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Abstract—The main research motivation of this article is the
fight against gender-based violence and achieving gender equality
from a technological perspective. The solution proposed in this
work goes beyond currently existing panic buttons, needing to be
manually operated by the victims under difficult circumstances.
Instead, Bindi, our end-to-end autonomous multimodal system,
relies on artificial intelligence methods to automatically identify
violent situations, based on detecting fear-related emotions, and
trigger a protection protocol, if necessary. To this end, Bindi inte-
grates modern state-of-the-art technologies, such as the Internet
of Bodies, affective computing, and cyber–physical systems, lever-
aging: 1) affective Internet of Things (IoT) with auditory and
physiological commercial off-the-shelf smart sensors embedded
in wearable devices; 2) hierarchical multisensorial information
fusion; and 3) the edge-fog-cloud IoT architecture. This solution
is evaluated using our own data set named WEMAC, a very
recently collected and freely available collection of data com-
prising the auditory and physiological responses of 47 women to
several emotions elicited by using a virtual reality environment.
On this basis, this work provides an analysis of multimodal late
fusion strategies to combine the physiological and speech data
processing pipelines to identify the best intelligence engine strat-
egy for Bindi. In particular, the best data fusion strategy reports
an overall fear classification accuracy of 63.61% for a subject-
independent approach. Both a power consumption study and an
audio data processing pipeline to detect violent acoustic events
complement this analysis. This research is intended as an initial
multimodal baseline that facilitates further work with real-life
elicited fear in women.

Manuscript received 4 July 2021; revised 4 March 2022 and 6 April 2022;
accepted 13 May 2022. Date of publication 23 May 2022; date of cur-
rent version 24 October 2022. This work was supported in part by the
Department of Research and Innovation of Madrid Regional Authority, in
the EMPATIA-CM Research Project (Reference Y2018/TCS-5046) funded
by MCIN/AEI/10.13039/501100011033 under Grant PDC2021-121071-I00;
in part by the European Union “NextGenerationEU/PRTR;” in part by the
Spanish Ministry of Universities with the FPU under Grant FPU19/00448; and
in part by the Madrid Government (Comunidad de Madrid-Spain) through the
Multiannual Agreement with UC3M in the line of Excellence of University
Professors (EPUC3M26), and in the context of the V PRICIT (Regional
Programme of Research and Technological Innovation). (Corresponding
author: Jose A. Miranda Calero.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by the
Research Ethics Committee of the Carlos III University of Madrid.

Jose A. Miranda Calero, Manuel F. Canabal, Alberto Ramírez Bárcenas,
and Celia López-Ongil are with the Department of Electronics, Universidad
Carlos III of Madrid, 28911 Leganés, Spain (e-mail: jmiranda@ing.uc3m.es;
mcanabal@ing.uc3m.es; alramire@ing.uc3m.es; celia@ing.uc3m.es).

Esther Rituerto-González, Clara Luis-Mingueza, and
Carmen Peláez-Moreno are with the Department of Signal Theory and
Communications, Universidad Carlos III of Madrid, 28911 Leganés, Spain
(e-mail: erituert@ing.uc3m.es; cluis@pa.uc3m.es; carmen@tsc.uc3m.es).

Jose M. Lanza-Gutiérrez is with the Department of Computer Science,
Universidad de Alcalá, 28801 Alcalá de Henares, Spain (e-mail:
jm.lanza@uah.es).

Digital Object Identifier 10.1109/JIOT.2022.3177256

Index Terms—Artificial intelligence of things, edge computing,
fear recognition, microelectromechanical systems, multimodal
data fusion, smart sensors.

I. INTRODUCTION

GENDER-BASED Violence (GBV) is one of the most
pervasive violations of human rights. According to the

United Nations, International Children’s Emergency Fund, and
the World Health Organization [1], 30% of women worldwide
have suffered or will suffer physical or sexual violence dur-
ing their lives. This fact places GBV at a very critical level of
social alarm, even surpassing armed terrorism in several coun-
tries. The United Nations defines violence against women as
“any act of GBV that results in, or is likely to result in, phys-
ical, sexual, or mental harm or suffering to women, including
threats of such acts, coercion, or arbitrary deprivation of lib-
erty, whether occurring in public or in private life.”1 This
type of violence includes GBV or domestic violence against
women, men, or children living in the same domestic unit,
causing severe harm to families and communities. As an exam-
ple of the impact of GBV on women, who are the people
suffering most from this problem, based on data from 2000
to 2018, more than one in four (27%) ever-partnered women
aged between 15 and 49 years had experienced physical or
sexual, or both, intimate partner violence since the age of 15
years [2]. Another worrying statistic is that, from January 2003
to February 2022, there were 1130 GBV victims (GBVVs)
were murdered in Spain by their male partners [3]. Moreover,
the European Institute for Gender Equality (EIGE) has esti-
mated that the cost of gender inequality across the European
Union is 366 billion euros a year; GBV makes up 79% of
this cost, amounting to 289 billion euros [4]. GBV and other
long-term social problems should mainly be tackled through
education, awareness, and sensitization programs. Although,
technology may aid in preventing and combating their
effects, which is one of the research motivations guiding this
article.

In recent years, the growth of digital technology has
benefited the development of novel Web and smartphone appli-
cations aimed at fighting against GBV. The applications range
from mapping sexual violence exposure within a city, to
offering a trusted and direct connection to law enforcement
agencies (LEAs) [5], [6] and to providing with panic button

1https://www.un.org/en/genocideprevention/documents/atrocity-crimes/
Doc.21_declaration%20elimination%20vaw.pdf
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Fig. 1. Outline of Bindi.

devices. In some countries, such as India, a directive has been
issued related on the mandatory inclusion of a panic button on
every mobile phone sold from 2017. However, panic buttons
present significant limitations regarding women’s safety, such
as the requirement of an active role in their self-protection,
which is certainly not possible under some types of aggres-
sion, their lack of an inconspicuous design, which leads
to GBV stigma, or even worse, the lack of infrastructure
support [7]. Despite the technological efforts, this type of solu-
tions presents different research gaps questioned by several
GBV experts [8], who demand more advanced research and
technology for these solutions regarded as outdated. Moreover,
they agree that the technology should be complemented with
better training of victim support professionals to avoid harmful
revictimisation.

On this basis, the motivation of this work is to respond
to the requirements discussed above to help fight and combat
GBV by employing an autonomous system that guarantees the
victims’ protection. With this purpose, the UC3M4Safety2

multidisciplinary research team was set up in 2017 with the
objective of developing an innovative solution called Bindi,3

whose outline is presented in Fig. 1. Bindi is an autonomous
system powered by artificial intelligence and the Internet of
Things (IoT) to automatically report when a woman is in
a risky situation related to GBV. This identification will be
performed by automatically detecting fear-related emotions
in the victim. The IoT architecture in Bindi considers the
usual three-layer division [9], i.e., edge, fog, and cloud. In
this system, the edge-computing layer is conceived as a smart
cyber–physical network composed of two devices (a pendant
and a bracelet), measuring physiological and auditory data
over time. In this first layer, a lightweight machine learning4

system is running on the bracelet detecting possible risky sit-
uations. The fog computing layer in Bindi is conceived as
a smartphone application, which implements a neural-based
engine for auditory data providing information about risky sit-
uations and also feeds from the machine learning response in
the bracelet. Thus, based on this information, if a risky GBV
situation is predicted, an alarm will automatically be triggered
to the corresponding protection services. Finally, the relevant
information obtained throughout the whole process is securely
stored in specific computing services in the cloud.

2https://portal.uc3m.es/portal/page/portal/inst_estudios_genero/proyectos/
UC3M4Safety

3The Bindi system is an approved model of utility by the Spanish Office
of Patents and Trademarks.

4Machine learning is the study of computer algorithms that allow com-
puter programs to automatically learn about data and improve through
experience [10].

This article presents the system hardware architecture of
Bindi and the validation of its data processing pipelines. The
goal is to analyze and gain a better understanding of women’s
responses to the fear emotion in risky situations. The main
contributions of this article are as follows.

1) It introduces and uses a novel emotion recognition
data set, i.e., the women and emotion multimodal
affective computing (WEMAC) data set [11], target-
ing GBV-related fear elicitation. This data set, which
is freely available, contains physiological and audi-
tory information from nonacted emotions elicited in an
immersive virtual reality environment.

2) Three multimodal data fusion strategies are evaluated
and validated to make a final decision about risky sit-
uations in the fog layer. To the best of our knowledge,
this is the first time that a multimodal fusion of phys-
iological and speech data for fear recognition has been
given in this context.

3) A novel audio data processing pipeline for the identifi-
cation of acoustic events related to risky GBV situations
is presented.

