
22914 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

Geo-Distributed IoT Data Analytics With Deadline
Constraints Across Network Edge

Yiting Chen , Lailong Luo , Member, IEEE, Bangbang Ren, and Deke Guo , Senior Member, IEEE

Abstract—Owing to the advancement of the Internet of Things
(IoT) and 5G mobile technologies, various IoT devices produce
massive data, which is usually transferred to nearby sites, such
as edge nodes or datacenters. Many large-scale IoT applications
need to analyze the data distributed across multiple sites to obtain
final results. A dominant challenge of this type of data analytics
is the heterogeneities of resource capacities across geo-distributed
sites. In this article, we find that the resource capacity as well as
the resource price differ among sites, and the price heterogeneity
has a significant impact on geo-distributed IoT data analytics.
Thus, each geo-distributed IoT data analytics job prefers to
minimize the job execution cost while guaranteeing its dead-
line requirement under the resource constraints of involved sites.
Specifically, we propose to jointly consider the resource hetero-
geneities of both capacity and price, and minimize the cost of
each job before its deadline. We characterize this optimization
problem as a quadratically constrained quadratic programming
problem. To tackle such an NP-hard problem, we propose the
minimize the job completion cost before a given deadline (MCGL)
method, which calculates a task placement solution by the gra-
dient adjustment strategy according to the remarkable negative
correlation relationship between job completion time and job
completion cost of geo-distributed IoT data analytics job. The
task placement strategy can optimize resource cost with respect
to the deadline requirement of any geo-distributed data analytics
job. The trace-driven evaluations indicate that MCGL signifi-
cantly reduces the total cost compared with existing methods;
moreover, they satisfy the deadline constraints simultaneously.

Index Terms—Deadline constraint, geo-distributed Internet of
Things (IoT) data analytics, IoT, price heterogeneity.

I. INTRODUCTION

W ITH the enormous advancement of the Internet of
Things (IoT) and 5G mobile technologies, many appli-

cations, such as mobile augmented reality and virtual reality,
Internet of vehicles, and automatic driving, have developed
rapidly [1]. As shown in Fig. 1, various IoT devices con-
tinuously generate data worldwide. These huge amounts of

Manuscript received 9 March 2022; revised 17 April 2022; accepted
16 June 2022. Date of publication 24 June 2022; date of current version
7 November 2022. This work was supported in part by the National Natural
Science Foundation of China under Grant U19B2024, and in part by the Major
Scientific Research Project of Zhejiang Lab under Grant 2021PE0AC01.
(Corresponding authors: Lailong Luo; Deke Guo.)

Yiting Chen, Bangbang Ren, and Deke Guo are with the Science
and Technology Laboratory on Information Systems Engineering,
National University of Defense Technology, Changsha 410073, Hunan,
China (e-mail: chenyiting18@nudt.edu.cn; renbangbang11@nudt.edu.cn;
dekeguo@nudt.edu.cn).

Lailong Luo is with the College of Computer, National University
of Defense Technology, Changsha 410073, Hunan, China (e-mail:
luolailong09@nudt.edu.cn).

Digital Object Identifier 10.1109/JIOT.2022.3186173

Fig. 1. Service providers deploy massive data centers and edge nodes to
support various types of IoT applications.

data are usually transferred to nearby edge clusters, which
can provide services with low latency and save the scarce
WAN bandwidth. Due to the resource constraints of edge clus-
ters, historical IoT data of edge clusters will be periodically
transferred to cloud datacenter clusters. Many IoT applications
need to analyze data distributed across multiple sites to extract
useful information. For example, analyzing the environmental
monitoring data collected in various places to provide data
support for the solution of pollution control; and analyzing
the electricity consumption behavior data collected in vari-
ous regions to provide help for the pricing and distribution
decisions of the state grid. However, this would lead to sig-
nificant consumption of geo-distributed network resources to
obtain those large-scale data from all involved sites; moreover,
it demonstrates a high latency toward the completion of such
jobs. Thus, many efforts have been made to improve the effi-
ciency of these types of jobs by concurrently executing a data
analytics job across multiple sites [2]–[5].

These data analytics jobs are usually based on the
MapReduce framework. A significant challenge of the geo-
distributed MapReduce computing paradigm is the hetero-
geneity of hardware resource capacities among geo-distributed
sites, including the computing, storage, uplink bandwidth,
and downlink bandwidth. As reported in literature [3], the
computation capacity of the largest online service provider
can be up to two orders of magnitude larger than that of
the ordinaries. Additionally, the gap between the bandwidth
among Amazon EC2 sites is up to 12× [6]. Clearly, sites
with sufficient resources can complete tasks scheduled to them
faster than the sites with insufficient resources. Hardware
capacities heterogeneity is an important factor for the job

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7999-4532
https://orcid.org/0000-0002-4886-9974
https://orcid.org/0000-0003-4894-5540

CHEN et al.: GEO-DISTRIBUTED IoT DATA ANALYTICS WITH DEADLINE CONSTRAINTS 22915

Fig. 2. Three geo-distributed sites offer heterogeneous hardware resources
with unequal prices. The triple labeled on each site represents the available
computing slots, the uplink bandwidth, and the downlink bandwidth, respec-
tively. The single value labeled on sites or links counts the price of computing
slots or bandwidth, respectively.

completion time (JCT) because in the traditional MapReduce
framework, the execution time of each stage is decided by
the bottleneck site. Many efforts have been made to optimize
the JCT by carefully managing and scheduling the involved
tasks, input data, and resources [2], [3], [6]–[8]. However,
such methods just pursue the minimum average response
latency of time-sensitive jobs while incurring a nontrivial
cost.

Apart from the heterogeneity of hardware resource capac-
ities, the heterogeneity of resource prices also significantly
affects the task scheduling of a geo-distributed data analytic
job, when the job completion cost (JCC) is considered. In
fact, the price of intersite bandwidth (i.e., network resource)
and the VM (i.e., computation resource) price at different sites
are highly different, as reported in literatures [9]–[12]. For
example, the highest bandwidth price is an order of magni-
tude higher than the cheapest one, and the prices of a unit
computation capacity also vary significantly on the Amazon
Website [13]. Furthermore, the charging standards for hard-
ware resources of different cloud or edge service providers
are also diverse. Thus, if the job executes tasks on expen-
sive computing slots and transfers data through expensive
links, the completion cost of this job will also be high.
Recently, owing to the realization that the WAN bandwidth
is very expensive, several studies have rather focused on
reducing the intersite transmission cost in geo-distributed
data analytics jobs [14]–[16]. However, those studies mostly
assume that the prices of network and computing resources at
geo-distributed sites are similar. Therefore, attempts should
be geared toward minimizing the volume of transfer data
solely [14]–[18].

In this article, we present a new abstraction to characterize
the heterogeneities among geo-distributed sites, as shown in
Fig. 2. The triple labeled on each site represents the avail-
able computing slots, the uplink bandwidth, and the downlink
bandwidth, respectively. The single value labeled on sites or
links represents the unit price of computing slots or bandwidth,
respectively. For example, the triple (40, 5, 5) labeled on site 1
means that site 1 has 40 computing slots, and its uplink band-
width and downlink bandwidth are both 5 GB/s. The 0.06 $/s
labeled on site 1 represents the price of each computing slot
per second on site 1. The 0.5 $/GB labeled on the arrow from
site 1 to site 2 represents the price of transferring data from

site 1 to site 2. This figure clearly demonstrates the hetero-
geneities of both the resource capacities and resource prices
among different sites.

As mentioned above, existing methods mainly focus on
solely optimizing either the JCT or JCC, and thus, they fail to
balance the tradeoff between the global completion time and
total cost. For this reason, we emphasize that both JCT and
JCC need to be considered when processing a geo-distributed
IoT data analytics job. Actually, not all geo-distributed data
analytics jobs are required to be executed as soon as pos-
sible and obtain real-time results. There are many jobs that
just need to be completed before a given deadline [19], [20],
such as geo-distributed batch jobs [18] and geo-distributed sci-
entific computations [21]. With this in mind, we propose to
minimize the JCC of geo-distributed analytic jobs, which have
certain deadline requirements. We characterize the task place-
ment problem of a set of geo-distributed data analytics jobs,
considering the heterogeneities of both the resource capacities
and prices.

We prove that this problem is NP-hard and accordingly pro-
pose a heuristic algorithm called minimize the JCC before a
given deadline (MCGL) to solve it efficiently. This method
fully exploits the relation of the completion time and the com-
pletion cost of the geo-distributed IoT data analytics job under
the MapReduce framework; it follows that there is a remark-
able negative correlation between the JCT and the JCC. Thus,
it first calculates two task placement strategies for each job
via the MinCost and MinTime algorithms, which optimize
the JCT and the JCC, respectively. Thereafter, based on the
results, it adopts a heuristic method to figure out another task
placement strategy, which achieves the minimal cost of the
geo-distributed IoT data analytics job and satisfies its deadline
constraint. Besides, the existing methods mainly consider the
jobs with just two stages, making them not practical. To this
end, we provide a more general method MCGL+. In MCGL+,
it utilizes the task placement solutions of improved MinCost
and MinTime algorithms, and calculates an optimal task place-
ment solution to minimize the completion cost of multistage
jobs under a given deadline.

The major contributions of this article can be summarized
as follows.

1) We present a new abstraction to characterize the
geo-distributed data IoT analytics jobs under the
MapReduce framework by jointly considering both
resource capacities heterogeneity and resource price
heterogeneity. Furthermore, a general formulation is
presented to minimize the total cost of a geo-
distributed IoT data analytics job under a deadline
constraint.

2) To tackle such an NP-hard problem, we propose an
approximate method, MCGL, to derive out a subopti-
mal solution. It minimizes the completion cost of the
geo-distributed IoT data analytics job while respecting
to deadline requirements.

3) We further improve our MCGL method to tackle mul-
tistage jobs instead of prior two-stage jobs. A more
general method MCGL+ is designed to minimize the
JCC under a given deadline constraint.

