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Abstract—Mechanical complexity, wide dimensions, and big
data volume may hamper the implementation of Internet
of Things (IoT)-enabled structural health monitoring (SHM)
systems. In particular, one of the most important challenges is
the reduction of the data payload to be transmitted over the
monitoring network. Addressing the problem in the context of
vibration-based SHM, this work explores system identification
(SysId) as an innovative strategy for data compression at the
extreme edge. Indeed, SysId is a signal processing technique aim-
ing at finding a very reduced (i.e., less then one tenth of the total
signal length) set of meaningful parameters, which can provide an
alternative, but yet completely equivalent, frequency characteri-
zation of the structure. In the proposed approach, an embedded
system-oriented adaptation of the sequential tall-skinny QR
decomposition (eS-TSQR) from the dense linear algebra domain
has been exploited to tackle both the memory and computa-
tional complexity of the involved algorithms. This yielded to the
embodiment of input–output and output-only SysId models into
a resource constrained device (i.e., an STM32L5 microcontoller
unit), targeted on low-power and low-cost SHM applications,
proving high effectiveness for the structural assessment of civil
and industrial plants. Besides, a cost-benefit analysis is also
presented, in which the energy saving brought by SysId running
in a sensor-near manner is comprehensively measured against the
power consumption due to data transmission, as implied by state-
of-the-art communication protocols for IoT. Results demonstrate
that SysId is 1.19× and 2.78× less energy demanding (with a pay-
load reduction of 9× and 45×) w.r.t. compressed sensing-driven
and compression-free solutions, respectively.

Index Terms—Data compression, edge processing, paramet-
ric system identification (SysId), structural health monitoring
(SHM), tall-skinny QR decomposition, vibration analysis.
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I. INTRODUCTION

STRUCTURAL health monitoring (SHM) systems are
becoming ubiquitous in multiple application scenarios due

to the increasing demand for safer structures and infrastruc-
tures [1], [2].

Significant advancements have been achieved in recent years
in terms of promoting instrumentation of structural systems
with the purpose of autonomous and continuous diagnos-
tics [3]. Indeed, the advent of cyber–physical systems, which
can be considered as one of the most prominent results pro-
moted by the Internet of Things (IoT) paradigm [4], made the
real-time and over-time monitoring process a tangible reality,
allowing for the continuous sharing of information between
users, sensors, and structures [5].

Among the several available SHM techniques, vibration-
based monitoring refers to the process of inferring the integrity
status of a structural system by continuous and—to the degree
feasible—automated monitoring of its dynamics. The diagnos-
tic procedure relies on the extraction of a representative set of
vibration-based features over an extended period of time and
is classically adopted for structures that operate in the dynamic
regime, such as bridges [6] or wind turbines (WTs) [7]. Most
typically, such features pertain to frequency-related quantities;
the so-called modal parameters [8]. Identification techniques
that extract modal information from the measured vibration
response, also referred to as output-only methods, fall within
the class of operational modal analysis (OMA) solutions [9].
In this case, which is though a requirement in practical scenar-
ios, no controlled stimulus is applied to the structure, which
is conversely left to vibrate in its normal operative conditions.

In recent years, the IoT community has placed constantly
increasing attention to engineering problems related to the
specificity of vibration-based structural monitoring and con-
trol. This includes the publication by Burrello et al. [10],
where the focus is on vibration diagnostics for a railway
viaduct. Similarly, an IoT-based model for the real-time con-
dition monitoring of electrical rotors was proposed in [11]
together with a novel classification scheme for fault character-
ization. Effective IoT solutions have found further application
for railway bridge tracking, as documented in [12], which
concerns the realization of an on-demand sensing system
equipped with a dedicated power management unit capable
of performing train-induced vibration energy harvesting and
control.
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Nevertheless, a number of issues remain to be tackled in
order to enhance the responsiveness and the resilience of the
designed monitoring architectures [13]. Five main and mutu-
ally inter-related challenges can be listed: 1) the big data
volume implied by dense sensor networks deployed on large-
scale infrastructures; 2) the consequent probability of network
congestion due to limited and shared communication channels
between manifold devices; 3) the growing latency in the data-
to-user transfer process, since long time series are cumbersome
to manage both in terms of time delivery and processing;
4) device constraints, i.e., limited memory space and com-
putational resources available on sensors in order to meet the
requirements of 5) low-power and low-cost hardware that can
ensure a long-lasting monitoring modality.

These aspects are even more crucial in case of wireless mon-
itoring systems [14], where the presence of battery-operated
devices allows for higher versatility in the deployment pro-
cess, while posing more stringent limitations on the power
consumption. For example, an energy-efficient sensor schedul-
ing strategy for bridge SHM is described in [15], together
with a discussion on the advantages granted by pervasive edge
computing for decentralized and long-lasting battery-operated
monitoring systems. Furthermore, a recently released proto-
type, Sensifi [16], represents an ultrahigh-rate wireless sensing
system originally targeting spacecraft vibration analysis via a
custom low-power node measuring vibrations. Aspects, such
as power consumption optimization, data compression, time
synchronization, and integrated circuit electronics are tackled
by the authors and thoroughly investigated as crucial points of
SHM-oriented and IoT-driven systems.

As such, recent work has been focused on data compres-
sion techniques as a means to jointly address the above-
mentioned issues. In this context, it is worth mentioning
the works [17]–[20]. Besides the promising results already
achieved by the above-referenced works, a consistent deal of
research has been spent in the last two decades, seeking to
design the most effective compression scheme for vibration
monitoring [10], [21]. However, the edge computing perspec-
tive, i.e., investigating whether and how these solutions could
be practically implemented on self-contained sensor boards,
has only recently gained attention [22].

