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Abstract—In the world of Internet of Things (IoT), obtain-
ing the physical location of devices has always been a task of
great interest for developing increasingly complex location-based
services (LBS). That is why in recent years wireless communi-
cation standards have been incorporating new additions focused
on providing localization mechanisms to technologies widely used
in the IoT world, such as Wi-Fi or Bluetooth. In particular, the
IEEE 802.11-2016 Wi-Fi standard introduced ranging estimation
between two devices through the so-called fine time measurement
(FTM) protocol, defined by the IEEE 802.11mc. FTM is not yet
widespread in the IoT field, but commercial modules capable of
offering this functionality at a reasonable price are starting to
appear. In early 2021, the most widespread system on a chip
(SOC) family among IoT devices, the ESP32-XX series, added
support for this Wi-Fi standard, enabling, for the first time, the
use of a standard designed for location-based systems. This arti-
cle analyzes the performance of this FTM implementation by
carrying out and studying several measurement campaigns in
different indoor and outdoor scenarios. Additionally, this work
proposes an alternative real-time implementation for distance
estimation inside the ESP32 using an approach based on machine
learning. Such an implementation is successfully validated in a
scenario totally different than those considered for the train-
ing and test sets. Finally, both the measurement sets and the
developed software are available to the scientific community.

Index Terms—Location management, low-cost sensors and
devices, other sensors and devices, other services and applications
topics.

I. INTRODUCTION

ACCURATE location of sensors in the Internet of Things
(IoT) world is important in multiple areas of interest,

such as smart cities and buildings, healthcare environments,
industry, or agriculture [1]. All of them demand location tech-
nologies capable of positioning the sensors to deliver more
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and better location-based services (LBS). Recently, the global
pandemic of COVID-19 demonstrated the important need not
only to know all kinds of data, such as CO2 rates or occu-
pancy levels but also to know the physical location of the
sensors that produce them [2]. The location of sensors within
the aforementioned scenarios often becomes challenging due
to the following reasons [3].

1) In many occasions, global navigation satellite system
(GNSSs) are not an option because the sensors are
located in scenarios (inside buildings, urban canyons,
etc.) where the performance of such systems is very
poor or they simply do not work. And even in open areas
where these systems could work, the cost of adding such
capabilities to the sensors would be too high to be viable
for large-scale deployments.

2) The complexity of the scenarios in which IoT sensors are
placed often makes their localization very difficult. This
is especially true when radio frequency (RF) technolo-
gies are employed. Phenomena such as interference or
non-line of sight (NLOS) propagation yield significant
errors in position estimates.

3) Typical deployments in the IoT world require the instal-
lation of many sensors, which means that the individual
cost of each unit must also be very low in order not to
exceed the project budget. Therefore, in certain cases,
some localization technologies are excluded in advance
for budget reasons, even if they perform satisfactorily.

There are, therefore, numerous technological alternatives to
achieve position estimation within the IoT world, each with
its own particular characteristics in terms of accuracy level,
deployment and maintenance costs, reliability, or operational
requirements.

Among the various localization systems available [4]–[6],
those based on RF are some of the most popular. Their
basic operation consists of emitting and receiving some type
of waveform with certain characteristics and extracting from
this transmission some physical parameters that allow for
estimating the position of the emitter or receiver.

Based on these RF-based technologies, there are numer-
ous implementations, including radio frequency identification
(RFID) [7], Wi-Fi (IEEE 802.11) [8], Bluetooth/Bluetooth
low energy (BLE) [9], ZigBee [10], and ultra wideband
(UWB) [11].

However, when applications require very accurate and
precise localization, the range of technologies that can be con-
sidered is restricted [4]. Traditional technologies exclusively
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provide received signal strength (RSS) estimates, which can be
heavily affected by the signal propagation conditions, and thus
they may be highly variable and unpredictable, especially in
indoor environments. Therefore, in recent years, newer tech-
nologies providing parameters, such as time of arrival (TOA),
time difference of arrival (TDOA), angle of arrival (AOA), or
angle of departure (AOD), are considered since they exhibit
a much better accuracy and precision than those based on
RSS. Many of the latest versions of RF-based wireless com-
munication standards offer these new alternatives since they
are evolving with the aim of providing reliable references
for application in location systems. In particular, Wi-Fi (with
amendments IEEE 802.11az/bd/mc) [12]–[14] and 5G [15],
[16] provide TOA and TDOA, whereas Bluetooth 5.1 with
direction finding [17] provides AOA and AOD.