22916 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

TABLE I
SUMMARY OF GEO-DISTRIBUTED DATA ANALYTICS FRAMEWORKS AND ALGORITHMS

The remainder of this article is organized as follows.
Section II depicts the related work. Section III presents the
background and motivation examples. Section IV describes
the system model and formulates the task placement problem
of a geo-distributed IoT data analytic job. Section V presents
our MCGL and MCGL+ methods. We conduct exten-
sive evaluations using realistic traces in Section VI, and
conclude this article with discussion on future work in
Section VII.

II. RELATED WORK

Many efforts have been made to optimize the execution of
a given geo-distributed data processing job, and Table I is the
summary of the characteristics of these work. Prior methods
mainly fall into the following two categories, i.e., shortening
the JCT or saving the JCC.

Optimization of the JCT: In the first category, Liu et al. [22]
proactively aggregated the output data of map tasks and
avoided repetitive data transfers in the shuffle stage to reduce
the JCT. However, it does not consider the effect of the hetero-
geneity of resources across geo-distributed sites. Iridium [2]
considers the heterogeneity of the wide-area network, and
achieves low latency by optimizing the placement of reduce
tasks and involved input data. However, it ignores the effect
of the computing resource. Tetrium [3] jointly considers the
heterogeneity of computing in tandem with network resources
in designing the placement strategy of the involved map and
reduce tasks. To save the amount of data transmission and
reduce the makespan, HPS+ [21] proposes a new resource
allocation algorithm. Literature [25] provides a federation file
system atop of geo-distributed edge servers, and proposes a
generic job and resource-aware data storage and placement
algorithm (JRAP). JRAP estimates the job execution time to
map the request to the best edge server to minimize the job
execution time; however, it only determines the number of
the sites used to execute the job request; without considering
the task scheduling of the job. Generally, the above methods
mainly reduce the JCT, without considering the overall cost
of wide-area data analytics.

There also exist some approaches to reduce the execution
time of other types of geo-distributed data analytics jobs.
Lube [23] monitors geo-distributed data analytics queries in
real time, and detects and mitigates potential bottlenecks (e.g.,
bandwidth scarcity) at runtime to reduce the query response
time. Clarient [7] proposes a novel WAN-aware query opti-
mizer, which places tasks to sites and carefully schedules tasks
to ensure fast query response. Gaia [6] and Monarch [24]
accelerate the execution of geo-distributed machine learning
jobs and geo-distributed graph analytics, respectively; how-
ever, they are all not applicable to MapReduce frameworks.

Optimization of the JCC: In the second category, because
the intersite bandwidth is scarce and expensive, researchers
propose to save the transmission cost by reducing the data
movement across geo-distributed sites. WANalytics [26] and
Geode [16] aim to reduce bandwidth usage across geo-
distributed datacenters for query requests and data replication,
respectively. For geo-distributed graph analytics, Pixida [14]
formulates a new graph partitioning problem and proposes
a method to minimize the data movement across band-
width constrained links. To minimize cross-dc bandwidth
usage, Yugong [18] proposes a novel data placement and job
placement strategy in Alibaba’s geo-distributed datacenters.
However, the above methods do not consider the diversity of
bandwidth cost across geo-distributed datacenters.

Considering the diversity of the intersite bandwidth price,
Flutter [10] proposes a new task scheduling method to min-
imize the job response time of one stage considering the
bandwidth budget constraints. Li et al. [15] devoted to min-
imizing the completion time and the average transmission
cost of any coflow. Kimchi [27] proposes a cost-aware task
placement decisions for scheduling tasks to avoid the cost
bottleneck. However, they do not consider the price diver-
sity of computing resources across different sites. Especially,
MiniBDP [11] determines that bandwidth prices vary over dif-
ferent VPN links, and the VM price also changes over time
and, thereafter, it characterizes a complex cost optimization
problem to solve it. However, this method only focuses on
minimizing the time-averaged operation cost of a long-term
job and does not impose any deadline constraint on that job. In

CHEN et al.: GEO-DISTRIBUTED IoT DATA ANALYTICS WITH DEADLINE CONSTRAINTS 22917

TABLE II
PRICE OF COMPUTE, NETWORK, AND STORAGE OF SITES AT

DIFFERENT REGIONS ON NOVEMBER 8, 2021

addition, Bi et al. [28] tried to minimize the service provider’s
energy cost and maximize revenue in a single virtualized cloud
data center, but it considers the resource provisioning in a sin-
gle cloud data center and is applicable to geo-distributed data
analytics jobs.

The aforementioned methods mainly focus on optimizing
either the completion time or the transmission cost. In our
method, we provide a better tradeoff between the JCT and
total resource cost for computing a geo-distributed data ana-
lytics job. We aim to minimize the total resource cost resulting
from executing such a job before a deadline, when consider-
ing the heterogeneity of the capacities and prices of hardware
resources.

III. BACKGROUND AND MOTIVATION

To realize the geo-distributed data analytics, many data
processing frameworks, such as MapReduce and Spark, are
deployed across multiple sites to execute a set of tasks in a
distributed manner. Such geo-distributed sites are connected
with a wide-area network, and are usually heterogeneous in
terms of the capability and the price of offered resources.
In this section, we start with the analysis of the hetero-
geneities among geo-distributed sites, and briefly introduce
the concept of MapReduce, and then describe two IoT appli-
cations. Finally, we provide a motivation example to present
the influence of different task placement methods on JCC and
JCT.

A. Heterogeneities of Geo-Distributed Sites

An important characteristic of geo-distributed IoT data ana-
lytics is that sites are highly heterogeneous in terms of the
capacities and prices of hardware resources and the volume of
IoT data.

As reported in [3], the computing capacity of the largest
online service provider can be up to two orders of magnitude
larger than that of the ordinary sites. Specifically, the comput-
ing capacity of datacenter is much higher than that of edge
nodes. Moreover, those sites provide computing resources at
diverse prices. For example, Amazon EC2 releases the same
type of VM instance (t3.xlarge 4 vCPU 16-GB Memory) at
different costs across six regions [13], as shown in Table II. It
is clear that the prices of the same type of VM would consider-
ably vary across geo-distributed sites; for instance, the highest
price is 1.62 times that of the cheapest one in Amazon EC2
(i.e., Sao Paulo versus Virginia).

The WAN bandwidth across geo-distributed sites is very
scarce compared with that inside each site [29]. Additionally,

the network bandwidths among geo-distributed sites are het-
erogeneous, as reported in literatures [2], [6], and [30].
According to the measurement result of the Amazon EC2 ser-
vice in 11 different regions, the gap between the bandwidths
among sites is up to 12× [6]. Moreover, those intersite links
also differ in the pricing models. As shown in Table II, the
price of the uplink bandwidth at different sites on Amazon
EC2 is also highly heterogeneous, and the price gap can be
up to 7.4 times in the worst case. Moreover, even if the price
of computing resources at one site is the most expensive across
all sites, the price of network resources at this site may not
be the highest (i.e., Sao Paulo versus Cape Town).

Such geo-distributed sites also differ in storage price. For
example, the price of per GB data storage in Amazon S3 varies
across different regions, as shown in Table II. The storage price
usually ranges from 0.025 to 0.03 when renting 1-GB storage
for 30 days. The highest price is two times higher than the
cheapest one (i.e., Sao Paulo versus N. Virginia); however,
the JCT of most geo-distributed data analytics jobs is usually
less than 1 h, which is significantly lower than 30 days. Thus,
we omit the impact of the storage cost on the total cost of
executing a geo-distributed data analytics job.

Besides, the amounts of IoT data generated on different sites
are also heterogenous. Currently, a large number of sensors are
widely deployed at different locations, and the generated IoT
data are stored nearby sites. Therefore, the IoT data generated
are naturally geo-distributed [31]. Second, the number of sen-
sors deployed in each area and the frequency of device being
used vary greatly, and thus, the amounts of IoT data generated
on different sites are highly heterogeneous [32].

B. MapReduce Framework

MapReduce is a parallel computing framework for large-
scale data processing first introduced by Google in 2004.
MapReduce includes two stages: 1) the map stage and 2) the
reduce stage. The map stage applies a user-defined map func-
tion to process the given input data, and produces intermediate
data. In this stage, the input data are divided into independent
chunks, and processed in parallel. The intermediate data are
generated in the form of key-value pairs, and they are shuf-
fled to reduce tasks. The reduce stage applies a user-defined
reduce function to keys and their associated values to gener-
ate the final results. Many parallel processing frameworks are
realized based on MapReduce.

C. IoT Applications

Analyzing the IoT data of multiple sites can get very valu-
able information. Two IoT applications are listed as follows.

Application 1 (Pollution Control): Assuming that various
environmental monitoring sensors are installed in various
regions to obtain local environmental quality data. These data
will be transmitted and stored in nearby edge nodes or edge
clouds. Analyzing the environmental monitoring data collected
in different regions can provide more effective data support
for environmental protection workers in pollution control.
For instance, analyzing the main factors affecting air quality

22918 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

Fig. 3. Completion time and the total cost of executing a geo-distributed data analytics job under the Tetrium algorithm and a more economical approach.
The top of each subfigure represents the task placement scheme of each stage. The bottom of each subfigure indicates the execution time and cost on the input
data loading, map computation, shuffle transfer, and reduce computation four phases of each task placement scheme. In this figure, we use some symbols
to represent the time and cost in these phases. For instance, C_load denotes the cost of the input data loading phase; T_load represents the consumed time
during the input data loading phase. (a) Tetrium. (b) More economical approach.

from the historical environmental monitoring data of multiple
regions.

Application 2 (Intelligent Transportation): In the city, a
large number of nodes are deployed on streets to monitor
the situation of crowds. Each node is equipped with various
sensors, such as video cameras, audio sensors, and proxim-
ity sensors. All monitored data will be transmitted to nearby
edge nodes. Analyzing the traffic data of different regions can
provide data support for urban road planning, route planning,
congestion prediction, and dredging.

D. Motivation: The Tradeoff Between the Completion Time
and the Total Cost

We illustrate the motivation of this article with a represen-
tative example of calculating the completion time and total
cost in Tetrium [3], which discovers the heterogeneity of geo-
distributed sites in computing as well as network resources
and attempts to reduce the JCT.