A. Vibration Data Compression at the Extreme Edge

The adoption of conventional compression strategies is often
ineffective for vibration data or, in other cases, the compres-
sion ratio (CR) these allow for is insufficient. In [10], a list
of standard data reduction algorithms is provided, citing their
main limitations. The downside of lossless strategies is that a
very low CR (usually lower than 3×) can be achieved. On the
other hand, lossy methods can be employed, ensuring a higher
CR but at the cost of more power-hungry implementations.
Alternatively, wavelet-based solutions have also been tested,
where compression is achieved by thresholding the wavelet
coefficients in the different spectral bands and retrieving only
those above a certain energetic value. Despite their promis-
ing performance in terms of compression level, wavelet-based
solutions suffer heavier computational costs, which render
their integration in edge devices more challenging. Beside, the

prevalent techniques explored for data compression in vibra-
tion analysis include spectral-based decomposition [23], com-
pressed sensing (CS) [24], and eigenvalue-based approaches,
since they can efficiently take advantage of the sparse and
localized nature of features that is unique to vibration signals.

The former refers to the ensemble of methodologies built
on the selection of a small batch of parameters out of the
spectral representation of the input signals. This procedure
can be straightforwardly performed by applying peak-picking
algorithms directly on the Fourier-operated data and, then, by
extracting the topmost peak spectral values. A seminal work
in this field is provided in [25] and further validated with a
near-sensor implementation on prototyping boards. However,
these methods present a crucial limitation since they assume
that the vibration components to be analyzed are well-spaced,
highly energetic, and significantly decoupled, a condition
which barely holds when dealing with the majority of real
SHM scenarios under operative conditions. In this sense, their
effect is to “decompose” a multidegree-of-freedom system into
the linear summation of single structural components, which
can be treated independently.

On the other hand, CS approaches define the problem on a
pure mathematical basis by resorting to linear algebra trans-
formations as a means for data reduction [26], [27]. The
underpinning principle behind CS is that, under the premise
that the processed class of signals is sparse in a given spar-
sity basis, only a few coefficients suffice to capture the signal
content. If this condition applies, a shrunk version of a long
time series can be obtained by projecting it onto a lower-
dimensional subspace through a suitable compression matrix.
Thus, CS performs a lossy compression and its effectiveness
is conditional upon the selection of two fundamental ingredi-
ents, namely, the optimal compression matrix and the sparsity
basis. Once these quantities have been properly defined, a near-
sensor implementation of the CS encoder can be achieved by
statically loading the compression matrix at the sensor start-up
phase and using it to perform compression. Notably, since the
signal sparsity may vary at a large extent due to structural and
environmental factors, methods capable to adapt these defin-
ing features over time should be preferred. However, since
this adaptation is difficult to be accomplished on the fly, the
compression-accuracy tradeoff is commonly solved by relax-
ing the CR in favor of a lower noise-to-signal reconstruction
error. As a consequence, typical CRs for vibration-based SHM
hardly exceed one fifth [22] of the total amount of samples.

Addressing this issue, the scheme of history principal com-
ponent analysis (HPCA) has very recently been proposed for
network load reduction. It exploits the eigenvalue decomposi-
tion of the correlation matrix between signal components to
extract the primary information to be preserved. Outstanding
results were obtained in [10] via adoption of HPCA, where a
10× compression factor was achieved with satisfying recon-
struction accuracy, while embedding the algorithm on network
end nodes.

As an alternative to standard Fourier-driven or eigenvalue-
based algorithms, structural analysis built on parametric
approaches relies on the idea that the mechanical and physi-
cal laws governing the equations of motion admit an abstract,
but still completely equivalent, mathematical representation
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as a causal linear time-invariant filter [28]. In line with this
formulation, the objective of parametric system identification
(SysId) implemented via time series models is to estimate
that set of filter coefficients, also known as model parame-
ters, which can exactly reproduce the measured input–output
system relationship. The power of parametric models is, thus,
to instill structure and to encapsulate, in this way, the mean-
ingful portion of the signal content in a reduced set of values
(the model parameters), which fully capture the underlying
system dynamics. In particular, since the number of parame-
ters typically settles below a couple of dozens [29], massive
compression levels could be potentially attained considering
the length of the time series to be collected.

It is worth pinpointing that the benefit in pursuing paramet-
ric identification strategies is not restricted to the reduction
of the data payload to be transmitted, but more importantly
extends to the significant enhancement in the quality of the
retrieved spectral properties [30]. In this sense, a twofold
advantage is brought. First, the spectrum is analytically gen-
erated from the computed filter coefficients, as opposed to
the conventional approach of applying a Fourier transforma-
tion on the raw data, where the influence of noise might be
detrimental. Thus, spectra deriving from parametric methods
inherently allow for a significant increase in the signal-to-noise
ratio (SNR). Second, it follows that the delivered spectral pro-
files are characterized by a much sharper and smoother trend
with respect to nonparametric approaches; a trait which facili-
tates the subsequent feature extraction phase, particularly when
dealing with peak-picking algorithms.

Despite these advantages, discussed in preliminary works
in which the problem of SysId edge inference is consid-
ered and treated in a purely mathematical manner [31],
[32], there is, to the best of the authors’ knowledge, only
one example of parametric SysId implementation on edge
devices available in the literature. A possible explanation for
this may be found in the high computational complexity of
the involved algorithms, which renders their embodiment in
resource-constrained sensors a nontrivial task.