Wi-Fi networks are one of the widely used mechanisms
for communication between IoT nodes (e.g., in home automa-
tion). In previous years, the Task Group mc (TGmc) of the
IEEE 802.11 Working Group (IEEE 802.11mc), incorporated
several amendments into the IEEE 802.11 standards, result-
ing in the publication of the IEEE 801.11-2016 standard in
2016. This standard incorporates a new protocol for esti-
mating the propagation time between devices, the so-called
fine time measurement (FTM) protocol. The advantage of
this standard is that it has been introduced in recent years
into consumer devices and, for example, is supported by
the Android operating system since version 9.0 (Android Pie
with API level 28) [18]. In fact, some tests with commer-
cial smartphones using this standard are already available
in [19]–[21].

The same is not true for the implementation of this tech-
nology in devices employed in the IoT world. In this case,
there are very few choices offering Wi-Fi FTM off-the-shelf.
One of the main reasons is that most Wi-Fi modules on the
market are not yet compatible with the 802.11-2016 standard,
and only a few recent models, such as the 88W8987 family
from NXP [22], offer this functionality. It is important to men-
tion that these modules do not offer an autonomous solution
since they need an external microcontroller to act as a host and
communicate with them. However, there is another alternative,
which are the system on a chip (SOC) devices that already
incorporate a microcontroller (typically a low-power model),
and a series of additional communication modules such as
Wi-Fi or Bluetooth. Several chips of this type are available
off-the-shelf, such as the 88MW32X from NXP [23], or the
CYW43907, CYW43903, and CYW54907 from Cypress [24].
In all these models, however, the Wi-Fi module built into the
SOC does not support the 802.11-2016 standard. Currently, to
the best of our knowledge, the only option available on the
market with FTM support is the well-known ESP32-XX fam-
ily of chips from the Chinese manufacturer Espressif Systems.
Specifically, its ESP32-S2 model released in late 2019 was the
first to support FTM, with the release in February 2021 of its
firmware version 4.3-Beta1 [25].

It is more than likely that this will lead to an explo-
sion of LBS in the IoT world due to the high popularity
and market penetration of these SOC models. It is impor-
tant to know that the SOC market is projected to grow

from U.S. $471 millions in 2020 to U.S. $1656 millions
in 2025 with a compound annual growth rate (CAGR) of
28.6% [26].

In addition, we should keep in mind that the consumer
device industry and communities are focused on the devel-
opment of devices based on the ESP32-XX family for
multiple reasons: low cost (around U.S. $5 each), low
energy consumption, compatibility with popular development
environments (Arduino, MicroPython, etc.), and the avail-
ability of high-quality documentation. Thus, a wide variety
of applications have emerged in various fields (industry,
home automation, monitoring, security, wearables, surveil-
lance, location, traceability, etc.). Another example of its
success is that there is a wide variety of firmware versions
that allow these SOCs to be integrated in various automation
projects, for example, ESPHome [27], Tasmota [28], or ESP
easy [29].

This article focuses on assessing whether the existing FTM
implementation in a module, such as the ESP32-S2, is mature
enough in terms of accuracy and robustness to build large-scale
LBS in the IoT world. For this purpose, several measurement
campaigns were carried out in realistic and heterogeneous
environments, including indoors and outdoors, recording the
distance values estimated by the chip and comparing them
with the actual values. The data set of such measurements is
publicly available in [30].

During this performance study, a large difference in the
distance estimation from the raw time values was observed
depending on the measuring scenario: indoors or outdoors.
Therefore, taking advantage of the ease of programming
the ESP32, this article presents another contribution: the
proposal of an alternative method to estimate the distance
from the raw time values returned by the Wi-Fi module.
Such a proposal is based on the use of machine learning
(ML) algorithms trained with part of the acquired data dur-
ing the measurements. The performance of this alternative
is tested not only with offline measurements but also with
a real-time implementation running on the ESP32-S2 chip.
Moreover, such a real-time implementation is validated in
a scenario totally different than those considered for the
training and test sets. Finally, the code of such an implemen-
tation was also publicly released under an open-source license
(see [31]–[34]).

