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Abstract—Hand gestures, being a convenient and natural way
of communication, is getting huge attention for human–computer
interface designs. Among these gestures, detecting mid-air writing
is one of the most promising applications. Existing radar-based
solutions often perform the mid-air writing recognition by track-
ing the hand trajectory using multiple monostatic or bistatic
radars. This article presents a multistream convolutional neu-
ral network (MS-CNN)-based in-air digits recognition method
using a frequency-modulated continuous-wave (FMCW) radar.
With one FMCW radar comprising of two receiving channels,
a novel three-stream CNN network with range-time, Doppler-
time, and angle-time spectrograms as inputs is constructed and
the features are fused together in the later stage before mak-
ing a final recognition. Unlike the traditional CNN, MS-CNN
with multiple independent input layers enables the creation of a
multidimensional deep-learning model for FMCW radars. Twelve
human volunteers were invited to writing the digits from zero to
nine in the air in both home and lab environments. The three-
stream CNN architecture-based air writing for digits has shown
a promising accuracy of 95%. A comparison of the proposed
MS-CNN system was made with 45 different variants of CNN
and preliminary results shows that MS-CNN outperforms the
other traditional CNN architectures for air-writing application.
The gestures radar data have also been made available to the
research community.

Index Terms—Deep learning, frequency-modulated
continuous-wave (FMCW) radar, hand gesture recognition,
in-air writing, multistream CNN.

I. INTRODUCTION

RECOGNITION of the voluntary movements of human
hands containing a conveyable information is known as

hand gesture recognition [1]. Recently, in the field of human–
computer interaction (HCI), where the previously available
solutions are becoming a bottleneck, hand gesture recognition
has widely been studied [2]. One such common applica-
tion of gesture recognition is the mid-air writing recognition.
Researchers have previously utilized various gesture sets for
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developing HCI systems and among them, the air-writing ges-
ture set is one of the most useful and challenging tasks. The
term “air writing” is defined as the movement of hand or
fingers in the air with an intent to project the characters or dig-
its [3]. Air writing can bring us a wide range of applications.
For instance, in the ongoing COVID-19 pandemic situation,
HCI capable of providing noncontact text input will create
hindrance to the viral spread. Air writing differs slightly from
the traditional writing on a paper. In traditional hand writing,
only the pen movement is supposed to convey the information
about what digit or character is being written. Contrary to
that, for mid-air applications, the trajectory of hand movement
expresses the information about what is being written.

Based on the type of sensor being used for data acquisition,
gesture recognition systems can largely be classified into two
classes [4]: 1) wearable sensor based and 2) wireless sensor
based. Wearable sensor requires the user to attach the sensor to
their body. For instance, Al-Qaness et al. [5] presented activ-
ity and gesture recognition using Inertial Measurement Units.
For air writing, wearable sensors such as hand held sensors [6]
and body worn sensors [7] have shown a promising recogni-
tion accuracy. However, these sensors may cause discomfort
to the users as users are always required to wear a sensor on
the body. Additionally, this type of solution still requires users
to physically touch the sensor. Wireless sensors on the other
hand, provides more natural way of air-writing implementa-
tion. Camera and radio sensors such as radar are the most
commonly used wireless sensors. Unlike camera, radar sensors
has no associated privacy issue since radar sensor only records
the reflections related to the hand movement. This makes
radar a suitable candidate for mid-air solutions. Specifically,
the complex data cube of a multiinput–multioutput (MIMO)
frequency-modulated continuous-wave (FMCW) radar pro-
vides a wide range of meaningful information about the target.
Contrary to an unmodulated (single frequency) continuous-
wave radar, FMCW radar is capable of providing rich
information about the target’s range, Doppler-velocity and
angle simultaneously. Consequently, the FMCW radar has
widely been explored previously for several applications, such
as vital sign monitoring [8], human gait analysis [9] and
specifically, hand gesture recognition [10]. Perhaps, radar has
recently shown its footprints for multiple target gesture recog-
nition as well [11]. Nowadays, devices such as Google Pixel 4
smartphone contains in-built radar sensor [12] dedicated solely
for gesture recognition-based applications.