4) The experimental results show an average accuracy
of the fear recognition rate of up to 63.61% with
the leave-half-subject-out (LASO) method, which is an
state-of-the-art subject-independent training classifica-
tion strategy [12]. To the best of our knowledge, this
is the first time a LASO model considering fear recog-
nition, multisensorial signal fusion, and virtual reality
stimuli has been presented. Note that the significance
of the results is limited by the number of participants,
i.e., 47 women. This fact is currently being addressed
by increasing the database size.

5) A comprehensive power consumption analysis regard-
ing the edge computing devices in Bindi is provided to
compare the battery impact of each of the evaluated the
data processing chains.

The remainder of this document is structured as follows.
Section II discusses related work. The different elements of
Bindi are detailed in Section III, followed by the data process-
ing pipelines and their technical particularities in Section IV.
The experimental methodology is explained in Section V, with
the reported results detailed in Section VI. A comprehensive
power consumption study for the different hardware elements
closes the technical account in Section VII. Finally, a detailed
discussion about the architecture of Bindi, the results, and their
significance appears in Section VIII, followed by conclusions
and future research directions in Section IX.

II. RELATED WORK

GBV is already considered a pandemic by private and public
organizations worldwide (such as the World Bank and EIGE)
that can be enacted in different forms. Technological and sci-
entific advancements can leverage new solutions to combat
this social problem. First, this section addresses the use of
technology concerning the GBV problem and introduces the
potential of affective computing to deliver tools for preventing
and combating GBV. Second, a detailed review concerning
current trends in the Internet of Bodies (IoB) systems is



21176 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 21, 1 NOVEMBER 2022

provided. Third, different fear and fear-related emotion recog-
nition systems presented in the literature are analyzed. This
analysis is done in both a unimodal and multimodal manner
to state the research gaps related to the scarcity of emotion
recognition systems based on multimodal data fusion. Finally,
a review of the current multimodal data sets available in the
scientific literature is provided, highlighting their deficiencies
for the application in question.

A. Technology Against Gender-Based Violence

The Istanbul Convention [13] (a European Convention on
combating violence against women) recognizes four main
GBV manifestations: 1) physical; 2) sexual; 3) psychologi-
cal; and 4) economic. Within this context, digital technologies
expansion has a profound impact with two sides. On the
one hand, the effects of technology-facilitated GBV (TFGBV)
must be assessed and counteracted in any current and future
technological advancements. Recently, Dunn [14] evaluated
the expressions of GBV online, such as stalking, doxing, and
impersonation. These new manifestations must be assessed
and counteracted by current and future solutions (social or
technology based) to combat the pervasiveness of TFGBV.
On the other hand, technology is enabling the application
and implementation of solutions toward preventing and com-
bating GBV [15]–[17]. Specifically, in Spain, in the context
of the comprehensive law against GBV (2004) [18], three
technological tools have been implemented to support and
protect GBVVs: 1) VioGen [19]; 2) ATENPRO [20]; and
3) Cometa [21].

First, VioGen can estimate the risk level faced by a GBVV
and determine the adequate type and degree of protection
for them. This risk level is updated according to the legal
and social situation of the GBVV. VioGen is the result of
intensive research by the Spanish Home Affairs Department
with various Spanish university research groups, composed of
experts in psychology, criminology, and sociology. The effi-
ciency of this tool was validated in [22], achieving up to 85%
and 54% average sensitivity and specificity risk prediction
rates, respectively. Second, ATENPRO is a service that pro-
vides GBVVs with a direct and 24-7 hotline, triggered through
a panic button. In this specialized telephonic assistance cen-
ter, specifically trained attendants give an adequate response to
handle GBV situations in real time, contacting Spanish LEAs
if required. Finally, Cometa is a system conceived as a set
of telematic control devices adopted when a restraining order
is issued against an aggressor. In this case, both the victim
and the aggressor are given a geolocation device with basic
voice and data telecommunication capabilities to communi-
cate with the control center. The aggressor must also wear
a lightweight bracelet-like radio-frequency device that con-
nects to both geolocation devices. Although Cometa offers
a technological solution for combating GBV, its limited bat-
tery life and outdated technology present a high false-positive
rate [23], [24], apart from the risk of harassment for the
victims.

Leaving aside public institutional resources to fight GBV,
the private sector offers different technological solutions, such
as Web and smartphone applications and wearable devices

with panic button functionalities. For instance, several compa-
nies presented their technological solutions in the worldwide
Anu and Naveen Jain Women’s Safety challenge launched in
2017 by the XPrize Foundation [25]. The goal was to deliver
an inconspicuous (and affordable) system capable of trigger-
ing an alarm in less than 90 s in the case of sexual assault
detection. Most of the presented solutions5 revolved around
the panic button concept, although some of them proposed
the use of artificial intelligence.

From this review, we can conclude that none of the public
or private technological solutions to combat GBV benefit from
key current state-of-the-art and consumer electronics progress,
such as physiological and auditory analytics and affective com-
puting. These advancements could be exploited for a better,
autonomous, and more inconspicuous technological GBV pre-
vention tool. The latter is the goal of the UC3M4Safety team
and its technological solution Bindi.

B. Internet of Bodies

The growth of research on devices that monitor signals from
the human body during the last years, as both edge devices
in Bindi, supposes an imminent extension of the IoT domain.
This trend emerges concerning interconnected devices (e.g.,
worn, implanted, embedded, and swallowed) located in-on-
and-around the human body forming a network, which is
currently being called the IoBs [26]. This novel field has
many applications, such as human activity recognition [27],
user authentication [28], and even emotion recognition [29].
This field also encompasses essential studies on the limitations
of such sensors, such as time delay and energy consumption
issues [30]. Thus, such in-body sensors can acquire different
types of physiological information at the same time, which
derives studies related to the use of multimodal data fusion
techniques [31], [32].

This IoB proliferation is accompanied by advances in
machine learning and deep learning technologies, resulting
in an explosion of mobile intelligence and placing increasing
demands on computing resources that mobile edge devices
cannot meet. Consequently, edge computing capabilities are
being boosted and explored to deliver better intelligence
engine inference services to end users [33]. For instance,
in [34], they worked on accelerating the training process of
large machine learning models in IoT to meet the hardware
limitations.

Within this IoB context, the presented work intends to pro-
vide and foster the generation of novel lightweight multimodal
data fusion techniques fed by human body monitoring toward
their applicability to current edge-computing devices, such as
the ones in Bindi.

C. Emotion Recognition

Affective computing [35] is a multidisciplinary research
field aimed at recognizing human emotions to provide bet-
ter working conditions, entertainment, or services to people.
It relies not only on smart sensors and digital signal processing
but also on artificial intelligence techniques, such as machine

5https://www.xprize.org/prizes/womens-safety/teams
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learning. This latter technology allows for an understanding of
the connections between the emotional states and signals col-
lected from a person being monitored or even the environment.
For instance, the collaborative research among the psychol-
ogy, computer science, smart sensors, and cognitive science
fields [36] allows for the detection of different emotional states
through physiological and physical signal monitoring. Some
examples of physical signals include audio, voice, image, or
video signals, tracking the background of the scene or the user.
Some examples of physiological variables include heart rate
(HR), galvanic skin response (GSR), skin temperature (SKT),
electromyogram (EMG), and electroencephalogram (EEG).

Within this context, research on negative emotion detec-
tion in violent situations could help prevent and combat the
GBV problem, since potentially risky situations for a user
cause specific negative emotions, such as fear. In this regard,
UC3M4Safety claims that the identification of the emotions
felt when someone is a victim of violence is of paramount
importance when trying to protect human lives [37]. This
identification can help avoid violent assaults, including sex-
ual assaults and violence toward vulnerable social groups.
Although there is significant activity in the literature regard-
ing emotion recognition through auditory and physiologi-
cal signals for different purposes and considering different
setups [38]–[40], none of the solutions found focuses on the
GBV use case.

Regarding the design of an emotion recognition system,
a crucial yet challenging learning process element is related
to emotion labeling. Since the 19th century, different emo-
tion theories and models have been proposed to understand
the human response to external stimuli [41]–[43]. However,
there are two main theories about emotion classification that
are usually considered for labeling: 1) the categorical and
2) dimensional models. The former identifies various sets
of discrete emotions common in different cultures and splits
them into distinct categories [44]. The dimensional classi-
fication defines a continuous affective space with two or
more dimensions, such as pleasure, arousal, dominance, and/or
familiarity [45]. Note that a dimensional method based on
three dimensions allows for a better differentiation of specific
emotions, such as fear and anger [46].

