20444

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

An Ontology Integrating the Open Standards of
City Models and Internet of Things for
Smart-City Applications

Chih-Yuan Huang

Abstract—Smart city applications integrate the human, phys-
ical, and digital systems in a built environment with Internet
of Things (IoT) resources, city models, and domain models.
However, existing methods for the integration are suitable for
individual applications and lack interoperability among applica-
tion modules. This study analyzed existing integration strategies
and developed an ontology for integrating the data modeling
standards of the Open Geospatial Consortium (OGC) CityGML,
IndoorGML, and SensorThings API. To cope with the broad
definition of “things” in the IoT, the proposed ontology supports
multiple views of things, including the a-building-as-a-thing, a-
room-as-a-thing, an-opening-as-a-thing, and a-device-as-a-thing
views. Thus, the proposed ontology relates information from these
three standards and supports semantic queries. We demonstrated
the proposed solution in smart home, smart security, smart health
care, and fire evacuation systems. Overall, the proposed solution
can facilitate the integration of standard-based IoT resources and
city models to support smart city applications.

Index Terms—City models, Internet of Things (IoT), ontology,
open standard, smart city.

I. INTRODUCTION
A. Background

URRENTLY, over 50% of people worldwide live in
C urban areas. Increases in the urban population have
placed considerable pressure on the infrastructure and environ-
ment of cities. Technological advances have led to increasing
interest in smart cities in a variety of domains [1], [2]. Spatial
information is a requirement for smart city services [3], and
technologies for managing and processing spatial information
are crucial components of smart city infrastructure [4].
Tasking and sensing capabilities supported by the Internet of
Things (IoT) are crucial aspects of smart city infrastructure for
capturing city dynamics and performing real-time actions [5].

Manuscript received 26 September 2021; revised 9 December 2021,
7 March 2022, and 15 April 2022; accepted 13 May 2022. Date of
publication 30 May 2022; date of current version 7 October 2022.
This work was supported in part by the Ministry of Interior, Taiwan,
under Grant 110CCLO31C, and in part by the Ministry of Science
and Technology, Taiwan under Grant 107-2119-M-008-022 and Grant
108-2621-M-008-004-MY?2. (Corresponding author: Chih-Yuan Huang.)

Chih-Yuan Huang and Fuan Tsai are with the Center for Space and Remote
Sensing Research, National Central University, Taoyuan 320, Taiwan (e-mail:
cyhuang @csrsr.ncu.edu.tw; ftsai@csrsr.ncu.edu.tw).

Yao-Hsin Chiang was with the Department of Civil Engineering, National
Central University, Taoyuan 320, Taiwan. He is now with the Global Customer
Service, MOXA Inc, Taipei 242032, Taiwan (e-mail: chsimon4 @ gmail.com).

Digital Object Identifier 10.1109/JI0T.2022.3178903

, Yao-Hsin Chiang™, and Fuan Tsai, Member, IEEE

IoT resources and spatial information are generally for-
mulated as independent data sets or services through
the use of various protocol standards or data models.
Open standards provide interoperable solutions for describ-
ing and sharing IoT resources and spatial information.
However, insufficient research has examined the link-
ages between these standards. Thus, the current study
focused on the integration of IoT resources and spatial
information.

A geospatial data set usually describes the location (i.e.,
geometries with 2-D or 3-D coordinates), attribute (i.e., tex-
tual, numerical, categorical, and ordinal characteristics), and
temporal (i.e., creation time, sampling time, or valid time)
information of features [7]. Geospatial features in a smart
city should follow clearly defined semantic classes to express
their inherited attributes, constraints, and functions [8], [9].
For instance, city features, such as buildings, roads, rooms,
trees, and bodies of water, should be interpreted and ana-
lyzed differently according to their semantic meanings.
Therefore, in recent years, standards have been introduced
for defining semantic-rich city characteristics—for example,
the Open Geospatial Consortium (OGC) CityGML [10], OGC
IndoorGML [11], LandXML [12], and building information
modeling (BIM) [13]. From following these open standards,
city features can be represented and utilized in an interoperable
manner.

On the other hand, the IoT provides access to the dynamic
information of a city through sensors and actuators. According
to the International Telecommunication Union (ITU), the
IoT is “a global infrastructure for the information society,
enabling advanced services by interconnecting (physical and
virtual) things based on existing and evolving interoperable
information and communication technologies” [14]. The IoT
has been used in various fields, such as in smart homes [15],
e-health [16], intelligent transport systems [17], and smart
factories [18].

The main challenge in [oT development is the heterogeneity
issue [19], [20]. Specifically, existing IoT systems are usually
produced according to different communication protocols and
proprietary data models by different manufacturers. Although
information can be transmitted in each integrated system,
information usually cannot be shared directly across differ-
ent proprietary systems. This heterogeneity issue is also called
the IoT silos, which seriously hinder the development of the
IoT [21].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3100-021X
https://orcid.org/0000-0001-9394-8615

HUANG et al.: ONTOLOGY INTEGRATING OPEN STANDARDS OF CITY MODELS AND INTERNET OF THINGS

For example, an e-health service can access data from house
environment sensors, human wearable devices, home automa-
tion appliances, and medical instruments to provide medical
services on the basis of sensor observations. However, because
these devices are produced by different manufacturers, the
data from different devices follow different data models and
are released through different protocols. Thus, data are essen-
tially locked in individual closed systems, which are difficult
to access and integrate with third-party applications [16]. To
address the IoT heterogeneity problem, open standards can
be followed for unifying IoT data models and communication
protocols so that different IoT systems can easily exchange
data and cooperate with each other.

To be specific, this study selected OGC SensorThings
API [26] as well as CityGML [10] and IndoorGML [11]
because they define semantic-rich and comprehensive data
models for IoT resources and spatial information. However,
applications usually require a customized design for integrat-
ing spatial information and IoT resources [6], which would
result in redundant development and misunderstanding on the
data sets. Therefore, this research aims on proposing a uni-
fied framework linking IoT resources and city models by
their relationships that consequently supports various appli-
cations. To avoid possible misunderstanding, please note that
the proposed idea can be applied to other suitable IoT and
geospatial feature standards, such as the World Wide Web
Consortium (W3C) Web of Things (WoT) [43], European
Telecommunications Standards Institute (ETSI) smart appli-
cations reference (SAREF), ontology and extensions [44],
and BIM.

B. Objective

In general, this research focused on the integration of IoT
resources and city models for supporting smart city applica-
tions in an interoperable manner. Since open standards can
enable the achievement of interoperability [25], [oT resources
and city models should be integrated according to open
standards.

This study adopted the semantic Web technology [27] to
connect the classes and entities of city models and IoT
resources [28] on the basis of an ontology [29]. The semantic
Web can flexibly detail different relationships while retain-
ing data source independence. Therefore, the present study
developed an integration ontology to define the relationships
among SensorThings API, IndoorGML, and CityGML for
integrating IoT resources and city models. In particular, this
study focused on the semantic integration of objects in indoor
spaces, where geometric attributes (e.g., topological relation-
ships) are not included. As displayed in Fig. 1, the proposed
ontology integrates data from different resources to support
various smart city applications. Furthermore, because “things”
in the IoT have a flexible definition, ontologies are designed
for various views of things to support different use cases.

The proposed ontology can be used to express the rela-
tionship between IoT resources and city models in resource
description framework (RDF) format [30], enabling conve-
nient querying through SPARQL Protocol and RDF Query

20445

5a

oocaron] 3 808 63§ B
NN S A

” Integration
Integration Ontology \
s [sewemse
tyGML IndoorGML

Fig. 1. Overall framework of the proposed solution.

Language (SPARQL) queries for supporting various applica-
tions. To examine the suitability of the proposed ontology, this
research simulated different smart city applications.

In general, the contributions of this research are listed.

1) This research brings attention to the need of the linking
standard-based IoT and city model and demonstrated it
with different use cases.

2) Instead of creating proprietary classes for different use
cases, this research follows only the classes from the
chosen standards, which allows better interoperability.

3) As this research identified the relationships between IoT
and city model classes based on their general nature
instead of specific use cases or scenarios, the proposed
solution has a broader applicability.

4) Although this research chose a certain integration strat-
egy, the identification and analysis of different strategies
could be helpful for people deciding the strategy for their
systems/applications.

The following details the organization of the remaining sec-
tions of this article. Section II presents a review of studies
on city models and IoT open standards and describes strate-
gies for integrating these models and standards. Section III
describes the proposed ontology for integrating SensorThings
API, IndoorGML, and CityGML. Section IV provides the
experimental results for the SPARQL queries used in the sim-
ulated smart city applications. Finally, Section V presents the
research conclusions and suggestions for further investigations.

II. RELATED WORK

Integrating IoT resources and city models is essential for
smart city applications. This section presents a literature
review on the integration of IoT resources and city models
and introduces the open standards of city models and IoT
resources. Furthermore, it describes strategies for integrating
open standards.