Similar to any other field, the use of machine learning
for designing the HCI system based on gesture recognition
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through radar has widely been explored [2], [13]. While
designing such HCI systems for radars, the gesture set is
often limited, which makes the supervised machine learning
as prominent candidate solution. The two main classes of
machine-learning-based classification are features based and
representation based [14]. Feature-based learning requires a
set of handcrafted features; whereas, the representation-based
learning approaches operate on the raw data itself [14]. In con-
text of gesture recognition using the FMCW radar, both fea-
tures extraction-based recognition [15] and the representation-
learning-based recognition [16] have previously been con-
sidered. Next, the work related to radar sensor-based in-air
writing is discussed.

A. Related Work

As stated earlier, a considerable amount of research work
has been presented on noncontact air writing through opti-
cal sensors, such as camera [17] and depth camera [18].
Tracking the hand trajectory with camera sensor followed
by a detection and recognition algorithm has widely been
considered by researchers. For example, Chen et al. [3]
used a hidden Markov model (HMM) on the tracked tra-
jectory to classify characters. Camera-based finger and hand
tracking accompanied by CNN has also been proven as a
promising HCI system [19]. Nevertheless, recently, radar-
based air-writing systems are gaining huge attention. For
instance, Leem et al. [20] presented a digit writing system
using three Impulse radars where the trilateration-based tra-
jectory estimate was used to draw the hand motion which
served as an input to a CNN architecture. Their work was
one of the initial attempts for impulse-radars-based air-writing
system. However, the proposed system is not appropriate for
commercial applications as it always requires three or more
radars to recognize the digits. Khan et al. [4] presented air
writing of digit and few alphabets using an Impulse radar
network. Similar to [20], Khan et al. also used a CNN
architecture driven by the motion sketch drawn by trilatera-
tion algorithm. However, the proposed method requires four
monostatically configured impulse radars installed at different
locations. The main difference between these two aforemen-
tioned works [4], [20] was the number of gestures being
classified and number of radars being used. With the FMCW
radar, Arsalan and Santra [21] used a similar approach of tra-
jectory tracking followed by a temporal CNN. Another work
by Arsalan and Santra used 3-D trilateration with deep learn-
ing for recognizing five digits and five alphabets. Another
work [22] used a tracking algorithm for mid-air writing imple-
mentation using FMCW radar. Existing FMCW radar-based
air-writing solutions often operates on the hand movement
trajectory tracking with the network of radars.

B. Contribution

As explained earlier, the previous works mostly used hand
trajectory tracking followed by a deep learning architecture
for classifying the digits or alphabets. A network of radars
installed at different locations in data capturing environment
is required [4], [20]–[22], making the overall solution a bit
expensive and less practical. Furthermore, the previous works

Fig. 1. Multistream CNN model with RTM, DTM, and ATM as input.

relied only on the distance ques. The FMCW radar on the other
hand provides target information in different domains, such as
range-time, Doppler-time, and angle-time domains. However,
single stream CNN with either of these as input may not be
suitable for classifying complex tasks such as mid-air digit
writing. In this work, we present a new approach for FMCW
radar-based air-writing recognition using a multistream CNN
model. FMCW radar with two receiving channels only is used
in our system to records the movements corresponding to the
in-air digit writing activity. As shown in Fig. 1, the system
simultaneously extracts the convolutional features from range-
time maps (RTMs), Doppler-time maps (DTMs), and angle-
time maps (ATMs), and concatenates these features in later
stage within the network. With this approach, time variations
of distance, the directional velocity, and the angle-of-arrival of
the hand collectively contribute to classify different gestures,
yielding a compact solution.

In context of deep learning, several variations of Neural
Nets have been explored for radar, such as Googlenet [23],
temporal CNN [24], and equal-volume (EV) Neural Net [25].
However, the use of the three-stream CNN with the late fusion
technique is yet to be explored. There main contributions of
our work are as follows.

1) Our work presents a compact solution for air writ-
ing the digits using the FMCW radar comprising of
two receiving channels only. Previous radar-based air-
writing systems do not utilize the range, velocity, and
angle simultaneously. To the best of our knowledge, this
is the first attempt of air writing using a two-channel
FMCW radar. Existing works only use the range ques
with localization and tracking algorithms to classify the
digits. Consequently, in most of the previous works, a
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Fig. 2. High-level system block diagram.

network of radar is required, making it less suitable
commercially.

