
and edge server k € Vg(¢) (that hosts its SDT)

dpi(t) Physical distance between SDTs deployed at edge
servers k,l € Vg(t)

zik(t) Binary variable taking the value 1 if SDT of
device ¢ € Vp(t) is mapped to edge server
k € Vs ()1

Lmax; Maximum latency between physical device i €
Vp(t) and its SDT deployed at at edge server
k € Vs(t)

THRcpy Threshold value of CPU utilization

THRp Threshold value of disk storage utilization

THRRrAM Threshold value of RAM utilization

Cirji(t) Cost of connections between devices ¢, j € Vp(t)

and their SDTs placed at edge servers k,l €
Vs(t)

] 1
server/
—>
p7)) digital twin T
0 evnce/é ’

AP/BS

L@ o Ly

L0

digital twin
of device i

AP/BS

device i device

edge server k

(@
edge skrver/  Luy®

—1

digital twin
of device i

T>—)

device i
A

edge server k AP/BS —~ -

Fig. 2. Example of dynamic SDT placement problem: (a) illustration of SDT
placement and (b) illustration of SDT’s migration.

correlated with the specific kind of social relationship estab-
lished between the two physical devices [29]. IoT devices tied
by an OOR may need to frequently share data about the smart
home/the smart car of the owner as well as her habits, prefer-
ences, and health status. This would not be the case for POR.
In case more than one relationship is established between two
devices, the maximum p;;() value is utilized.
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B. Network Edge

We consider an edge infrastructure consisting of M edge
servers associated with each wireless AP/BS [28] and,
unlike [7] and [12], equipped with heterogeneous capabili-
ties. An edge server k has a finite amount of CPU, disk, and
RAM resources, denoted as aCPUy, aDy, and aRAMy, respec-
tively [30]. Such servers are in charge of hosting SDTs, which
are in turn associated with IoT devices. SDTs can store data
and perform some processing, having specific CPU, disk, and
RAM demands. The latter ones are indicated for an SDT i as
CPU;(1t), D;(t), and RAM;(¥).

The edge network is represented by graph Gs =
(Vs(t), Es(t)), where Vg(#) is a finite set of edge servers,
whereas Eg(f) is a set of links between the edge servers. We
reasonably assume that the number of IoT devices is larger
than the number of edge servers, |Vp(f)| =N > |Vs()| = M,
which does not limit the generality of the presentation.

The latency between each pair of edge servers k, [ is given
by Ly(¢). Similar to [7] and [9], Ly (¢) is estimated to be pro-
portional to the distance between them. We denote as L (¢) the
latency between device i and its SDT located at edge server k.
Similar to [31], for Ly (#), we neglect the delay over the radio
interface and consider the latency between a BS that covers
the device and an edge server that hosts the corresponding
SDT. Hence, Lj(t) and Ly (¢) are estimated as in [32]

Ly () = edi (1) (1)
Ly(t) = edy (1) )

where € is the distance to latency mapping coefficient, dj;(¢)
is the physical distance between the BS that serves device i
and edge server k, whereas dy;(¢) is the distance between edge
servers k and /.

V. OPTIMAL SOCIAL DIGITAL TWIN PLACEMENT

We formulate the optimal SDT placement problem by

targeting the following main objectives.

1) To jointly minimize the latency between each IoT device
and its relevant SDT placed at an edge server and the
latency between friends SDTs, while accounting for the
relationship existing between the corresponding physical
devices, and, hence, for the intensiveness of the expected
data exchange.

2) To ensure that delay bounds on the interactions between
IoT devices and their SDTs are met, whenever requested.

3) To guarantee the effective utilization of the available
resources for heterogeneous SDT demands.

Hence, we define the objective function to be optimized and

the relevant constraints in the following.

A. Objective Function

We define the objective function as a cost to be minimized
given the sum of two latency contributions. The first com-
ponent includes the latency experienced between a physical
device and the corresponding SDT and is given by

G =YY xa®L(®) 3)

ieVp keVyg
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where x;(¢) is the SDT placement decision variable and is
equal to 1 if the SDT of device i is placed at edge server k at
time slot f; otherwise, xj(f) = 0, i.e.,

xix(®) €{0,1} VieVp YkeVs VteT. )

The second component of the objective function includes the
latency among SDTs of friend devices at time slot ¢, i.e., the
time required to communicate and discover services querying
the friends on the virtualization layer, and is as follows:

G0 =YY" > Y xa@xOpiOLu® ()

ieVp keVg jeVp leVy

where x;(¢) is the SDT placement decision variable, xj(¢) €
{0, 1}.
Hence, we define the total cost at time slot ¢ as

C@ = C1(0) + C0). (6)