A. Integrating 3-D Models and IoT Resources for Smart City

Cities should integrate cross-disciplinary components to
become smart cities [31]. Numerous researchers have exam-
ined the integration of IoT sensors and 3-D models. For
instance, Wang et al. [23] integrated indoor route network
information and indoor sensor information to perform a
dynamic risk assessment for planning immediate evacuation
routes. Wang et al. [22] integrated an OGC sensor obser-
vation service (SOS) Web service and a BIM house model

20446

TABLE I
COMPARISON OF DIFFERENT INTEGRATION STRATEGIES

STRATEGY ADVANTAGES DISADVANTAGES
1. Large data size
Embedding Atomic 2. Incpnvemencg m
updating dynamic
information
1. Lightweight
External 2 Referenced resource is .
referencing independent ' Data are not self-contained
3. Can handle dynamic
changes

1. All resources are

External independent M'fly be upable to find
joining 2. Fle?cible many-to-many suitable linkages between
mappings resources
3. Can handle dynamic

changes

in the application layer of a three-layer network architecture
(which contained an application layer, a data service layer,
and a data repository layer) for retrieving sensor observations
from each room of the house. Chaturvedi et al. [32] inte-
grated SOS services, CityGML, and historical solar energy
observations to assess the solar radiation of building roofs and
surfaces. In addition, the Dynamizer module proposed by [32]
is being included in the CityGML 3.0 standard. Zhu et al. [24]
integrated a spatiotemporal data series on air quality with
a CityGML data set and an SOS service for visualizing air
quality data with a city model.

Howeyver, the aforementioned studies did not consider inter-
operable standards and integrate resources in a customized
manner for different applications. No study has provided a
general solution for integrating IoT standards and city models.

B. Integration Strategies

Most relevant studies have integrated city models and IoT
resources at the application level without following any open
standards. Only a few studies have adopted open standard-
based data sets. However, the integration methods of these
studies are usually customized according to the target applica-
tions. Although data can be linked using the aforementioned
methods, the methods are insufficiently general for adoption
in other applications. Before designing a general solution
for integrating city models and IoT resources, we analyzed
and categorized the integration strategies adopted in previous
studies.

From a literature review, three types of integration strate-
gies were identified (Table I): the 1) embedding; 2) external
referencing; and 3) external joining strategies. These strategies
are described as follows.

1) In the embedding strategy, one resource is embedded
directly into another resource; for example, a time series
of sensor observations are embedded into city model
data, such as the CityGML 3.0 Dynamizer [32]. In this
case, all the data are atomic. Nevertheless, the data
size is large and inconvenient for updating dynamic
information.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

Semantic
FC XML e Torel Infrastructure —
unnel |Linkage OWL| = ity

instance l RDF CT T [CiyGMLROF $ Lnstance
£ s i —a—0
2 NP oo ; :

s o— | |Infrastructure e 3
§§< """ o+ o] |inkageROF— ", , o ‘|- DEE

Fig. 2. Example of an external joining strategy involving the use of an RDF
(with permission from ASCE) [34].

2) In the external referencing strategy, the relative or abso-
lute path in one resource is used to retrieve another
resource. For example, Kim et al. [33] derived the
corresponding IndoorGML data set from a CityGML
data set and then used a URI to back reference the
IndoorGML data to the CityGML data. The external
referencing strategy is more lightweight than the embed-
ding strategy because every piece of information need
not be embedded into one resource in the external ref-
erencing strategy. Moreover, dynamic information can
be obtained through reference links in the external ref-
erencing strategy, such as the design in the OGC 3-D
IoT platform for smart cities pilot [42]. This strategy
also allows the referenced resources to be independent;
thus, the referenced resources can be created and main-
tained as a single data set because they do not depend
on any other resource. However, one minor drawback
of the aforementioned strategy is that the data are not
self-contained and may require connections to retrieve
all the pieces of information.

3) In the external joining strategy, external data are cre-
ated to describe and record the relationships between
two resources. For example, Vilgertshofer et al. [34]
defined a semantic linkage ontology and an RDF to inte-
grate CityGML and industry foundation classes (IFC)
data, as displayed in Fig. 2. To describe the relationships
between resources, the URIs of specific IFC elements
are mapped to the corresponding CityGML elements.
This strategy allows all resources to be independent.
The mapping relationships of these resources are rel-
atively easy to update. The aforementioned strategy
also enables the flexible processing of many-to-many
mappings. However, one drawback of the aforemen-
tioned strategy is that it may be unable to find suitable
linkages between resources because they are created
independently.

External joining is sometimes achieved by semantic-
based approaches, and some studies have performed
cross-domain integration based on semantic frameworks.
For example, Kuo and Hong [35] constructed an interop-
erable cross-domain semantic and geospatial framework
for automatically detecting changed objects and regions.
Peng and Goswami [36] proposed a methodology in which an
ontology is used to integrate home environment data (e.g.,
humidity and temperature) and health data (e.g., the blood
glucose level) from heterogeneous services and devices for
health management applications.

HUANG et al.: ONTOLOGY INTEGRATING OPEN STANDARDS OF CITY MODELS AND INTERNET OF THINGS

TABLE 11
COMPARISON OF RESOURCE INTEGRATION SOLUTIONS
ON THE BASIS OF “EEEE” CRITERIA [37]

INTEGRATION EFFECTIV EXTENSIBI FLEXIBILI
EFFORT

METHODS ENESS LITY TY
New standards case by case by case by case by
and models case case case case
Conversion,
transla.t on and medium high high medium
extension of
existing standards
Semantic web
technologies high high high medium
Services-based . .
methods high low high low
Application case by low low Low

focused methods case

Liu et al. [37] reviewed existing resource integration solu-
tions, and their findings are presented in Table II. The
aforementioned authors found that semantic Web technolo-
gies are the most suitable technologies for resource integration.
Thus, the semantic-based approach has the potential to meet
the requirements for storing, sharing, and connecting hetero-
geneous data sets.

In summary, in terms of development, extensibility, and
maintenance, we believe that the external joining strategy and
semantic-based approach are the most suitable methods for
achieving comprehensive and extensible integration of city
models and IoT open standards. This research aimed to inte-
grate cross-domain resources from CityGML, IndoorGML,
and SensorThings API; accordingly, an integration ontol-
ogy that maps these resources is proposed in this article.
In the proposed ontology, users can effectively query all
the information across the aforementioned open standard-
based resources to establish extensible and complete cyber
infrastructure for smart cities.

III. METHODOLOGY

This study integrated the open standards of OGC
SensorThings API, IndoorGML, and CityGML and utilized
the advantages of these standards to construct a smart city
framework. This section describes the aforementioned open
standards and the proposed resource integration method.

To represent data models precisely, namespaces are used
to represent the resources of CityGML (i.e., citygml),
IndoorGML (i.e., indoorgml), and SensorThings API (i.e., sta)
classes and entities. Moreover, relationships (i.e., predicates)
are represented in italic font.

A. OGC CityGML

OGC CityGML is a global open standard for city model
information that represents the visual and geometric aspects
of 3-D models of cities. The CityGML data model is suffi-
ciently comprehensive and semantic rich for describing various
thematic modules (e.g., bridges, tunnels, and buildings) and

20447

lod4Solid

interiorRoom

Installation
lod4Solid

boundedBy

llod4Solid

s3 : gml:Solid

lod4MultiSurface opening

opening

ib : IntBuildingInstallation
function = column

su3 : gml.Surface

loddGeometry

lod4ImplicitRepresentation

(b)

Fig. 3. Illustration of a CityGML LoD4 building: (a) spatial representa-
tion and (b) CityGML feature structure represented in the form of a UML
diagram [38].

features (e.g., roofs, walls, windows, doors, and rooms) of
a city. Moreover, five levels of detail (LoDs; from LoDO to
LoD4) are defined in the aforementioned model for various
applications. Many city features, including the classes of build-
ing objects and relationships between each class, are defined
in Fig. 3. As per the scope of this research, we focused on the
citygml:Building class and its related classes. In par-
ticular, we examined the relationships between the classes of
SensorThings API, IndoorGML, and CityGML LoD4.

The UML of CityGML includes the classes related to
the citygml:Building class at LoD4 (e.g., citygml:Room,
citygml:IntBuildingInstallation, citygml:
BoundarySarface, citygml:BuildingFurniture,
and citygml:Opening). The aforementioned classes
are provided with geometric features to represent the
geospatial information of objects, such as solid, multicurve,
and multisurface. The UML diagram of CityGML also
depicts the relationship between each class at LoD4 as
well as the class’s semantic information. For example,
citygml:Building has interiorRoom citygml:
Room, citygml:BuildingFurniture, has inte-
riorFuniture of citygml:Room, citygml:Room is
boundedBy citygml:BoundarySurface, citygml:
Room has roomlinstallation citygml:IntBuilding
Installation, citygml:BoundarySurface has
opening citygml : Opening. In addition, citygml :Door
and citygml:Window inherit the class of citygml:
Opening. According to the relationships proposed by
CityGML, a data model with rich semantic relations was
used in this research.