2) We present a strategy to implement a multistream CNN
for mid-air digit writing. To the best of our knowledge,
the three-stream CNN has not yet been explored for
Radar-based recognition problems. The proposed archi-
tecture can be generalized for any FMCW radar-based
classification problem.

3) Unlike the optical sensor where few air-written
digit data sets exist such realsense trajectory digits
(RTDs) [17], no such radar-based air writing public
data set exist. Currently available radar-based hand
gesture data sets [2], [24], [25] contains simple ges-
tures such as hand swiping and rotations. A public
data set for digits with the radar is disclosed to the
research community at the FigShare repository at [26]:
https://doi.org/10.6084/m9.figshare.17696435.

II. METHODOLOGY

The overall methodology of digit writing is presented in
Fig. 2. A digit is written in the specified area and the cor-
responding radar returns are preprocessed to de-noise the
received signal followed by the gesture duration extraction
block. Since, the size of input layer in CNN is usually fixed,
time to perform each gesture is fixed to 5 s. Afterward,
the RTM, DTM, and ATM images are created, and then
fed as input to the deep-learning-based classifier. The radar
was installed on the right side to capture more variations in
distance. Here, vertical angle (elevation) is calculated using
only two receiving channels by exploiting Capon beamform-
ing [27]. Finally, training and test accuracy is computed to
access the network performance. Next, we present the details
of each block in the further sections.

A. Radar Signal Preprocessing

The waveform of the signal transmitted by the FMCW
radar increases linearly with time, known as a chirp. A sin-
gle frame comprises usually of one or more such chirps [28].
Upon reflection from hand, the corresponding reflections are
received at the receiver antennas. The transmitted signal x(t)
having a bandwidth B, which can be expressed as [29]

xi(t) = exp

(
j2π

(
fct + B

T
t2

))
(1)

where the term fc represents the carrier frequency and T is
the duration of pulse. The reflected signal corresponding to a
hand located at a distance of R, causing a delay of τ can be
expressed as

xr(t) = exp

(
j2π

(
fc(t − τ) + B

T
(t − τ)2

))
. (2)

The delay τ depends on the velocity of the target (hand) v
and can expressed as

τ = 2(R + vrt)

c
. (3)

This received signal is mixed with a copy of the transmitted
signal and the output of the mixture is a low-frequency signal,
termed the IF signal or intermediate frequency signal, such that

xIF(t) = exp

(
j2π

(
fcτ + B

2T
τ 2

))
. (4)

B. RTM, DTM, and ATM Pattern Generation

The raw IF signal xIF(t) contains several chirps. An IF sig-
nal containing N chirps can be arranged in the matrix form
with each column representing an individual chirp and the row
representing all the samples of that chirp to form a 2-D matrix
of size M by N, expressed as

Sraw =

⎛
⎜⎜⎝

Ch1[1] Ch2[1] . ChN[1]
Ch1[2] Ch2[2] . ChN[2]

. . .

Ch1[M] Ch2[M] . ChN[M]

⎞
⎟⎟⎠ (5)

where the term Ch represents the individual chrip and M rep-
resents the number of samples for each chirp. The radar raw
data matrix expressed in (5) is used to extract the range, veloc-
ity, and angle information of hand. A summarized workflow
to process the radar frame is shown in Fig. 3(a). The matrix
represented in (5) for each receiving channel is shown in the
top left corner of Fig. 3(a). For each of the received frame, the
data shown in (5) are first denoised by subtracting the frame
values with the mean value of the frame. Afterward, each chirp
is individually multiplied with the Hamming window function
to reduce the effect of side lobes from the data [30]. Fast
Fourier transform (FFT) against each chirp in the column of
the above-formulated matrix results in the RTM, where the
peaks of FFT correspond to the location of the target located
within the operational range of the radar

SFFT1 = columnFFT(Sraw). (6)

Here, the signal is passed through a loop-back filter [23]
for clutter estimation and removal. In order to detect any
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Fig. 3. (a) FMCW radar signal preprocessing pipeline to generate RTMs, DTMs, and ATMs. (b) Generated maps while writing digit zero and eight in front
of the radar.