From a physiological perspective, the distinction of fear
among other emotions is not new [47]. However, to the best
of our knowledge, there are only two fear recognition systems
based solely on physiological information and self-reported
labels. On the one hand, Bălan et al. [48] used all signals
available from the database for emotion analysis using phys-
iological signals (DEAP) [49] to provide a specialized fear
recognition system. They achieved a fear accuracy detection
rate below 90%, although they also considered EEG, which
is not currently feasible as an inconspicuous wearable device.
On the other hand, in our own previous research [50], only
three physiological variables available from the multimodal
analysis of human nonverbal behavior in real-world settings
data set (MAHNOB) [51] were used, obtaining a fear recog-
nition accuracy rate of up to 76.67% for a subject-independent
approach using data from 12 women volunteers. Other works
presented in the literature are based on valence and arousal

quadrant classification rather than binary fear classification.
For instance, Zao et al. [52] developed a valence and arousal
classification system and obtained an accuracy of 75.56% for
a subject-dependent approach. Hassan et al. [53] proposed a
deep learning emotion recognition-based method and obtained
an accuracy up to 89.53% for a subject-independent model
considering five discrete emotions (happy, relaxed, disgusted,
sad, and neutral). Although these latter works also employed
a reduced set of physiological signals, they were focused on
a different use case than the one pursued in this research.

Regarding the use of speech signals, emotion detection has
been widely reported in [54] and [55]. The lack of existing
speech corpora with strong elicited fear in real situations is a
problem in speech emotion research. However, a few studies
have managed to achieve results in this regard. For instance,
Clavel et al. [56] developed an audio-based abnormal situa-
tions detection system for movie clips. Their results achieved
up to 70.3% accuracy for fear detection via a leave one trial
out (LOTO) strategy for 30 movies. In [57], they performed
emotion detection with paralinguistic cues in a dialog cor-
pus containing real agent-client recordings obtained from a
medical emergency call center. As a result, they achieved a
recognition rate with up to 64% accuracy for fear recognition.

When dealing with emotion recognition combining different
data modalities, some comprehensive reviews can be
found presenting current state-of-the-art data fusion tech-
niques [58], [59]. These works state the need for: 1) novel
approaches to advance the community knowledge on the
multimodal casuistry and 2) subject-independent emotion
recognition models to ease the further deployments under real-
life conditions. They also agree on the potential performance
improvements with multimodal approaches compared to uni-
modal ones. In fact, recently research in multimodal experi-
mentation has been on the rise. For instance, Cimtay et al. [60]
proposed a hybrid multimodal fusion emotion recognition
system, including facial expressions, GSR, and EEG. Their
results yielded a maximum subject accuracy of 91.50% and
a mean accuracy of 53.80% using a leave-one-subject-out
(LOSO) strategy and a publicly available database (DEAP) for
different emotion detection use cases, such as angry, disgust,
afraid, happy, neutral, sad, and surprised. Moreover, they cre-
ated their own data set with which they achieved a maximum
subject accuracy of 81.2% and a mean accuracy of 74.2%
using a LOSO strategy for three emotion classes, i.e., sad,
neutral, and happy. In [61], a weighted-based fusion strategy
accompanied by transfer learning techniques was applied for
multimodal emotion recognition using EEG and spontaneous
spatial expression detection. The work employed a LOTO
subject-dependent configuration and reported an average accu-
racy up to 69.75% and 70.00% for the valence and arousal
classification, respectively. In addition to these works, more
research can be found regarding multimodal data fusion for
stress-related use cases [62], [63].

Analyzing these related works, most emotion recognition
systems do not target the fusion of physiological and auditory
modalities nor consider vulnerable groups, such as GBVVs.
Specifically regarding such bimodal fusion of physiological
and vocal information, the only work found is in [64], to
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Fig. 2. Simplified Bindi architecture.

the best of our knowledge. This work considered different
data fusion schemes and achieved an average accuracy of up
to 55.00% for a subject-independent strategy using a feature
fusion when targeting a valence and arousal binary classifi-
cation. Consequently, there is a current need for research on
these topics, which this work aims to deepen.

D. Open Public Multimodal Data Sets

There are various useful available databases in academia
providing emotional labels together with auditory or phys-
iological variables, such as DEAP [49], MAHNOB [51],
WESAD [65], AMIGOS [66], FAU, Reg, and Ulm TSST
Corpora [67], and BioSpeech [68]. However, they are not
specifically intended for fear emotion detection, as most of
them are based on a general framework in which the target is
a set of emotions [69]. That means that fear-related samples are
scarce for dealing with robust fear recognition. Moreover, no
difference between men and women for their proposed intelli-
gent emotional recognition systems is included. This latter fact
is essential given that stimuli interpretation is strongly affected
by gender [42]. Therefore, as concluded in [50], one of the
main shortcomings of generating fear detection systems is the
lack of adequate data sets, which should provide well-balanced
labels (fear/not-fear) with a sufficient number of volunteers,
real emotions, a gender perspective, and considering the target
group of people.

As a result of the previously discussed limitations found
in the literature regarding public multimodal data sets,
UC3M4Safety is generating a database specially designed
for fear detection in the GBV use case—the so-called
UC3M4Safety database. In this database, women volunteers
are exposed to a set of audio-visual stimuli that elicit specific
emotions. Physiological and auditory variables are recorded
during the viewing, and annotations and self-reports from the
users are also registered. A more detailed description of the
UC3M4Safety database is provided in Section V-A.

III. SYSTEM HARDWARE ARCHITECTURE

A simplified system architecture of Bindi is presented in
Fig. 2. The following sections provide a technical overview
regarding each system component.

Fig. 3. Simplified Bracelet architecture.

A. Edge Computing

The edge devices in the Bindi architecture are the Bracelet
and the Pendant. These two elements are described as follows.

1) Bracelet: This device runs an embedded intelligence
engine for fear detection based on physiological information.
Fig. 3 shows the hardware components integrated into this
device, which can be classified into four groups: 1) physiolog-
ical sensors; 2) actuators; 3) power manager elements; and 4)
the microprocessor unit. The latter is the nRF52840 system on
chip ARM Cortex-M4, an ultralow-power-consumption micro-
controller unit with 1-MB memory flash and 256-kB RAM,
a single-precision floating-point unit, a Thumb-2 instruc-
tion set, a 64-MHz clock, and some integrated peripher-
als (USB, UART, SPI, I2C, I2S, ADC, PDM, and AES).
Note that the radio-frequency module through Bluetooth low
energy communication is also integrated within this host unit.
Regarding the power manager elements, the BQ2407xT and
MAX17055 components by Texas Instruments and Maxim
Integrated, respectively, are used. These two integrated circuits
are responsible for charging and monitoring the battery. The
Bracelet is equipped with a conventional electro-mechanical
button for manual user activation, acting as a panic but-
ton. The details of the physiological sensors included are as
follows.

1) HR: This is based on a photoplethysmography sen-
sor that detects blood volume pulse (BVP) changes
by measuring the absorption of light emitted through
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the skin. This sensor is the MAX30101 high-sensitivity
reflective pulse oximeter, with different integrated LEDs
(red, green, and infrared), 18-bit ADC, I2C communica-
tion, and digital noise cancellation. More particularities
about this sensor are described in [70].

2) GSR: This sensor utilizes two electrodes to measure the
skin conductivity through a dc exosomatic measurement.
More particularities about this sensor and its analog front
end are described in [71]. Note that data provided by this
sensor are analog, and then, the acquisition is performed
using the ADC of the microcontroller unit.

3) SKT: The MAX30208 component is proposed to acquire
a reliable SKT measurement. This integrated circuit is
defined as a clinical-grade sensor for wearable applica-
tions, providing an accuracy of ±0.1 ◦C over a 30 ◦C to
50 ◦C temperature range. It integrates 16-bit ADC and
I2C communication.

The previously discussed physiological variables were cho-
sen due to their proven strong relationship with emotion
recognition [38] and their ease of implementation in wear-
able devices. The latter point is particularly relevant and led
us to discard other typical physiological sensors used in the
field (such as EEG), which do not meet the inconspicuousness
requirement. The digital sensors considered provide integrated
analog front-end circuitry but also include digital process-
ing to relieve the host processing unit of some preprocessing
tasks. The digital signal processing pipeline within the Bracelet
entails both, the acquisition and filtering of the physiological
signals and the feature extraction and inference stages. These
steps and their particularities are detailed in Section IV-A.

2) Pendant: This device captures audio and speech
information, which is fed to an intelligent engine for fear
detection. Note that such as engine is currently running in the
Bindi app, in the future, it will be executed in the Pendant. The
Pendant has the same hardware architecture as the Bracelet but
integrates a microphone instead of physiological sensors. Its
architecture is shown in Fig. 4. The microphone is based on a
microelectromechanical system with an omnidirectional audio
sensor. This part includes a capacitive sensing element and
an integrated circuit interface, allowing a digital signal to be
obtained directly. The digital signal processing pipeline within
the Pendant entails both, the reception and filtering of the audi-
tory signals (audio and speech) and the wireless transmission
to the Bindi app. Note that due to the limited bandwidth of
the wireless communication, the audio is compressed prior to
being transmitted.