B. Constraints

1) Allocation Constraint: Allocation constraint is respon-
sible for the placement of SDTs without replication. Since
each SDT is allocated only to one edge server, we have the
following constraint for SDT placement decision xjx(¢):

d xuty=1VieVp VieT. (7)

keVyg

2) Latency Constraint: Latency constraint is compliant
with the idea of meeting the proximity constraint for the SDT
of a given physical device and preserves a limitation on the
latency between IoT device i and its SDT deployed at edge
server k, which is upper bounded by Lpay;, i.€.,

Lix(t) < Lmax;, Yi€eVp YkeVs YteT. (8)

3) Resource Utilization Constraints: Resource utilization
constraints guarantee efficient resource utilization while
preventing the overload of a given edge server k. The con-
straints ensure SDT placement according to edge server
resource availability and guarantee that the capacity constraint
(i.e., CPU, THRcpu, disk storage, THRp, and RAM, THRraM,
utilization) for each edge server at time slot ¢ is not violated
when multiple IoT devices simultaneously share the comput-
ing resources to host the corresponding SDTs at edge servers
VkeVsViteT

Xix () CPU (1)
—— - <THR 9
Z aCPU, = CPU &)
i€eVp
i (OD;(t
Z Xik( )D i (1) < THRp (10)
ieVp alk
ik (ORAM; (¢
E M < THRRAM. (11)
) aRAMy,
ieVp

C. Problem Formulation
The SDT placement problem can further be formulated as
follows:
min C(¢)

s.t. (4, (7),(8),(9), (10), (11). 12)
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In each time slot ¢, an optimal placement can be obtained
when solving (12) with the exhaustive search.

D. Complexity Analysis

Lemma 1: Optimal SDT placement in the dynamic large-
scale SIoT-Edge environment problem is NP-hard.

Proof: We conducted the proof in our previous work

in [12] via a polynomial-time reduction from the QAP, which

is known to be NP-hard [33]. |

E. Linearization

We aim to remove the nonlinearity of function (12), specif-
ically (5), and perform the linearization of the objective
function. When elaborating C»(f), we first denote the cost
contributions related to the latency between the SDTs of
IoT devices i and j placed at edge servers k and [ at time
slot #, respectively, as Cy,;(t), by replacing p;j(t)Ly(t). We
reformulate (5) as follows [34]:

Z Z Z ZXik(t)le(t)C,-kﬂ(t)

ieVp keVg jeVp leVy
=Y @ YD) X0 Cirga (). (13)
ieVp keVy jeVp leVyg

We then define x;x (1) ZjEVP 3 1evs %t (1) Cikjt (1) by introduc-
ing Fy(f) and express the minimization of CL(r)

min C*() =Ci()+ ) Y Fal) (14)
ieVp keVg
st fie@xa(d + Y Y (0 Cawr(1) — Fae(t) < fat) (15)
Fi() >0 vjeiveplxe/f VkeVs VteT (16)
where fir(¢) is given by
[ =33 Cup(t). (17)

jeVpleVyg

VI. APPROXIMATION SOLUTIONS

Computing the optimal policy solution for the SDT place-
ment is very difficult in practical cases. Indeed, as mentioned
in Section V-D, it is an NP-hard problem. The solution via
exhaustive search suggested in Section V can provide an
optimal configuration for a small size network, but it turns
to be of no practical use for large networks. This is why in
this section we aim to design an approximation solution for the
SDT placement problem that is simpler to compute while still
achieving close-to-optimal performance. The algorithm carries
out a relaxing transformation to simplify the original problem,
and a graph-based heuristic is derived from it. We then intro-
duce alternative known approximation techniques, i.e., the
associated local branching (LB) and relaxation-induced neigh-
borhood search (RINS) heuristics, which are also applied to
our problem.

A. Proposed Graph-Based Heuristic

The QAP has been drawing researchers’ attention world-
wide because of its practical and theoretical importance as
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Algorithm 1: Graph-Based Heuristic

1 Input: Gp(f) = Gp(Vp(1), Ep(1));
Gs() = Gs(Vs(1), Es(D));

2 Output: Vp(t) — Vs(1);

3 find sets of connected components Gp/ (t) = Gp(Vp(2)),
|Gp ()] = n such that Vp (1) C Vp(1), Ep (1) € Ep(1),
Yu,v e Vp(t) 3 (u,v),

Vu e Vp (1), w ¢ Vp (1) B (1, w);

4 MAXW < O;

5 while Gp/(¢) # 0 do

6 for m = 1:|Gp/(¢)| do

7 find W(t, m) = Zi,jeGP/(t,m) pij(t);
8 if MAXw < W(t, m) then

9 MAXwy < W(t, m);

10 Gp (1) < Gp(t, m);

11 end

12 end

13 find spanning subgraph T(Gp;n " (2)) such that
Vp(T) = Vp(Gp, (1)) NEp(T) <

Ep(Gp,, (1), |Ep(T)| = [Vp(Gpr,
u | Gp(t) < Gp)\ Gp_(0;

15 find optimal mapping I1(¢) = {7 (¢):Vp(T) — Vs};
16 end

7 return Vp(t) — Vs(1).