As mentioned in Section I, Fig. 2 shows an example of
geo-distributed sites, among which site 1 has the most abun-
dant network resource and computing resources, and it is
associated with higher bandwidth and computing slot prices.
Additionally, such sites may generate different amounts of
metadata by IoT applications , i.e., site 1 has 10-GB metadata,
site 2 has 40-GB metadata, and site 3 has 50-GB metadata.
To ease the presentation, we assume that the analytics job has
one map stage and one reduce stage. The map stage contains
the input data loading phase and the map computation phase,
while the reduce stage comprises the shuffle transfer phase
and the reduce computation phase. The completion time of
a phase is decided by the last site to finish the data trans-
mission or computation tasks. We assume that the amount of
the intermediate data generated by the map stage is half of
the amount of the input data. We further assume that each
map/reduce task would consume one computing slot. Each
map task can process 100 M data in 2 s, and each reduce task
can process 100 M data in 1 s.

Tetrium [3] is a representative task placement solution
for geo-distributed data analytics. It minimizes the JCT by

proposing an effective task placement strategy, as shown in
Fig. 3(b). Before executing map tasks, to reduce the com-
pletion time of the map stage, Tetrium shifts some workload
away from the bottleneck site (i.e., site 2) to other sites with
a short transfer time increment. Specifically, site 2 and site
3 will transfer 26-and 22-GB data to site 1, respectively.
The time of loading input data loading phase is decided
by the data transmission process in which site 2 transfers
26-GB data to site 1. The available bandwidth of this pro-
cess is dominated by the minimum value between the uplink
bandwidth (1 GB/s) of site 2 and the downlink bandwidth
(5 GB/s) of site 1. Thus, the transmission takes exactly
26/1 = 26 s. The computation bottleneck is site 1 because
it takes 2 × �[(26 + 10 + 22) × 10]/40� = 30 s in the
map stage. After the map stage, sites 1–3 generate 29-, 7-,
and 14-GB intermediate data that will be assigned with 58%,
14%, and 28% of the reduce tasks, respectively. Thus, the
consumption time of the entire shuffle transfer is decided
by the download bandwidth of site 2, and it must down-
load 29 × 14% = 4.06-GB and 14 × 14% = 1.96-GB data
from sites 2 and 3, respectively. Thus, the download time of
site 2 is (4.06 + 1.96)/1 = 6.02 s. The consumption time
of the entire reduce computation phase is decided by site 1,
which is 1 × �[(29 × 10)/40]� = 8 s. Thus, the total JCT is
26+ 30+ 6.02+ 8 = 70.02 s.

However, the resulting total cost of executing that job is
very high. The bandwidth cost results from two stages, i.e.,
the input data loading and the shuffle transfer, which is equal
to (26×0.1+22×0.3)+(4.06×0.1+4.06×0.5+8.12×0.3+
8.12×0.5+1.96×0.2+1.96×0.2) = 18.916$. The compute
cost is also composed of the costs for the map computation
phase and the reduce computation phase, which is calculated
as 2×(0.06×580+0.01×140+0.025×280)+1×21.6 = 108$.
In summary, the total cost of running the job is 18.916+108 =
126.916$.

In reality, many geo-distributed data analytics have an upper
bound for the JCT. If the real JCT does not exceed that upper
bound, this will not introduce a significant negative impact on
the Quality of Service (QoS) of these applications. To solve
this essential problem, Fig. 3(a) presents a more economical

CHEN et al.: GEO-DISTRIBUTED IoT DATA ANALYTICS WITH DEADLINE CONSTRAINTS 22919

TABLE III
NOTATIONS AND DEFINITIONS

solution. In the input data loading phase, site 1 transfers all
its data to site 2 with 10/1 = 10s and 10 × 0.5 = 5$. The
map tasks are executed in site 2 and site 3 at the cost of
max{100, 50} = 100s and 2× (5+ 12.5) = 35$, respectively.
To use the cheapest computing slots, we transfer all data from
site 3 to site 2. Thus, the shuffle transfer incurs 25/1 = 25
s and 25 × 0.2 = 5$. The reduce tasks in site 2 cause 1 ×
�(50× 10)/10� = 50 s and 1× 500× 0.01 = 5$. Overall, the
completion time of this job is 10 + 100 + 25 + 50 = 185 s,
and the total cost is 5+ 35+ 5+ 5 = 50$. When the deadline
of this job is 200 s, the scheme in Fig. 3(a) is a better method
because it can satisfy the deadline of this job with less cost.
Therefore, in this article, we propose an approach that can
minimize the JCC while adhering to its deadline.

IV. MODELING AND PROBLEM FORMULATION

In this section, we start with the problem definition, and
then discuss the calculation of the total cost and completion
time. Thereafter, we present the optimal cost problem for geo-
distributed data analytics jobs.

A. Problem Description

To effectively analyze IoT application data across multiple
edge nodes or data centers, we realize geo-distributed IoT data
analytics based on the MapReduce framework. We investigate
the problem of how to place tasks in the map and reduce stages
to minimize the JCC of a geo-distributed IoT data analytics job
under its deadline constraint. In each stage, we need to decide
the tasks that should be placed on the site and determine the
site that stores the required input data. Table III summarizes
the major notations used in this article.

We assume that the input data of the job are already gener-
ated and saved across multiple geo-distributed sites, denoted
as D = {1, 2, . . . , j}. Ar represents the amount of the IoT
data generated at site r. Each site can communicate with each
other. Owing to the heterogeneities of the WAN bandwidth
and computing capacity among the geo-distributed sites, the
transmission time for obtaining the required input data on
different sites can be uneven. Therefore, the available com-
putational resource of site d ∈ D is described as Sd, and the

uplink and downlink bandwidth of site d is denoted as Ud

and Dd, respectively. Furthermore, the resource prices among
the geo-distributed sites are also heterogeneous; hence, the
transmission and computing costs change consistently when
different resources are employed. Let Cd represent the price
of a computing slot per unit time at site d, and Pd

r denote the
price of bandwidth per GB from site r to site d. In particular,
if r == d, Pd

r is equal to 0.
An analytics job usually includes multiple MapReduce

stages. For simplicity, we assume that each job has exactly
one map stage and one reduce stage. We formulate the task
placement of the geo-distributed IoT data analytics job for
each stage independently. The map stage includes the input
data loading and map computation phases. The reduce stage
is divided into the shuffle transfer and reduce computation
phases. Let Cload, Cmap, Cshuf, Cred denote the cost of the input
data loading, the map computation, the shuffle transfer and the
reduce computation, respectively; Tload, Tmap, Tshuf, and Tred
denote the consumed time during the input data loading, the
map computation, the shuffle transfer, and the reduce compu-
tation, respectively. In Section V-D, we discuss in detail the
problem of how to optimize the total cost of an analytics job
with multiple map-reduce stages subject to a given deadline.

B. Modeling the Cost of Executing Geo-Distributed IoT
Data Analytics Job

As aforementioned, performing a geo-distributed IoT data
analytics job would incur the network cost as well as the com-
putation cost. The data transfer cost consists of two parts, i.e.,
the transfer cost in the map stage and transfer cost in the reduce
stage. In the map stage, the scheduler decides the amount
of data exchanged between any pair of sites. Supposing that
xd

r GB data should be transmitted from site r to site d, then
the total cost of input data loading in the map stage can be
expressed as follows:

Cload =
∑

r∈D

∑

d∈D−{r}

(
xd

r × Pd
r

)
. (1)

To calculate the transfer cost in the reduce stage, we have to
consider the volume of intermediate data generated at each site
after completing the map stage. Note that after the input data
loading, the volume of data in site d turns out to be

∑
r∈D xd

r .
After performing the map tasks in site d, some intermediate
data would be generated and act as the input data of all reduce
tasks. Let Ishuf

d denote the volume of intermediate data in site
d and q represent the ratio of the amount of the intermediate
data to the input data of the job. Then, we have

Ishuf
d = q×

∑

r∈D

xd
r ∀d ∈ D. (2)

In the reduce stage, each site is assigned to perform a
fraction of reduce tasks. Let αd represent the fraction of
reduce tasks executed in site d, where

∑
d∈D αd = 1. To

finish the reduce tasks, all sites need to exchange part of
their intermediate data with other sites hosting correspondence
reduce tasks. This many-to-many transfer is referred as the
shuffle transfer in many literature, which is very common in
big data analytics jobs. In this article, we assume that the

22920 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

keys of reduce tasks is evenly distributed. Thus, we can cal-
culate the amount of data transferred to a site from other sites
based on the number of tasks that is allocated to this site.
Specifically, the amount of intermediate data that site r needs
to obtain from site d is equal to Ishuf

d × αr, where Ishuf
d is the

amount of intermediate data at site d. Let Cshuf represent the
cost of transferring intermediate data to reduce tasks, and can
be calculated as

Cshuf =
∑

d∈D

∑

r∈D−{d}

(
Ishuf
d × αr × Pr

d

)
. (3)

The computation cost is another important part of the total
cost of a geo-distributed job. The computation cost results
from executing the map tasks as well as the reduce tasks.
The corresponding costs are represented by Cmap and Cred,
respectively. The number of map and reduce tasks in each site
is determined by the total size of data to be addressed and
the amount of data each map and reduce task can process. As
aforementioned, the amount of input data for map tasks in site
d is

∑
r∈D xd

r . After the shuffle phase, the size of input data for
reduce tasks in site d is αd×∑

r∈D Ishuf
r . We assume that rmap

and rred denote the amount of data that each map/reduce task
can process. Nmap

d and Nred
d represent the number of map tasks

and reduce tasks in site d, respectively, and can be described
as follows:

Nmap
d =

⌈∑
r∈D xd

r

rmap

⌉
(4)

Nred
d =

⌈
αd ×∑

r∈D Ishuf
r

rred

⌉
. (5)

We further assume that each task consumes one computing
slot. Thus, the number of computing slot in the map and reduce
stage is Nmap

d and Nred
d , respectively. Let tmap and tred represent

the execution time of a map/reduce task. Then, we have

Cmap = tmap ×
∑

d∈D

(
Nmap

d × Cd
)

(6)

Cred = tred ×
∑

d∈D

(
Nred

d × Cd

)
. (7)

C. Modeling the Completion Time of Executing
Geo-Distributed IoT Data Analytics Job

The consumption time of such a job is a critical factor since
the results of geo-distributed analytics jobs are usually used to
make crucial and real-time decisions. The total processing time
of a job consists of the network transfer time and computation
time.