B. Fog Computing

The fog computing within Bindi is represented by the Bindi
app running on a smartphone. It provides an end-user graphical
interface and performs the following technical functionalities.

1) It requests physiological and auditory data from the
Bracelet and the Pendant, respectively, according to the
data processing pipelines implemented, as discussed in
Section IV.

2) It handles the alarm triggers (SMS/protection unit or
emergency services alerts) and logs them into the server

Fig. 4. Simplified Pendant architecture.

based on the intelligent engine response or the manual
panic button.

3) It keeps track of each user’s location using GPS.
4) It manages secure communications with the server

adapted by the current smartphone battery status.
5) It collects and uploads auditory and physiological

ciphered data to the cloud as evidence of an alleged
crime if the alarm is triggered.

6) It performs the feature extraction and inference
processes for the auditory monomodal system.
Moreover, it handles different data fusion strategies,
which are discussed in Section IV.

C. Cloud Computing

The cloud computing part is where the Bindi server comes
into operation. The Bindi server implementation consists of a
MongoDB6 database and a NodeJS7 Web application server.
This Bindi server stores the information captured in the edge
with three main goals. First, it serves as an activity monitor,
indicating potential problematic situations regarding victims’
long-term affective evolution for people supervising the well
being of the users. Second, it stores encrypted data, serving as
digital evidence in an eventual trial. Third, it makes decisions
after the alarms are triggered by the following predetermined
safety procedures.

IV. BINDI DATA PROCESSING PIPELINE

As stated in Section I, one of the key objectives of this
work is to validate the data processing chain within Bindi,
from data acquisition to alarm generation. Different arrange-
ments of the system components have been applied and
compared to achieve this goal. This fact has led to a design
space exploration of different multimodal (physiological and
auditory information) system architectures. Specifically, three
arrangements have been evaluated.

1) The first version is Bindi 1.0 [72], which is based on
a hierarchical strategy. In this version, physiological
information is continuously collected by the Bracelet,
which runs a lightweight monomodal physiological

6https://www.mongodb.com
7https://nodejs.org/es/
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intelligence engine. When it detects that the user is
experiencing fear, it triggers a prealarm to the Bindi app.
This action causes the Pendant to start recording audio
for a brief period, resulting in a low-energy consumption
strategy for the microphone. The auditory signal is then
sent to the Bindi app to perform fear detection using a
speech-based monomodal intelligence engine. Finally, if
the latter system confirms the detection, the Bindi app
starts a safety procedure to help the user, triggering an
alarm to the Bindi server.

2) The subsequent version, Bindi 2.0a, is based on the same
two monomodal data processing pipelines in Bindi 1.0
but at the final decision stage applies a late fusion
technique rather than a hierarchical agreement or confir-
matory strategy [73]. It inherits the prealarm functional-
ity from Bindi 1.0 for low-energy consumption for the
microphone.

3) As a variation of Bindi 2.0a, Bindi 2.0b follows the late
fusion scheme introduced in Bindi 2.0a but bases it on
continuous physiological and auditory data acquisition,
meaning that the prealarm functionality is not enabled.

The following sections detail the physiological and audi-
tory data processing pipelines and the different data fusion
strategies considered in the three arrangements evaluated. The
particular nature of the data types (physiological, speech, and
audio) entails different challenges. Thus, the data processing
schemes, methods, and feature extraction techniques are tai-
lored to each signal. Note that the feature extraction process
refers to a typical machine learning step that transforms filtered
signals’ data into numerical features that can be processed
more quickly by the classification/regression algorithms while
preserving and highlighting the information from the original
data. The experimental results in this article are an account of
the validation process performed offline, to evaluate the func-
tionality of the data processing pipelines and later embed such
modules in the architecture, balancing the tradeoffs observed.
A preliminary acoustic event detector data processing pipeline
is also described in this section but has not been integrated into
the arrangements evaluated. This acoustic detector is intended
as a proof of concept from which some interesting experimen-
tal results are presented in Section VI-B, paving the way for
Bindi 3.0.

A. Physiological Data Subsystem

The first physiological data processing stage is signal
acquisition and windowing. In this first stage, the sampling
frequency and signal segmentation are critical parameters
because they represent a tradeoff between the amount of
information that can later be extracted and the resource usage.
In our case, the selected sampling frequencies are 100, 10,

and 5 Hz for the BVP, GSR, and SKT, respectively. These
frequencies are adequate to capture signal dynamics with the
appropriate temporal resolution. For signal segmentation, an
overlapping fixed-length strategy is used. This segmentation
approach is the most common method to process physiolog-
ical signals in emotion recognition systems [38]. Note that
the effect of the selected window length directly impacts two
key factors. First, this parameter determines the frequency

resolution available for the feature extraction stage. Second,
it is related to the ability to extract emotion-related events.
There is no agreement in the literature about the optimal win-
dow length for emotion recognition analysis, as it also depends
on the subject and the emotion felt. The proposed physiolog-
ical data processing chain uses 20 -s windows with a 10 -s
overlap. This configuration provides a frequency resolution of
0.05 Hz, which results in a good tradeoff between the data stor-
age and physiological information available to be extracted.
However, some limitations appear when dealing with this spec-
ified length. For instance, some GSR phasic events cannot
be completely separated from the tonic component, as the
maximum event duration is 30 s [74].

Once the signals are captured and segmented, the filter-
ing stage removes the out-of-band noise. The BVP filter
architecture has been selected through design space explo-
ration considering the specifications required and resource
usage [70]. Specifically, the BVP filter is a two-stage FIR
filter, with high-pass and low-pass stages with 0.5- and
4-Hz cut-off frequencies, respectively. Afterward, the signal
is scaled by employing an automatic gain control to limit
the amplitude and improve the peak detection. The GSR
is filtered to preserve information below 1.5 Hz, which is
the maximum frequency for phasic activity. Moreover, it is
downsampled to 5 Hz, reducing memory and computation
requirements while increasing resolution. The GSR filter is
also applied to the SKT signal to store only one set of filter
coefficients.

Feature extraction is the next stage in the processing
pipeline. This block extracts the information contained in
the physiological signals. Specifically, there are 25 features
for BVP (two in the time domain, nine in the frequency
domain, and 14 nonlinear ones), 17 features for GSR (six in
the time domain, three in the frequency domain, and eight
nonlinear ones), and six features for SKT (four in the time
domain and two in the frequency domain). An extensive
description of the features is provided in [50]. For classi-
fication, a lightweight K-nearest neighbors (KNNs) binary
supervised machine learning algorithm is used. During the
training stage, cost-sensitive learning is applied by modify-
ing the misclassification cost of KNN, which increases the
sensitivity, i.e., the system will be less likely to omit a dan-
gerous situation for the use case [75]. Moreover, the different
hyperparameters are optimized using a sequential model-based
optimization technique [76]. Some of the nonlinear features
include recurrence analysis computation [77]. This could lead
to unaffordable computational complexity for a constrained
wearable device. Accordingly, a sequential forward feature
selection algorithm is used during the training stage. This
process removes redundant information, lowering the compu-
tational load and resource usage for the inference [78]. Finally,
the physiological data subsystem output is a binary label every
10 s. This physiological pipeline has been tested in previous
work using a public data set [50].

B. Speech Data Subsystem

The speech data processing includes the following
fundamental modules: voice activity detection (VAD),
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frequency domain filtering, feature extraction, normalization,
and a neural-network-based classifier.

A basic lightweight VAD module [79] based on spectral
energy is employed to detect and remove silent parts of speech
signals where the posterior feature extractor would not extract
any relevant speech information due to the absence of speech.
Silence detection is crucial for correct functionality of the
device, as women in dangerous situations frequently react with
shock and remain silent.

In combination with the VAD module, to ease the han-
dling of the signals while keeping all significant information
from the speech data, it is necessary to downsample the sig-
nals at 16 kHz. Next, a low-pass filter is applied at 100 Hz
to remove low-frequency noise captured by the microphone
and possibly caused by air conditioning and electrical network
buzzing, among other factors, during laboratory experiments.
Afterward, the signals are processed, starting with a low-pass
filter at 8 kHz. Then, the speech feature extractor computes
38 speech features dedicated to emotion detection using a
20 -ms window with 10 -ms overlapping, both of which are
standard values from the literature. Among the features consid-
ered are pitch, Mel frequency cepstral coefficients, formants,
energy, and additional spectral features, all of which are cal-
culated through the librosa Python toolkit [80]. The features
are aggregated per second by computing their mean statistics
to be later normalized. Preliminary ablation experiments are
performed before fixing this 1 -s aggregation, varying the tem-
poral context of the aggregated speech features for 1, 5, and
10 s.