The remainder of this article is organized as follows.
Section II includes an analysis of the state of the art related to
Wi-Fi FTM measurements. Section III describes the ESP32-S2
and the measurement scenarios. The obtained results are ana-
lyzed in Section IV, whereas Section V presents an approach
based on ML to obtain distance estimates considering both
round trip time (RTT) and received signal strength indi-
cator (RSSI). A description of a new testing scenario to
check the robustness of the estimation using ML is included
in Section VI together with the results obtained after the
experiments. Section VII details the implementation of the
estimator built within the ESP32-S2, as well as an analysis
of the current consumption when performing FTM opera-
tions. Finally, Section VIII is devoted to the conclusions and
future work.
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II. RELATED WORK

Since the definition of the FTM protocol in the IEEE
802.11-2016, several works have focused on analyzing its
performance in distance and location estimation tasks.

In [21], a study is presented on the performance of several
FTM-capable Wi-Fi chips in different indoor and outdoor sce-
narios, with and without Line-of-Sight (LoS) propagation. The
study considered 20 and 40 MHz bandwidths at the 2.4-GHz
frequency band, and a bandwidth of 80 MHz at the 5-GHz
frequency band. The results showed an accuracy about 1 m
in open space (after correction for a constant offset), and
about 5 m in indoors. This work also showed little differ-
ence between using 20 or 40 MHz bandwidths at the 2.4-GHz
band. However, there was a clear improvement when using the
80-MHz bandwidth in the 5-GHz band.

Dvorecki et al. [35] considered ML to train an artificial
neural network (ANN) capable of predicting the TOA of the
first path in a Wi-Fi signal with the FTM protocol. In this
case, channel impulse response (CIR) samples are employed,
achieving an estimator that yielded an error below 4 m for
90% of the samples analyzed.

In [36], different neural networks (NNs) were applied to
perform position estimation using RSS and FTM on different
smartphones. Considering the 5-GHz band and a bandwidth
of 40 MHz, measurements in an indoor environment showed
that only 20% of the samples were below 4 m of error. These
values increased to almost 90% of the samples below 4 m
of error when an ANN-based correction factor was applied
to the raw samples. A comparison between position accuracy
using RSSI or FTM was performed in [19]. The measurements
were carried out in the 2.4-GHz band and with a bandwidth
of 20 MHz. The findings indicated that the RSSI estimates
outperform those obtained from the FTM sensors, unless the
sensors are calibrated individually, in which case the FTM
localization is the best. The error values, in this case, yielded
a mean error of 3.52 m for calibrated FTM and a mean error of
4.47 m using RSSI. Horn [20] used a smartphone to carry out
Wi-Fi FTM measurements to obtain a positioning estimator.
To improve its accuracy, the author integrated the measure-
ments from two different frequency bands, 2.4 and 5 GHz,
showing that there is no correlation between them. The work
also included a study of the possible reasons why errors appear
with this technology.

In general, all the aforementioned works showed that the
Wi-Fi FTM technology can provide good results in terms
of accuracy in outdoor environments without obstacles, but
many problems arise in indoor environments. In these com-
plex scenarios, the studies showed that, without a minimum
calibration or optimization of each device, the results may
lead to errors of tens of meters. In all the studies, Wi-Fi
cards or smartphones were used as initiating devices, hence
none of them addressed the problem of energy consumption
or cost when describing the technology. In this article, we
will analyze whether the ESP32-S2 offers results with similar
accuracy to those obtained in previous works, but also take
into account its characteristics as a device to be used in IoT
environments.

III. EXPERIMENTAL SETUP

A. Fine Time Measurements and the ESP32

The ESP32-S2 [37] is an evolution of the famous ESP8266,
massively used in automation projects, which introduces
new Bluetooth and Wi-Fi capabilities. Both ESP32-S2 and
ESP8266 SOCs are part of a family of low-cost SOC micro-
controllers from Espressif Systems, a Chinese company from
Shanghai.