movement in the clutter-removed radar signal, the mean value
of the above matrix is calculated and normalized between 0
and 1 as follows:

Sn = mean{mean(SFFT1)} − min{mean(SFFT1)}
max{mean(SFFT1)} − min{mean(SFFT1)} (7)

where Sn represents a 1-D vector ranging between 1 and 0.
If the average of 20 consecutive sample values Sn cross the
threshold of 0.3, then we say that a movement is detected
and Doppler velocity of this observation window is computed.
Else, the observation window is time shifted by 20 frames.
This detection threshold is selected based on the trial-and-error
approach. The Doppler velocity of the target can be computed
by taking another FFT against each of row such that

SFFT2 = rowFFT(SFFT1). (8)

Apart from the distance and velocity, another import
information related to target (hand) is the angle of arrival.
In order to extract the angle, as explained in Fig. 3(a),
two receiving channels of radar are utilized. A simplest
way to get an angle is to perform third FFT against the
peak values of the range–Doppler map across each receiv-
ing channels. However, to achieve a higher angle resolution,
a beamforming technique must be used. Here, we extracted
the angle using the Capon Beamforming technique [31]. In
order to calculate the angle, range FFT results correspond-
ing to both the Receiver 1 and the Receiver 2 were exploited
using the minimum variance distortionless response (MVDR)
algorithm proposed by Capon [31]. The corresponding out-
put of the MVDR beamformer was saved as an angle-time
image.
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While performing a single-digit writing activity, the RTM,
DTM, and ATM images are formed by accumulating the indi-
vidual images against each frame. Fig. 3(b) represents the
RTM, DTM, and ATM generated against digit zero and eight
being performed for 5 s. Here, the red lines across the digit rep-
resent the trajectory directions. The information corresponding
to each gesture is also highlighted as red. A clear distinction
in patterns can be observed for these two gestures in terms
of velocity and angle maps. Note that the radar was located
at the right side of the human volunteer while capturing the
digit. Next, as explained earlier, these images serve as input
to the deep learning architecture.

C. Deep Learning Architecture

The FMCW radar is capable of providing multidimensional
information of target in different domains. The foremost or
the basic information is the change in the distance caused by
hand movement termed range-time variations or RTM. The
RTM can further be processed to extract the (Doppler) veloc-
ity and the angle of arrival of hand with respect to the radar.
The multistream CNN architecture here is aimed to be capable
of extracting features from the available radar data simulta-
neously from RTM, DTM, and ATM. The basics of a CNN
architecture are defined here.

1) CNN Architecture: A traditional CNN architecture com-
prises mainly of three layers.

1) Input Layer: In this layer, the radar data in the form of
images are fed into the convolutional network. The data
can either be 2-D in the form of grayscale images, or the
3-D red, green, and blue (RGB) images. For the FMCW
radar as stated earlier, there are a wide range of available
data that can serve as the input layer, such as range-time,
Doppler frequency-time, angle-time, range-angle, and so
on. The traditional CNN can consider either of these data
as input.

2) Hidden Layer: The hidden layer can further consist
of few layers, such as the convolutional layer, batch-
normalization layer, max-pooling layer, and rectified
linear unit ReLU layer. Among them, the convolutional
layer is the core of a CNN. Here, the input image or
the output of the previous hidden layer is convolved
with a predefined filter, commonly termed kernel. The
multidimensional convolution is performed by sliding
the kernel through the entire image. The convolutional
operation can be defined as

Convout[m, n] =
∑

j

∑
k

h
[
j, k

]
iin

[
m − j, n − k

]
(9)

where h represents the kernel filter, iin represents the
input to convolutional layer, and convout represents the
output. Following the convolutional operations, batch-
normalization is performed which stabilizes the training
process and reduces the required epoch sizes. Afterward,
a ReLU and max-pooling functions are usually applied.
With ReLU acting as activation function, the convolution
features are subjected to below operation:

ReLUout = max(0, convout(i)) (10)

Fig. 4. Architecture of the proposed Multistream CNN model with RTM,
DTM, and ATM as input stream.

where i represents the index of the output of the con-
volutional layer. Finally, the max-pooling layer reduces
the size of the convolutional output and performs the
dimensionality reduction.