Feature normalization is done by applying the z-score
mean and standard deviation values from the baseline fea-
tures extracted when the user is in a resting or neutral state.
Other normalization schemes (e.g., per video, per user, and tra-
ditional z-score) are informally tested before considering the
basal state normalization described.

The normalized aggregated features are fed into a user-
adapted neural network classifier trained for fear detection.
This subsystem generates a binary label every 1 s. The labels
predicted by the monomodal speech subsystem every second
are smoothed in time using a 7-s long window to maintain
consistent and stable detection.

C. Data Fusion Strategy

Data fusion is a powerful way to improve the robustness of
the multimodal intelligence engine in Bindi. The late fusion
strategy in Bindi 2.0a and Bindi 2.0b is fed from the binary
labels provided by the physiological and speech monomodal
intelligence engines, as shown in Fig. 5.

As discussed previously, the physiological and speech
monomodal subsystems estimate a binary label, ym

k ∈ {0, 1},
for every time window k and modality m ∈ {phy, sp}, with phy
and sp referring to the physiological and speech subsystems,
respectively. Note that each of the modalities uses a differ-
ent time window length Tm in seconds, due to their specific
peculiarities. Bindi is intended to output a response per time
period n (each one of same length L), with n ∈ 1, 2, . . ., in
seconds. Thus, an estimation of fear probability pm

n for the nth

Fig. 5. Data fusion block diagram.

time period and the mth modality is computed as

pm
n =

∑Km
k=1 ym

[Km·(n−1)+k]

Km
(1)

where Km = �(L/Tm)�, i.e., the number of time windows
that we consider for each modality for the estimation of
probabilities.

Thereafter, a single binary label Ym
n based on pm

n can be
calculated as

Ym
n =

{
0, for pm

n < thm

1, otherwise
(2)

i.e., it will result in “1” (fear) if pm
n is higher than the modality-

related predefined threshold, thm ∈ {0, 1}, or “0” (no-fear)
otherwise. Note that thphy and thsp values are discussed in
Section VI-A.

As a metric to represent how confident each monomodal
system is for the class label predicted in a given period,
entropy hm

n for the nth time period and mth modality is
calculated as

hm
n = −[

pm
n · log

(
pm

n

) + (
1 − pm

n

) · log
(
1 − pm

n

)]
. (3)

On this basis, three late fusion strategies are studied to
produce fused system response Yf

n for the nth time period.
1) Case 1 (Lowest Entropy): The system’s response corre-

sponds to the binary label produced by the monomodal
system with the smallest entropy, i.e., the most confident
one. To this end, fused fear probability pf

n for the nth
time period is calculated as

pf
n =

{
pphy

n , cif hphy
n < hsp

n

psp
n , otherwise.

(4)

Next, applying the same rationale as in (2), a fused
binary label is obtained as

Yf
n =

{
0, if pf

n < thf

1, otherwise
(5)

where for now, thf is the conventional 0.5.
2) Case 2 (Inverse Entropy Weighted Combination): Fused

fear probability pf
n for the nth time period is computed

as a weighted sum of probabilities, as given by

pf
n =

∑

m

wm
n · pm

n (6)
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where

wm
n = 1/hm

n∑
m 1/hm

n
. (7)

Next, a fused binary label is obtained according to (5).
3) Case 3 (Logical OR): The system response corresponds

to the logical OR computation over the binary labels for
each monomodal system. That is

Yf
n = Yphy

n ∨ Ysp
n . (8)

The three fusion strategies are based on the literature
(e.g., [61]) and are proposed as a tradeoff between low compu-
tational complexity and robustness considering the confidence
of the system in the predictions. When comparing the three
fusion strategies theoretically, the logical OR facilitates obtain-
ing a fear class prediction without checking the subsystem
confidence, which could lead to false detection. However, the
lowest entropy strategy trusts the most confident model with-
out considering the differences in the probabilities. Finally, the
inverse entropy weighted combination establishes a tradeoff
between the probabilities and entropies for each monomodal
subsystem. Thus, the confidence of this last strategy might be
higher than that of the others.

D. Acoustic Information Subsystem

This section proposes an audio processing pipeline for
acoustic scene threat detection. As stated before, this com-
ponent has not yet been included in the arrangements studied
in this article for Bindi and is here conveyed as a proof of
concept for further versions of Bindi. This subsystem is based
on the architecture presented in [81]. Its main task is to detect
whether the sounds recorded from the microphone represent a
threat to the user’s safety according to the use case.

The acoustic event detection system proceeds as follows.
First, the audio signal is normalized, just as for the speech
pipeline. Second, a log-Mel spectrogram is computed to obtain
a time–frequency representation of the signal in an image form
to later feed it to the network. Thus, an initial spectrogram is
computed through a short-time Fourier transform (STFT) with
the following parameters: a window size of 25 ms, window hop
of 10 ms, and Hanning window. The frequency dimension of
the spectrogram is mapped to 64 Mel bins to cover frequencies
ranging from 125 to 7500 Hz and the amplitude is transformed
into a log scale with an offset of 0.001. These features are
framed into examples of 0.96 s with an overlapping of 50%.
Each example covers 96 frames of 10 ms each and 64 Mel
frequency bands. Therefore, the dimensions of these features
are 96 × 64. The resulting features are fed into a pretrained
convolutional neural network (CNN) to detect the audio events
in a scene.

The selected model for this task is YAMNet. Specifically,
the MobileNet_v1 [82] depthwise separable convolution archi-
tecture is considered. This model has been pretrained on 521
classes of the AudioSet YouTube corpus [83], a general-
purpose multilabel sound event classification database, and is
ready to perform inference for the detection of acoustic events.
The performance of these types of networks has been widely
studied in the field of sound event detection [84].

The procedure to feed the network is as follows. First, the
96 × 64 patches from the feature extraction stage are trans-
formed into a 3 × 2 array for the 1024 kernels of the top
convolutional layer. After being processed through the fea-
ture extraction layers, these examples are averaged to obtain
a 1024-dimension embedding. Then, a logistic layer performs
the classification in 521 target classes.

V. EXPERIMENTAL METHODOLOGY

A detailed description of the UC3M4Safety database and
WEMAC data set is provided in this section, with a discussion
of the technical aspects that affect the generated models. This
description is followed by a detailed analysis of the specific
training and testing methodologies applied for both modalities
to provide a satisfactory fit for the experimental data.

A. UC3M4Safety Database Technical Aspects

As introduced in Section II-D, the UC3M4Safety team
is currently developing the UC3M4Safety Database, a
novel multimodal database considering women’s emotional
responses to audio-visual stimuli [85]. The process began with
the selection and validation of appropriate stimuli [37], which
have been publicly released [86], [87]. The UC3M4Safety
database comprises the generation of different multimodal data
sets, some of which contain the physiological and auditory
variables of the subjects being monitored. Note that one of
the main goals is to understand and obtain models of the
relationship between the physiological and auditory activation
mechanisms in GBVVs.

The first data sets contain a list of 79 audio-visual stimuli
that were labeled and selected from among 160 clips with cri-
teria of quality, balancing different emotions, and agreement
among viewers [37], [87]. The 160 audio-visual stimuli were
selected by different expert judges [85] to achieve a good bal-
ance between fear and the rest of the emotions elicited. This
stimuli selection was evaluated by 1332 independent people,
obtaining a percentage of 44.44% for fear and 55.55% for
the rest of emotions, as shown in Table I. The other data sets
contain the results from the experiments performed in a labora-
tory environment with only women volunteers who had never
experienced GBV. These are employed in this article for the
space design exploration of the different system architectures
of Bindi. The other data sets of the UC3M4Safety database
consist of capturing data from GBVVs in laboratory conditions
and from GBVVs and non-GBVVs in real-life conditions.
These two latter data sets are currently being recorded.

The details of the employed WEMAC data set are as fol-
lows: 47 volunteers were exposed to 14 validated audio-visual
stimuli through a virtual reality environment with the Oculus
Rift-S Headset8 to maximize the immersive experience and,
consequently, achieve better emotion elicitation. These video
clips were selected from a pool of 28 audio-visual stimuli,
resulting in two batches of videos. Note that these videos were
extracted from a pool of 79 audio-visual stimuli in [87]. During
the experimentation, the volunteers self-reported information

8https://www.oculus.com/rift-s/
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Fig. 6. Positive and negative class distributions for the binarized self-reports in WEMAC. Volunteers in brackets are those excluded.

based on well-known emotion-related labeling methodolo-
gies, as described in Section II-C. Also, their physiological
information was collected using BioSignalsPlux,9 one of the
most common sensing research toolkit systems in the physio-
logical monitoring field, used for the sake of comparison with
the proposed sensors. The speech data were captured using
the Oculus(R) Rift-S Headset microphone.