In particular, the ESP32-S2 and the ESP32-C3 series have
recently added support for the IEEE 802.11-2016 standard,
which introduces the FTM protocol to provide ranging esti-
mates using Wi-Fi links. Basically, this protocol measures
the RTT between two devices and, based on this time, esti-
mates the distance between them. These devices can be of
any type (access points (APs), mobile terminals, SOCs, etc.),
provided that they have a Wi-Fi chipset compatible with the
802.11-2016 standard and a firmware that supports FTM. Due
to its enormous market penetration, this work focuses on
the ESP32-S2, although the results should be similar for the
ESP32-C3.

The ESP32-S2 [37] has integrated support for the IEEE
802.11 b/g/n and a variety of peripherals. It has 43 general-
purpose input/output (GPIO) pins, a 240-MHz Xtensa 32-bit
LX7 single-core processor with 320 kB of static random-
access memory (SRAM), and 128 kB of read-only memory
(ROM). Compared to its predecessor, the ESP32-S2 SOC
comes with enhanced encryption capabilities and improved
radio performance. There are also versions of the SOC in
the form of modules, such as the ESP32-S2-WROOM and
the ESP32-S2-WROVER; and development kits such as the
ESP32-S2-DevKitM-1 or the ESP32-S2-Saola-1. Using the
43 GPIO pins, the device can be configured to provide dif-
ferent peripheral interfaces, including four serial peripheral
interfaces (SPIs), two inter-IC sound (I2S) and interinte-
grated circuit (I2C) interfaces, three universal asynchronous
receiver–transmitter (UART) interfaces, 16 pulse-width mod-
ulation (PWM) channels for light-emitting diodes (LEDs), a
liquid-crystal display (LCD) interface, a camera interface, 18
analog-to-digital converter (ADC) channels, two 8-bit digital-
to-analog converter (DAC) channels, and 14 capacitive touch
interfaces.

The most important characteristic of the ESP32-S2 for this
work is that it supports the IEEE 802.11-2016 standard with
the FTM protocol, which enables localization based on dis-
tance estimates between two Wi-Fi devices. However, it should
be noted that only the 2.4-GHz Wi-Fi band is available, thus
the bandwidth is restricted to 20 or 40 MHz, which limits the
accuracy that can be achieved with the FTM protocol [18].
More specifically, according to [18], the 90th percentile of the
error is expected to be 8 m for 40 MHz, 4 m for 20 MHz,
and 2 m for 80 MHz.

B. Measurement Scenarios

To analyze the performance of the ESP32-S2 module
using Wi-Fi RTT, two different measurement campaigns were
planned. One of them was carried out in an outdoor envi-
ronment, away from buildings and possible interferences. The
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Fig. 1. Indoor scenario.

second one was carried out in an indoor scenario, in a show-
room of the Centre for Information and Communications
Technology Research (CITIC), at the University of A Coruña,
Spain. The ESP32-S2-Saola-1 development boards from
Espressif Systems were used in both cases. Such modules
were mounted on tripods and then placed in a series of known
positions in order to compare the distance estimates with the
actual values. Some of the modules were used as Wi-Fi FTM
responders (acting as beacons) and others as communication
initiators (acting as tags).

1) Indoor Scenario: The CITIC showroom (see Fig. 1) at
the University of A Coruña, Spain, was selected as an indoor
environment. This is a space dedicated to the dissemination
of the research activities carried out in the center. It is a
room with many obstacles inside and surrounded by sources of
interference such as other Wi-Fi networks (more than 7 were
detected with a high signal level from inside the room) coexist-
ing with ZigBee sensor networks and Bluetooth devices. The
dimensions of the room are 12 m long and 6 m wide, with a
height of 3.2 m.

To have a greater diversity of measurements, reduce data
collection time, and have a data set applicable to future posi-
tioning algorithms, four ESP32-S2 devices were placed at the
corners of the room acting as beacons, while the commu-
nication initiating tag was moved to different points along
a straight line. This tag was placed at a height of 2 m. A
schematic of the anchors and measurement positions is shown
in Fig. 2. Due to some of the obstacles present in the room,
measurements could not be taken in certain areas. At each
point, measurements were taken for 180 s and the ESP32-S2
devices were configured to work with a 40-MHz bandwidth,
which is the maximum bandwidth allowed at the 2.4-GHz
band. Notice that, due to the relative placement between tag
and beacons in this scenario, measurements were obtained at
different distances and with different relative angles between
transmitter and receiver.