The network transfer time refers the total time of aggre-
gating input data across sites (Tload) and the network shuffle
time (Tshuf). Tload and Tshuf are dominated by the size of
data to be transferred and the upload and download band-
width of the involved sites. In the map stage, the amount
of upload data from site d is

∑
r∈D−{d} xr

d, and the amount
of data that each site d need to download is

∑
r∈D−{d} xd

r .
Hence, the transfer time to upload and download data in site d
is [(

∑
r∈D−{d} xr

d)/Ud] and [(
∑

r∈D−{d} xd
r)/Dd], respectively.

For the reduce stage, site d needs to process αd fraction of all

reduce tasks. Therefore, the amount of data to be transferred
out of site d is (1 − αd) × Ishuf

d , and the volume of data to
be transferred to site d is

∑
r∈D−{d}(Ishuf

r × αd). Thus, in the
reduce stage, the transfer time to upload and download data is
([(1−αd)×Ishuf

d]/Ud) and [(
∑

r∈D−{d} Ishuf
r ×αd)/Dd], respec-

tively. Consider that the completion time of flow is determined
by the maximum one of the upload and download time in that
process. Hence, we have

Tload = max∀d∈D

{∑
r∈D−{d} xr

d

Ud
,

∑
r∈D−{d} xd

r

Dd

}
(8)

Tshuf = max∀d∈D

{
(1− αd)× Ishuf

d

Ud
,

∑
r∈D−{d} Ishuf

r × αd

Dd

}
. (9)

The tasks in each site often need to be executed via multiple
waves due to the limited setting of computing slots [3]. If site
d has sd slots, it requires �Nmap

d /sd� and �Nred
d /sd� waves to

finish its all map and reduce tasks, respectively. Let tmap and
tred denote the time consumed by a each map and a reduce
task. Thus, the map and reduce computation time in site d are
tmap × �Nmap

d /sd� and tred × �Nred
d /sd�, respectively. Let Tmap

and Tred be the computation time of the map stage and the
reduce stage, and each of which is dominated by the maximum
computation time across all sites. Therefore, we have

Tmap = max∀d∈D

{
tmap ×

⌈
Nmap

d

sd

⌉}
(10)

Tred = max∀d∈D

{
tred ×

⌈
Nred

d

sd

⌉}
. (11)

Hitherto, we have specified the calculation process of
the completion time and the total cost when executing a
geo-distributed analytics job.

D. Modeling the Cost-Aware Task Placement Problem

From the above descriptions, given any geo-distributed
IoT data analytics job, we can formulate the task placement
problem P1 as follows:

min Cload + Cmap + Cshuf + Cred (12)

s.t. Tload + Tmap + Tshuf + Tred < T (13)
∑

d∈D

xd
r = Ar, xd

r ≥ 0 ∀r ∈ D (14)

∑

d∈D

αd = 1, αd ≥ 0. (15)

The optimization goal is to minimize the overall cost of
a geo-distributed big data analytics job under a deadline con-
straint. Equation (13) indicates that the job must be completed
before its deadline T. Equation (14) ensures that the total
amount of transferred data to other sites

∑
d∈D−{r} xd

r from site
r plus the amount of remaining data xr

r in site r must equal
the amount of original data in site r. Equation (15) requires
that the sum of the ratios αi at reduce task on all sites must
be equal to 1.

In problem P1, the map task placement will directly impact
the decision of reduce task placement. The object (12) and

CHEN et al.: GEO-DISTRIBUTED IoT DATA ANALYTICS WITH DEADLINE CONSTRAINTS 22921

(13) contain multiple monomials k × (xr
d × αd). Thus, the

degree of the object and constraint (13) is 2, and problem P1
is a quadratically constrained quadratic programming (QCQP)
problem, which is NP-hard in general [33]. Equivalently, it is
difficult to obtain the optimal solutions in polynomial time.
Therefore, we further propose a heuristic algorithm to solve
this problem under a given deadline constraint.

V. COST-AWARE TASK PLACEMENT

In geo-distributed IoT data analytics, the task placement
strategy dominates the total completion time and the cost over-
head of such a job. This placement strategy mainly determines
how many map tasks and reduce tasks should be placed at each
site, and from which site each task reads data. Due to the NP-
hard nature of the problem P1, we aim to propose a heuristics
approach, MCGL, to derive out a reasonable task placement
strategy. It can achieve a minimal total execution cost of such
a job with respect to a given completion deadline.

We find that minimizing the JCT only may aggravate the
total cost of the jobs; in contrast, minimizing the total cost
slows down the completion of the jobs. Therefore, our MCGL
method attempts to optimize the total cost with respect to a
given deadline for each job. We first introduce the MinTime
and MinCost algorithms to optimize the total cost and JCT,
independently. Thereafter, based on the results, we propose a
heuristic method (MCGL) to calculate the final task place-
ment strategy, which minimizes the total cost with respect
of the given deadline constraint. In this section, Tcost and
T time denote the JCT under the MinCost and MinTime algo-
rithm, respectively. The JCC under the MinCost and MinTime
algorithm is denoted by Ccost and Ctime, independently.

A. Optimization of Total Cost

The problem P1 is a quadratic programming (QP) problem,
when the time constraint is not considered. The QP problem
is usually NP-hard when the coefficient matrix of quadratic
term of variables is indefinite [34]. However, the coefficient
matrix of the quadratic term of variables of the geo-distributed
IoT data analytic job is usually indefinite. To minimize the
JCC, we first derive the task placement solution for each stage
independently.

In the case of map task placement, it can be formulated as
a linear program problem, as characterized by (16) to (17).
The optimization goal (16) is to minimize the total cost in
the map stage, which is the sum of the communication cost
Cload and the computation cost Cmap. Cload and Cmap can be
calculated by (1) and (6), respectively. To this end, we have
to determine the volume of the data xd

r migrated from site r to
site d. Equation (17) contains n equality constraints. That is,
for any site r, the sum of the remaining data at site r and the
data transferred to other sites is equal to the generated data at
site r for all sites

Min Cload + Cmap (16)

s.t. Ar =
∑

d∈D

xd
r , xd

r ≥ 0 ∀r ∈ D. (17)

Algorithm 1: MinCost Algorithm
Input: Ar, q, tmap, tred, rmap, rred. \\ job attributes
Output: An optimal solution for minimizing the JCC

1 xd
r,cost = minMapCost(Ar, tmap, rmap);

2 Id
shuf = getInterData(xd

r,cost, q);

3 αd,cost = minReduceCost(Id
shuf , tred, rred); \\ According to the

result in the map stage, we get the fraction of all reduce tasks
αd,cost allocated to each site;

4 Tcost = getTime(xd
r,cost, αd,cost);

5 Ccost = getCost(xd
r,cost, αd,cost);

6 return xd
r,cost, αd,cost, Tcost, Ccost;

In the case of the reduce stage, each reduce task needs to
read the generated intermediate data from all map tasks. Thus,
we ought to determine the number of reduce tasks that should
be executed on each site. Equation (18) shows the optimization
goal, which minimizes the sum of the network shuffle cost
(Cshuf) and the reduce computation cost (Cred). Cshuf and Cred
are calculated by (3) and (7), respectively. The decision vari-
ables αd are the proportion of reduce tasks allocated to site d.
The constraint (19) indicates that all the sites must complete
all the reduce tasks of that job in a distributed manner

Min Cshuf + Cred (18)

s.t.
∑

d∈D

αd = 1, αd ≥ 0. (19)

Based on above analysis, we design Algorithm 1 to optimize
the total cost. The functions minMapCost() and minReduce-
Cost() in this algorithm correspond to (16) and (17), and (18)
and (19), respectively. The inputs of Algorithm 1 include the
parameters of job attributes, and the definitions of those param-
eters are shown in Table III. When the job is submitted to
the system, the amount of input data (Ar) at each site can
be determined. In the production cluster, most analytics jobs
recur [18]. Thus, other parameters (q, tmap, tred, rmap, and rred)
can be set according to historical workloads.

Specifically, it first employs the function minMapCost() to
minimize the sum of the communication cost Cload and the
computation cost Cmap in the map stage, and calculates the
value of xd

r,cost, i.e., the amount of the data to be transferred
from site r to site d (line 1). In the function minMapCost(), it
uses existing solvers to solve the linear programming problem
expressed from (16) to (17). Thereafter, it obtains the amount
of intermediate data Id

shuf by xd
r,cost based on (2) (line 2).

Next, it calculates the fraction αd,cost of reduce tasks executed
at each site using the function minReduceCost(), which also
calls existing solvers to solve the problem formulated in (18)
to (19). This function is aimed at minimizing the sum of the
network shuffle cost (Cshuf) and the reduce computation cost
(Cred) in the reduce stage (line 3). Then, we use the getTime()
and getCost() functions to calculate the JCT and the JCC
(Tcost, Ccost), respectively (lines 4 and 5). Finally, it returns
the task placement scheme (xd

r,cost, αd,cost), JCT (Tcost), and
total cost (Ccost) under the MinCost algorithm.

In this process, we use the getTime() function to calcu-
late the JCT under the decision variables (xd

r,cost, αd,cost).

22922 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

Algorithm 2: MinTime Algorithm
Input: Ar, q, tmap, tred, rmap, rred. \\ job attributes
Output: An optimal solution for minimizing the JCT

1 xd
r,time = minMapTime(Ar, tmap, rmap);

2 Id
shuf = getInterData(xd

r,time, q);

3 αd,time = minReduceTime(Id
shuf , tred, rred); \\ According to the

result in the map stage, we derive the fraction of reduce tasks
αd,time executed at each site;

4 Ttime = getTime(xd
r,time, αd,time);

5 Ctime = getCost(xd
r,time, αd,time);

6 return xd
r,time, αd,time, Ttime, Ctime;

Specifically, we first calculate the time of input data load-
ing, the map computation, the shuffle transfer, and the reduce
computation phases, respectively, according to (8)–(11). For
example, the time of the input data loading phase can be cal-
culated by xd

r,cost and (8). Thereafter, the overall time of the
job Tcost can be obtained by summing Tload, Tmap, Tshuf, and
Tred together.