The experimental protocol followed in the laboratory was
as follows: Every volunteer was exposed to the collection
of audio-visual stimuli, and their physiological information
was captured. Every stimulus visualization was preceded by
a neutral clip to reset the user to a neutral state. This step
was followed by different labeling stages, which consisted of
descriptive speech recording and interactive self-reports. In
the descriptive speech stage, each volunteer was requested
to provide a voice recording by answering questions that
were intended to make them relive the emotion felt so that
it was reflected in the recorded voice signal. In the interactive
self-reports, each user was presented with different discrete
possible emotion labels from which they were to select the
primary emotion felt. As mentioned before, every video clip
was expected to elicit only one targeted emotion. Thus, the
information obtained by the labeling stages matched the tar-
get emotions with more than 90% agreement with respect to
the labels reported by the volunteers. For further information
on WEMAC, we refer the readers to [11].

To adapt WEMAC to our purposes of validating and eval-
uating the different system architectures of Bindi, we first
binarized the reported discrete emotions to transform the
modeling problem into a binary classification, where “1” (pos-
itive class) represented fear and “0” (negative class) any other
emotion. After the experiment was conducted, it was observed
that some particular volunteers presented with a considerably
unbalanced distribution in their self-reported labels, as shown
in Fig. 6. Therefore, it was decided to exclude volunteers
5, 6, 15, 33, and 40 from the evaluation since they had only

9https://biosignalsplux.com/products/kits/researcher.html

TABLE I
EMOTIONS ELICITED BY THE UC3M4SAFETY DATABASE AUDIO-VISUAL

STIMULI VALIDATED BY AN INDEPENDENT GROUP OF

1332 PEOPLE, IN TOTAL PERCENTAGE

around 25% of the positive class distribution. Consequently,
the evaluation was to be performed with only 42 of the 47 ini-
tial volunteers. The class distribution for these 42 volunteers
was around 60% and 40% for the negative and positive classes,
respectively. This distribution fits the information presented in
Table I for the different emotions. As stated in Section I, the
UC3M4Safety team is working toward enlarging the size of
this data set by increasing the number of volunteers.

B. Training and Testing Considerations for the Monomodal
Subsystems

Some points had to be considered to design the training
and testing strategies of the two monomodal subsystems. First,
according to the database design, it should be noted that phys-
iological data were gathered during the stimulus elicitation,
whereas speech recording was registered during the subse-
quent speech annotation. That means that the physiological and
speech data were not aligned in time in WEMAC. However,
both data types had to be fused inBindi 2.0b for every emo-
tional reaction per user or experiment, unlike for Bindi 1.0
and Bindi 2.0a where the fusion was conditioned to the phys-
iological prealarm. Therefore, we obtained a single pm

n per
experiment and modality, according to (1); note that L is the
length of the audio-visual stimuli for the physiological modal-
ity and the total length of the audio recording for the speech
modality. During the labeling, the volunteers were requested
to relive the emotions felt during the stimulus elicitation, so
it was assumed that the correspondence was solid enough
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between both time instants. However, this assumption will
need further validation when the rest of the subsets in the
UC3M4Safety Database become available.

Second, for the train-test split, a LASO strategy was applied.
This was an adapted subject-semiindependent approach proce-
dure for training the 42 models required, i.e., one per user. This
approach was chosen due to the fact that the subject personal-
ization provided by LASO is crucial for an emotion detection
model such as ours [12]. Thus, each model was trained with all
available data from the rest of the users plus half the instances
of the subject to be tested, particularly, the data acquired from
the first seven audio-visual stimuli. The rest of the utterances
of the last seven videos of the session were to be used as test
samples. Thus, the test data were not seen during the training
stage but some information about the subject was obtained, as
intended.

Third, regarding specific training particularities, for
the physiological monomodal subsystem, the same mis-
classification cost of 1.6 to the positive class to deal with the
commented class imbalance was considered for all physiolog-
ical models generated. This cost was fixed by an experimental
parameter sweep. Moreover, the training was validated by a
stratified k-fold cross-validation strategy, with k = 5. Finally,
the normalization applied for the data set was based on the
z-score technique applied to the features extracted from all
volunteers.

For the speech monomodal subsystem, the classifier con-
sisted of a shallow lightweight neural network with input,
fully connected hidden, and fully connected output layers. The
network had 38 units in its input layer, i.e., one per feature.
The number of hidden units in the dense layer was fixed to 250
to avoid largely increasing the computational cost but achieve
fairly good prediction rates. The output layer yielded one pre-
dicted label as an output. All samples, except the ones from
the user of interest, were used to train the model during 300
epochs, with early stopping after a 30-epoch plateau in the
model validation loss, a binary cross-entropy loss function,
using Adam optimizer, and a learning rate of 0.001. Then,
samples from the user of interest (half of the ones available
according to the LASO strategy) were used to fine-tune the
model for a maximum of 100 epochs, with an early stopping
approach (i.e., stopping after a 10-epoch plateau in the model
loss). Regarding the z-score normalization used, the features
extracted from the speech recordings of the sixth audio-visual
stimuli were used as the baseline. This video was expected
to elicit a calm emotion and was assumed to evoke a neutral
state in the user.

Finally, regarding the testing procedure, as discussed in
Section IV-C, the monomodal subsystem’s outputs were arrays
of binary labels. Specifically, for the UC3M4Safety database,
the length of the arrays was equal to dividing the duration of
each stimulus by the monomodal sampling periods, i.e., 10 and
1 s for the physiological and speech subsystems, respectively.
Afterward, those collected arrays were processed by calcu-
lating the probabilities and their corresponding binary labels
by applying the physiological (formulaethphy) and speech
(formulaethsp) thresholds. The data fusion strategies proposed
also generated their corresponding binary labels, as described

in Section IV-C. The evaluation metrics selected, i.e., the
accuracy and F1-score, fed on the hard labels obtained. The
accuracy could fairly represent the prediction rates since the
class imbalance was low. The F1-score was considered to deal
with the slight imbalance observed. Although the F1-score
should be a good metric for a detection problem such as the
one addressed—in which the number of positives should have
been relatively low in comparison with the negatives—the
experimental setting considered here was almost balanced, and
therefore, this metric was not as significant as it was expected
to be when testing with data captured in real-life conditions.

VI. EXPERIMENTAL RESULTS

This section presents the experimental results regarding the
prediction of fear using WEMAC for the different configura-
tions of the system, as discussed in Section IV. Note that this
is the first time this database has been used; therefore, these
results represent the first step toward real (nonacted) fear emo-
tion detection from physiological and auditory variables for
the problem of GBV and are meant as a baseline for future
developments. Additionally, an analysis of the acoustic events
contained in the audio-visual stimuli is introduced.

A. Fear Detection Analysis

The first analysis concerns the performance of the physi-
ological and speech subsystems working independently in a
continuous setting, i.e., taking into account all samples. This
experiment was essential to determine the thresholds, thphy and
thsp, which convert the set of binary labels predicted during a
video visualization, into a single binary label for such period
[see (2)]. This step was relevant to determine whether the
architecture was more or less prone to false alarms, regardless
of the version of Bindi being considered. Thus, each parameter
was swept in the range [0.3, 0.6] with steps of 0.1 while gener-
ating the corresponding 42 monomodal subsystems following
the LASO approach. In this regard, Fig. 7(a) and (b) shows
the thphy and thsp values versus the accuracy and F1-score
average metrics for the 42 testing groups in the physiological
and speech subsystems, respectively.

Analyzing Fig. 7(a), it can be observed how the F1-score
decreases as thphy grows, whereas the accuracy remains rather
stable. Note that the F1-score depends to a great extent on
the number of true positives (TPs) predicted but mostly dis-
regards the true negatives (TNs). Thus, if TPs increase and
the sum of false positive (FP) and false negative (FN) rates
decrease, then the F1-score increases. This tradeoff caused
the behavior observed, where the lower the thphy gets, the
higher the F1-score becomes. According to this analysis, thphy
was fixed to 0.40, obtaining 66.66% and 64.60% for F1-score
and accuracy, respectively. The reason behind choosing this
value was the good compromise observed between both met-
rics and the fact that missing a TP could be dramatic for the
GBVV. The combined multimodal system should also refrain
from triggering false alarms to avoid overwhelming the insti-
tutions in charge of protecting the users, and this is why
the speech subsystem was chosen to be more conservative in
this regard. Fig. 7(b) shows how the F1-score and accuracy
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(a)

(b)

Fig. 7. Parameter sweep for (a) thphy and (b) thsp in the physiological and
speech monomodal subsystems, respectively.

began to diverge from 0.50 onward for the speech subsystem.
Therefore, thsp was fixed to this value, obtaining 54.07% and
57.82% for the F1-score and accuracy, respectively. Note that
the accuracy could be increased by choosing a higher thsp.