Nl =1

-

well as its complexity. The QAP is one of the most chal-
lenging combinatorial optimization problems. However, to the
best of our knowledge, there is no theoretical proof concern-
ing quality and computational time convergence, especially for
large-scale dimension problems. We focus on achieving low
enough execution time in this work while ensuring reasonable
approximation to the optimal solution.

For the SDTs placement problem, we present an approxima-
tion algorithm, which is based on a graph-theoretic solution.
The pseudocode of the graph-based heuristic is listed in
Algorithm 1 and it is executed for each time slot t € T.

The formulation of the approximation solution in terms of
graph theory is as follows. Let Gp(¢) be a weighted connected
graph, Vp(?) be the set of vertices of graph Gp(#) correspond-
ing to the SDTs, and Ep(f) be the set of links of the graph
Gp(t) defining the connections between the SDTs allocated at
edge servers. Let Vg(f) be a finite set of positions intended for
assigning vertices of the graph Gg(¢) corresponding to the set
of edge servers.

Algorithm 1 starts with the definition of a connected com-
ponent Gpr(t) of graph Gp(?), i.e., identification of individual
connectivity components (line 3). It allows defining the num-
ber of strongly connected components in which a path from
each vertex to another vertex exists. The algorithm consid-
ers each component separately (lines 5-16), starting from the
strongest one between vertices of a component (lines 6—12).

Next, Algorithm 1 finds an approximating spanning sub-
graph or, in other words, a spanning tree (line 13). In the
mathematical field of graph theory, a spanning tree 7 of an
undirected graph Gp/(¢) is a subgraph that is a tree, which
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includes all of the vertices of Gp/(f) with a minimum pos-
sible number of links. If all of the links of Gp/(¢) are links
of a spanning tree 7 of Gp/(t), then Gp/(f) is a tree and is
identical to 7. The advantages of spanning tree usage and,
therefore, problem simplification are as follows. First, con-
structing a spanning tree takes a polynomial time when using
well-known algorithms (e.g., Boruvka’s, Prim’s, Kruskal’s,
reverse-delete, greedy algorithms, etc.). Second, the problem
of tree placement can be solved relatively quickly.

We then perform mapping IT1(#) (line 15) by placing the
vertices of graph Gp(f), assuming that vertex i € Vp(f) is
allocated in the position 7 (i) € Vs(¢), such that any vertex of
Vs(t) can either accommodate vertices of Vp(f) or accommo-
date no vertices. The set of all mappings of set Vp(¢) into set
Vs(t) is given by

@) = {7 : Ve() — Vs@)}. (18)

We specify the following parameters. First, the distance
Lix(¢) between vertex i € Vp(f) and position k € Vs(t), defined
in terms of the latency of the connectivity between physical
device i and its SDTs placed at edge server k. We refer to as
distance L (t) the cost of placing vertex i € Vp(¢) in posi-
tion k € Vg(r). We then define: the weight of the edge p;;(¢)
associated with the probability of data exchanging between
IoT devices; the distance Ly between positions k, [ € Vs(1),
defined in terms of the latency of the connectivity between
edge server k and edge server /. The cost of communication
between vertices i,j € Vp(t) placed in positions k, [ € Vg(¢)
corresponds to Ciji(t) = pij ()L (1).

As we aim to allocate the vertices of graph Gp(f) in posi-
tions Vg(7) by minimizing the total cost of placing the vertices
Vp(t) to positions Vs(7), the problem is formulated in terms
of mappings as follows:

Yo Lir@y+ Y Y Clj.m@. m()

ieVp(t) ieVp(t) jeVp(t)

min
() ell(r)

19)

Algorithm 1 determines the most suitable positions to
host vertices of the spanning tree (7)) to minimize the cost
of spanning tree’s vertices allocated to the set of positions
Gs(t) (19). The Algorithm terminates when all vertices of
Gp(t) are mapped onto positions belonging to Gg(f) by
satisfying constraints (4) and (7)—(11).