Similarly, we use the getCost() function to calculate the
overall JCC. The cost of input data loading, the map compu-
tation, the shuffle transfer, and the reduce computation phases
can be calculated by (1), (3), (6), and (7). For instance, the
cost of the input data loading phase can be calculated by xd

r,cost
and (1). Thus, the overall cost of the job Ccost is equal to
Cload + Cmap + Cshuf + Cred.

B. Optimization of Completion Time

If we do not consider the cost overhead and just want to
finish a geo-distributed IoT data analytics job as soon as possi-
ble, the optimization problem for minimizing the completion
time can be formulated as a mixed-integer linear program-
ming (MILP) problem. As the increasing of sites, this problem
would be very time consuming to derive a better feasible solu-
tion. Many efforts have been made to accelerate the execution
of geo-distributed data analytics jobs [2], [3], [6], [26].

In this article, we first rely on Tetrium [3], the state-of-the-
art solution to optimize the completion time of the map stage
and the reduce stage, separately, as shown in Algorithm 2.
In the map stage, the task placement problem can be formu-
lated as a linear programming. The goal is to minimize the
input data loading time plus the computation time of map
tasks (Tload+Tmap). The constraints (21) and (22) demonstrate
that the input data loading time is determined by the time
when the final data are transferred. Equation (23) further indi-
cates that the computation time of map tasks is bounded by
the completion time of the last map task. The output of this
process is the amount of data that should be transmitted from
an arbitrary site r to another site d

Min Tload + Tmap (20)

s.t. Tload ≥
∑

r∈D−{d} xr
d

Ud
∀d ∈ D (21)

Tload ≥
∑

r∈D−{d} xd
r

Dd
∀d ∈ D (22)

Tmap ≥ tmap ×
⌈

Nmap
d

sd

⌉
∀d ∈ D (23)

Ar =
∑

d∈D

xd
r , xd

r ≥ 0 ∀r ∈ D. (24)

After the map stage, each site r needs to retrieve αr × Id

data from site d. The upload and download times at site d
are ([(1 − αd) × Ishuf

d]/Ud) and [(
∑

r∈D−{d} Ishuf
r × αd)/Dd],

respectively. Let Nred
d denote the number of allocated comput-

ing slots in site d for reduce tasks. Thus, the computing time

of each reduce task at each site d is tred×�Nred
d
sd
�. To minimize

the completion time of the entire reduce stage, the reduce task
placement problem can be formulated as follows:

Min Tshuf + Tred (25)

s.t. Tshuf ≥ (1− αd)× Ishuf
d

Ud
∀d ∈ D (26)

Tshuf ≥
∑

r∈D−{d} Ishuf
r × αd

Dd
∀d ∈ D (27)

Tred ≥ tred ×
⌈

Nred
d

sd

⌉
∀d ∈ D (28)

∑

d∈D

αd = 1, αd ≥ 0. (29)

Algorithm 2 first invokes the minMapTime() function to
calculate the amount of data xd

r,time in the input data loading
phase (line 1). This function can solve the problem expressed
in (20)–(24) to minimize the completion time in the map stage.
Next, it calculates the value of Id

shuf by xd
r,time (line 2). Then,

it obtains the fraction of reduce tasks executed at each site
using the minReduceTime() function (line 3). This function
is used to solve the problem formulated in (25) to (29) to
minimize the network shuffle time plus the reduce computation
time of all reduce tasks (Tshuf + Tred). Thereafter, we use the
getTime() and getCost() functions to calculate the JCT and
total cost (T time, Ctime) independently (lines 4 and 5). Finally,
the algorithm returns the final solution (line 6).

C. Tradeoff Between Completion Time and Total Cost

The above two algorithms only attempt to optimize either
the completion time or the total cost; that is, they fail to
provide a reasonable tradeoff between these two metrics. To
obtain a better tradeoff between the completion time and the
total cost, we provide a novel algorithm MCGL. For any geo-
distribute data analytics job, MCGL attempts to optimize the
total cost with respect to the constraint of JCT.

To optimize the total cost, the task placement solution of
the MinCost algorithm will choose cheaper WAN links to
transfer data and cheaper computing slots to execute com-
putation. In contrast, for optimizing the completion time, the
task placement solution of the MinTime algorithm attempts to
transfer data on the links with high bandwidth, and compute
tasks on the sites with sufficient computing resources. To dis-
cover the relationship between two solutions, we conducted
an experiment.

In this experiment, we measure the JCT and JCC of the
job shown in Fig. 2, where we adjust the decision variables

CHEN et al.: GEO-DISTRIBUTED IoT DATA ANALYTICS WITH DEADLINE CONSTRAINTS 22923

Fig. 4. JCT and the JCC at different adjust ratio of variables.

Algorithm 3: MCGL Algorithm
Input: Ar, q, tmap, tred, rmap, rred, \\ job attributes T, β. \\

the job deadline and the adjusting step
Output: An optimal solution for minimizing the JCC with a

deadline
1 xd

r,time, αd,time, Ttime, Ctime = MinTime();
2 xd

r,cost, αd,cost, Tcost, Ccost = MinCost();
3 if Ttime > T then
4 return null \\ cannot get feasible solution

5 if Tcost ≤ T then
6 return xd

r,cost, αd,cost;

7 xd
r,new ← xd

r,cost; αd,new ← αd,cost; Tnew ← Tcost;
8 while Tnew > T do
9 xd

r,new, αd,new = adjustment(β);
10 Tnew = getTime(xd

r,new, αd,new);

11 xd
r ← xd

r,new; αd ← αd,new;
12 return xd

r , αd;

between the two task placement solutions. Specifically, we
assume that the value for the decision variables using the
MinCost algorithm is xd

r,cost and αd,cost, and the value for
the decision variables using MinTime algorithm is xd

r,time and
αd,time. We assume that the adjusting step of variables is
β ∈ [0, 1]. In this experiment, β for each adjustment is set
to 0.001. For each adjustment, the variable value is adjusted
as xd

r,cost − (xd
r,cost − xd

r,time)× β × k when xd
r,cost ≥ xd

r,time, or
as xd

r,cost + (xd
r,time − xd

r,cost) × β × k when xd
r,cost < xd

r,time. k
is the number of iterations and ranges from 0 to 1000. Fig. 4
shows the JCT and the JCC at different adjust ratio (β × k).

We observe that if we adjust the decision variables between
the two task placement solutions, then the JCT and JCC exist
the monotonicity in this interval. The JCC increases, while the
JCT decreases, with increasing number of iterations; therefore,
there is a remarkable negative correlation between the JCT and
the JCC. Thus, we propose the MCGL algorithm (Algorithm
3), and the flowchart of MCGL is shown in Fig. 5. The specific
steps are as follows.

The first step in our MCGL method is to generate two sets
of solutions via leveraging the MinTime algorithm and the
MinCost algorithm, respectively. Each solution contains a set
of decision variables (lines 1 and 2). The decision variables of
problem P1 include the volume of the data, transferred from
each site to all other sites in the map stage, and the fraction of
reduce tasks assigned to perform at each site. To further judge

Fig. 5. Flowchart of MCGL.

the existence of a feasible solution for problem P1, MCGL
checks if the time calculated by the MinTime algorithm (i.e.,
T time) exceeds the given deadline T (lines 3 and 4). T is usu-
ally set by users who want to complete this job. If true, it
means that we cannot obtain a feasible solution for problem
P1. Thereafter, we check whether the time calculated by the
MinCost algorithm (Tcost) is less than given time T (lines 5
and 6). If true, MCGL returns xd

r,cost and αd,cost directly. This
indicates that the JCT of the feasible solution, generated by
our MinCost algorithm, satisfies the deadline T .

If MCGL does not find a feasible solution via the above
steps, it has to heuristically adjust the parameter settings to
find a feasible solution, which incurs the least cost within
the completion deadline. Specifically, we assign the variables
xd

r,cost, αd,cost, Tcost to xd
r,new, αd,new, Tnew (line 7). Thereafter,

in the while loop, we iteratively adjust the variables xd
r,cost

and αd,cost to generate feasible solutions. Specifically, when
the current JCT is larger than the deadline T , we use function
adjustment(β) to update decision variables xd

r,new and αd,new
in a greedy manner. The parameter β ∈ [0, 1] is the adjust-
ment step. In each adjustment, we update xd

r,new and αd,new to
xd

r,new−(xd
r,cost−xd

r,time)×β and αd,new−(αd,cost−αd,time)×β,
respectively. xd

r,new and αd,new will be updated for multiple
rounds until Tnew < T . Since β ranges from 0 to 1, xd

r,new
is always between xd

r,cost and xd
r,time, and αd,new is always

between αd,cost and αd,time. Thus, xd
r,new and αd,new can always

satisfy its constraint. Finally, MCGL will return the final
feasible solution.

In MinCost and MinTime algorithms, the most time-
consuming process is solving the linear programming prob-
lems [minMapCost(), minReduceCost(), minMapTime(), and
minReduceTime()]. The linear programming problem can be
solved by normal solvers (simplex method, interior point
method, etc.) in the polynomial time, and thus, the optimal
time complexity of the two algorithms is O(n3.5 × L) [35],
where n represents the number of variables, and L denotes
the scale of the problem. In our MCGL algorithm, the most

22924 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

Fig. 6. Flowchart of MCGL+.

time-consuming process is calling MinCost and MinTime
algorithms for execution. Hence, the time complexity of
MCGL algorithm is O(n3.5 × L).