This research focused on the indoor space of buildings,
including the objects inside the indoor space. Fig. 3 depicts

20448

a CityGML LoD4 building based on the definition of
CityGML. Each class of CityGML is described in the fol-
lowing text.

1) citygml:Building: This class contains buildings
composed of structural segments.

2) citygml:Room: This class contains semantic objects
that can be used to model the free space inside a build-
ing. Each semantic object should be associated with only
one building part or building.

3) citygml :BoundarySurface: This class contains
many thematic subclasses. The thematic features can be
used to structure interior and exterior building instal-
lations, a building’s exterior, and the visible surfaces
of rooms.

4) citygml:Opening: This class contains objects that
can be used for semantically describing openings, such
as windows or doors, in interior or exterior boundary
surfaces, such as roofs and walls.

5) citygml:Window: This class is used to model
hatches between adjacent rooms or the windows in a
building’s exterior. The main difference between the
citygml:Door and citygml:Window classes in
normal cases is that the objects of the citygml:
Window class are not specifically designed for the
transit of vehicles or people.

6) citygml :Door : This class is used to model the doors
located between rooms or in a building’s exterior. The
objects of this class can be utilized by people to leave
or enter a room or building.

7) citygml:BuildingFurniture: The citygml:
Room class may include objects from the citygml:
BuildingFurniture and citygml:IntBuild-
ingInstallation classes. The citygml :Build-
ingFurniture class contains movable objects in a
room, including furniture.

8) citygml:IntBuildingInstallation: This
class contains objects that are located inside a building
and offer a special semantic meaning or function. In
contrast to the objects of the citygml:Building
Furniture class, the objects of the citygml:
IntBuildingInstallation class are unmovable
and inseparable from the building’s structure. Objects in
the citygml:IntBuildingInstallation class
include railings, interior stairs, pipes, and radiators. The
objects in this class are associated with objects from
the citygml :Building or citygml :Room class.

B. OGC IndoorGML

CityGML focuses on the features of building compo-
nents, including ceilings, roofs, walls, and floors, whereas
IndoorGML [11] represents the indoor routing network
between spaces (i.e., cells). In the IndoorGML data model,
a cell is the basic space unit. Thus, IndoorGML offers a
basic framework for representing the network, geometry, and
semantics of cells within indoor spaces [39]. Indoor navigation
applications, which are crucial smart city applications, can be
realized with IndoorGML. Fig. 4 displays an example of an

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

Fig. 4. Example of a topographic layer of IndoorGML [33].

IndoorGML data set. In this figure, nodes and edges are used
to form an indoor route network.

The UML diagram of the IndoorGML core module illus-
trates the relationships between individual classes as well as
their semantic information. We used the navigation function-
ality based on an IndoorGML route network, which includes
the indoorgml:State and indoorgml:Transition
classes.

The indoorgml:State class represents nodes, such
as the doors, corridors, and rooms within a building. The
objects in the indoorgml:State class are represented
geometrically as points in IndoorGML. The entities of
the indoorgml:Transition class are edges that repre-
sent the connectivity or adjacency relationship between two
indoorgml : State entities, such as doors, stairs, and ele-
vators. The weight attribute of indoorgml : Transition
indicates the status of connectivity. The entities of the
indoorgml:Transition class are represented as curved
primitive objects in the OGC Geography Markup Language.

The IndoorGML data model also includes the seman-
tic information between classes; that is, an indoorgml:
Transition entity connects two indoorgml:State
entities. Because this research focused on the indoor space
of buildings, rooms were regarded as indoorgml:State
entities and doors and stairs were regarded as indoorgml :
Transition entities.

C. OGC SensorThings API

OGC SensorThings API is an IoT open-standard Web ser-
vice. A comprehensive model for [oT resources that contains
numerous classes and attributes, including tasking and sens-
ing capabilities, is defined by SensorThings API. Currently, the
SensorThings API standard comprises two parts: part 1, which
is related to sensing capabilities (Fig. 5), and part 2, which
is related to tasking capabilities (Fig. 6). Each class in the
SensorThings API standard is described in the following text.

HUANG et al.: ONTOLOGY INTEGRATING OPEN STANDARDS OF CITY MODELS AND INTERNET OF THINGS

ObservedProperty
Sensor +name: CharacterString
+definition: URI

+description: CharacterString

+name: CharacterString
+description:
+encodingType: ValueCode
+metadata: Any

1 [+ bsevedpropeny

1 | #sensor

0.+ |+datastreams
Datastream

Observation

+phenomenonTime: TM_Object
+resultTime: TM_Instant

+name:
0.+ | +description

+resultQuality: DQ_Element[0..]
+validTime: TM_Périod(0..1)
+parameters: NamedValue(0."

ype: ValueCode
0.+ |+unitotMeasurement: JSON_Object 1 o
GM_Envelope(0..1]
phenomenonTime: TM_Period(0..1]
+resultTime: TM_Period{0..1)

o..+| +observations

1

+thing

Thing

~description: ChavacterString 1 1 | steatureotinteres

+properties: JSON_Object(0..)

FeatureOfinterest

«CodeList»
ValueCode

0.+ historicall.ocations

HistoricalLocation

+name: CharacterString
+description: CharacterString
+encodingType: ValueCode
+eature: Any

0.5 T sthings

. +ime: T
0+ Licoion time: TM_Instant

Location 0.* shistoricalLocations
+name: CharacterString +location
+description: CharacterString
)

+encodingType: ValueCode
+location: Any

Fig. 5. Data model of OGC SensorThings API part 1 [26].

Actuator

Fig. 6. Data model of OGC SensorThings API part 2 [40].

1) sta:Thing: The entities of the sta:Thing class are
objects in the information domain (virtual things) or
physical domain (physical things) that can be identified
and integrated into communication networks [14].

2) sta:Location: The entities of this class record
the last known location of the entities of the
sta:Thing class.

3) sta:HistoricallLocation: The entities of this
class record the time period or time points of previous
locations of the entities of the sta:Thing class. For
example, if a “thing” is mobile, several entities of the
sta:Location class are linked to entities of the
sta:HistoricalLocation class.

4) sta:Datastream: This class comprises entities of
the sta:0Observation class that measure the same
entity of the sta:ObservedProperty class and are
produced by the same entity of the sta: Sensor class.
For instance, if an entity of the sta:Thing class
is capable of observing three properties, such as illu-
mination, relative humidity, and air temperature, then
this entity may correspond to three sta:Datastream
entities, each of which groups the sta:Observation
entities for one feature.

5) sta:Sensor: The entities of this class represent the
instruments used to monitor a phenomenon or property.

6) sta:0ObservedProperty: The entities of this
class represent the monitored properties, including
illumination, relative humidity, and air temperature.

20449

"@iot.id": 54772365,
"phenomenonTime" :
"result": 37,
"resultTime"
"@iot.selfLink
"Datastream":
"description":
"giot.id": 6049,
"PM2

"observedAre.
"type": "P ",
"coordinates": [

120.459,
23.121
1

\
"phenomenonTime" :
"resultTime": *
"@iot.selfLink"

Example query of SensorThings API.

7) sta:0Observation: The entities of this class rep-
resent the determined or measured value of a prop-
erty represented by an entity of the sta:0Observed
Property class that is measured by an entity of the
sta:Sensor class.

8) sta:FeatureOfInterest: This class comprises
the features corresponding to the entities of the sta:
Observation class.

9) sta:TaskingCapability: This class comprises

the controllable capabilities supported by entities of the

sta:Thing class.

sta:Task: This class contains user commands

for controlling entities of the sta:Tasking

Capability class. Device control should be

performed on the basis of the input values contained in

the sta:Task class.

sta:Actuator: This class contains metadata of the

instrument used for obtaining the entities of the sta:

TaskingCapability class.

SensorThings API hosts IoT resources in the RESTful Web
service style and JSON format. An example of a query result
is displayed in Fig. 7. An entity of the sta: Thing class con-
tains numerous attributes, including properties, a description,
and a name. SensorThings API contains the aforementioned
attributes as well as navigation links that connect related
entities.

Generally speaking, SensorThings API is a comprehensive
solution for an IoT Web service. A general and complete data
model is defined in the aforementioned standard for IoT task-
ing and sensing. Moreover, to enable users to query targeted
IoT resources, SensorThings API uses flexible query functions
and the RESTful Web service style.

On the basis of the semantic information obtained from the
SensorThings API data model, we constructed a lightweight
ontology of SensorThings API, called the STA-LITE! ontol-
ogy. The STA-LITE ontology describes semantic classes and
the relationships between them. For example, the sta: Thing

10)

11)

ISTA-LITE ontology: https://gitlab.com/gaialab.ncu/iot-and-city-model-
standard-integration/-/blob/main/STA-Lite.owl.

20450

SensorThings API
RDF

[4¢— STA-Lite OWL

CityGML RDF IndoorGML RDF

W

Integration
_— Linkage RDF

A

f f

CityGML IndoorGML-Lite
ontology OWL OWL

Integration
Ontology OWL

Fig. 8. Integration framework proposed in this article.

and sta:Datastream classes have a hasDatastream rela-
tionship. Moreover, the sta:Thing and sta:Tasking
Capability classes have a hasTaskingCapability relation-
ship.