Complexity Analysis: The computational complexity of the
proposed algorithm (Algorithm 1) is given by

On) - O(n) = 0(}12)

where n is the complexity due to the while cycle over all
|Gy (1)| = n vertices of graph Gp(?) in the worst case when
the number of connected components of graph Gp(¢) is equal
to the number of graph vertices (lines 5-16). For the second
component, which is inside the while cycle, n is the complex-
ity due to the searching for the largest connected component
in terms of the number of communications between vertices
(lines 6-12). Since initially |G,/ (f)| = n and at each iteration
one of the elements is removed, this inner loop runs n times
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first, then n — 1, n — 2, and so on until at the last iteration,
the inner loop runs only once. The complexity of the sum
1424---+(n—1)+nis problematic to be precisely deter-
mined (lines 6-12). Instead, we find an upper limit for it,
which is O(n). This means that every time the inner loop goes
exactly n times. The complexity of lines 13-16 is O(1), but
it runs within while cycle, therefore, O(n - 1) = O(n), which
does not change the complexity of the first component. As a
result, the operations’ numbers’ upper limit is in O(n?).

In contrast, the problem of optimal SDT placement in the
dynamic large-scale SIoT-Edge environment has been formu-
lated as a QAP, which is NP-hard. The NP-hard problems
can be solved but not in polynomial time, i.e., there are no
solutions that can offer the result within O(n¥) for any con-
stant k > 2. Moreover, QAP is one of the most challenging
combinatorial optimization problems [35]. While theoretical,
algorithmic, and technological breakthroughs have resulted in
large increases in the sizes of solvable issues for many well-
known NP-hard problems, QAP has remained a stand-alone
class that appears to defy all attempts to solve it except for very
small sizes [35]. General form of QAP requires the specifica-
tion of O(n*) cost terms for C»(f) [36]. Therefore, the lower
limit of the number of operations for the dynamic large-scale
SloT-Edge environment problem is in on).

Hence, the conceived heuristic ensures a significantly lower
theoretical complexity than the optimal problem formulation.

B. Classic Relaxation Techniques

The solution of the problem (12) can also be adopted by uti-
lizing branch-and-cut or branch-and-bound techniques. In this
work, we consider LB heuristic and RINS heuristic and com-
pare them with the optimal solution as well as the proposed
approximation algorithm.

1) LB Heuristic: LB is based on the idea of changing
neighborhoods during the search for a better solution [37].
LB is a technique designed, in principle, as an exact method.
However, if the total time allocated to solve a given instance
is reached before an optimal solution is found and its optimal-
ity is proved, then LB stops at the time with the best solution
known as output (or, possibly, with no feasible solution).

2) RINS Heuristic: RINS is a heuristic that explores a
neighborhood of the incumbent solution to find a new,
improved incumbent [38]. RINS constructs a promising neigh-
borhood using information contained in the continuous relax-
ation of the mixed-integer programming (MIP) model. The
neighborhood depends on the current incumbent solution and
the current fractional solution of a branch-and-cut node. The
neighborhood is formulated and explored as another MIP. This
optimization is truncated by limiting the number of nodes
explored in the search tree.

VII. EXPERIMENTAL EVALUATION

This section aims to assess the performance of the proposed
SDT placement optimization strategy. First, we describe the
conducted simulation campaign, including the considered sce-
nario, settings, benchmark schemes, and metrics of interest.
Then, we compare the results achieved through the optimal
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TABLE III
SYSTEM MODEL PARAMETERS

Deployment
Area of interest

Area: Santander, Spain [39]
Size: 4000 m x 4000 m [39]

Users Number: 50 (100)
Mobility pattern: SWIM [39], [40]
IoT Devices Smartphones: 6% (12%) [39]

Cars: 15% (14%) [39]

Tablets: 12% (11%) [39]

Smart Fitness: 20% (24%) [39]
Smartwatches: 29% (25%) [39]

PCs (static): 1% (6%) [39]

Printers (static): 10% (2%) [39]

Home Sensors (static): 7% (6%) [39]

Total number: 113 (328) [39]

Probability of data exchange:

1 (OOR), 0.1 (C-LOR), 0.1 (SOR), 0.1 (POR)
*#:1 (OOR), 1 (C-LOR), 0.1 (SOR), 0.1 (POR)

Social network

Radio
Base stations

Cell layout: 3GPP hexagonal grid [41]
Number of BSs: 8 [41]

Cell area radius: 450 m [41]
Intersite distance: 1350 m [41]

Edge
Edge servers

Deployment: Co-location with BSs [28]
Number: Equal to number of BSs [28]
Distance: Geographical distance [7], [9]
Latency: Proportional to the distance (Eq. (2)
with € 3.33 ms/km [32])

CPU capability: 24000 MIPS [42]
Disk capability: 2 TB [42]

RAM capability: 24 GB [42]