D. Improved Method for General Multistage Job

MCGL optimizes the total cost of a two-stage job under
a given deadline. However, a big data analytics job usually
contains multiple dependent stages, which can be abstracted
as a directed acyclic graph (DAG). In addition, to obtain the
final result data for such a job, the system has to aggregate
all results data from all sites to a main site because the result-
ing data of MCGL are distributed across multiple sites. This
process incurs more data transfer, increasing the total cost and
the JCT.

To minimize the total cost of a multistage job under the
given deadline, a traditional solution performs the job in a
centralized manner, where a site receives the entire input data
of all sites and finishes all tasks independently. This solution
is easy-to-deploy but inefficient, as proved in literature [2]
and [3]. Another intuitive solution is to split the multistage
job into multiple two-stage jobs, and each of these jobs is
solved by the MCGL method, which computes the task place-
ment strategy and spreads tasks across all sites. Obviously, this
solution suffers from unacceptable computing time. Moreover,
the accumulated errors of all split two-stage jobs can make the
resulted cost deviating significantly from the optimal value.

In this section, we propose the MCGL+ method to exe-
cute multistage jobs effectively and efficiently. The flowchart
of MCGL is shown in Fig. 6. This method is designed based
on the observation that the amount of data typically decreases
after completing each stage. Specifically, MCGL+ first com-
putes the placement strategy of map and reduce tasks across
all sites. In a multistage job, tasks of the previous stage that
have been completed generate the input data for the remain-
ing stages, and the data amount is usually far less than the

Algorithm 4: MCGL+ Algorithm
Input: Ar, q, tmap, tred, rmap, rred, \\ job attributes T, β. \\

the job deadline and the adjusting step
Output: An optimal solution for minimizing the JCC with a

deadline
1 h = getNumOfStages();
2 Cmin ← Double.MAX_VALUE, TP ← null;
3 foreach k = 2, 3, ..., h do
4 Ck

min ← Double.MAX_VALUE; smin ← 0, i← 1;
5 foreach i in D do
6 xd,i

r,time, αi
d,time, Ttime

i , Ctime
i = MinTime(i, k);

7 xd,i
r,cost, αi

d,cost, Tcost
i , Ccost

i = MinCost(i, k);
8 Cnew ← 0;
9 if Ttime

i < T then
10 xd

r,new ← xd,i
r,cost; αd,new ← αi

d,cost; Tnew ← Tcost
i ;

11 if Tnew ≤ T then
12 Cnew ← Ccost

i ;

13 else
14 while Tnew > T do
15 xd

r,new, αd,new = adjustment(β);
16 Tnew = getTime(xd

r,new, αd,new, i);

17 Cnew = getCost(xd
r,new, αd,new, i);

18 if Cnew < Ck
min and Cnew 	= 0 then

19 xd
r ← xd

r,new; αd ← αd,new; smin ← i;
20 Ck

min ← Cnew;

21 TPnew ← (xd
r , αd , smin, k);

22 if Ck
min < Cmin then

23 Cmin ← Ck
min, TP ← TPnew;

24 else
25 break;

26 return TP

amount of the original data. Therefore, the MCGL+ method
will select a single site to receive all generated data and exe-
cute all remaining stages. The MCGL+ method eliminates
data transmissions among the remaining stages, saving trans-
mission time and cost. Especially, some jobs may generate
massive intermediate data after executing the first reduce stage,
which can deteriorate the performance of MCGL+. Thus,
we need to decide the number of stages that execute tasks
in distributed sites. Algorithm 4 describes the details of this
method.

In Algorithm 4, steps 5–21 calculate the task placement with
minimal JCC when the tasks after stage k are executed at a sin-
gle site. Notations Ck

min and smin represent the minimum JCC
and the selected site to execute all tasks after stage k, respec-
tively. For each site, we will calculate the cost of executing all
remaining tasks, and the site with the minimum cost will be
selected as smin. In each iteration, MCGL+ checks a new site
and generates two task placement strategies by the MinTime
and MinCost algorithms at site i (lines 6 and 7). Different from
Algorithms 2 and 1, MinTime(i, k) and MinCost(i, k) execute
the tasks before or equal to stage k in distributed sites, but the
remaining tasks after stage k are executed on site i, and add the
cost of executing all remaining tasks to the sum JCT and JCC.

CHEN et al.: GEO-DISTRIBUTED IoT DATA ANALYTICS WITH DEADLINE CONSTRAINTS 22925

We use (T time
i , Ctime

i) to denote the generated JCT and JCC
for the MinTime(i, k), and (Tcost

i , Ccost
i) for the MinCost(i, k).

Recall that the two algorithms optimize the JCC or JCT
of the first map and first reduce stages without deadline con-
straint. Therefore, T time

i and Ccost
i represent the lower bound

of the JCT and JCC, respectively. Therefore, MCGL+ can
obtain a feasible solution only when T time

i < T , where T is
the deadline. Furthermore, if Tcost

i < T , MCGL+ can achieve
the minimum cost Ccost

i (lines 11 and 12). Otherwise, we
heuristically adjust the parameters to find the solution with
the minimum cost Cnew under the deadline constraint (lines
14–16). If Cnew is the least among the costs of all checked
sites, MCGL+ marks it as Cmin, and the current site as smin
(lines 18–20). Thus, we can obtain the most suitable site after
all sites are checked.

Furthermore, a simple strategy is adopted to determine the
number of stages that are executed in distributed sites. We cal-
culate the corresponding minimal costs of executing different
number of stages in distributed sites, and select the one with
the least cost. Specifically, we use h to represent the number
of the whole stages of current job, and we calculate the task
placement strategy and corresponding cost for at most h times.
Among that in the kth iteration, we calculate the minimal cost
of executing the first k stages in distributed sites. Notation
Cmin represents the minimal cost until the kth iteration. TP
records the task placement strategy. Since the data amount
generated by each stage is usually far less than the amount
of the original data, when the minimal cost of executing the
first k stages in distributed sites is larger than that of execut-
ing the first k−1 stages in distributed sites, we can determine
the number of stages that are executed in distributed sites is
k − 1 (lines 22–25). In addition, in the MCGL+ algorithm,
the iteration steps (lines 5–20) can be executed in parallel to
reduce the running time.

From the time complexity analysis of MCGL in
Section V-C, the complexities of the MinTime and MinCost
algorithms are all O(n3.5 × L). In the MCGL+ algorithm, the
MinCost and MinCost algorithms are called for |D|×h times,
where |D| is the number of sites, and h is the number of job
stages. Hence, the complexity of the MCGL+ algorithm is
also O(|D| × h× n3.5 × L).

VI. PERFORMANCE EVALUATION

In this section, we conduct comprehensive evaluations to
measure the performance of our MCGL and MCGL+ methods
using real datasets from Google [36], [37] and Alibaba [38].

A. Settings of Evaluation

Cluster Settings: We construct two networks, which contain
10 and 30 geo-distributed sites, respectively. In each network,
the resource capacities and prices of different sites are het-
erogeneous. The configuration of the network is shown in
Table IV. The resource capabilities of each site are set based on
literature [2] and [3], and the resource prices are set according
to Amazon EC2 [13]. More precisely, the bandwidth of each
intersite link (Ud, Dd) ranges from 100 Mb/s to 2 Gb/s, and
the link price Pd

r ranges from 0.02 to 0.5 $/GB. The number

TABLE IV
CONFIGURATIONS OF SITES AND SYSTEM

of computing slots Sd in each site ranges in [100, 1000]. The
price of each slot Cd is set between 4.5×10−5 and 7.5×10−5

$ per second. Moreover, by default, we set the adjusting step
β as 0.1.

Workload: We use synthetic workloads with job size distri-
butions obtained from Google’s production cluster and Alibaba
cluster workload trace. The Google trace [36], [37] collects the
information of machines, jobs, and tasks in a datacenter with
12.5k-machines over a month. For each job recorded in the
trace, its arrival time, task number, input data size and distri-
bution, and the required resources are recorded. However, the
Google trace does not include the DAG structure information
of jobs. Since MCGL focuses on the jobs consisting of a Map
stage and a Reduce stage, it is evaluated on the Google trace.
The Alibaba trace [38] was published by Alibaba Group in
2018. It contains records about 4k machines in a period of
eight days. This trace includes many types of batch workloads,
and most of them are DAG jobs. Therefore, we use Alibaba
trace to evaluate the performance of MCGL+.

In the experiments, the parameters settings of each job
are all assigned according to the data sets. Specifically, the
number of tasks in each stage can be obtained directly from
the data sets. The task execution time of task is assigned
to the average execution time of all tasks in this stage. We
divide the machines into different sites. According to the dis-
tribution of tasks for each job on those machines, we can
obtain the volume of input data for each job on all sites.
We set the deadline of a job according to its minimum com-
pletion time by MinTime (T time) and maximum completion
time using MinCost (Tcost) with the entire volume of clus-
ter resources. Specifically, the deadline of a job is equal to
T time + (Tcost − T time)×U, where U is the ratio of deadline.

Simulation Framework: We developed MCGL and MCGL+
methods using Java language. The linear programming in our
methods is solved by CPLEX. All simulation experiments are
performed on a laptop with Intel 1.99-GHz processor and
24-GB memory. In our experiment, the computing slot is an
abstract computing resource and does not represent a particu-
lar type of server. The duration of a task for different jobs is
set according to the workload trace.

Baselines: We compare the MCGL and MCGL+ methods
with the following methods in our evaluations.

1) Centralized: A traditional method, which aggregates all
input data of job to a main site that runs the job and
will cost the least.

2) Tetrium [3]: A state-of-the-art approach in recent years,
which aims to optimize the placement of reduce tasks
and the input data, and improves the JCT.

22926 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

(a) (b)

Fig. 7. (a) Average JCC and the (b) average JCT under different baselines.

3) MinCost: A pure method that just optimizes the total
cost of executing a geo-distributed data analytics job.
It attempts to transmit data along with low-cost links
and compute data in low-cost slots as much as possible,
without the consideration of the JCT.

4) HPS+ [21]: A new resource allocation algorithm that
orchestrates the replica selection and task placement to
minimize the volume of transferred data.

Evaluation Metrics: The following two metrics are used to
measure the performance.

1) Average JCT: The total time of jobs divided by the
number of jobs.