3) Classification Layer: After passing the input to sev-
eral hidden layers, finally, classification is performed.
Here, soft-max [32] normalization is often performed
which plays a vital role in a multiclass classification
problem [32].

2) MS-CNN: The opted multistream convolutional neural
network (MS-CNN) architecture is shown in Fig. 4. In this
architecture, RTM, DTM, and ATM are simultaneous fed to
the network as input. Consequently, the relevant features can
be extracted independently, creating the nonlinear combina-
tion of the extracted features. As shown in Fig. 4, all the three
streams comprise of seven hidden layers. Here, each hidden
layers contains a convolutional layer, a batch-normalization
layer, ReLu layer, and a max-pooling layer. A fixed kernel size
of 5×5 is used in each layer for convolution. The number of
filters in the first hidden layer is 8 which keeps on increasing in
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TABLE I
TI-IWR6843 FMCW RADAR SETTING FOR DATA ACQUISITION

each successive hidden layer and at the final layer, 512 filters
are used. Dimensionality reduction is achieved by deploying
a max-pooling layer of size 2 × 2 at each hidden layer which
reduces the dimension of the next hidden layer by a factor
of 2. After passing the radar data through seven hidden lay-
ers, a fully connected (fc) layer is formed at each individual
stream. The layers named as fcRTM, fcDTM, and fcATM contains
the features extracted from the time variations of distance,
velocity and angle. Finally, the fccombined layer concatenates
the independently extracted convolutional features extracted
from RTM, DTM, and ATM patterns. Afterward, the final
classification is performed using a softmax decision at the end.

The size and the parameters of the network shown in
Fig. 4 are chosen solely on trial-and-error-based experimen-
tal evaluation. After testing several structural variations, the
best suited architecture is being used for classification pur-
pose. Furthermore, Section III contains the detailed analysis
regarding the accuracy of different MS-CNN models.

III. EXPERIMENTAL SETUP

A. Radar Placement

The air-writing data acquisition setup is shown in Fig. 5.
Data were captured at two different locations to make the
system robust against different environments. The environment
shown in Fig. 5(a) is a home environment whereas the envi-
ronment shown in Fig. 5(b) is located in the IT-BT building,
Hanyang University, Seoul, South Korea. The red highlighted
areas represent the space where the participants performed the
digit-writing gestures. The involved participants selected their
own way of performing the digit gestures and all the observed
trajectory paths are shown in Fig. 5(c). For data collection,
we used TI-FMCW IWR6843 ISK Radar sensor designed by
Texas Instruments (TI) Inc., USA, shown in Fig. 5. The radar
offers 4-GHz bandwidth ranging from 60 to 64 GHz which has
a short wavelength and often referred to as millimeter-wave
(mm-wave) technology. Short wavelength offers high target
resolution; however, the indoor path loss is very high [33].
Our system comprises of s single FMCW radar device and
multiradar environment may require an additional interference
cancelation approach based on multiplexing [34]. Rest of the
technical specifications of radar and the opted radar settings
for this experiment are described in Table I. Fig. 5 also shows
that the radar sensor is attached to an FPGA kit (DCA-1000,

Fig. 5. Data acquisition in (a) home and (b) lab environment. (c) Movement
trajectory for all gestures.

TI) which is further connected to the host computer via a local-
area connection to capture and process the data for recognition
of the drawn digits.

Before starting the data collection process, we considered
three different radar positions which are left, right, and front
sides of the human participant. Radar placement and the cor-
responding time-Doppler and range-time patterns for digit five
are shown in Fig. 6. As expressed in Fig. 6, radar installed at
the either (left or right) side of the human volunteer resulted in
a more prominent pattern in comparison to the radar installed
at the front side of the human volunteer. Higher amount of
interclass pattern variations can be seen by installing the radar
at either side of the human subject. This is due to the fact that
while performing gesture with the radar on the side of a human
volunteer, the amount of change in distance between the radar
and the hand is significantly higher in comparison to the radar
installed in front of the human volunteer. Consequently, the
right-side position was selected to create the data set. However,
the radar placement can be considered as a design parameter
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Fig. 6. DTM and RTM patterns for digit “FIVE” when the radar is placed
at (a) right, (b) left, and (c) front of a human volunteer.