CPU utilization threshold: 0.6 [43]
Disk utilization threshold: 0.9 [43]
RAM utilization threshold: 0.9 [43]

Resource utilisation
constraints

SDTs

Disk Disk demands: Uniformly distributed in
[10,50] GB [30]

CPU demands / High-CPU medium instance:

RAM demands 2000 MIPS/0.85 GB [44]
Extra large instance: 2500 MIPS/3.75 GB [44]
Small instance: 1000 MIPS/1.7 GB [44]

Micro instance: 500 MIPS/613 MB [44]

IoT-Edge
IoT devices-SDTs

Distance: Geographical distance [7], [9]
Latency: Proportional to the distance with €
3.33 ms/km [32]

Physical device-SDT maximum latency: Uni-
formly distributed in [1,10] ms [45]

Proximity constraint

solution, the approximation solutions, i.e., the graph-based and
the LB and RINS heuristics, and some benchmark placement
schemes, by means of a simulator tool based on the IBM ILOG
CPLEX Optimization Studio 12.10.0 and MATLAB R2021b
software. Simulation settings are reported in the remainder of
this section and are summarized in Table III.

A. Simulation Settings

1) Network and Edge Deployments: Similar to [39], we
consider the city center of Santander (Spain), which roughly
has an area of 4 km x 4 km. We assume the hexagonal
grid cellular layout, in agreement with the Third Generation
Partnership Project (3GPP) specifications [41], with M = 8
BSs. An edge server is associated with each BS, in agreement
with ETSI documents [28].

2) SIoT Devices and Mobility: We evaluate the proposal
on the basis of a realistic object behavior taken from the large
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data set? generated in [39] that tracks device interactions based
on real ToT objects® and the small world in motion (SWIM)
mobility model [40]. SWIM is based on a simple intuition on
human mobility, i.e., people go more often to places close to
their home and to the most popular places. We consider two
device density settings (i.e., portions of the data set), namely,
50 and 100 users with N = 113 and N = 328 heterogeneous
IoT devices, respectively, spanning from static devices to con-
sumer devices carried by users moving in the selected area of
interest (see Table III for the percentages of each category of
IoT devices).

3) SDT Demands: An SDT is paired to each IoT device
and implemented as a container in edge facilities [46]. Without
loss of generality, to account for the heterogeneity of IoT
devices, we associate SDTs with four types of containers
(based on the corresponding device types) according to the
CPU demands [44] as presented in Table III. For example, cars
with autonomous assistance navigation and smartphones might
require high CPU for their SDTs; whereas SDTs of smart-
watches and sensors and tablets, smart fitness devices, and
printers might be associated with small and micro instances,
respectively. As a further requirement, the maximum latency
between a physical device and its SDT is uniformly distributed
in the interval [1, 10] ms [45]. The latency is derived according
to the geographical distance between any two entities deployed
in the reference area [7], [9], [32] as described in Section IV-B.

4) SIoT Features: Social relationships are associated with
each device in the data set. For the extracted 113 devices, the
percentage of established relationships corresponds to 50%,
21%, 15%, and 14%, for OOR, C-LOR, SOR, and POR,
respectively. Whereas for the 328 devices setup, the percent-
age of established relationships is as follows: 60% OOR, 8%
C-LOR, 1% SOR, and 31% POR.

Unlike all the aforementioned settings, there are no specific
clues about how to set the parameter p;;(t). Hence, without
loss of generality, we consider a set of representative values
throughout the simulation campaign to understand their impact
on the conceived SDT placement strategy compared to solu-
tions oblivious of the social relationship information (see the
following). In particular, we fix p;j(#) = 0.1 for SOR and POR.
The rationale behind these values is that IoT devices, either
sporadically coming into contact (i.e., tied by an SOR relation-
ship) or belonging to the same brand or product batch (i.e.,
tied by a POR relationship), are reasonably expected not to
exchange big amount of data with a high frequency, but only
upon some specific events, when compared to the other friend-
ship types. For instance, devices tied by a POR may seldom
exchange software updates. Data exchanges among objects
of the same owner, i.e., those tied by an OOR relationship,
may be frequent and huge, e.g., to synchronize personal/health
data, to monitor the smart home, etc. Hence, we set for OOR
pij(t) =1, and we vary it to be 0.1 and 1 for those devices tied
by a C-LOR. However, it is worth remarking that the strategy
is flexible enough to accommodate other settings.

2http://www.social—iot.org
Shttps://www.ﬁware.org
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5) Simulation Time: The entire simulation covers a time-
lapse of 5 h. Within this period, we first simulate time slots
t of duration equal to t = 5 min [23]. Then, we vary this
setting up to 30 min in steps of 5 min. We determine the best
time slot duration based on the analysis of simulation results.
During each time slot 7, we assume that the SDT placement
does not change [23], [27].