2) Average JCC: The total cost of jobs divided by the
number of jobs.

B. Comparing MCGL With Others

In this section, we conduct evaluations based on the Google
trace. According to the amount of input data, we divide the
jobs in Google trace into two types, including the small-scale
jobs and the large-scale jobs. Specifically, when the amount of
input data of a job is less than 60 GB, the job is considered as a
small-scale job. Otherwise, it is a large-scale job. Furthermore,
we set the deadline of each job as T time+(Tcost−T time)×0.7.

We first evaluate the average JCT and the average JCC under
different methods. Fig. 7(a) and (b) depicts the average cost
and time of a set of jobs under different task scheduling meth-
ods. Clearly, for all methods, processing large-scale jobs incurs
much higher JCC and JCT than processing small-scale jobs.
MCGL incurs less JCC for any type of jobs than the central-
ized and Tetrium methods. Compared with Tetrium, MCGL
reduces the average JCC by 40%. The HPS+ and MinCost
methods aim at minimizing the transmission cost and the total
cost, respectively. We can see that they incur less JCC than
MCGL at the cost of violating the deadline constraints. Among
these methods, it is clear that MCGL achieves the minimal
average JCC with respect to the deadline constraints.

To illustrate the distribution of the JCC and JCT, we com-
pare the CDF of JCC and JCT under different approaches, as
shown in Fig. 8(a) and (b), respectively. In Fig. 8(a), MinCost
achieves minimal JCC, and the JCC by MCGL is close to the
JCC by MinCost. From Fig. 8(b), we can find that the JCT
under MCGL is less than the JCT achieved by other methods,
except for Tetrium. However, Tetrium causes the highest JCC.
This experiment proves that MCGL achieves a better tradeoff
than the other methods.

(a) (b)

Fig. 8. CDF of JCC and JCT under different baselines. (a) CDF of JCC. (b)
CDF of JCT.

Fig. 9. Average running time of different algorithms.

TABLE V
PERCENTAGE OF DEADLINE VIOLATIONS

Furthermore, we calculate the percentage of deadline vio-
lations under different task placement methods, as shown in
Table V. We can find that the jobs using MCGL and Tetrium
algorithms can always complete tasks before the deadline. The
jobs under centralized and Mincost algorithms always vio-
late the deadline. The percentage of deadline violations with
HPS+ is very high, which almost reaches 100%. Combined
with the results shown in Fig. 7(a) and (b), it is clear that
MCGL achieves minimal JCC before the deadline of each job
compared with other baselines.

Thereafter, we evaluate the average running time of different
algorithms under a varied scaling of the sites, and the results
are shown in Fig. 9. We can see that the running time of
different algorithms increases with the increasing number of
sites. The running time of MCGL is slightly higher than those
of other methods; however, the gap among these methods is
small, and the running time of all these methods is less than
10 ms, which means they are effective for real application
scheduling requests. In practice, solving the task placement
model for each job can run in parallel and further reduces
their running time.

Finally, we consider another impact factor, i.e., the number
of sites, and set it as 10 and 30 to quantify its impact. Similarly,
the configuration is shown in Table IV. The deadline of each
job is equal to T time + (Tcost − T time)× 0.7.

Fig. 10(a) and (b) shows the total JCC and average JCT
when the number of sites is 10 and 30, respectively. Note that
increasing the number of sites leads to a slight increase in costs
increasing for Tetrium, HPS+, and MCGL. The reason is that
Tetrium, HPS+, and MCGL attempt to reduce the JCT or the
volume of transferred data; however, the more the sites the

CHEN et al.: GEO-DISTRIBUTED IoT DATA ANALYTICS WITH DEADLINE CONSTRAINTS 22927

(a) (b)

Fig. 10. (a) Average JCC and the (b) average JCT under different number
of sites.

Fig. 11. Influence under different deadlines.

(a) (b)

Fig. 12. Proportion of cost and time in transmission and computation under
different deadlines. (a) Average JCC. (b) Average JCT.

more data there are to be exchanged, which increases the JCC.
Therefore, a geo-distributed data analytics job across more
sites could accelerate the completion process in MCGL, at the
risk of further cost. The Centralized and MinCost algorithms
attempt to minimize the JCC, and can select cheaper links
and computing resources to complete job with more sites. The
HPS+ aims at minimizing the transmission cost.

C. Impact of Varied Parameters

In this part, we quantify the impact of diverse parameters
on MCGL, including the job deadline, and adjusting step.

Fig. 11 presents the average JCT and JCC with different
deadlines. In the previous experiments, we set the deadline
ratio as 0.7. In this experiment, we choose a range for the ratio
of deadline T for each job from 0.1 to 0.9, and the time interval
between two adjacent deadlines is (Tcost − T time) × 0.1. We
find that the JCT decreases significantly with increasing job
deadline. This is because longer deadline may allow MCGL
to transmit more data with cheaper links, and execute more
tasks on cheaper slots. In Fig. 11, we can see that MCGL can
offer a proper tradeoff between the completion time and total
cost according to users’ requirements.

To ease the presentation, Fig. 12(a) indicates the proportions
of transmission cost and computation cost in the total JCC,
and Fig. 12(b) shows the proportions of transmission time and

TABLE VI
IMPACT OF ADJUSTING STEP

computation time in the total JCT. We find that the propor-
tion of transmission cost continues to decrease with increasing
deadline times. This phenomenon indicates that transferring
more data with cheaper links can effectively reduce the total
JCC. Additionally, as shown in Fig. 12(b), the proportions of
transmission and computation time in the total JCT are stable,
which shows that transmission and computation time of a job
increase at the same rate with the increase of deadline times.

We further vary the adjusting step β from 0.001 to 0.1, and
measure the performance of MCGL. Table VI presents the
average JCT and average JCC, number of iterations, and run-
ning time of MCGL against the adjusting step. It shows that
MCGL iterates fewer rounds and the running time increases
when the adjusting step increases. Therefore, if the job is time
sensitive, it is better for users to adopt a larger adjusting step.
Additionally, the average completion cost decreases signifi-
cantly with the decrease of the adjusting step. Therefore, if
users want to save cost, it would be better to adopt a small
adjusting step.

Therefore, the JCC under centralized, HPS+, and MinCost
algorithms is lower with more sites at the risk of violating
the deadline constraint. Furthermore, compared to other meth-
ods, MCGL achieves the lowest JCC except for the MinCost
method, regardless of the number of sites is involved. As
depicted in Fig. 10(b), the JCT decreases when more sites par-
ticipate in the geo-distributed data analytics. This is because
the more the sites, the more parallel the transmission and
computing data, leading to an acceleration of the analysis
process.

D. Performance of MCGL+
We compare MCGL+ with the centralized algorithm,

Tetrium algorithm, and MinCost algorithm. We simulate ten
sites based on Alibaba’s trace data that includes the DAG
information of those batched processing jobs. Similarly, we
divide the jobs in Alibaba trace into two types according to
the number of tasks in each job, including the small-scale jobs
and the large-scale jobs. The configuration of the network in
this experiment is similar to previous settings and is shown in
Table IV.

In this experiment, the deadline of each job was also set
according to the JCTs calculated by MinCost and MinTime.
We first use MinTime(i) to calculate all the JCTs on all sites,
and select the minimum JCT among those JCTs, represented
by T time. Thereafter, we use MinCost(i) to calculate all the
JCTs on all sites, and choose the maximum JCT across those
JCTs, denoted by Tcost. In this experiment, we set the deadline
of the job as T time + (Tcost − T time)× 0.5.

22928 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 22, 15 NOVEMBER 2022

(a) (b)

Fig. 13. (a) Average JCC and the (b) average JCT of multistages jobs under
different methods.

As depicted in Fig. 13(a) and (b), the centralized method
incurs much higher JCC and JCT than our MCGL+ method.
The main reason is that the centralized method transfers too
much data across different sites; hence, it requires more time
and leads to more transmission cost. At the same time, exe-
cuting the entire job on one site will also lead to longer
computation time. Furthermore, we can find that the aver-
age JCC and the average JCT of MCGL+ range between the
results of Tetrium and MinCost. However, the average comple-
tion cost using Tetrium is well above the average completion
cost of MCGL+. In other words, the MCGL+ method is
more cost-effective compared with the centralized and Tetrium
methods. This is because when the job contains multiple
stages, there usually exist multiple shuffle phases in this job.
Completing the shuffle phase according to Tetrium will cause
massive data transmission costs across geo-distributed sites.
Compared with MinCost, because the ratio of deadline is 0.5,
and thus, the JCT using MinCost cannot satisfy its deadline
constraint. To this end, MCGL+ is most effective compared
with the baselines and can offer a better tradeoff between the
completion time and total cost.

VII. CONCLUSION AND FUTURE WORK

In this study, we utilized geo-distributed data analytics tech-
nology to extract the value of IoT application data distributed
across multiple geo-distributed sites. In geo-distributed IoT
data analytics, the resource capacities and prices across sites
are heterogeneous. We presented MCGL, which minimizes the
completion cost of geo-distributed IoT data analytics job sub-
ject to a given deadline. MCGL adjusts the parameter settings
heuristically from two locally optimal solutions to obtain a
great approximate solution subject to a given deadline con-
straint. Furthermore, we proposed a more general method
MCGL+ to tackle the geo-distributed IoT data analytics job
with multiple stages. Extensive experiments show that our
method considerably reduces the JCC and can always satisfy
the deadline constraint. Especially, in our experiments, the per-
centage of jobs that are completed before their deadlines by
MCGL is 100%. Besides, for jobs that are completed before
their deadlines by different methods, MCCL achieves a 40%
reduction in average JCC compared with other methods.

Future work is mainly threefold. First, the dynamicity of
the WAN bandwidth across different sites also poses sig-
nificant challenges to geo-distributed IoT data analytic jobs.

Researchers discovered that large variances exist across dif-
ferent sites, and in certain cases, the available bandwidth is
below 25% the maximum bandwidth [8]. Consequently, it is
challenging to develop task placement strategies to optimize
the JCC with a specific deadline in that dynamic scenario.
This challenge could be solved by constructing a suitable
model using the deep learning method to predict the intersite
bandwidths.