This is the case of the work presented in [19], where Kim
and Lynch exploited parametric system modeling, running on
the Imote sensor platform, for the structural assessment of
civil infrastructures. Nevertheless, despite promising results,
the very restrictive memory footprint of this sensor board is
not compliant with the execution of the algorithms involved by
output-only SysId. To tackle this issue, the authors focused on
input–output SysId, adopting simple correlation-based meth-
ods, at the expense of reducing communication efficiency,
owing to the necessity of broadcasting a reference signal to
multiple sensor nodes.

B. Contribution

In this manuscript, the practical embodiment of three differ-
ent parametric SysId algorithms on a cut-off-the-shelf micro-
controller unit (MCU) is proposed, with particular focus on
the memory and algorithmic effort that is implied in this
undertaking. The proposed implementation does not require
transmission of a reference signal among sensor nodes, as

opposite to [19]. The main contribution is summarized as
follows.

1) On-sensor implementation of both input–output and
output-only SysId schemes. From the former category,
the autoregressive with the eXogenous input (ARX)
model has been selected, whereas the standard autore-
gressive (AR) model and its smoothed version AR with
moving average (ARMA) model have been chosen to
deal with OMA-based scenarios. To the best of the
authors knowledge, it is the first time that the viability
of SysId at the extreme edge is demonstrated.

2) Development of a specific MCU-oriented implemen-
tation of the sequential tall-skinny QR factorization
strategy as a means to restricting the memory occu-
pancy implied by the execution of standard least-squares
regression methods. The designed procedure represents
the first edge implementation of this technique and, thus,
differs from the original conceptualization tailored to
high-performance parallel processors.

3) Analysis of the accuracy in the regressed model
parameters when computed by the resource-constrained
STM32L5 MCU and quantitative evaluation of the
spectral estimation consistency.

4) Presentation of a cost-benefit analysis of the coded algo-
rithms, discussing how time savings from transmission
have to be counter-balanced against the increase in pro-
cedural burden due to the on-board processing. In this
sense, the effect of the processing versus transmission
on sensor battery life-cycle is evaluated under consider-
ation of the most common communication protocols for
wireless sensor networks.

5) Experimental validation of the coded solutions on the
problem of vibration-based assessment of a small-scale
WT, undergoing exposure to varying environmental con-
ditions, as well as artificially induced damage.

This article is organized as follows. In Section II, the
mathematical formulation of the adopted SysId models is
introduced and followed in Section III by the linear alge-
bra procedures which have been employed to fit such models
into memory-constrained devices. The experimental valida-
tion phase pertaining to the structural assessment of a WT
structure is described in Section IV. Results are provided in
Section IV-C, first proving the algorithmic validity of the
implemented models while porting them on the STM32L5
MCU, and then verifying their applicability for SHM-related
tasks. A cost-benefit analysis is presented in Section V,
followed by conclusion.

II. PARAMETRIC SYSTEM IDENTIFICATION

SysId based on AR models makes use of regression tech-
niques to identify the sought model parameters, as typically
those minimizing the error between the predicted and actually
measured system response according to certain heuristics.

In analytical terms, given x[k] and y[k] denoting the generic
input–output pair gathered at time stamp kTs (with Ts indicat-
ing the sampling period), a basic and most general variant of a
univariate discrete-time parametric model at a generic sample



20470 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

Fig. 1. Formulation of input–output (ARX) and output-only (AR, ARMA) parametric models.

TABLE I
TIME SERIES AND STATE-SPACE REPRESENTATION OF THE ARX, AR, AND ARMA PARAMETRIC MODELS WITH CORRESPONDING REGRESSION

TERMS

k ∈ {0, . . . , N − 1} reads

y[k] +
q∑

i=1

θiy[k − iTs] =
p∑

s=0

γsx[k − sTs] (1)

in which q and p specifically determine the number of param-
eters preserving memory of the past p input and q output
instances, while θi and γs are the feedback and feed-forward
taps of the corresponding filter. p and q are also known as the
orders of the filter numerator and denominator polynomials,
while their summation Np = p+q+1 equals the total amount
of model coefficients to be determined.

It is, therefore, from the algebraic manipulation of (1) that
all the structural features of interest can be obtained, either in
the time or frequency domain, by virtue of the dual relation-
ship between the filter impulse response function (IRF) and
its associated frequency response function (FRF)

Hy(f ) =
∑p

s=0 γse−j2π fsTs

1+ ∑q
i=0 θie−j2πfiTs

. (2)

Finally, an estimate of the system’s power spectral density
(PSD) Sy(f ) can be delivered via the square of the magnitude
of the FRF as

Sy(f ) = |Hy[f ]|2 (3)

from which the frequency features are retrieved.

A. Parametric Models for Modal Identification

Different identification strategies have been defined depend-
ing on the nature of the processed signals and the features
of interest. In the following, three schemes will be reviewed,
which are classically applied in the context of modal analysis.
For the sake of clarity, Table I summarizes the mathematical
expressions involved in (1) and (2).

1) Autoregressive Models With eXogenous Input: ARX
models are applicable for experimental modal analysis (EMA),
i.e., when both the input stimulus and the output response are
measured. The block diagram representation of ARX, depicted
in Fig. 1, stems from the state-space filter definition and clearly
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shows the feedback-feedforward nature of this system model,
whose characteristic equations coincide with those offered
in (1) and (2).

Despite this being an extremely accurate tool, two main
factors limit broad applicability of the ARX scheme. First,
the practical difficulty in measuring, with sufficient precision,
the input signal (excitation) of the structure under operational
conditions, due to unmeasured, arbitrary and/or very weak
excitation sources. Second, a decentralized processing requires
that the input signal is made available to all the sensing nodes
during a preprocessing step, thus increasing the amount of data
to be transmitted.