6) Benchmark Schemes: We compare the optimal solu-
tion (labeled in the curves as eSoCEP) with the following
approximation solutions and placement strategies.

1) Approximation Techniques:

a) Proposed  graph-based  heuristic, as  per
Algorithm 1, labeled in the curves as eSoCEP
Heuristic (see Section VI-A).

b) LB [37], labeled in the curves as LB (see
Section VI-B1).

¢) RINS [38], labeled in the curves as RINS (see
Section VI-B2).

2) Placement Strategies:

a) Social-aware closest edge placement (SoCEP) of
SDTs [12], labeled in the curves as SoCEP,
which only takes into account proximity and social
requirements without accounting for the specific
nature of SIoT links, types of devices, network
deployment specifics, and mobility. We also sim-
ulate the graph-based heuristic for SOCEP, labeled
in the curves as SoCEP Heuristic.

b) Closest edge placement (CEP), labeled in the
curves as CEP, widely leveraged in the litera-
ture and also known as the FollowMe strategy, is
representative of the approaches in [7], [9] and
considered in [8] and [47] as a benchmark solu-
tion. According to CEP, SDTs paired with physical
devices are always placed at the nearest edge
server, by neglecting social features.

c) Static placement, labeled in the curves as No
Migration, is a strategy according to which SDTs
are initially placed at the nearest edge server and
keep the same placement throughout the whole
simulation duration without migration possibili-
ties [23], [48].

It should be noticed that, for the sake of fair comparison,
a dynamic placement is also triggered at every time slot for
both SoCEP* and CEP.

7) Metrics of Interest: We evaluate the performance of
proposed and benchmark solutions by leveraging the following
metrics.

1) Average Latency Between IoT Devices and Their SDTs:

We measure this metric as the average latency between
a physical device and the edge server hosting the
corresponding SDT.

2) Average Latency Among Friend SDTs: This metric refers

to the average delay experienced between the SDTs of
friend devices.

4A static placement was assumed in the original design in [12].
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Fig. 3. Average latency: time interval duration T = 5 min [23], probability

of data exchange p;j(r) = 1 for OOR and p;;(#) = 0.1 for C-LOR, SOR, and
POR, and average number of friend IoT devices f =4 for N =113 and f =5
for N = 328.

3) Total Number of Migrated SDTs: This metric refers to
the total number of SDTs migrated from one edge server
to another during the whole simulation.

B. Heuristic Validation and Complexity Analysis

The first set of results aims to validate the effectiveness and
efficiency of the proposed eSoCEP heuristic (for both N = 113
and N = 328) when compared to the optimal solution, the
considered relaxation techniques (LB and RINS), and the
benchmarks solutions. As one may observe in Fig. 3, eSoCEP
and eSoCEP Heuristic preserve close values for all considered
metrics and under all device density settings. This is especially
true for the latency among friend SDTs for which values are
significantly lower compared to the CEP and No Migration
benchmarks. Instead, the device-SDT latency, although higher
for the eSoCEP Heuristic compared to the optimal solution, is
in any case bound by the proximity constraint in (8).

Furthermore, we analyze the average latency among friend
SDTs per relationship type, as illustrated in Fig. 4(a) and (b).
The optimal eSoCEP solution guarantees zero latency among
OOR friends for N = 113 and the lowest values for N = 328.
This implies that SDTs of friend devices are co-located in the
same edge server, in alignment with the targeted objectives,
well captured by the parameter p;;(7) set equal to 1. Higher
latency values are measured for the other kinds of relation-
ships. In particular, the highest latency values are experienced
among POR friends in the case of N = 113 IoT devices,
because devices establishing such a kind of relationship are
more likely spread throughout the topology.

As a next step, we assess the computational complexity. To
this aim, in Fig. 5, we report the algorithms’ running time as a
function of the number of devices in the system. We evaluate
placement strategies via simulations on an Intel Xeon CPU
E5 — 2620 v4 at 2.10 GHz with 19.7-GB RAM.

We start with the comparison of eSOCEP and SoCEP heuris-
tics with the optimal solver. In eSoCEP, the introduction
of stricter constraints on latency and resource usage (see
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Fig. 4.  Average latency among friend SDTs per relationship type: time
interval duration T =5 min [23] and probability of data exchange p;;(r) = 1
for OOR and p;;() = 0.1 for C-LOR, SOR, and POR. (a) N = 113, average
number of friend IoT devices f=4. (b) N = 328, average number of friend
IoT devices f=5.