Second, in this article, we mainly considered how to min-
imize the JCC of a geo-distributed IoT data analytics job.
However, many users usually need to process multiple geo-
distributed analytics jobs for which the optimization model
will become very complex when these jobs have to compete
for the shared bandwidth and computation resources. Thus, the
deadline-aware job scheduling, resource allocation, and task
placement method for multiple geo-distributed data analytics
jobs must be studied in detail.

Finally, we proposed a heuristic based on the intuitive
design principles and phenomenon that there is a remark-
able negative correlation between the JCT and JCC, which
has no theoretical guarantee in performance. Because many
studies have focused on the QCQP problem, we can attempt
to utilize the strengths of existing methods that can solve the
QCQP problem, and calculate a better solution with acceptable
running time.

REFERENCES

[1] M. Bradbury, A. Jhumka, and T. Watson, “Trust trackers for computa-
tion offloading in edge-based IoT networks,” in Proc. IEEE INFOCOM,
Vancouver, BC, Canada, May 2021, pp. 1–10.

[2] Q. Pu et al., “Low latency geo-distributed data analytics,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 421–434, 2015.

[3] C.-C. Hung, G. Ananthanarayanan, L. Golubchik, M. Yu, and M. Zhang,
“Wide-area analytics with multiple resources,” in Proc. CM EuroSys,
Apr. 2018, p. 12.

[4] S. M. Marzuni, A. Savadi, A. N. Toosi, and M. Naghibzadeh, “Cross-
mapreduce: Data transfer reduction in geo-distributed mapreduce,”
Future Gener. Comput. Syst., vol. 115, pp. 188–200, Feb. 2021.

[5] Y. Chen, L. Luo, D. Guo, O. Rottenstreich, and J. Wu, “SDTP:
Accelerating wide-area data analytics with simultaneous data transfer
and processing,” IEEE Trans. Cloud Comput., early access, Oct. 15,
2021, doi: 10.1109/TCC.2021.3119991.

[6] K. Hsieh et al., “Gaia: Geo-distributed machine learning approaching
LAN speeds,” in Proc. USENIX NSDI, Boston, MA, USA, Apr. 2017,
pp. 1–20.

[7] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “ClariNet: WAN-
aware optimization for analytics queries,” in Proc. USENIX OSDI,
Nov. 2016, pp. 435–450.

[8] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“AWStream: Adaptive wide-area streaming analytics,” in Proc. ACM
SIGCOMM, Aug. 2018, pp. 1–17.

[9] W. Chen, I. Paik, and Z. Li, “Cost-aware streaming workflow allocation
on geo-distributed data centers,” IEEE Trans. Comput., vol. 66, no. 2,
pp. 256–271, Feb. 2017.

[10] Z. Hu, B. Li, and J. Luo, “Time-and cost-efficient task scheduling across
geo-distributed data centers,” IEEE Trans. Parallel Distrib. Syst. vol. 29,
no. 3, pp. 705–718, Mar. 2018.

[11] W. Xiao, W. Bao, X. Zhu, and L. Ling, “Cost-aware big data processing
across geo-distributed datacenters,” IEEE Trans. Parallel Distrib. Syst.
vol. 28, no. 11, pp. 3114–3127, Nov. 2017.

[12] A. C. Zhou, B. Shen, Y. Xiao, S. Ibrahim, and B. He, “Cost-aware par-
titioning for efficient large graph processing in geo-distributed datacen-
ters,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 7, pp. 1707–1723,
Jul. 2020.

[13] “Amazon EC2 Pricing.” [Online]. Available: https://www.amazonaws.cn/
ec2/pricing/ (Accessed: Nov. 8, 2021).

http://dx.doi.org/10.1109/TCC.2021.3119991

CHEN et al.: GEO-DISTRIBUTED IoT DATA ANALYTICS WITH DEADLINE CONSTRAINTS 22929

[14] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues, “Pixida:
Optimizing data parallel jobs in wide-area data analytics,” in Proc.
VLDB, Aug./Sep. 2015, pp. 72–83.

[15] W. Li, R. Xu, H. Qi, K. Li, and X. Zhou, “Optimizing the cost-
performance tradeoff for geo-distributed data analytics with uncertain
demand,” in Proc. IEEE/ACM IWQoS, Barcelona, Spain, Jun. 2017,
pp. 1–6.

[16] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and regulatory
constraints,” in Proc. USENIX NSDI, May 2015, pp. 323–336.

[17] H. Hu, Y. Wen, T. Chua, and X. Li, “Cost-optimized microblog dis-
tribution over geo-distributed data centers: Insights from cross-media
analysis,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 3, pp. 1–18,
2017.

[18] Y. Huang et al., “Yugong: Geo-distributed data and job placement
at scale,” Proc. VLDB Endowment, vol. 12, no. 12, pp. 2155–2169,
Aug. 2019.

[19] C.-H. Chen, J.-W. Lin, and S.-Y. Kuo, “MapReduce scheduling for
deadline-constrained jobs in heterogeneous cloud computing systems,”
IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 127–140, Jan.–Mar. 2018.

[20] N. Lim, S. Majumdar, and P. Ashwood-Smith, “MRCP-RM: A technique
for resource allocation and scheduling of mapreduce jobs with dead-
lines,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 5, pp. 1375–1389,
May 2017.

[21] L. Zhao, Y. Yang, A. Munir, A. X. Liu, Y. Li, and W. Qu, “Optimizing
geo-distributed data analytics with coordinated task scheduling and rout-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 2, pp. 279–293,
Feb. 2020.

[22] S. Liu, W. Hao, and B. Li, “Optimizing shuffle in wide-area data
analytics,” in Proc. IEEE ICDCS, Jun. 2017, pp. 560–571.

[23] H. Wang and B. Li, “Mitigating bottlenecks in wide area data analyt-
ics via machine learning,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1,
pp. 155–166, Jan.–Mar. 2020.

[24] A. P. Iyer, A. Panda, M. Chowdhury, A. Akella, S. Shenker, and I. Stoica,
“Monarch: Gaining command on geo-distributed graph analytics,” in
Proc. USENIX HotCloud, Jul. 2018, pp. 1–7.

[25] A. Khan, M. Attique, and Y. Kim, “iStore: Towards the optimization of
federation file systems,” IEEE Access, vol. 7, pp. 65652–65666, 2019.

[26] A. Vulimiri et al., “WANalytics: Geo-distributed analytics for a
data intensive world,” in Proc. ACM SIGMOD, May/Jun. 2015,
pp. 1087–1092.

[27] K. Oh, A. Chandra, and J. B. Weissman, “A network cost-aware geo-
distributed data analytics system,” in Proc. IEEE CCGRID, May 2020,
pp. 649–658.

[28] J. Bi et al., “Application-aware dynamic fine-grained resource provision-
ing in a virtualized cloud data center,” IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 2, pp. 1172–1184, Apr. 2017.

[29] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing timeliness and
cost in geo-distributed streaming analytics,” IEEE Trans. Cloud Comput.
vol. 8, no. 1, pp. 232–245, Mar. 2020.

[30] W. Li, X. Yuan, K. Li, H. Qi, and X. Zhou, “Leveraging endpoint flex-
ibility when scheduling coflows across geo-distributed datacenters,” in
Proc. IEEE INFOCOM, Apr. 2018, pp. 873–881.

[31] B. Cheng, A. Papageorgiou, F. Cirillo, and E. Kovacs, “GeeLytics: Geo-
distributed edge analytics for large scale IoT systems based on dynamic
topology,” in Proc. IEEE WF-IoT, Milan, Italy, Dec. 2015, pp. 565–570.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, Apr. 2017, pp. 1–10.

[33] V. Jeyakumar, A. M. Rubinov, and Z. Y. Wu, “Non-convex quadratic
minimization problems with quadratic constraints: Global optimality
conditions,” Math. Program., vol. 110, no. 3, pp. 521–541, 2007.

[34] P. M. Pardalos and S. A. Vavasis, “Quadratic programming with one neg-
ative eigenvalue is NP-hard,” J. Global Optim., vol. 1, no. 1, pp. 15–22,
1991.

[35] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proc. ACM STOC, Apr./May 1984, pp. 302–311.

[36] “Google Cluster Data.” [Online]. Available: https://commondatastorage.
googleapis.com/clusterdata-2011-2/ (Accessed: May 1, 2011).

[37] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in Proc. ACM SoCC, Oct. 2012, p. 7.

[38] “Alibaba Cluster Trace Program.” [Online]. Available: https://github.
com/alibaba/clusterdata (Accessed: Sep. 26, 2021).

Yiting Chen received the M.S. degree from
the School of Information and Communication,
Guilin University of Electronic Technology of
China, Guilin, China, in 2017. She is cur-
rently pursuing the Ph.D. degree with the College
of Systems Engineering, National University of
Defense Technology, Changsha, China.

Her current research interests include geo-
distributed data analytics, distributed computing, and
machine learning.

Lailong Luo (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the School
of Systems Engineering, National University of
Defence Technology, Changsha, China, in 2013,
2015, and 2019, respectively.

He is currently a Lecturer with the School
of Systems Engineering, National University of
Defense Technology. His research interests include
probabilistic data structures and data analysis.

Bangbang Ren received the B.S. and M.S. degrees
in management science and engineering from
the National University of Defense Technology,
Changsha, China, in 2015 and 2017, respectively,
where he is currently pursuing the Ph.D. degree
with the College of Systems Engineering.

His research interests include software-defined
network, network function virtualization, and
approximation algorithm.

Deke Guo (Senior Member, IEEE) received the
B.S. degree in industry engineering from the Beijing
University of Aeronautics and Astronautics, Beijing,
China, in 2001, and the Ph.D. degree in manage-
ment science and engineering from the National
University of Defense Technology, Changsha, China,
in 2008.

He is currently a Professor with the College
of System Engineering, National University of
Defense Technology. His research interests include
distributed systems, software-defined networking,

data center networking, wireless and mobile systems, and interconnection
networks.

Prof. Guo is a member of ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