TABLE II
PARTICIPANT DETAILS

and can be adjusted accordingly at the beginning of the data
collection process. Later, to validate the fact that the proposed
algorithm is equally effective when the radar is on the left side,
the CNN design shown in Fig. 4 was additionally trained for
the radar on the left side of the volunteers. The correspond-
ing results are explained in Section V. Fig. 6(a) and (b) also
suggests that for the same gesture, the patterns for the radar
on left and right sides appeared to be the flipped version of
each other while writing digit five. However, this cannot be
generalized since few gestures such as digit one has the same
pattern for both positions.

B. Data Set

To introduce sufficient variations and reduce the biases in
the collected data set, 12 participants were involved in the data
acquisition exercise having an average age of 29 years with
BMI 23.84. Out of the involved volunteers, eight participants
were male, whereas, four participants were female. Human
data were captured under the guidance of the local ethics com-
mittee. Both left and right-handed participants were involved
in the data collection process. Rest of the details of each par-
ticipant are listed in Table II. All the participants were asked to

Fig. 7. Structures of files available in the hand gesture data repository.

sign an informed consent form prior to the start of the exper-
iment and no identifiable personal information is included in
the manuscript. Participants performed the air-writing activity
in the specified area and no restrictions, other than being in
the designated area, were imposed while collecting the data.
Totally, 100 air-writing samples were collected from each par-
ticipant. For convenience, the file structure of the associated
data is shown in Fig. 7. For each participant, there exist ten
MATLAB format (MAT) files corresponding to each gesture
(0–9). Within a single MAT file, each row contains one FMCW
radar frame as expressed in Fig. 7. Here, 100 frames constitute
one gesture sample. For instance, to visualize the range-FFT
of one gesture, 100 consecutive frames should be loaded in
a variable and an FFT across each row will provide a range-
FFT map of that specific gesture. Each frame here can be
processed using the data processing flow shown in Fig. 3(a)
to extract the range, Doppler, and angle features. An additional
data visualization code is also placed in the repository.

IV. EXPERIMENTAL RESULTS

This section shows the experimental results in light of the
above-formulated experimental setup.

A. Movement Detection and Digits Pattern Visualization

Fig. 8 shows the normalized movement index calculated
with the Range-FFT signal as explained in (7). As shown
in Fig. 8, while writing the digit zero, duration where the
digit writing was performed has significantly high magnitude
in comparison to the idle time. The RTM, DTM, and ATM
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Fig. 8. Normalized range-FFT pattern showing the hand movement duration
and the time when no movement was performed.

of all the ten digits starting from zero to nine when the radar
was placed on the (right) side of human volunteers are shown
in Fig. 9. Note that each gesture was performed for 5 s with
frequency of 20 frames/ss. This yields a slow-time (horizon-
tal) axis consisting of 100 observation samples. The vertical
axis on the RTM, DTM, and ATM spectrograms, respectively,
represents the distance, velocity, and angle values. As seen in
Fig. 9, the velocity values are symmetric around the middle
point of the velocity axis where the values above the center
line represents the target going away from the radar and val-
ues below represents the target moving toward the radar. While
observing the DTM pattern against digit zero, the velocity pat-
tern can be seen altering the direction couple of times. Fig. 9
suggests that the DTM plots for each digit contains more vari-
ation in the patterns of digit in comparison to the RTM and
ATM plots.

B. Intragesture Variation Analysis

Intraclass variations are defined as the variations occurring
among different samples of the same class (label) [35]. While
the preceding section demonstrated the intraclass variations,
this section demonstrates the variations among different sam-
ples of the same gesture in the context of hand speed. As stated
earlier, in the interest of robustness, no additional restriction
regarding the hand speed was imposed on the participants.
Fig. 10 shows the speed variations with time while writing
“Eight” in the air. The speed in Fig. 10(a) is the slowest
(among these four gestures) whereas Fig. 10(d) corresponds
to the fastest speed. In the training data, it was observed that
participant 8 (Female, 49) performed gestures slowly, whereas
participant 5 (Female, 22) performed gestures quickly in com-
parison to the other participants. Every sample in the data set
has its own associated hand speed.