D. Integration Strategy

This study adopted the semantic Web technology for inte-
grating the SensorThings API, IndoorGML, and CityGML
data models. The relationships between data from various
domains can be flexibly and effectively described with the
semantic Web technology.

“Things” can be defined differently according to the appli-
cation, which creates a unique challenge in integrating city
models and IoT resources. For example, the sta:Thing class
can contain entities, such as doors, rooms, corridors, win-
dows, appliances, and sensors. Therefore, different definitions
of “things” should be considered during the integration of IoT
resources and city models.

The semantic Web can express the relationships between
resources and can integrate resources by linking their URIs;
thus, independent data can be generated. An integration
ontology capable of defining the relationships among the
SensorThings API, IndoorGML, and CityGML data models
is crucial for integrating IoT resources and city models. By
developing such an integration ontology, data providers and
users can determine the relationships between [oT resources
and city models as well as perform cross-domain queries. In
this research, three semantic Web standards were followed:
ontology Web language (OWL), the RDF, and SPARQL.

The integration framework proposed in this study is shown
in Fig. 8. A comprehensive data model with high extensibility
and rich semantic information was used to individually record
data from different resources in the RDF format according to
their individual ontologies, such as the CityGML, IndoorGML-
Lite, and STA-Lite ontologies. The following section details
these ontologies. All the attributes and information of each
piece of data (e.g., name, geometry, and observations) were
completely recorded in an RDF file. The RDF describes rela-
tionships in the form of triples (i.e., subject—predicate—object).

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

According to the triples structure, the current study developed
an integration ontology that characterizes the relationships
between resources from the aforementioned three ontologies
(Fig. 8).

1) Properties of the Resources in the Integration Ontology
Framework: In the proposed integration ontology, the rela-
tionship between sta:Observation and sta:TaskingCapability
(i.e., observes and hosts, respectively) is described according
to the Semantic Sensor Network Ontology® published by the
W3C in 2017. W3C published another ontology called build-
ing topology ontology (bot) in 2019. The predicate of the bot
(i.e., containsElement) is applied to the relationship that a zone
or space (such as a room or building) contains an entity or
element (e.g., a device or node).

The CityGML ontology’> was developed by
Métral et al. [41]. We also constructed the indoorgml-
lite* ontology to describe the relationships between the
indoorgml:State and indoorgml:Transition
classes of IndoorGML (i.e., connects) as well as the
indoorgml:State and indoorgml:Multilayer
Garph classes of IndoorGML (i.e., interConnects). The
presented STA-LITE ontology describes the essential rela-
tionships between the classes of SensorThings API, such as
hasTaskingCapability, hasDatastream, hasObservation, and
hasObservedProperty.

In addition, we constructed suitable ontologies for defin-
ing relationships that are not described in existing ontologies,
which is represented with the prefix cgis.> The defined
relationships include isThing, isState, isTransition, isMultiLay-
erGraph, happensin, withinCellspaceOf, and enables. These
predicates are introduced in the following sections.

2) Multiple Definitions of Things in IoT: The relationships
between the classes of the SensorThings API, IndoorGML,
and CityGML data models can be expressed with the proposed
integration ontology. Depending on the application, different
views of sta:Thing entities should be considered, including the
a-device-as-a-thing, an-opening-as-a-thing, a-room-as-a-thing,
and a-building-as-a-thing views. In Figs. 9-12, CityGML,
IndoorGML, and SensorThings API classes are displayed in
blue, lavender, and yellow, respectively.

a) A-device-as-a-thing view: Fig. 9 illustrates the a-
device-as-a-thing view, in which the sta:Thing class
in SensorThings APl is mapped to the citygml:
BuildingFurniture class. A CityGML resource
can be directly linked with the sta:Thing class through
the isThing predicate if the resource directly corresponds
to an entity of the sta:Thing class. Additionally,
the proposed integration ontology supports the relation-
ships between a sta:Thing entity and a CityGML
feature (which hosts the sta:Thing feature), such
as citygml:BoundarySarface, citygml:Room,

2Semantic Sensor Network Ontology:https://www.w3.org/TR/vocab-ssn/#
SOSA3 Building Topology Ontology: https://w3c-lIbd-cg.github.io/bot/.

3CityGML ontology: http://cui.unige.ch/isi/onto//citygml2.0.owl.

4indoorgml—lite ontology: https://gitlab.com/gaialab.ncu/iot-and-city-model-
standard-integration/-/blob/main/IndoorGML-Lite.owl.

5cgis ontology: https://gitlab.com/gaialab.ncu/iot-and-city-model-standard-
integration/-/blob/main/cgis.owl.

HUANG et al.: ONTOLOGY INTEGRATING OPEN STANDARDS OF CITY MODELS AND INTERNET OF THINGS 20451
cgis:isThing
BuildingFurniture Observation
-BuildingFurniture_URI -result) —
-phenomenonTime
Tcitygml:interiorFumiture ¥
cgis:isState / bot:containsElement Room sosa:hosts Thing STA-Lite: hasObservatior|
citygml:roominstallation| "ROOM_URI sosachosts _L:;ge*URI cgis:withinCellspaceOf
S
j A
citygml:boundedBy
Boundar‘;Sarface STA-Lite:hasTaskingCapability) STA-Lite:hasDatastream
-BoundarySarface_URI
citygml:opening TaskingCapability Datastream
5 \ A 5 sosa:hosts -TaskingCapability URI -Datastream_URI
cgis:isState
C cgis:enables
R —
(1 sosa:hosts,
Transition
Window Door State
- -Transition_URI »| -State_URI [«
o e S -Transition_weight -Name
IndoorGML-Lite:connects STA-Lite:hasPbservedProperty
ation | Sosa:hosts) ObservedProperty

lation_URI cgis:isTransition -Name

-Description

Fig. 9. Integration ontology for the a-device-as-a-thing view.
Room cgis:isState / bot:containsElement
N
-Room_URI
(R Thing o
cgis:isThing - cgis:isState
. . -Thing_URI
citygml:roominstallation N
citygml:boundedBy
Observation
\ 4 STA-Lite:hasTaskingCapabili STA-Lite:hasDatastream -result
BoundarySarface -phenomenonTime
“BoundarySarface_URI cgis:isTrapsition
TaskingCapability Datastream .
citygml:opening - — STA-Lite:hasObservation
-TaskingCapability_URI -Datastream_URI <
A\ 4
Opening -
cgis:isState
C cgis:enables
(] 1 ‘[—/ YV
Window Door Transition State

-Window_URI -Door_URI -Transition_URI »| -State_ URI

-Transition_weight| IndoorGML-Lite:connects| -Name

ObservedProperty
IntBuildinginstallation cgisisTransition Name :
> -IntBuildingInstallation_URI -Description STA-Lite:hasObservedProperty
Fig. 10. Integration ontology of the an-opening-as-a-thing view.

citygml:IntBuildingInstallation, indoorgml:
Transition, and citygml:Opening, even if there is
no sta:BuildingFurniture feature directly mapped to
the sta:Thing entity.

With regard to the relationship between the citygml:
Room and indoorgml:State classes, an entity of
the citygml:Room class can be represented as one
node (i.e., isState) or several nodes (i.e., containsEle-
ment). The current research considers indoorgml :State
as the entity of a cell; thus, when an entity of the
sta:Thing class is located within the space of an entity

of the indoorgml:State class, sta:Thing is with-
inCellspaceOf indoorgml:State. Moreover, citygml :
Opening enables indoorgml : Transition (i.e., a door
or a window).

b) An-opening-as-a-thing view: Fig. 10 depicts the an-
opening-as-a-thing view, in which an entity of the citygml :
Opening class (i.e., an entity of the citygml:Window
or citygml :Door class) is an entity of the sta:Thing
class. In the aforementioned view, sta:Thing can be
recognized as a node (i.e., indoorgml : State) or an edge
(i.e., indoorgml:Transition) according to the class

20452

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

sosa:observes

Y
ingFurniture

cgis:happensin

<
<

-BuildingFurniture_URI

Thing
-Thing_URI

STA-Lite:hasDatastream

cgis:isState / bpt:containsElement

Y

citygml:interiorFumitur%

cgis:isState / bot:containsElement

cgis:isThing I

Room

-Name
raskingCapability

P>

STA-Lite:has’

sosa:observes

citygml:roominstallation AREEmL UIRY

Datastream

A A

cgisthappensin

citygml:boundedB
A4
BoundarySarface

-Datastream_URI

ISTA-Lite:hpsObservatip

=1

A

-BoundarySarface_URI

sosa:observes]

cirygml:opening

cigs:h%pensln l
TaskingCapability

Observation

A 4

-TaskingCapability URI

-result
-phenomenonTime

A

cgis:happensin
ey —

cigs:happensin

Fig. 11. Integration ontology of the a-room-as-a-thing view.

definitions in IndoorGML. In the an-opening-as-a-thing view,
an entity of the sta:Datastream class, which corresponds
to an entity from the sta:Thing class, is capable of recording
the state (e.g., closed or open) or additional information (e.g.,
the passage size) of the citygml : Opening class. The enti-
ties of the sta:TaskingCapability class represent the
controllable actions that can be performed by a window or
door actuator. The proposed ontology can also describe the
relationships between the entities of the sta:Thing class
and other CityGML entities.

c) A-room-as-a-thing view: Fig. 11 depicts the a-room-
as-a-thing view. In the aforementioned view, an entity of
the sta:0Observation class observes a phenomenon that
occurs in a room. The room is represented as a sta:Thing
entity within the zone space that contains some indoorgml :
State entities. The sta:Datastream entities comprise
a set of sta:Observation entities for a certain sta:
ObservedProperty entity.