Section V-B) as well as a linearization of the optimization
function, which allows for faster optimal solution search (see
Section V-E), lead to significant reduction in complexity.
Contrarily to eSoCEP, the SoCEP strategy fails to scale as the
number of devices and the average number of friends increase.
Moreover, we note that LB and RINS (dashed lines) applied to
the eSoCEP solution, respectively, decrease the running time
on average by 7.5% and 11.5% compared to eSoCEP for the
average number of friend IoT devices f equal to 4, and by
8.8% and 11.3% for f =17.

From results in Fig. 5, it further emerges that the eSoCEP
heuristic outperforms all the considered placement strategies
and approximation solutions. It offers on average 43.3% and
46.9% reduction of the running time compared to the optimal
solution for f = 4 and f = 7, respectively. For N = 328,
such reduction is up to nearly 94%. Here, approximated span-
ning subgraph usage is beneficial for the following reasons.
First, it is possible to construct a spanning subgraph in poly-
nomial time by using well-known algorithms (see Section VI).
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Fig. 5. Computational time when varying the number of IoT devices N and
the average number of friend IoT devices f =4 and f = 7.

Second, the problem of tree placement can be solved rela-
tively quickly. The eSoCEP heuristic preserves low enough
computational time regardless of f. Such a finding concerning
the scalability of the proposed heuristic with the number of
friends is particularly relevant, since IoT devices are expected
to establish many relationships. What is more interesting is that
the eSoCEP heuristic, representative of a more sophisticated
SDT placement strategy, incurs the same computation time as
the simplest CEP approach (violet line), whose detailed results
are reported in the following.

C. Impact of the Time Slot Duration

So far, we have analyzed the results of the dynamic place-
ment strategies when fixing the time slot to 5 min, similar
to [23]. In this section, we assess the results when varying the
duration of the time slot (i.e., the frequency of the optimization
recomputation) for the reference scenario.

Fig. 6 reports the average latency contributions for differ-
ent time interval duration, 7. In particular, in Fig. 6(a), it
can be observed that the latency between the physical devices
and their digital counterparts is sensitive to the setting of the
time slot, whatever the considered dynamic placement strat-
egy. The larger the time slot duration, the less frequent is the
replacement of the SDTs. Hence, all the considered placement
strategies hardly capture the device mobility, as witnessed
by the increasing latency values when the time slot dura-
tion increases. This is especially true for the CEP strategy,
whose latency values are almost doubled when passing from
7 = 5 min to T = 30 min. The CEP strategy exhibits the
lowest latency, being specifically conceived to ensure that IoT
devices have their SDT hosted in close proximity, neglecting
the existence of social relationships. The proposed eSoCEP
strategy outperforms SoCEP. If a static SDT placement (No
Migration) strategy is enforced, the poorest performance is
achieved with latency values that are nearly doubled compared
to those measured for eSoCEP (averaged values through the
entire simulation, not shown in the figure, are in the order of
3 ms).
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When considering the latency among friend SDTs, Fig. 6(b),
both SoCEP and eSoCEP outperform other schemes, thus
confirming their capability to account for social relationships
demands, as targeted by the formulated problem. For the No
Migration policy, delay values close to 4 ms are measured,
although not reported in the Figure to reduce cluttering.

From Fig. 6(c), interestingly, it emerges that the proposed
eSoCEP solution is more efficient than SoCEP. It can be
observed that it always triggers a lower number of migration
events compared to SOCEP. As a consequence, the overhead
incurred by migration procedures is lower, i.e., a lower amount
of data is exchanged over backhaul links interconnecting the
edge servers acting as the source and destination of migrating
SDTs. It can be further noticed that, unlike latency metrics,
the total number of migration events is highly sensitive to the
settings of the time slot, ¢. Such a finding suggests to further
investigate the results for a specific t value, i.e., 20 min, which
allows for achieving a good tradeoff between the number of
migration events and the latency metrics.

D. Impact of the Device Type

Under such settings, it is worth understanding the SDT
migration dynamics per category of IoT devices. Fig. 7 shows
the percentage of migration events at the end of each time
slot, when a replacement is triggered, for two representative
device categories, i.e., smartwatches and home sensors. Not
surprisingly, the SDTs of smartwatches migrate more than
the SDTs of home sensors. You can notice that, although
associated with static devices, the latter may also migrate
for SoCEP and eSocEP to satisfy the targeted constraints
of proximity among SDTs of friend devices. Also, for the
considered device categories, eSOCEP is more efficient than
SoCEP.