Fig. 2. Indoor measurement setup.

Fig. 3. Outdoor scenario.

2) Outdoor Scenario: In order to obtain more information
about the capabilities of the ESP32-S2 module for ranging
operations with the Wi-Fi FTM protocol, another measurement
campaign was performed in an outdoor environment. In this
way, we tried to minimize the possible effect of interference
and multipath typically found in indoor scenarios. In fact, in
this scenario, not a single nearby Wi-Fi network was detected
that could be a source of interferences. To carry out the mea-
surements, we selected an area of the campus at the University
of A Coruña away from the buildings. Only two modules were
used in the experiment, one acting as a tag and the other as a
beacon. They were mounted on tripods and placed one in front
of the other at the same height (1.75 m). The measurements
were taken during 120 s at distances varying from 1 to 20 m,
at 1 m intervals. Two different measurement campaigns were
performed, one with the modules configured with a bandwidth
of 20 MHz, and the other with a bandwidth of 40 MHz. Fig. 3
shows a picture of the outdoor measurement scenario.

C. Software Development

In order to collect the measurements, several software mod-
ules were implemented. On the one hand, a new firmware was
programmed for the ESP32-S2s acting as beacons. In this case,
the application configured the module as a Wi-Fi AP with the
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FTM responder features enabled. On the other hand, another
firmware was programmed for the module acting as a tag. In
this case, the functionality of this firmware was divided into
three main parts: 1) a scan of APs capable of responding to an
FTM request was performed; 2) once this list was obtained,
the module entered in a loop of FTM requests with each of the
APs detected in the previous phase; and 3) the measurements
obtained were written to the serial port of the development
board.

To assess the collected data from a PC, a Robot Operating
System (ROS) environment was deployed on a Raspberry
Pi 3B. ROS [38] is a software commonly used in robotics
and allows for decoupling communications between hardware
devices (typically sensors) and the software elements in charge
of processing their data. Within ROS, the fundamental working
element is the node. A ROS node can publish information in
a given topic (a text string similar to a file path or a URL) and
can also subscribe to the data available from topics published
by other nodes. In our case, we implemented a node capa-
ble of collecting the FTM measurements captured from the
ESP32-S2 (connected via a USB port) and publishing them in
the ROS ecosystem. On the PC we used rosbag, an application
included by default in ROS that allows for the subscription and
subsequent storage of measurements in different logs for later
analysis. Those measurements were sent from the Raspberry
Pi to the PC via an Ethernet link. Note that the choice of ROS
in this work has been solely to take advantage of its commu-
nication system and its measurement collection tools, and not
because the nature of what is described here is related to the
field of robotics.

As part of the contributions of this article, the code of all
these software modules is publicly available as open source.1

IV. MEASUREMENTS ANALYSIS

This section shows a descriptive analysis of the measure-
ments obtained in the different campaigns. Each measurement
includes the following parameters.

1) anchorId: Identifier of the module that acted as
beacon in the measurement.

2) rtt_raw: RTT value averaged among the different
frames sent and expressed in nanoseconds.

3) rtt_est: RTT estimation provided by the ESP32-S2
firmware in nanoseconds.

4) dist_est: Distance estimation in meters. Internally,
rtt_est is used to calculate this value.

5) num_frames: The number of frames successfully sent
during the RTT communication.

6) frames: A list of all successfully sent frames.
Each individual frame includes the following information.
1) rssi: RSS in dBm.
2) rtt: RTT value for that frame in nanoseconds.
3) t1: Outgoing timestamp of the first packet from the

sender in picoseconds.

1The source code can be downloaded from
https://github.com/valentinbarral/*, where * is one of these project identifiers:
esp32s2-ftm-tag, esp32s2-ftm-anchor, rosftm, or rosmsgs (see [31]–[34]).

Fig. 4. Actual versus estimated distance in the indoor scenario.

4) t2: Timestamp of the reception of the ranging request
at the receiver expressed in picoseconds.

5) t3: Timestamp (in picoseconds) of the response mes-
sage at the receiver.

6) t4: Timestamp (in picoseconds) of the reception of the
response message from the receiver at the sender.