Once thphy and thsp were fixed, we studied the aver-
age performance prediction over the 42 testing groups for
the different architecture configurations, as shown in Fig. 8.
The physiological monomodal subsystem achieved the highest
accuracy of 64.63%, surpassing even the fusion schemes. For
the F1-score metric, this subsystem also provided the second
highest rate of 66.67%. This behavior could be related first,
to the bias introduced toward detecting the positive class with
the misclassification cost of the classifier and second, with
the parameter sweep of thphy. The speech monomodal subsys-
tem provided significantly lower metrics than the physiological
subsystem. This fact could be related to the limited number
of samples available to train the neural network and, possibly,
some fading of the emotion felt when the samples were taken.
This situation caused Bindi 1.0 to provide the lowest metrics
since the final system response relies on the speech subsystem.
Bindi 2.0a and Bindi 2.0b both provided similar accuracies
close to those of the physiological subsystem in most cases.
However, Bindi 2.0b achieved the highest F1-score in all

cases, especially with the logical OR data fusion. This latter
strategy provided the highest F1-score of 67.59%, although the
accuracy was limited. This performance of the F1-score could
be related to the positive bias contributed by the physiological
subsystem due to the lower thphy chosen, which introduced
a conservative bias toward not missing TPs at the cost of
increasing FPs. However, as for the other architectures with
fusion strategies, the speech subsystem may have been slightly
deteriorating the system performance in terms of the F1-score
and accuracy but preventing Bindi 2.0a andBindi 2.0b from
producing too many FPs. Moreover, auditory information was
expected to play an important role in detecting silences, which
could mean that the user is in a state of shock caused by a GBV
situation, and provide acoustic information about the environ-
ment. The meaning and consequences of these indicators over
the real-life system performance should be thoroughly ana-
lyzed in the light of more robust metrics, such as in [88]. A
short preview of this analysis and discussion of the confusion
matrices obtained for each configuration can be found in the
Appendix.

To elaborate on the results shown in Fig. 8, Table II presents
detailed results for the different configurations, including the
average standard deviation per volunteer tested. Low standard
deviation rates are good indicators of a better generalization
ability as long as the results are comparable. Note for example
that although Bindi 1.0 presented the lowest standard devia-
tion, which could be seen as a good generalization, its scores
were surpassed by most of the configurations, as previously
stated. Moreover, it can be observed that the standard deviation
values obtained are relatively high, especially for the F1-score.
The cause is shown in Fig. 9, where the F1-score and accuracy
are provided for each of the 42 tests and monomodal subsys-
tems. It can be noted that some volunteers had an F1-score of
zero for the speech subsystem. This situation occurs because
the F1-score depends on the TPs detected and there were no
positive predictions for some users.

B. Acoustic Information Analysis

This analysis aims to characterize the problem of GBV
detection from an acoustics perspective since the development
of an empirical description of the problem is important for
its automatic detection. Thus, the acoustic information sub-
system was applied to the audio signal of the audio-visual
stimuli in WEMAC to observe the acoustic scene of a violent
situation in the context of GBV. The results obtained appear
in Fig. 10, where the occurrences of the YAMNet labels in the
audio-visual stimuli of WEMAC are analyzed. This figure also
shows the YAMNet labels found in the fear audio-visual stim-
uli of WEMAC. Thus, some labels were exclusively found
in fear audio-visual stimuli, such as heartbeats, explosions,
and breathing, whereas other labels never appeared for fear,
such as tender music, lullabies, and crowds. There were also
intermediate cases in which labels appear for both types of
stimuli, such as spatial-contextualization labels (indoors or
outdoors related), animals, silence, and laughter. Therefore,
automatic classification of acoustic events seems to be promis-
ing as certain patterns can be deduced from extreme cases in
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Fig. 8. Average performance analysis predicting over the 42 testing groups for the different architecture configurations. (a) F1 score. (b) Accuracy score.
From left to right, the configurations are: physiological monomodal subsystem, the speech monomodal subsystem, Bindi 1.0, Bindi 2.0a with lowest entropy
data fusion, Bindi 2.0a with inverse entropy weighting data fusion, Bindi 2.0b with lowest entropy data fusion, Bindi 2.0b with inverse entropy weighting data
fusion, and Bindi 2.0b with logical OR data fusion. Note that Bindi 2.0a was not combined with logical OR data fusion because it is equivalent to Bindi 1.0.

TABLE II
AVERAGE PERFORMANCE ANALYSIS PREDICTING OVER THE 42 TESTING GROUPS. MEAN AND STANDARD DEVIATIONS (STD)

(a) (b)

Fig. 9. Individual performance analysis for the two monomodal subsystems. (a) F1 score. (b) Accuracy.

which labels exclusively appear for one of the two types of
audio-visual stimuli. It must be noted that YAMNet labels are
very general themselves, i.e., they can appear to be related to
many circumstances and scenes. Thus, they must be analyzed
as a set, which is a feasible way to infer some qualities of the
context of a particular scene, e.g., violence.

From this analysis, we can conclude that the information
extracted from acoustic events can be very beneficial to

disambiguate potential GBV situations detected automatically
in Bindi with the rest of the sensors. The surrounding sound
events of a scene can help infer its context, which is critical to
determine whether the scene is violent or not. Thus, we expect
the acoustic information subsystem to play an important role
in the evaluation of data sets in the UC3M4Safety database,
where volunteers are performing everyday activities out of the
lab setting currently being explored.



MIRANDA CALERO et al.: BINDI: AFFECTIVE INTERNET OF THINGS TO COMBAT GENDER-BASED VIOLENCE 21187

Fig. 10. Occurrences in absolute numbers of YAMNet labels in fear versus all audio-visual stimulus in WEMAC.

VII. BINDI POWER CONSUMPTION

Power consumption management is a requirement for the
design of a wearable system. In Bindi, an accurate mea-
sure of the state of the battery charge and autonomy of the
two wearable devices is essential to ensure that the system
works when needed. As commented on Section III-A, the two
wearable edge devices integrate a battery charge monitor that
provides information about power consumption during oper-
ation. Thus, the end user can be informed about the battery
state to allow for the planification of the charge. This mon-
itoring is performed by the Maxim Integrated MAX17055,
which implements the Maxim Model Gauge m5 EZm algo-
rithm, combining a coulomb counter with a voltage-based
method.

This section provides a quantitative current consumption
analysis for the Pendant and Bracelet, which will later be
linked to the architectures discussed along with the work.
This analysis was performed by measuring the most energy-
demanding actions through the monitoring part described
previously. Thus, in the Bracelet, the electric current con-
sumed by acquiring data through each physiological sensor
was measured separately. In the Pendant, the electric current
consumed by acquiring data using the microphone was mea-
sured. Moreover, the power consumption incurred by making
use of the buzzer at soft, medium, and strong intensities was
also measured for both devices. Thus, we chose to measure
the power consumption due to sensor data communication
and acquisition, which are essential for the system and are
intrinsically related to the specific hardware design of the
devices.

The results obtained in the consumption analysis appear in
Figs. 11 and 12 for the Pendant and the Bracelet, respec-
tively. Analyzing the results obtained, the vibration modes
in both devices were the most current-consuming actions.
The higher the vibration produced, the higher the current
required, as expected. However, the buzzer’s impact on the
autonomy was reduced because it was activated for a short

Fig. 11. Average current consumption in the Pendant.

Fig. 12. Average current consumption in the Bracelet.

time in situations identified as GBV, meaning that its acti-
vation will usually be sporadic. In the Pendant, the current
required by the microphone produced a small increment
compared to the idle state. In the Bracelet, the temper-
ature and GSR sensors also produced a small increment
from the idle state, even less than the microphone required.
However, the HR sensor had a higher impact than the other
sensors.

Due to the low power consumption in the idle state, the
Pendant’s battery life is approximately 38 h using a 140-mAh
battery, while the Bracelet needs a 400 mAh battery to last
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the same amount of time. Note that these calculations are
based on no-alarm situations and are independent of the system
architecture. Related to the power consumption comparison
between the architectures discussed in this article, the main
difference is the existence, or not, of a prealarm. This fact
affects the microphone directly since it is working all the time
inBindi 2.0b, while in Bindi 1.0 and Bindi 2.0a, it is only
activated when a prealarm occurs. Therefore, the Pendant bat-
tery life has been reduced to approximately 30 h in theBindi
2.0b architecture. Despite that, the Bracelet is still the most
power-demanding device due to the current consumption of
its sensors.

VIII. DISCUSSION

Regarding the usual IoT layer architecture (edge, fog, and
cloud) considered in Bindi, a relevant system design question
concerns which part of the system should be implemented in
each of the layers.

First, the cloud computing layer is intended to collect and
process great amounts of data without limitations regarding
computing resources, energy demand, or response times [89].
This definition fits the needs of the centralized computing
services of Bindi, which are therefore placed in the cloud
layer to manage potential criminal evidence and historical
information for victims’ long-term monitoring.