2) Autoregressive Models: Conversely, OMA aims to
identify structural properties on the basis of output-only
information, under the assumption that the input signal can
be described as a white Gaussian noise term e[k] ∼ N(0, σ 2

e )

with zero-mean and prescribed variance σ 2
e . More specifi-

cally, an AR model essentially comprises an all-pole IIR filter
obtained by zeroing the contribution of the external input x[k]
in (1). The drawback of this model is that a high number of
parameters is typically required in order to produce accurate
results.

3) Autoregressive Models With Moving Average: Among
the output-only methods, ARMA models are superior to basic
AR in that they introduce a moving average term in the output
equation, which provides smoother and clearly defined spectral
curves.

III. MODEL PARAMETER ESTIMATION

The expression provided in (1) can straightforwardly be
converted into a linear regression formulation, as follows:

y[k] = φ[k]Tβ + ε[k] (4)

with φ[k]T ∈ R
1×Np designating the regression vector and

β ∈ R
Np×1 denoting the coefficient vector to be estimated.

Assuming that the time series spans an observation window
of N samples, a full-scale variant of (4) is given as

Y = 	β + E (5)

where 	 = [φ[1] . . . φ[N]]T ∈ RN×Np is a rectangular matrix
with regression vectors arranged as horizontal entries, per row;
Y = [y[1] . . . y[N]]T ∈ RN×1 and E = [e[1] . . . e[N]]T ∈
RN×1 correspond, instead, to the observation and error vec-
tor. Hence, a final estimate of the sought coefficient vector is
yielded via ordinary least squares (OLS), according to

β = (
	T	

)−1
	TY (6)

while a recovery of the prediction error is returned as

E = Y − 	β (7)

with variance σ 2
e = ETE. As such, any parametric model is

completely characterized by a set of Np + 1 values.
It is worth noting that, rather than resorting in standard

linear algebra operations (6), artificial intelligence (AI) meth-
ods have been investigated to solve this task [33]. We here
capitalize on the straightforward formalization offered by
SysId methods. The AI alternatives form a pioneering field

of research, which has recently garnered attention [34]: it
leverages the algebraic similarities between the structure of
conventional time regression methods and the convolution
operations at the basis of convolutional neural networks. It
is though still not clear whether such networks can be dis-
tilled to be ported on resource-constrained devices. Moreover,
another point which prevents the full exploitation of AI solu-
tions for the task of the SysId model parameter identification
is that the above-discussed mathematical analogy only holds
for a limited class of time series models.

4) OLS for ARMA Models: The Hannan–Rissanen
Algorithm: The regression technique described above is
only applicable for single-stage parametric models, such as
ARX and AR, and may not be implemented for evaluation
of the ARMA counterpart. In fact, in the latter case, y[k]
is regressed not only on its past values, but also on the
preceding unobserved quantity e[k], which thus needs to
be implicitly calculated. In this case, the Hannan–Rissanen
(HR) algorithm [35] provides a simple and yet asymptotically
stable solution. HR is based on the cascade of two successive
OLS steps: first, a high-order AR model is fitted to the
measured response and an estimate of the noise term is
derived, as dictated by (7). Knowing E, the next step involves
matching a low-order ARX model to the same time series,
finally returning an estimate of the ARMA parameters. To
be consistent, the order of the first-step AR model should
be at least twice the one adopted in the second ARX
stage.

A. From OLS to QR Decomposition

The canonical OLS algorithm, which is given in (5), might
be prone to numerical instability, rounding effects, and bad
conditioning, primarily due to the required inverse matrix oper-
ation. To partly alleviate these effects, the QR factorization of
the regression matrix is usually suggested as a viable proce-
dure. Indeed, the QR [36] factorization aims at decomposing
a full-rank matrix in the product of two independent matri-
ces, namely, an orthogonal matrix Q and an upper triangular
matrix R, with the advantage of converting any complex linear
system in a simple back-substitution procedure.

For the problem at hand, 	 = QR can thus be computed
and, once plugged into (5), the QR-based variant of OLS (QR-
OLS) becomes

β = R−1QTY. (8)

The dimensions of the two factorizing matrices depend, in
turn, on the arrangement of the matrix to be decomposed. In
our case, the ratio between the number of rows (N = Ns1pNp)
and columns (Np) of the regression matrix exactly amounts
to Ns1p, i.e., the number of samples per parameter, which
is empirically suggested to be a quantity larger than 20 in
order to guarantee a sufficiently accurate estimation of the
model parameters. Given this, the upper triangular structure
of R imposes that only its upper [Np × Np] partition differs
from zero. As such, an economy-size variant of the stan-
dard QR has to be preferred, returning Q ∈ R

N×Np and
R ∈ R

Np×Np .
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Several algorithms are available to accomplish QR
decomposition. The Householder reflection method [36] is
specifically implemented here, granting the most-favorable
compromise among the modified Graham–Schmidt orthogo-
nalization, which is readily implementable but extremely prone
to numerical errors, and gives rotation, that, conversely, shows
great stability but sensitivity to overflow/underflow in single-
precision floating-point values [10], [37]. The choice was
driven by the necessity to handle very weak and faint sig-
nals, sometimes close to the sensor sensitivity, as would be
the case for vibration responses that are induced by ambient
loads (e.g., traffic and wind).

B. Tall-Skinny QR Decomposition

QR-OLS is efficient in terms of processing, owing to its con-
ceptual and algorithmic simplicity. However, in this form, it
appears impractical for near-sensor implementations because
of its elevated memory requirements imposed by the large
dimensions of the matrices to be processed. It should be noted
that the dimension of 	 increases with the square power of
the number of parameters, i.e., dim{	(·)} ∝ N2

p Ns1p, while the
random access memories (RAM), in low-power and low-cost
MCUs, are typically below a couple of hundreds of kB, even
for the devices with the largest storage capabilities. It follows
that, when Np is in the order of few tens and a minimum num-
ber of samples per parameter Ns1p is set, the available memory
is rapidly consumed. As an example, assuming a single piece
of data is represented as a word of 4 B (i.e., 32-bit paral-
lelism), the combination of Np = 20 and Ns1p = 20 requires
at least N2

pNs1p4 = 32 kB of memory entirely dedicated to the
storage of the regression matrix.