Regarding the IndoorGML classes, a sta:Tasking
Capabiltiy might also happensin a indoorgml:State
or indoorgml:Transition (e.g., locking or unlocking
a door). For the relationships between the CityGML and
IndoorGML classes, a citygml:Room entity may con-
tain some indoorgml:State entities that cover a small
geometrical space.

In particular, a sta:Thing entity may contain var-
ious entities (e.g., a thermometer, a buzzer, a door, a
window, or the room) with sensing or tasking capabil-
ities in the room. Thus, sta:TaskingCapabilities
(e.g., turning an alarm on or off or changing the illumina-
tion) also happensin the entities, and sta:Observations

Opening
P sosa:observes]
™] - sosa:observes
L cgis:enables cgis:happensin sosa‘observes sosa:oljserves
l v { sosa:obgerves
(] Transition State <
Window Door -Transition_URI » -State_URI [«
Wi -Transition_weight -Name
B s ~Dee IR) STA-Lite:hasObservedProperty
A IndoorGML-Lite:connects A
cigs:happensin cgis:isTransition
IntBuildi llation |
 — Y o 3 <
-IntBuildinglr on_URI
ObservedProperty
-Name D —
-Discription

(e.g., relative humidity and air temperature) observes those
entities.

d) A-building-as-a thing view: Fig. 12 illustrates the a-
building-as-a-thing view, in which buildings comprise numer-
ous components (e.g., citygml:Opening, citygml:
BuildingFurniture, and citygml:Room). The con-
cept of a building containing numerous components and rooms
has similarity with the a-room-as-a-thing view, in which sev-
eral entities constitute the sta:Thing class. Therefore, in
the a-building-as-a-thing view, a sta:Observation of a
sta:Thing observes a phenomenon that could occur in a
room, the building, or any entity of the building. Moreover,
a sta:TaskingCapability happensin a specific entity
of the building (e.g., a room, a door, or an air conditioner).
The relationships between the sta:TaskingCapability
and sta:Datastream classes in the a-building-as-a-thing view
are similar to those in the a-room-as-a-thing view.

Furthermore, entities of the indoorgml:Multilayer
Garph class, which represent different types of spaces in a
building, can correspond to different building features. Entities
from the indoorgml :MultiLayerGarph class can form
a group of space layers in different domains. For simplic-
ity, this research theorizes that an entity of the citygml:
Building class can represent an entity of the indoorgml :
MultiLayerGarph class (i.e., isMultiLayerGraph).

The proposed integration ontology is saved in RDF format.
When this ontology is applied, IoT resources and city models
can be integrated and presented in RDF format. Information
obtained from different providers can be stored indepen-
dently in a uniform manner on the basis of open standards.
Furthermore, the semantic Web technology’s flexibility allows

HUANG et al.: ONTOLOGY INTEGRATING OPEN STANDARDS OF CITY MODELS AND INTERNET OF THINGS

20453

cgis:isMultiLayerGraph

sosa:observes

l cgis:isThing
citygml:interiorRoom Building cgis:happensin
-Building_URI |

BuildingFurniture

Thing cgisiisMultiLayerGraph
N 7\
-Thing_URI STA-LitethasDatastream R
-Name bot.containsElement

sosa:observes

A A

-BuildingFurniture_URI

cgis:happensin
citygml:$teriorFu rniture

Room _

STA-Lite:hasTe

skingCapability

<

——————— -Room_URI

sosa:observes

cgisthappensin
citygml:roominstallation citygml:boundedBy TaskingCapability <osaobserves Observation)
2 cgisthappensin | task ili) gy | et STA-Lite:hasObjservatign
BoundarySarface TaskingCapability_URI e e < !
\ 4
-BoundarySarface_UR J . N
i ki sosa:observes cgis:happensin Soga-opserves Datastream
. . -Datastream_URI
citygml:opening cgis:happensin .) sosa:observes
' i cgis:happénsilr
Opening < 7 sa.opserves
cgis:isState)
cgis:happensin
N
(] cgis:enables]
\ 4
Window Door Transition State Y
- o MultiLayerGraph | J
-Window_URI -Door_URI -Transition_URI -State_ URI = Y E

~ > -Transition_weight »| -Name < -MultiLayerGraph_URI

IndoorGML-Lite: oA Mmadoor ML-Lite:interCon_nects

ndoor fte:connec STA-Lite:hasObservedProperty
Fp o ObservedProper
IntBuilding < cgisisTransition perty
> g 5 -Name
-IntBuildingInstallation_URI| ¢
SR -Description '

cgis:isState / bot:containsElement

Fig. 12. Integration ontology of the a-building-as-a-thing view.

the incorporation of the relationships in multiple sta: Thing
views into the same data set, thus providing support for
additional smart city applications.

IV. IMPLEMENTATION RESULTS

To verify the suitability of the proposed ontology, we
adopted use cases requiring queries that link IoT resources and
city models. In the proposed integration ontology, users can
adopt SPARQL queries to obtain data. The use cases adopted
for a smart health care system and a fire evacuation system
are described in the following sections to prove the concept.

A. Testing Data Set of 3-D City Model

The data set of the R3 building in National Central
University, Taiwan was adopted as the testing data set in this
study. This research constructed the entities of the building and
the indoor route network for the city model (Figs. 13 and 14),
including the features defined in the CityGML, IndoorGML,
and SensorThings API data models and integrated RDF data.®

6R3 CityGML RDF: https://gitlab.com/gaialab.ncu/iot-and-city-model-

standard-integration/-/blob/main/R3_Building.rdf R3 IndoorGML RDF:
https://gitlab.com/gaialab.ncu/iot-and-city-model-standard-integration/-/blob/
main/R3_Route.rdf SensorThing API RDF: https://gitlab.com/gaialab.ncu/
iot-and-city-model-standard-integration/-/blob/main/R3_STA.rdf Integration
RDF:https://gitlab.com/gaialab.ncu/iot-and-city-model-standard-integration/-/
blob/main/R3_Integration.rdf.

R3-118

R3-117
R3-118-1

(S S w5102 w3103

R3-115-1

el TH
| |
[1] \ \ \ \

t
1
Right:Stairs | Right-Toilet
12 1

R3-109 @——

—— R3-105

R3-114 R3-111

—|—» R3-106

——o R3-107

[e

‘ R3-108
R3-113

Fig. 13. Floor plan of the first floor of the study area.

B. Use Case Implementation

To illustrate the importance of integrating city models and
IoT resources, we implemented several simulated use cases
in which the role of CityGML was to provide geospatial
information (i.e., the geometry of objects, such as a room,
door, or window). In addition, IndoorGML forms indoor route
networks that support navigation applications. Furthermore,
the tasking and sensing capabilities of a SensorThings API
service are used for remotely controlling and monitoring
features, respectively.

20454

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

Query 1 SPARQL Query for Retrieving the Physiological
Information of Patients

1 PREFIX sta-lite: <http://140.115.110.71/sta-lite.ow 1#>

2

3 select 7name ?HeartRate_result ?HeartRate_time ?SpO2_result ?SpO2_time

4 Where {

5 ?Patient sta-lite:hasDatastream ?Datastream;

6 sta-lite:zname ?name

7 A

8 ?Datastream sta-lite:hasObservedProperty/sta-lite:description "Heart
rate";

9 sta-lite:hasObservation ?HeartRate_ob.

10 ?HeartRate_ob sta-lite:result ?HeartRate_result;

11 sta-lite:phenomenonTime ?HeartRate_time

12 JUNION{

13 ?Datastream sta-lite:hasObservedProperty/sta-lite:description "SpO2";

14 sta-lite:thasObservation ?SpO2_ob.

15 ?7SpO2_ob sta-lite:result ?SpO2_result;

16 sta-lite:zphenomenonTime ?SpO2_time

17}

18}

19 order by (?SpO2_time || ?HeartRate_time)

R3-231 O————1—0 R32%2

R3-229 ——9—1—o r3-230 I

ra-208 @ —
S \

‘ o Rr3-206

R3-227 @——

R3-226 @——
R3-218 | R3-216 | R3-214 | R3-212 | R3-210 R3-209

R3-225 O———

——® R3-205

paedtlowm ||

R3-219 | R3-217 | R3-215 | R3-213 | R3-211 [Righ

—1—® R3-204-1

R3-223 @— |+

—— R3-220 R3-201

[&1 o r3-204

R3-222 —t o Rr3221

R3-202 ‘ R3-203

Fig. 14. Floor plan of the second floor of the study area.