C. Classification Accuracy

CNN-based classifiers have shown a huge success in differ-
ent applications. The most commonly used CNN architecture
contains a combination of convolutional, max-pooling, nor-
malization, and fc layers. Despite being in use extensively,
selecting the network size and hyperparameters is still a
tedious task [23], [36], [37]. We selected the network using

Fig. 9. Time-varying range (RTM), Doppler-velocity (DTM), and angle
(ATM) patterns for digits ranging from zero to nine.

TABLE III
ACCURACY OF DIFFERENT MS-CNN VARIANTS AGAINST DIFFERENT

NUMBER OF HIDDEN LAYERS AND CONVOLUTIONAL FILTERS

the trial-and-error method to search for the best suited MS-
CNN architecture for in-air digit writing recognition. Several
combinations of deep-learning architectures with different
hyperparameters were analyzed while evaluating the different
available networks. The network structure was tuned and an
optimized set of hyperparameters was selected. The classifi-
cation task was repeated several times by varying number of
hidden layers and the Kernel (convolution) filter size. Table III
shows the detailed results of the performed structural varia-
tions. The first column represents the filter size, whereas the
first row represents the number of hidden layers. Throughout
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Fig. 10. (a)–(d) Variations in hand movement while performing gesture
eight with (a) being slowest, and (d) being highest among four samples under
consideration.

Fig. 11. Training and validation progress of the opted model for 500
iterations.

these experiments, the obtained classification accuracy ranges
between 61.11% and 94.20%. The network shown in Fig. 4,
comprising of seven layers and “5 × 5” convolutional filter
showed maximum accuracy. The training loss and the valida-
tion loss for this network are shown in Fig. 11. Note that the
data were split into 70%, 15%, and 15% for training, valida-
tion, and test purposes. The confusion matrix of the test data
for the opted deep-learning model is shown in Fig. 12. The
vertical axis represents the known true class of the gesture,
whereas the horizontal axis represents the predicted class of
the gesture. The values in the diagonal show the classification
accuracy of the digit gesture. In addition to the overall accu-
racy, precision, recall and, F1score are also crucial factors to
evaluate the effectiveness of any trained model. Precision is
calculated based on the true-positive (TP) and false-positive
(FP) predictions and defined as

Precision = TP

TP + FP
. (11)

Fig. 12. Confusion matrix of test data which were not used for the training
and validation.

TABLE IV
FORTY FIVE DIFFERENT EXPERIMENTAL SCENARIOS

FOR COMPARATIVE ANALYSIS

On the other hand, recall is being calculated based on TP
and false-negative (FN) prediction and defined as

Recall = TP

TP + FN
. (12)

As expressed in the confusion matrix shown in Fig. 12, the
precision and recall for the proposed network are 0.9416 and
0.9435. The F1score that computes the balance between the
precision and recall can be expressed using (11) and (12)

F1score = 2 × Precision × Recall

Precision + Recall
. (13)

For the presented model, the F1score is 0.9425. High values
of precision, recall, and F1score were observed which further
validates the effectiveness of the model.

D. Comparison With State of the Art

For comparative analysis, we compare the proposed MS-
CNN-based digit-recognition with the traditional single-input
CNN. We tested the 45 different CNN architectures (having
a single-input layer) with the proposed MS-CNN architecture.
The details of the designed experiments for comparative anal-
ysis are summarized in Table IV. With three different filter
sizes of 3 × 3, 5 × 5, and 7 × 7, CNN with three, four, five,
six, and seven hidden layers were created. All these networks
were separately fed with RTM, DTM, and ATM as input for
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Fig. 13. Digit classification with different traditional CNN architectures
having only RTM, DTM, and ATM images as input. Accuracy of CNN having
3–7 hidden layers with (a) 3 × 3 (b) 5 × 5, and (c) 7 × 7 convolution filters.