To overcome these restrictions, an MCU version of the clas-
sical sequential tall-skinny QR decomposition (S-TSQR) [38]
is proposed in this work. S-TSQR was originally designed
for parallel architectures (e.g., MapReduce) to provide a
communication-avoiding solution for dense linear algebra prob-
lems enabling data transfer reduction by means of local grid
operations. In this work, we have adapted S-TSQR to single-core
embedded computing platforms, in which the computing power
and the memory allocation policy of the processor are dramati-
cally lower. Such goal was achieved by exploiting efficient
coding techniques, such as loop unrolling, register block-
ing, buffered multiplications, vector outer product and matrix
addition merging, and transposed multiplications enabling fast
arithmetic and optimal memory reuse.

In general terms, S-TSQR leverages the key concept of repro-
ducibility, i.e., the ability to obtain bit-wise identical results from
different runs of the same algorithm given identical input data,
regardless of how the computing resources are scheduled. In
this sense, the ruling principle at the basis of S-TSQR (schemat-
ically depicted in the block diagram of Fig. 2) is to partition the
full-scale decomposition of 	 in the subsequent decomposition
of small-size 	̌i ∈ RNr×Np(i ∈ {1, Nc}) matrices comprising at
most Nr = N/Nc + Np rows dictated by the selected number
of chunks Nc. The procedure is described as follows. Apart
from the initial step acting directly on the first N/Nc rows of
	, in all the remaining Nc − 1 iterations QR is performed on

Fig. 2. Processing flow at the basis of the S-TSQR decomposition approach
adopted in this work for the sake of matrix dimension reduction.

the newly generated matrix 	̌i = [Ri−1|	i]T obtained from
the horizontal concatenation of the previously computed Ri−1
matrix and the current block rows 	̌i. Accordingly, the original
Q and R terms, referring to the complete regression matrix,
can be recovered as R = RNc and Q = Q1Q2 . . . QNc . This
means that, while R can be taken directly at the output of
the last iteration in a very efficient way, the computation of
Q adopted in the canonical S-TSQR procedure [38] is not
affordable because it consumes a memory space exactly equal
to the original regression matrix to be decomposed, since it
implies the storage of all the intermediate Qi matrices.

To overcome this limitation, a new and memory-efficient
procedure was implemented in this work. The proposed solution
(which will be referred to as eS-TSQR, i.e., embedded S-
TSQR) is inspired by the sparse structure of the Qi matrices,
whose nonnull and nonunitary entries are the Householder
reflectors αi [36], i.e., those vectors which are used to perform
the orthogonal triangularization of the matrix R. In particular,
at the end of each TSQR iteration, an additional step (the
coefficients vector update) is introduced, so that the matrix
product QTY = QT

Nc
. . . QT

2 Q1Y is substituted by two dot-
products Yi = αiα

T
i Yi−1, (Y0 = Y).

A complete description of the implemented eS-TSQR-OLS
procedure is depicted in Fig. 3, where the two main phases,
namely, sequential tall-skinny QR decomposition (eS-TSQR)
and SysId, are underlined. Note that ARX and AR form direct
methods meaning that one single cycle of eS-TSQR-OLS is
necessary to obtain the sought model parameters. Conversely,
ARMA models imply a recursive two-stage procedure. In this
case, the entire procedure needs to be repeated twice: first, the
AR modeling procedure is adopted to retrieve the (unknown)
noise exciting force, which is then used in a second eS-TSQR-
OLS iteration built on the ARX model in order to derive the
ARMA parameters.

1) Chunk Size: The optimal number of partitions Nc for the
eS-TSQR decomposition is a function of the selected number of
samples per parameter. In order for the Householder algorithm
to be applicable, it must be ensured that the number of rows
in the regression matrix is strictly higher than the number of
columns, corresponding to Np. This condition is always satisfied
in the second iteration, due to the fact that the regression
matrix constitutes of the horizontal concatenation of R and the
previously computed Householder matrix. While, in the first
iteration, Nc should be selected such that

Ns1pNp − Np

Nc
≥ Np (9)
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Fig. 3. eS-TSQR-OLS processing flow for model parameter estimation. From left to right: once signals have been acquired (step 1), the eS-TSQR
decomposition process is entered and repeated Nc times: at each ith iteration, the regression matrix is first created (as illustrated in Table I) by selecting
the proper signal frame (step 2.1), each comprising a window of N/Nc samples which is shifted in steps equal to the number of parameters Np. Then,
the Householder decomposition of 	̌i is applied (step 2.2), paving the way for the subsequent update of the coefficients vector Y̌. At the end of the Nc
cycle, the upper triangular matrix RNc and YNc are used in the SysId phase to compute the model parameter β (step 3.1) and the residual noise density
σ 2

e (step 3.2). The finite set of Np quantities can, thus, be transmitted at the receiving side, where the spectrum profile Sy(f ) of the acquired signal can
be reconstructed and the sensor-related modal information are then extracted (e.g., the peak spectral values fp).

from which it is easy to derive that N∗
c ≤ Ns1p −1. Hereinafter,

Nc = N∗
c will be assumed.