To further shed light on the latency performance, the latency
among friend SDTs is reported in Fig. 8 per relationship type.
Here, we consider two settings for the proposed heuristic,
namely, for bars labeled as eSoCEP Heuristic*, probability of
data exchange corresponds to p;;(#) = 1 for OOR and C-LOR
and p;;(#) = 0.1 for SOR and POR, whereas for bars labeled
as eSoCEP Heuristic, p;;(f) = 1 for OOR and p;;(r) = 0.1 for
C-LOR, SOR, and POR.

Let us remember that SOCEP does not distinguish the rela-
tionship type when placing SDTs. In alignment with the
targeted objectives, among the compared schemes, eSoCEP
(both considered settings) provides the lowest latency values
for SDTs associated with IoT devices establishing OOR rela-
tionships. The eSoCEP Heuristic* achieves a lower latency
value for C-LOR as well, when compared to the other dynamic
strategies, at the expense of slightly higher latency values
for SOR and POR. Interestingly, latency values achieved by
social-aware strategies for SOR mainly established by mobile
devices, are more than halved, compared to the No Migration
approach. Slightly higher values than SoCEP are experienced
by eSoCEP only for the latency among SDTs associated
with IoT devices establishing POR relationships, which, how-
ever, are expected to interact at a lower extent. Hence, the
results in Fig. 8 confirm the flexibility of the proposed
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Heuristic that allows for minimizing the latency in the data
exchange based on its intensiveness for a given relationship

type.

VIII. DISCUSSION

The proposed placement, eSoCEP, satisfactorily targets the
objective of ensuring the lowest latency among SDTs of friend
devices that are more likely to exchange data, e.g., those tied
by OOR while guaranteeing appropriate proximity between
physical devices and their physical counterparts. A lower
latency among SDTs has a twofold benefit: 1) the pressure on
the network is low when SDTs exchange data because packets
traverse a lower number of links and 2) quick interactions are
ensured among them, which is crucial for service discovery
procedures entailing the browsing of the social graph.

Compared to the benchmark solutions, the eSoCEP heuris-
tic is shown to be efficient in terms of computation time, being
its execution even faster than the most popular placement
strategy, CEP, which is myopic w.r.t. the need to ensure prox-
imity among SDTs of friend devices. Moreover, the eSoCEP
heuristic is faster than the heuristic for our previous pro-
posal, SoCEP, and also more efficient in terms of placement
decisions.

eSoCEP incurs a lower number of migrations w.r.t. SOCEP.
Hence, a lower communication footprint is incurred, since
whenever a migration is triggered to match a new placement
decision, data needs to be exchanged from the source to the
target edge server.

The proposal is currently aimed to minimize the cost
function, which jointly accounts for device-SDT latency and
interfriend SDT latency. The proximity between the physical
devices and their virtual counterparts is however ensured by a
hard delay constraint.

Nonetheless its potentials and promising achievements, the
proposal has room for improvement.

First, the formulated problem could be extended to overstep
a possible limitation as, in this stage, only the communication
latency is considered. The computation delay experienced at
the selected edge server to perform the related IoT devices aug-
mentation tasks is not currently accounted for in the problem.
The formulation is quite flexible to accommodate such a fur-
ther latency contribution. However, in order to do this, either
assumptions are needed concerning the workload of each SDT
associated with a given IoT device (as in [8]) or realistic pat-
terns should be derived from actual IoT deployments. This
issue will be among the subject matters of future work.
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Moreover, the considered data set assumes that social rela-
tionships are static. However, they may evolve (be created
and deleted) over time [49] and hence, placement decisions
should vary according to the relationships’ lifecycle. The cho-
sen time slot values are short enough to capture well such
dynamics and hence, SDTs can be moved to follow varia-
tions in the social relationships with no impact on the data
exchange performance. Nonetheless, such replacements occur
at the expenses of higher migration costs, which should also
be considered.

IX. CONCLUSION AND FUTURE WORK

In this work, we have developed a framework for the
dynamic placement of DTs associated with physical IoT
devices establishing social relationships. The conceived place-
ment strategy accounts for the social features of IoT devices,
their mobility patterns, and the limited computing resources
of edge servers. The optimal placement of SDTs has been
formulated as a QAP. We designed a heuristic and applied
approximation techniques addressing the challenge of the
optimization problem complexity. Numerical results demon-
strated that relaxation techniques approximate very well the
exact solution, whereas the proposed graph-based heuristic
allows for preserving polynomial time complexity while also
keeping results close to the optimal solution.

Future research directions include, among others, ML algo-
rithms for mobility- and time-dependent SDTs (re)allocation,
where the proposed placement might be utilized to generate
the training data. Among ML algorithms, it could be worth to
investigate DRL, in alignment with recent literature trends, to
enhance SDTs placement efficiency.

Furthermore, the placement decision might be extended
toward a green and sustainable dimension.
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