performance evaluation. Accuracies of all 45 test case scenar-
ios were computed and compared with the proposed MS-CNN
architecture. Results of these comparative analysis are sum-
marized in Fig. 13(a)–(c) where the vertical axis represents
the accuracy in percentage and the horizontal axis shows the
number of hidden layers for a specific filter size. Accuracy
for DTM, RTM, and ATM is shown in three different colors.
Since the patterns shown earlier in Fig. 8 suggest that while
writing digits, the variations in the range as well as the angle

TABLE V
PERFORMANCE EVALUATION IN DIFFERENT

ENVIRONMENTAL CONDITIONS

with respect to time are not significant enough to distinguish
the involved complex movements. As a result, the maximum
accuracy was perhaps less than 70% for all the CNN architec-
tures with RTM and ATM input. On the other hand, as shown
in Fig. 13(a)–(c), the highest accuracy achieved by training the
CNN architecture with DTM as input was 87%. For traditional
CNN, DTM as input shows better performance in compar-
ison to RTM and ATM images. In short, with all these 45
experiments, the maximum accuracy of 87% can be achieved.
MS-CNN, on the other hand, can achieve classification accu-
racy of 94.2%. It is evident that the MS-CNN-based air-writing
recognition system outperforms the traditional CNN with a
single input.

Since the existing radar-based in-air writing techniques
work on trilateration methods [4], [20]–[22], hence cannot be
implemented with our design methodology since those tech-
niques require multiple radars for tracking the hand gestures.
Consequently, a direct comparison of our technique with these
existing systems is not possible.

E. Performance Evaluation in Different Conditions

As explained in Section III, we additionally evaluated the
proposed algorithm with the radar placed on the left side, as
well and the corresponding accuracy is reported in Table V.
Significantly, high accuracy was observed for both the cases of
the radar being installed at the left or right side of the human
volunteer. This additionally validates the effectiveness of the
MS-CNN-based classifier. In addition, we also evaluated the
network with right-handed participants (participants 1–8) only.
The accuracy was slightly improved when all participants were
right handed.

V. DISCUSSION AND CONCLUSION

In this study, we have introduced a new implementation of
in-air digit recognition using the FMCW radar sensor. A mul-
tistream CNN model capable of extracting information from
the range-time, Doppler-time, and angle-time patterns was
proposed. The MS-CNN model combines different features
from multiple input streams simultaneously and concatenates
the features at the later stage that results in an overall better
performance in comparison to the tradition CNN approaches.
To introduce diversity and reduce the biasness, data were
captured from 12 different participants at different physical
environments. Preliminary experimental results have shown
that high classification accuracy of 94.20% for recognizing
all the ten base digits. The traditional CNN operating on the
range-time and Doppler patterns only showed less accuracy in
comparison to the MS-CNN. Considering the high accuracy of
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MS-CNN, the methodology can also be generalized for gesture
recognition problems other than in-air digit writing.

One of the biggest challenges in acquiring features of each
gesture is to remove the unwanted noise while keeping the
hand reflections intact. Due to the nonrigid structure of the
hand, fingers, palm, and other parts of a human hand intro-
duce several additional vibrations known as the micro-Doppler
effect. While designing the signal processing framework for
filtering the noise, clutter, and the ghost targets, the filters
must be designed carefully to retain an adequate amount of
micro-Doppler information of the hand. In other words, the
filter should remove the unwanted noise only while permit-
ting the hand and the associated micro-Doppler information.
Another key issue is the computation cost of a deep learning
model. Despite considering different physical environments,
the classification accuracy was sufficiently high, however, at
the cost of computation burden as the latency of the CNN
ranged between 400 and 500 ms.

The in-air writing system proposed in this study is capable
of classifying a single digit at a time. This implies that the
proposed algorithm treats each performed digit gesture in a
discrete fashion. The recognition of continuous digit writing
is yet to be explored. In addition, to generate a distinctive
pattern for each gesture, users are required to rotate full hand
while writing the digit. Finger-tracking-based digit recognition
was not investigated in this work.

In the future, we aim to make a contactless in-air writing
system for continuous digit recognition and alphabet recogni-
tion. In addition to that, we are also aiming to implement
a real-time version of the proposed air-writing recognition
system and extend MS-CNN-based classification approach to
other similar classification problems.
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