IV. EXPERIMENTAL VALIDATION

A. Materials

The parametric models presented in Section II-A were embed-
ded in the STM32L522ZE-Q Nucleo board, which is one of
the latest products released by STMicroelectronics for the pro-
totyping of embedded applications requiring ultralow-power
consumption and higher security levels. It integrates, at its
core, an STM32L5 MCU [39] based on an ARM Cortex-M33
processor with a single-precision floating-point unit (FPU) and
upgraded level of performances thanks to the enhanced DSP
functionalities. The equipped memory amounts to 256 kB of
RAM and 512 kB of FLASH, which are enough to accom-
modate both static and volatile data for typical duty cycles
of SHM scenarios. Furthermore, it is worth mentioning that
this novel family of devices is particularly apt at address-
ing IoT-related challenges since it achieves excellence in
ultralow-power consumption, while ensuring improved secu-
rity features compared with the preceding L4/L4+ Series
(e.g., memory encryption, optimized power management
unit, instruction cache supporting both internal and external
memories).

B. Methods

1) Model Order Selection: The selection of the proper
model order is a critical point for the efficacy of paramet-
ric models, since both under or over-estimation may hamper
the actual retrieval of the hidden structural information [40].
A plurality of methods has been proposed to tackle this chal-
lenge, which are usually based on statistical metrics, such
as the Bayesian information criterion (BIC) adopted in this
work [41]. Once estimated on a meaningful batch of data,
the model order is assumed constant; noteworthy, this is
a reasonable choice considering the slow-varying structural
properties characterizing the majority of civil and industrial
structures [42].

2) Performance Metrics: From the computed set of param-
eters, modal information can be retrieved by analyzing the
associated PSD. As such, the quality of the identified structural
properties was assessed by means of the Itakura–Saito spectral
divergence (ISD) [43]. ISD represents a cumulative measure
of the point-wise spectral distance between two different PSD
curves. For N-long frequency vectors, it is defined as

ISD = 1

N

N∑

c=1

[
Sy(f )

Ŝy(f )
− log

(
Sy(f )

Ŝy(f )

)
− 1

]
. (10)

In our case, Sy(f ) and Ŝy(f ) are the PSDs computed via
SysId as detailed in Section II, by using the model parameters



20474 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 20, 15 OCTOBER 2022

TABLE II
ISD VALUES (MULTIPLIED BY 10−2) FOR VARYING MODEL ORDER

AND NUMBER OF SAMPLES PER PARAMETER

computed by the MCU with the eS-TSQR-OLS approach,
and via built-in MATLAB functions addressing the same task,
respectively. ISD ranges between 0 and 1: spectral superposition
is considered perfect in case the ISD equals to zero, whereas
higher values highlight possible misalignments.

C. Results

1) Algorithmic Validation: The effectiveness of the imple-
mented extreme-edge processing with respect to off-line
computation has been verified in the first phase of the experi-
mental validation. In particular, we focused on the validation
of the ARMA model estimation because, given the dual-stage
structure of the HR algorithm, the retrieval of ARMA param-
eters implicitly confirms the validity of both the AR and ARX
implementations.

This was accomplished by loading into the STM32L5 FLASH
memory one noise-corrupted vibration signal, which was gen-
erated via simulation of a six-storey shear frame under white
noise base excitation. All the possible combinations of Np and
Ns1p values were explored by varying the former quantity in
between 9 and 57 (step size equal to 8), whereas the latter
was swept in the interval [25; 50] (step size equal to 5). The
performance was evaluated in spectral terms via the ISD and
the corresponding results are reported in Table II.

As can be observed, the ISD values are below 1.5 ·10−2 even
for the worst-performing configuration, while reaching perfect
superposition in some cases (e.g., Np = 49 and Ns1p = 45).

2) Execution Time: To measure the execution time, the Np

and Ns1p pairs discussed in Section IV-C1 were selected, obtain-
ing the processing times depicted in Fig. 4 for the AR/ARX1

(red scale curves) and ARMA (blue scale curves) case.
The reported trends confirm that the time consumed by the

ARMA model is nearly double the time required by the MCU
for execution of the AR variant, when a mutual number of
samples per parameter and the total amount of parameters is
used. This outcome is, once again, consistent with the AR-ARX
nature of the adopted HR algorithm. From Fig. 4, it can be
seen that the relationship between the processing time and Np

is cubic, whereas the variation due to Ns1p is a linear function
of the selected number of samples per parameter.

The maximum reported computation time amounts to 129 s
and is associated with an ARMA model involving Np = 57
and Ns1p = 45, i.e., 57 parameters are to be extracted from
the time series (2565 samples). For in-field deployment, where

1Execution time for the ARX model is equal to the one required by AR
for the same total number of parameters, for this reason the two single-stage
models are provided jointly.

Fig. 4. Execution time for ARMA (blue scale curves) and AR (red scale
curves) model running on STM32L5 MCU under different Np and Ns1p
configurations.

algorithms are to be executed with low latency, such com-
putation time is barely compatible with high sampling rates.
For the sake of an example, acquiring 2565 samples at 50 sps
requires about 50 s, which is slightly more than one third of
the time taken for processing them.

It is worth noting that, in many practical applications, a viable
way to speed up identification is to apply a band-pass filtering
operation before running the actual parametric identification
task. This reduces the true content of the signal, owing to
the focus on some selected spectral bands and in turn, lowers
the number of parameters that are necessary to accurately
model the system dynamics, which implies a decrease of the
computation time according to N3

p . In addition, as mentioned
above, computing such a large number of parameters is hardly
required in typical SHM scenarios, where model orders are
typically confined below a couple of dozens even for the most
complicated vibration patterns, such as the ones characterized
by highly coupled modes or very rich profiles [29].