TABLE III
RESULT FROM QUERY 1

HeartRate_ Sp0O2_

name result HeartRate_time result SpO2_time
. 2020-05-11T
Simon 912 00:11:00+08:00
Simon 72.0 2020-05-11T

00:11:00+08:00

In the simulations, data integration was realized through the
adoption of external RDF data obtained using the proposed
integration ontology. The integration results of this study were
verified with SPARQL queries.

1) Smart Health Care: In the smart health care use case, a
patient’ wearable device is considered a sta:Thing entity,
which could also be seen as the patient. The wearable device
on the patient produce three sta:Datastream entities from a
heart rate sensor, an oximeter, and a radio frequency identifi-
cation (RFID) tag. The heart rate sensor and oximeter record
and monitor the physiological conditions of the patient. The
RFID tag helps in recording the location of the patient (e.g.,
room name).

Query 1 retrieves the latest observation results of the heart
rate sensor and oximeter (Table III). The observations indicate

Query 2 SPARQL Query for Retrieving the Patient Location

1 PREFIX sta-lite: <http://140.115.110.71/sta-lite.ow 1#>
2 PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
3 PREFIX citygml: <http://cui.unige.ch/isi/onto//citygm12.0.ow 1#>
4 PREFIX cgis: <http://140.115.110.71/cgis.ow 1#>
5
6 select 2RFID_result ?RFID_time ?State_of_Patient ?TaskingCapability
7 where{
8 ?Patient sta-lite:name : "Simon"
9 sta-lite:hasDatastream ?Datastream_RFID.
10 ?Datastream_RFID sta-lite:hasObservedProperty/sta-lite:description "RFID
Location";
11 sta-lite:hasObservation ?RFID_ob.
12 7RFID_ob sta-lite:result ?RFID_result;
13 sta-lite:zphenomenonTime ?RFID_time.
14 ?Room rdf:type citygml:Room.
15 FILTER regex(str(?Room), ?RFID_result)
16 ?Room cgis:isState ?State_of_Patient;
17 cgis:isThing/sta-lite:hasTaskingCapability ?TaskingCapability;
18 cgis:isThing/sta-lite:hasTaskingCapability/sta-lite:description
"Buzzer control"
19)
20 order by ?RFID_time
21 limit 1
TABLE IV
RESULT FROM QUERY 2
f'{elgflll)t_ RFID_time State_of Patient TaskingCapability
2020-05 http://140.115.110 http://140.115.110.7
R3-205 71/R3 Route.owl 1/R3 STA.owl#R3-

11T00:11:00+08:00

#Node-92 205 Buzzer

Query 3 SPARQL Query for Retrieving AED Positions
PREFIX cgis: <http://140.115.110.71/cgis.ow 1#>

select 2AED ?node

where {
?AED cgis:withinCellspaceOf ?node
FILTER regex(str(?AED), "AED")

NN R W=

that a smart health care system can assist medical care per-
sonnel in monitoring the physiological condition of patients.
Moreover, if the condition of a patient is abnormal, a smart
health care system triggers a query to retrieve the location
of the patient and activates a buzzer (i.e., an alarm) near the
patient.

Query 2 searches for the latest RFID location of the patient
(Table IV). Lines 14-18 are related to connecting the RFID
location to a citygml:Room entity and an indoorgml:State
entity as well as searching for a buzzer in the citygml:Room
entity. The example result in Table IV indicates that the loca-
tion of the patient “Simon” was near citygml:Room “R3-205”
and indoorgml:State “Node-92” at 00:11 on May 11, 2020.
The aforementioned table also indicates the sta:Tasking
Capability entity of a buzzer that can help trigger an
alarm. Finally, the indoorgml:State can help navigate medical
care personnel to the patient while continuously monitoring
physiological information.

In addition, for emergency situations, the smart health care
system can help retrieve the positions of automated external
defibrillators (AEDs). From a search for the indoorgml:
State entities of AEDs (Query 3 and Table V), the short-
est path from the patient (i.e., Node-92) to an AED can be
calculated with the route network.

HUANG et al.: ONTOLOGY INTEGRATING OPEN STANDARDS OF CITY MODELS AND INTERNET OF THINGS

Query 4 SPARQL Query for Retrieving the Real-Time
Observation Results of Smoke and Temperature Sensors
1 PREFIX sta-lite: <http://140.115.110.71/sta-lite.ow1#>

3 select ?Thing_smoke ?result_smoke ?time_smoke
?Thing_temp ?result_temp ?time_ temp

4 where {

50 ¢

6 ?Thing_smoke sta-lite:hasDatastream ?Datastream_smoke.

7 ?Datastream_smoke sta-lite:hasObservedProperty/sta-lite:description

"Smoke Detector";

8 sta-lite:hasObservation/sta-lite:phenomenonTime ?time_smoke;

9 sta-lite:hasObservation/sta-lite:result ?result_smoke.

10 FILTER (?result_smoke > 2000)

11 JUNION({

12 ?Thing_temp sta-lite:hasDatastream ?Datastream_temp.

13 ?Datastream_temp sta-lite:hasObservedProperty/sta-lite:description
"Temperature observation";

14 sta-lite:hasObservation/sta-lite:phenomenonTime ?time_temp;

15 sta-lite:thasObservation/sta-lite:result ?result_temp.

16 FILTER (?result_temp > 50)

17 }

18 }

19 order by (?time_temp || ?time_smoke)

TABLE V
RESULT FROM QUERY 3

AED node

http://140.115.110.71/R3_Integrati
on.owl#AED-1

http://140.115.110.71/R3_Integrati
on.owl#AED-2

http://140.115.110.71/R3_Integrati
on.owl#AED-3

http://140.115.110.71/R3_Integrati
on.owl#AED-4

http://140.115.110.71/R3_Integrati
on.owl#Node-46

http://140.115.110.71/R3_Integrati
on.owl#Node-52

http://140.115.110.71/R3_Integrati
on.owl#Node-75

http://140.115.110.71/R3_Integrati
on.owl#Node-106

2) Fire Evacuation System: In the fire evacuation system
use case, IoT devices can provide real-time smoke density
and temperature observations and city models can provide spa-
tial information and indoor navigation routes. To construct an
effective fire evacuation system, city models and IoT resources
must be integrated.

Query 4 retrieves real-time observations of smoke den-
sity and temperature and checks if the results are abnormal.
Lines 10 and 19 set thresholds for the observation results. If
the smoke density is higher than 2000 ppm or the temperature
is higher than 50 °C, then the fire evacuation system considers
the situation to be an emergency. SPARQL Query 4 returns the
data to the system if any result meets the thresholds. Table VI
displays a situation in which the smoke density and temper-
ature results meet the thresholds. In this case, the system
triggers an SPARQL query to retrieve the corresponding sta:
TaskingCapability entities of sprinklers and ventilation
systems.

Lines 8 and 9 in Query 5 find the room associated
with the sta:Thing entity that hosts the temperature sen-
sor that obtains high readings. Lines 10-13 search for the
indoorgml:State entity that represents the aforementioned
room and other indoorgml:State entities that connect with
this room to expand the query area for finding alarms. Lines
14-16 search for the sta:TaskingCapability entity of

20455

TABLE VI
RESULT FROM QUERY 4

Thing_smoke result_smoke time_smoke

http://140.115.110.71/

R3_STA.owl#Device_ 3214.0 2020-05-28T20:47:12+08:00
SmokeSensor
Thing_temp result_temp time_temp

http://140.115.110.71/
R3_STA.owl#Device
TemperatureSensor

72.1 2020-05-28T20:41:00+08:00

Query 5 SPARQL Query for Identifying the Appropriate
Sprinkler and Buzzer

PREFIX sta-lite: <http://140.115.110.71/sta-lite.ow 1#>

PREFIX sosa: <https://www.w3.org/ns/sosa/>

PREFIX cigs: <https://140.115.110.71/cgis.owl#>

PREFIX indoorgml-lite: <https://140.115.110.71/indoorgml-lite.owl#>

1

2

3

4

5

6 Select DISTINCT ?Room ?Tasking_Sprinkler ?Tasking_buzzer

7 where {

8 ?7Room sosa:hosts ?a.

9 FILTER regex(str(?a), "Device_TemperatureSensor_3")
10 ?Room cgis:isState ?Room_State.

11 Zedge_x indoorgml-lite:connects ?Room_State;

12 indoorgml-lite:connects ?connect_State.

13 FILTER (?Room_State != ?connect_State)

14 ?Thing_Sprinkler cgis:withinCellspaceOf ?Room_State;

15 sta-lite:hasTaskingCapabilitiy ?Tasking_Sprinkler.
16 ?Tasking_Sprinkler sta-lite:description "Sprinkler control".