Second, edge computing takes place in the IoT nodes that
capture data in the edge of the network. These devices are con-
strained by their computing and energy capabilities because,
in most cases, they are powered by batteries or situated in haz-
ardous environments [90]. This definition fits with the devices
by which physiological and auditory data are captured over
time in Bindi, i.e., a bracelet and a pendant.

Finally, the fog computing layer follows a concept similar
to that of the edge computing layer. However, fog devices are
less constrained in computing and energy capabilities while
still remaining close to the data origin [91]. According to
this description, Bindi’s smartphone can be considered a fog
device because it does not capture data but is close to the
data origin, and both the computing and energy capabilities
are less constrained than the ones in the edge devices (the
bracelet and the pendant). Some authors assert that the fog
does not exist, and then implement the fog layer function-
alities described before, inside the edge layer [92]. Under
this focus, it is still possible to structure devices in dif-
ferent layers inside the edge. From this point of view, the
smartphone would be in an upper layer inside the edge,
whereas the bracelet and the pendant would constitute the
bottom layer. For further discussion about and review of
the edge, fog, and cloud layers, the readers are referred
to [9] and [93].

The proposed data fusion techniques in this work achieved
a maximum of up to 63.61% average accuracy for a subject-
independent fear recognition use case. This result was obtained
using multimodal speech and physiological signals and the
lowest entropy fusion strategy approach. The obtained aver-
age accuracy fell within the range of accuracy rates achieved
by similar works presented in Section II and outperformed

the system proposed in [64], which considered the same
multimodal sources of information. It should be noted that
as a differentiating feature of our system, we make use of
noninvasive signal monitoring, rather than EEG headsets or
face detection sensors [60], [61]. Additionally, the number of
users considered (i.e., 42) provides more variability in the data
and, therefore, the model more robust.

It is worth highlighting that the configurations described
here for fear detection through physiological and speech data
and the identification of threatening acoustic events are just
possible ways to characterize the situations and contexts in
which Bindi users could be involved. These are meant as ini-
tial baselines for further developments and have allowed for
the identification of important challenges. To start, finding a
suitable tradeoff between TPs and TNs and FPs and FNs is cru-
cial since the cost of missing a true need for help is appalling,
but we also need to avoid interfering with the everyday life
of GBVVs and saturating the protection services with false
alarms.

Thus, in this work, we tried to reduce FNs as much as
possible, while FPs were maintained at an adequate rate.
To this end, we considered strategies based on misclassi-
fication costs and threshold parameter setting. Specifically,
we fixed thphy in the physiological subsystem to obtain a
higher outcome of positive predictions with this system so
that, in a later stage, the speech (in Bindi 1.0) and data fusion
strategies (in Bindi 2.0a andBindi 2.0b) would help in cor-
recting the bias while trying to maintain the TP prediction.
During this experimentation, the current speech monomodal
system provided lower performance rates than expected. A
possible explanation for this behavior could be the tem-
poral misalignment of the physiological and speech data
in WEMAC. The vanishing of the emotion elicited by the
time the voice sample is collected could be behind this
decrease in performance. Moreover, only classical process-
ing and classification techniques have been used as a baseline
for future exploration with this novel data set. A similar sit-
uation applies to the fusion strategies, conceived to check
the reliability of the prealarms triggered by the physiolog-
ical model and acting as modulators to lower the FP class
prediction rate.

Several problems arise when the goal of a system is to
work with real-life data. First, the difficulty of finding real-
istic data, and second, the low confidence on the architectures
developed if the data used are acted or synthetic. This situa-
tion leads to the need to generate databases with real elicited
emotions, which is highly challenging and time consuming.
Above all, working with strong negative emotion elicitation,
such as that evoked in WEMAC for fear detection in women
in a laboratory environment, can lead to ethical issues. Thus,
many resources must be devoted to safeguarding the wel-
fare of the volunteers participating. This particular problem
is magnified when the target group of volunteers comprises
women who have suffered GBV. This is because the fail-
ures of the system have critical consequences for them. For
this reason, the following data set currently being collected
within the UC3M4Safety database comprises only GBVV
volunteers. Although the investment of resources to provide
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safety and comfortability during the recording of the database
is considerable, we are totally committed to the volunteers’
well being, providing constant medical assistance as the
probability of triggering their posttraumatic stress disorder is
very high.

Regarding future work, this study opens the door for fur-
ther research in many directions. For example, the use of
recurrent neural networks to exploit the temporal context of
signals, the analysis of other fusion alternatives, or the evalu-
ation of alternative score metrics, such as mutual information
or area under the curve, could be used to continue finding
a proper balance between false alarms and miss probability.
Additionally, adding data acquired from more volunteers in
laboratory conditions would add robustness to the models.
Likewise, including GBVV data would help to better under-
stand the GBVV activation mechanisms under fear-related
situations. Finally, it should be noted that the development
of subject-adaptation techniques is critical for our GBV use
case.

IX. CONCLUSION

This article presented Bindi, an end-to-end autonomous
multimodal system that leverages affective IoT throughout
auditory and physiological commercial off-the-shelf smart
sensors, hierarchical multisensorial signal fusion, and secure
server architecture, with the final objective of providing safety
for and ensuring the well being of GBVVs. Specifically, this
article proposed three system architectures for Bindi, consist-
ing of specific arrangements of the data processing subsystems
developed, i.e., physiological, speech, and data fusion subsys-
tems, plus a novel acoustic information subsystem to extract
acoustic information from the acoustic scene in the near future
of Bindi. These architectures were validated and evaluated
using the WEMAC data set belonging to the UC3M4Safety
database. Note that the data set was specifically built to detect
fear in women in a laboratory environment. The reported
results achieved an overall fear classification accuracy of
63.61% for a subject-independent approach. The obtained met-
rics are in line with similar multimodal-based state-of-the-art
systems, such as the ones reviewed in Section II [60]–[63].
Moreover, our system outperforms the only system in the
literature dealing with the same bimodal combination as in
this work [64]. Their results reported an overall accuracy
of up to 55.00% for a subject-independent strategy using a
feature fusion when targeting a valence and arousal binary
classification.

This experimentation serves as an initial multimodal
approach toward working with real elicited fear in women and
its proper processing. Finally, a power consumption analysis
was also presented for the sensors in the Bindi edge wearable
devices since its critical application scope. Bindi is a very
complex system that requires a thorough balance of many
aspects, such as battery consumption, computational power,
resource usage, and algorithm performance. We aimed to point
out that the ultimate goal of this work is to ignite the commu-
nity’s interest in developing solutions to the very challenging
problem of GBV.

(a) (b)

Fig. 13. Confusion matrices for (a) physiological and (b) speech monomodal
systems.

(a) (b)

(c)

Fig. 14. Data fusion confusion matrices for Bindi 2.0a and Bindi 1.0.
(a) Bindi 2.0a. Lowest entropy fusion confusion matrix. (b) Bindi 2.0a. Inverse
entropy weighting fusion confusion matrix. (c) Bindi 1.0 confusion matrix.

APPENDIX

CONFUSION MATRICES FOR THE MONOMODAL

AND FUSION SYSTEMS

Figs. 13–15 show the confusion matrices for the arrange-
ments evaluated. In these figures, the rows correspond to the
predicted class, and the columns correspond to the true class
or ground truth. From left to right and from top to bottom,
each confusion matrix shows the TN, FP, and false omission
rates. The next row shows the FN, TP, and precision rates. The
last row shows the FN rate, specificity, and overall accuracy.

The physiological subsystem confusion matrix reflects its
tendency to predict the positive class at the cost of missing
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(a) (b)

(c)

Fig. 15. Data fusion confusion matrices forBindi 2.0b. (a) Lowest entropy
fusion confusion matrix. (b) Inverse entropy weighting fusion confusion
matrix. (c) Logical OR function fusion confusion matrix.

TNs. Meanwhile, the speech monomodal subsystem achieves
lower overall rates than the others but achieves a higher TN
rate. Finding a balance between these two behaviors is very
important in our application, where missing alerts can be
dramatic for the users, but triggering too many false alerts
could overwhelm the institutions in charge of protection. Thus,
the fact that the speech subsystem can hold back the FPs
triggered by the physiological monomodal system looks very
promising. In this line of work, the fusion strategies whose
confusion matrices are shown in Figs. 14(a) and (b) and 15(a)
and (b) differ only in a couple of instances but are more bal-
anced between TNs and TPs. However, the strategy shown in
Fig. 15(c) reflects much higher FP and TP rates than the oth-
ers but misses more TNs than any other, and Fig. 14(c) shows
how the hierarchical decision making of Bindi 1.0 performs
poorly, proving that fusion is indeed essential.
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