D. Practical Use Case: Wind Turbine Monitoring

The proposed edge solution for data compression in SHM
deployments was validated on an actual operating structure.
This objective was pursued by exploiting field data collected for
a small scale WT hosted in the IBK laboratory at ETH Zürich.
More in detail, the considered test-bed consists in a 3.5-kW
Windspot blade, manufactured by Sonkyo Energy [44]. This is a
small-scale prototype blade element whose structural behavior
has been extensively investigated against artificially induced
dynamic excitation, as well as varying environmental conditions
under both pristine (“healthy”) and damaged scenarios.2 In
this work, the vibration response signals, induced by white
noise excitation (effective frequency bandwidth between 0 and

2The collected signals have been made publicly available at
https://zenodo.org/record/3229743#.YLpz8vkzaUm).
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Fig. 5. Spectra of the WT blade working at the reference temperature of +25 ◦C under progressive damage tests (left), while the effects of temperature
changes are underlined in the right-hand image for the damage-free status. Signals at higher density levels, characterized by a smoother profile, are
obtained by SysId running on sensor, whereas the ones appearing at the bottom part are computed by standard Welch’s method for PSD.

400 Hz) are considered to emulate a practical OMA scenario,
which requires use of a broadband (ambient) excitation.

Similarly to the approach adopted in the preliminary valida-
tion step, data were statically loaded into the MCU nonvolatile
memory at the start-up after conversion to the float32 bit
format. Moreover, since the response signals were acquired via
use of commercial instrumentation involving PCB Piezotronics
accelerometers that feature high sensitivity and high-resolution
levels, which are not compliant with long-term and low-cost
monitoring systems, the data sets were corrupted with the
white Gaussian noise. This is meant to replicate the intrinsic
electronic and mechanical drifts that are common in cut-off-
the-shelves digital MEMS devices for low-cost and low-power
embedded applications. In particular, the following features
were considered: sensor noise equal to 80 mg/Hz2, a constant
offset bias of 40 mg, 16-bit ADC resolution corresponding
to 0.061 mg/LSB, zero-g level and sensitivity change versus
temperature of ±0.1 mg/◦C and ±0.01 %/◦C, respectively.

In [44], an experimental study has been performed on the
considered blade structure, which reveals that the vibration
pattern experienced by this structure is remarkably complex,
as it is characterized by multiple and closely spaced spectral
regions undergoing significant changes due to varying temper-
ature and operational effects. This suggests that simple AR
models would be either ineffective in capturing all the sig-
nificant components with enough resolution or, conversely,
too complex to approximate a reasonable solution. Hence, an
ARMA model was applied, whose model order—according
to the BIC criterion—has been estimated equal to 20 (Np =
41), for processing time frames of 3000 samples, acquired at a
sampling frequency of 833 Hz. The corresponding compression
factor amounts to CR = 3000/41 ≈ 75.

The effectiveness of ARMA models for data compression
has been evaluated by verifying whether the spectral signatures,
that were reconstructed by the ARMA parameters that were
computed by the STM32L5 device under varying conditions,
are capable to track the corresponding shifts in the peak spectral
values. The rationale behind this choice is that variations in the
frequencies that are associated with the most energetic modal
components form important indicators of possible damages, or
in other words are proxies of anomalies (defects).

Two different analyses were performed and the obtained
spectral profiles are shown in Fig. 5. In the left panel of
Fig. 5, the capability of the adopted ARMA model to follow
the frequency variations induced by man-made damages is
investigated. Three reference cases, denoted in the figure with
label A, D, and L and characterized by the same temperature
value of +25 ◦C, correspond to three different damaged states
simulating, in sequence, the presence of one added mass (case
A), the formation of one single crack (case D) and the concurrent
occurrence of three cracking phenomena (case L). On another
study, three signals for the healthy blade were processed while
varying the temperature range between −15 ◦C, +25 ◦C, and
+40 ◦C [see Fig. 5, right panel].

In both cases, the perturbation in the spectrum is clearly
evident and increases for higher natural frequencies. This is
additionally noted via use of gray background boxes whose
width increases while moving toward higher frequencies.

Comparing the spectral curves derived from ARMA param-
eters and the ones computed via the more conventional Welch
estimator (lower part of the spectrum), a good agreement is
noticeable: indeed, despite a vertical shift due to a bias in the
estimated noise density σ 2

e , the peak locations remain clearly
centered as well as the global trends superimpose in quite a
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precise manner. The main difference between the two spectral
estimators is given by the filtering effect of the parametric
method, which finally provides a PSD plot that can be more
reliably used for extraction of the structural modes in both
regimes.

V. COST-BENEFIT ANALYSIS

The energy consumption of a sensor node strongly depends on
the executed tasks, which may pertain to data acquisition, data
processing, and data transmission, with each task contributing
to the overall power budget.

In this work, the specific impact to the power budget of
edge signal processing for SysId is comprehensively evaluated
in conjunction with the one of transmission, by taking into
consideration the communication protocols that are best suited
for IoT applications. In doing this analysis, the energy spent for
sampling can be neglected, as it is proportional to the length
of the signal to be acquired. Further to SysId solutions (label
SysId), compression-free scenarios (label No DSP), as well as
compressive sensing solutions (label CS) are considered, the
latter being the main (and most commonly adopted) competitor
for data compression in this field.