17 ?Thing_buzzer cgis:withinCellspaceOf ?connect_State;

18 sta-lite:hasTaskingCapabilitiy ?Tasking_buzzer.
19 ?Thing_buzzer sta-lite:description "Buzzer control”

20

Query 6 SPARQL Query for Identifying the Appropriate
Ventilation System and Buzzer

1 PREFIX sta-lite: <http://140.115.110.71/sta-lite.ow 1#>

2 PREFIX sosa: <https://www.w3.org/ns/sosa/>

3 PREFIX cigs: <https://140.115.110.71/cgis.owl#>

4 PREFIX indoorgml-lite: <https://140.115.110.71/indoorgml-lite.owl#>

5

6 Select DISTINCT ?Room ?Tasking_Ventilation ?Tasking_buzzer

7 where {

8 7Room sosa:hosts/sta-lite:hasDatastream/sta-lite:hasObservation

?0bservation_smoke.

9 FILTER regex(str(?Observation_smoke),
"Device_SmokeSensor_1_DS_ob_1")

10 ?Room cgis:isState ?Room_State.

11 ?edge_x indoorgml-lite:connects 7Room_State;

12 indoorgml-lite:connects ?connect_State.

13 FILTER (?Room_State != ?connect_State)

14 ?Tasking_Ventilation cgis:happensIn ?Room;

15 sta-lite:description "ventilation control".

16 ?Thing_buzzer cgis:withinCellspaceOf ?connect_State;

17 sta-lite:hasTaskingCapabilitiy ?Tasking_buzzer.

18 ?Thing_buzzer sta-lite:description "Buzzer control"

19 }

any sprinkler associated with an indoorgml:State entity of
the aforementioned room. Lines 17-19 search for the sta:
TaskingCapability of any buzzer associated with the
surrounding indoorgml:State entities.

SPARQL Query 6 also uses the aforementioned search
procedure to find ventilation systems associated with the
indoorgml: State entities of the room with high smoke
density readings. According to the proposed integration solu-
tion, the sta:TaskingCapability entities of sprinklers,

20456

TABLE VII
RESULT FROM QUERY 5

Room Tasking_Ventilation Tasking_buzzer
http://140.115.110.71/R3_ST http://140.115.110.71/R3_ST
R3-226 A.owl#Thing_R3_Building A.owl#Device Buzzer 2 Ta
Tasking sking
TABLE VIII
RESULT FROM QUERY 6
Room Tasking_Sprinkler Tasking_buzzer
http://140.115.110.71/R3_ST http://140.115.110.71/R3_ST
R3-226 A.owl#Device Sprinkler 1 A.owl#Device Buzzer 3 Ta

Tasking sking

ventilation systems, and buzzers can be retrieved through
SPARQL queries (Tables VII and VIII).

The simulated fire evacuation system demonstrates the capa-
bilities of real-time environment monitoring and emergency
response. Although navigation functionalities were not exam-
ined in the use case of the fire evacuation system, safe evacua-
tion routes can be identified on the basis of IndoorGML route
networks and sensor observations. By integrating city models
and IoT resources, fire evacuation systems can efficiently iden-
tify the disaster status and effectively assist evacuation-related
decision-making.

Overall, the use cases adopted in this study indicate that the
proposed integration ontology provides a uniform and effective
method for integrating city models and IoT resources. In the
proposed integration ontology, data can be created indepen-
dently and various views of sta:Thing can coexist in the
integrated RDF. Thus, because the semantic Web technology is
flexible, this ontology is capable of integrating IoT resources
and city models in an interoperable manner for various smart
city applications.

V. CONCLUSION AND FUTURE WORK

This work introduces an approach to effectively supporting
and integrating interoperable inter—data set queries between
IoT resources and open standard-based city models for smart
city applications. Specifically, this research designed an inte-
gration ontology that characterizes the relationships between
the SensorThings API, IndoorGML, and CityGML data mod-
els in an indoor space with consideration of different views of
“things” in the IoT. This integration ontology can be used to
integrate data from various resources for supporting different
smart city applications.

To demonstrate the necessity and potential benefits of inte-
grating IoT resources and city models, this research simulated
two use cases, including a smart health care system and a
fire evacuation system. Data from different resources can be
retrieved through SPARQL queries through descriptions of the
integration relationships in RDF format with the proposed
ontology. The simulation results indicate that the proposed

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

ontology successfully integrates IoT sensing and tasking capa-
bilities with city models. Such integration can serve as an
essential aspect of the cyber infrastructure of a smart city.
For achieving more comprehensive integration, future stud-
ies can incorporate additional semantic-rich open standards
of city models and IoT resources, such as the BIM and
W3C WoT standards, into the integration ontology. Because
some relationships may be missing in the proposed integration
ontology, additional relationships, such as geometrical rela-
tionships or relationships between “things,” can be identified
and described in future studies. Moreover, because the seman-
tic Web technology is flexible and extensible, cross-domain
integration can be efficiently, effectively, and continuously
improved. The proposed ontology could also be presented to
the OGC community for extending it as an OGC standard.
The proposed integration ontology involves manual integra-
tion. Future studies can design approaches to automate this
process. In addition, implementing the integration with new
technologies, such as blockchain, fog computing, Al, would
also be interesting discussions. Finally, the proposed ontology
could serve as the foundation of a “digital twin” infrastructure
to support real-world smart city applications and use cases.

REFERENCES

[1] M. Batty, “Big data, smart cities and city planning,” Dialogues
Human Geogr, vol. 3, mno. 3, pp.274-279, Dec. 2013,
doi: 10.1177/2043820613513390.

[2] R. Sanchez-Corcuera et al., “Smart cities survey: Technologies, applica-
tion domains and challenges for the cities of the future,” Int. J. Distrib.
Sens. Netw., vol. 15, no. 6, Jun. 2019, Art. no. 1550147719853984,
doi: 10.1177/1550147719853984.

[3] C. Franklin and P. Hane, “An introduction to geographic information
systems: Linking maps to databases [and] maps for the rest of us:
Affordable and fun,” Database, vol. 15, no. 2, pp. 12-15, 1992.

[4] A. Gruen, “SMART cities: The need for spatial intelligence,”
Geo-Spatial Inf. Sci., vol. 16, no. 1, pp.3-6, Mar. 2013,
doi: 10.1080/10095020.2013.772802.

[5] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for smart cities,” IEEE Internet Things J., vol. 1, no. 1,
pp. 22-32, Feb. 2014, doi: 10.1109/JI0T.2014.2306328.

[6] J. Carneiro, R. J. Rossetti, D. C. Silva, and E. Oliveira, “BIM, GIS,
IoT, and AR/VR integration for smart maintenance and management of
road networks: A review,” presented at the IEEE Int. Smart Cities Conf.
(ISC2), 2018.

[71 K. Stock and H. Guesgen, “Geospatial reasoning with open data,” in
Automating Open Source Intelligence. San Diego, CA, USA: Elsevier,
2016, pp. 171-204.

[8] C. Guney, “Rethinking GIS towards the vision of smart cities through
CityGML,” paper presented at the Int. Arch. Photogram. Remote Sens.
Spat. Inf. Sci., 2016.

[9] C. Jing, M. Du, S. Li, and S. Liu, “Geospatial dashboards for moni-

toring smart city performance,” Sustainability, vol. 11, no. 20, p. 5648,

Oct. 2019, doi: 10.3390/sul1205648.

G. Groger, T. H. Kolbe, C. Nagel, and K. H. Hifele, OGC City

Geography Markup Language (CityGML) Encoding Standard, Open

Geospatial Consortium Standard 12-019, 2012.

[11] J. Lee, K. J. Li, S. Zlatanova, T. H. Kolbe, C. Nagel, and T. Becker,

OGC Indoorgml, Open Geospatial Consortium Standard 14-005r3, 2014.

“LandXML, Non-Proprietary Data Standard for Land

Professionals.” LandXML. Org. 2000. [Online]. Available:

http://www.landxml.org/about.aspx

S. Azhar, A. Nadeem, J. Y. Mok, and B. H. Leung, “Building

Information Modeling (BIM): A new paradigm for visual interactive

modeling and simulation for construction projects,” paper presented at

the 1st Int. Conf. Construct. Develop. Countries, 2008.

Overview of Internet of Things, Int. Telecommun. Union, Geneva,

Switzerland, 2012.

(10]

[12]

[13]

[14]

http://dx.doi.org/10.1177/2043820613513390
http://dx.doi.org/10.1177/1550147719853984
http://dx.doi.org/10.1080/10095020.2013.772802
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.3390/su11205648

HUANG et al.: ONTOLOGY INTEGRATING OPEN STANDARDS OF CITY MODELS AND INTERNET OF THINGS

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, and C. H. Lung, “Smart
home: Integrating Internet of Things with Web services and cloud com-
puting,” presented at the IEEE 5th Int. Conf. Cloud Comput. Technol.
Sci., 2013.