To accomplish this goal, the IoT analyzer toolbox3 presented
in [45] has been specifically exploited since it provides an open-
source platform which allows to simulate the working principles
of different IoT-oriented protocols, and to quantify the energy
consumption of the corresponding hardware modules. The com-
plete list of protocols and related hardware considered in this
work includes: the nrf52840 multiprotocol System on Chip [46]
supporting both BLE 5.0 with Long Range connectivity and
the 802.15.4 stack, the MAX2830 module [47] enabling 802.11
power-saving mode (PSM), the very recent SX-NEWAH [48]
module implementing the communication based on 802.11ah
Wi-Fi HaLoW, whereas the SX1272 transceiver [49] was cho-
sen for the LoRaWAN technology. These devices differentiate
both in terms of maximum power consumption (from 30 to
700 mW in transmission mode), available data rates (from
125 kbps to 10 Mbps) and maximum packet size (from 120
to 1280 Bytes).

The periodic acquisition of N-sample time series per hour
from a tri-axial accelerometer device is simulated to mimic real
vibration-based monitoring scenarios. Here, N = Ns1pNp is the
total length of the waveforms to be acquired in case of the
SysId method. The communication-related energy consumption
computed by the analyzer (for a transmission distance of 200 m
to be compliant with the communication ranges supported by
all the considered protocols) is thus complemented with the
one associated to the DSP task. To this end, the execution times
reported in Fig. 4 were specifically employed and multiplied
by the average power consumption of the STM32L5 device
in normal operative mode, which has been experimentally
measured equal to 15 mA, while powered at 3.3 V; a CR equal
to 5 has been chosen for the CS case. In what follows, among
the various tried configurations, results are presented only for
the most critical one, corresponding to the ARMA model with
Ns1p = 45: this leads to a gain in the compression factor of
9× and 45× comparing with CS and No DSP, respectively.

3https://gricad-gitlab.univ-grenoble-alpes.fr/morinelo/iot-analyzer

Fig. 6. Total energy expenditure for one hour duty cycle for different
IoT protocols, taking into account expenditure due to data processing and
outsourcing. The acquisition of triple-channel signals are assumed with
Ns1p = 45, while sweeping Np in the interval [9, 57] (depicted with
different markers). Three different background colors are used to indicate
different data compression scenarios: SysId-based processing (blue), CS-based
processing (gray), and compression-free (green). Missing points mean that
the corresponding payload in the given T× time is not supported by the
corresponding protocol.

The trends representing the total energy consumption deriving
from the communication and processing operations are shown
in Fig. 6. The different background colors are used to identify
the three considered working configurations, namely, blue,
gray, and green are associated to SysId, CS, and No DSP,
respectively. Additionally, the markers are used to indicate the
same transmission payload (per given Ns1p, while varying Np

in the interval [9, 57], in steps of 8), such as it is easier to
compare the considered approaches. The plot indicates that the
power saving of SysId w.r.t. CS can reach 10×, increasing up
to 100× in case of no data compression.

It is further worth mentioning that SysId yields the most
efficient performance for all the considered communication
protocols. Apart from a horizontal bias due to hardware char-
acteristics, the same consumption curve characterizes BLE 5.0,
802.15.4, and WiFi HaLoW by exhibiting a sharp increase for
data payload higher than 1 kB. The trend is slightly different
for 802.11 PSM, where the estimated energy profile is almost
constant with a minimal increase in case of very large packet
sizes. The reason is that this protocol works at a very high
data rate (11 Mbps) with a large packet size (1280 B).

The gain in the saved energy for the least power-hungry
protocol (i.e., 802.15.4) has been highlighted in Fig. 6 for
the two extreme cases of Np = 9 and Np = 57. As can be
observed, the energy savings are always favorable, moving from
a minimum gain of 1.07× up to a maximum improvement of
1.19× while comparing with CS-driven solutions as dictated by
the minimum and maximum number of parameters. Notably,
these gains arise to 1.38× (minimum Np) and 2.78× (maximum
Np) while considering compression-free scenarios.
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The SysId-based approach yields a significant advantage w.r.t.
the other solutions especially in the LoRa case. As a general
observation, the restrictions in terms of sub-band occupancy
imposed by ETSI for protocols working in the sub-1 GHz band
makes LoRaWAN less effective for this kind of applications.
Despite this practical limitation, denoted by the absence of
markers in the purple curve for high payload size, the chart
shows that, when SysId data compression is leveraged, even this
long-range communication technology could become feasible
for the assumed transmission rates.

VI. CONCLUSION

This work investigates the implementation of output-only
SysId models at the extreme edge, as a mean to reducing
the network congestion in large-scale structural monitoring.
The capability to perform structural analysis via output-only
methods is crucial since, in practical scenarios, it is often
impossible to measure the input stimulus. The pursuit of this
goal requires adaptation and customization of SysId algorithms,
leveraging the potential of computation at the edge for moni-
toring solutions. This manuscript presents, in an explicit way,
the algorithms and implementation procedures for doing so.

In particular, an MCU version of the eS-TSQR combined
with least-squares estimators, termed as eS-TSQR, has been
implemented and embedded on a Nucleo board equipped with an
STM32L5 MCU. Validation on both synthetic and experimen-
tal vibration responses has been performed, proving accurate
results in the frequency tracking of structural changes.

The potential power savings due to the network load reduc-
tion achieved by running SysId at the extreme edge have been
thoroughly evaluated, taking into account the energy expendi-
ture necessary for the model parameter computation. Different
wireless transmission protocols that are commonly adopted in
the IoT framework have been considered for this purpose. It
has been demonstrated that SysId is, even in the most adverse
network configurations (i.e., for very long payload sizes), 1.19
- 2.78 times more advantageous with respect to CS-driven
and compression-free scenarios, thus ensuring a longer-lasting
monitoring system.

Future works will cover the embodiment of the same algo-
rithms in parallel, low-power architectures so as to speed up
the execution time. Finally, via the investigated SysId method
we aspire to pave the path to extreme-edge inference, by using
the estimated parameters as features for the structural health
status characterization.
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