L. Pescosolido, R. Berta, L. Scalise, G. M. Revel, A. De Gloria, and
G. Orlandi, “An IoT-inspired cloud-based Web service architecture for
e-Health applications,” presented at the IEEE Int. Smart Cities Conf.
(ISC2), 2016.

A. Perallos, U. Hernandez-Jayo, E. Onieva, and 1. J. G. Zuazola,
and N. Aguiriano, [Intelligent Transport Systems: Technologies and
Applications. Chichester, U.K.: Wiley, 2015.

F. Shrouf, J. Ordieres, and G. Miragliotta, “Smart factories in Industry
4.0: A review of the concept and of energy management approached in
production based on the Internet of Things paradigm,” presented at the
IEEE Int. Conf. Ind. Eng. Eng. Manag., 2014.

S. K. Sowe, T. Kimata, M. Dong, and K. Zettsu, “Managing heteroge-
neous sensor data on a big data platform: IoT services for data-intensive
science,” presented at the IEEE 38th Int. Comput. Softw. Appl. Conf.
‘Workshop, 2014.

G. Xiao, J. Guo, L. D. Xu, and Z. Gong, “User interoperabil-
ity with heterogeneous IoT devices through transformation,” [EEE
Trans. Ind. Informat., vol. 10, no. 2, pp. 1486-1496, May 2014,
doi: 10.1109/T11.2014.2306772.

P. Desai, A. Sheth, and P. Anantharam, “Semantic gateway as a service
architecture for IoT interoperability,” paper presented at the IEEE Int.
Conf. Mobile Services, 2015.

H. Wang, A. Gluhak, S. Meissner, and R. Tafazolli, “Integration of BIM
and live sensing information to monitor building energy performance,”
paper presented at the CIB 30th Int. Conf. Appl. IT AEC Ind., 2013.
J. Wang, H. Zhao, and S. Winter, “Integrating sensing, routing and
timing for indoor evacuation,” Fire Safety J., vol. 78, pp. 111-121,
Nov. 2015, doi: 10.1016/j.firesaf.2015.08.009.

W. Zhu, A. Simons, S. Wursthorn, and A. Nichersu, “Integration of
CityGML and air quality spatio-temporal data series via OGC SOS,”
paper presented at the Geospat. Sens. Webs Conf. (GSW), Munster,
Germany, 2016.

M. Sondheim, K. Gardels, and K. Buehler, “GIS interoperabil-
ity,” in Geographical Information Systems, vol. 2, P. A. Longley,
M. F. Goodchild, D. J. Maguire, and D. W. Rhind, Eds. New York,
NY, USA: Wiley, 1999, pp. 347-358.

S. Liang, C. Y. Huang, and T. Khalafbeigi, OGC SensorThings API Part
1: Sensing, Version 1.0, Open Geospatial Consortium Standard 15-078r6,
2016.

T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic Web,” Sci.
Amer., vol. 284, no. 5, pp. 28-37, 2001.

T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing?” Int. J. Human Comput. Stud., vol. 43, nos. 5-6,
pp- 907-928, Nov. 1995, doi: 10.1006/ijhc.1995.1081.

T. R. Gruber, “A translation approach to portable ontology speci-
fications,” Knowl. Acquisit., vol. 5, no. 2, pp. 199-220, Jun. 1993,
doi: 10.1006/knac.1993.1008.

E. Miller, “An introduction to the resource description framework,” Bull.
Amer. Soc. Inform. Sci. Technol., vol. 25, no. 1, pp. 15-19, Oct. 1998,
doi: 10.1002/bult.105.

Z. Baci¢, T. Jogun, and I. Maji¢, “Integrated sensor systems for
smart cities,” Tehnicki Vjesnik, vol. 25, no. 1, pp. 277-284, Feb. 2018,
doi: 10.17559/TV-20160620125732.

K. Chaturvedi, B. Willenborg, M. Sindram, and T. H. Kolbe, “Solar
potential analysis and integration of the time-dependent simulation
results for semantic 3D city models using dynamizers,” paper presented
at the 12th Int. 3D Geolnfo Conf., 2017.

J. S. Kim, S. J. Yoo, and K. J. Li, “Integrating IndoorGML and CityGML
for indoor space,” paper presented at the Int. Symp. Web Wireless Geogr.
Inform. Syst., 2014.

S. Vilgertshofer, J. Amann, B. Willenborg, A. Borrmann, and
T. H. Kolbe, “Linking BIM and GIS models in infrastructure by example
of IFC and CityGML,” in Proc. Comput. Civil Eng., 2017, pp. 133-140.
C.-L. Kuo and J.-H. Hong, “Interoperable cross-domain semantic and
geospatial framework for automatic change detection,” Comput. Geosci.,
vol. 86, pp. 109-119, Oct. 2016, doi: 10.1016/j.cageo.2015.10.011.

C. Peng and P. Goswami, “Meaningful integration of data from het-
erogeneous health services and home environment based on ontology,”
Sensors, vol. 19, no. 8, p. 1747, Apr. 2019, doi: 10.3390/s19081747.
X. Liu, X. Wang, G. Wright, J. C. Cheng, X. Li, and R. Liu, “A state-of-
the-art review on the integration of building information modeling (BIM)
and geographic information system (GIS),” ISPRS Int. J. Geo-Inf., vol. 6,
no. 2, p. 53, Feb. 2017, doi: 10.3390/ijgi6020053.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

20457

G. Groger and L. Pliimer, “CityGML—Interoperable semantic 3D
city models,” ISPRS J. Photogram. Remote Sens., vol. 71, pp. 12-33,
Jul. 2012, doi: 10.1016/j.isprsjprs.2012.04.004.

H. K. Kang and K. J. Li, “A standard indoor spatial data model—OGC
IndoorGML and implementation approaches,” ISPRS Int. J. Geo Inform.,
vol. 6, no. 4, p. 116, Apr. 2017, doi: 10.3390/ij2i6040116.

S. Liang and T. Khalafbeigi, OGC SensorThings API Part 2-Tasking
Core, Version 1.0, Open Geospatial Consortium Standard 17-079rl,
2019.

C. Métral, R. Billen, A. E. Cutting-Decelle, and M. Van Ruymbeke,
“Ontology-based approaches for improving the interoperability between
3D urban models,” J. Inf. Technol. Construct., vol. 15, pp. 169184,
Feb. 2010.

V. Coors, “OGC 3D-IoT platform for smart cities engineering report,”
OGC Public Eng., Open Geospatial Consortium, Rockville, MD, USA,
Rep. OGC 19-073rl1, 2020.

M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and
K. Kajimoto, Web of Things (WoT) Architecture, W3C Recommendation,
Cambridge, MA, USA, 2020.

SmartM2M; SAREF Development Framework and Workflow,
Streamlining the Development of SAREF and Its Extensions, VI1.1.1,
ETSI Standard TS 103 673, 2020.

Chih-Yuan Huang received the B.S. and M.S.
degrees in civil engineering and geoinformatics
from National Central University (NCU), Taoyuan,
Taiwan, in 2007 and 2008, respectively, and the
Ph.D. degree in geomatics engineering from the
University of Calgary, Calgary, AB, Canada, in
2014.

He is an Associate Professor with the Center for
Space and Remote Sensing, NCU. His team is cur-
rently involved in the development of the Civil-IoT
Taiwan Data Service Platform. His present research

interests include interoperable cyber-infrastructure of the Internet of Things,
digital twins, and artificial intelligence of things.

Dr. Huang is one of the editors of the Open Geospatial Consortium
SensorThings API Part 1: Sensing Version 1.0 standard.

Yao-Hsin Chiang received the bachelor’s degree
from the Geomatics Department, National Cheng
Kung University, Tainan, Taiwan, in 2017, and the
double master’s degrees in civil and environmental
engineering from National Central University,
Taoyuan, Taiwan, and Hiroshima University,
Hiroshima, Japan, in 2020, respectively.

He is currently an Engineer with MOXA
Inc., Taipei, Taiwan, for the industry automation
connectivity technology.

Fuan Tsai (Member, IEEE) received the M.S. and
Ph.D. degrees in civil and environmental engineer-
ing with concentration on remote sensing and spatial
information from Cornell University, Ithaca NY,
USA, in 1996 and 2000, respectively.

He is currently a Professor with the Center
for Space and Remote Sensing Research, and the
Department of Civil Engineering, National Central
University, Taoyuan City, Taiwan. His research
interests include remote sensing image processing
and analysis, multimodal spatial analysis, digital city

modeling, and smart city applications.

http://dx.doi.org/10.1109/TII.2014.2306772
http://dx.doi.org/10.1016/j.firesaf.2015.08.009
http://dx.doi.org/10.1006/ijhc.1995.1081
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1002/bult.105
http://dx.doi.org/10.17559/TV-20160620125732
http://dx.doi.org/10.1016/j.cageo.2015.10.011
http://dx.doi.org/10.3390/s19081747
http://dx.doi.org/10.3390/ijgi6020053
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.004
http://dx.doi.org/10.3390/ijgi6040116

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