The results corresponding to indoor and outdoor campaigns
are analyzed in Sections IV-A and IV-B, respectively.

A. Analysis of the Indoor Measurements

The first information we extract from the measurements cap-
tured in the indoor environment is the distance estimate. The
ESP32-S2 provides two RTT parameters: 1) rtt_raw, which
corresponds to the average of the values obtained in the differ-
ent frames and 2) rtt_est, which is estimated by the chip.
How the rtt_est estimate is obtained from the raw value is
not documented by the manufacturer. These RTT parameters
can be easily translated into a distance estimate d using the
formula

d = rtt · c

2
(1)

where rtt is the RTT value, and c is the speed of light.
Note that depending on the value of rtt used, rtt_est or
rtt_raw, two different distance estimates can be obtained.
The ESP32-S2 firmware uses rtt_est to provide an estimate
of the distance between the devices available as dist_est.

Fig. 4 shows the captured samples, their actual position,
and the two estimates: the one provided by the chip itself,
dist_est, and the value obtained from rtt_raw using (1).
The values obtained in this indoor environment are clearly
very inaccurate. There are large differences between actual
and estimated values. It can be seen that the estimates based
on the rtt_raw value lead to the worst results, whereas those
based on the dist_est achieve a significant improvement in
terms of accuracy. The error level obtained can be better seen
in Fig. 5, where the empirical cumulative distribution function
(ECDF) of the absolute error is shown for both cases. Besides
observing the general level of inaccuracy of the measurements,
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Fig. 5. ECDF of the absolute error in the indoor scenario.

Fig. 6. Mean RSSI for each measurement versus actual distance for the
indoor scenario.

with errors up to 20 m in some cases, we can see that the
distance estimates obtained by the chip are able to improve
those from the raw RTT samples. As an example, by means
of the ESP32-S2 estimation, about 75% of the measurements
are below 5 m of error, whereas using the rtt_raw parameter
only 50% are below such a threshold.

Another parameter of interest is the RSSI value. Fig. 6
shows the different measurements in the indoor scenario
according to their RSSI value and the actual distance at which
they were taken. Note that the ESP32-S2 does not gener-
ate an RSSI value for each FTM sample, but rather for each
frame transmitted within an FTM communication. In this case,
the RSSI values shown in Fig. 6 correspond to the average
of all the frames in each FTM sample. It can be observed
that there is a slight decay of the energy as the distance
between the devices increases. However, the strong multipath
propagation in the indoor environment leads to a severe
small-scale fading, and some samples are obtained with high
RSSI values at long distances and low RSSI values at short
distances.

Fig. 7. Comparison between actual and estimated distances for both outdoor
data sets, and for bandwidth values of 20 and 40 MHz.

B. Analysis of the Outdoor Measurements

Fig. 7 shows the distance estimates obtained for the two
bandwidth values considered (20 and 40 MHz) versus the
actual distance. As in the indoor case, both the distance val-
ues provided directly by the chip (dist_est) and those
generated from the temporal rtt_raw values from (1) are
shown. In Fig. 7, it can be seen that how the estimated val-
ues are much closer to the actual ones than in the indoor
case (shown in Fig. 4) for both the 20 and 40 MHz band-
width values. However, in this scenario, a counter-intuitive
phenomenon can be seen: the estimates generated with the raw
RTT values (rtt_raw) are closer to the actual values than
the estimates provided by the chip. Such a phenomenon can
be clearly observed in Fig. 8, where the estimates from the
ESP32-S2 are noticeably worse than those obtained directly
from rtt_raw. This effect is clearly visible in the measure-
ments corresponding to the 20-MHz data set, whereas in the
40-MHz data sets, both values are more similar. This appar-
ent inconsistency is discussed in more detail in Section IV-C.
Fig. 8 also shows that the raw values from the 20-MHz con-
figuration (rtt_raw) yield better results than those obtained
with 40 MHz, whereas with the values estimated by the chip
(dist_est), this effect is reversed, and the 40-MHz results
are slightly better.

Finally, Fig. 9 shows the RSSI values corresponding to the
two bandwidths obtained in the outdoor scenario. We can see
that the RSSI values exhibit less small-scale fading than in
the indoor case (see Fig. 6), and they are similar regardless
of the bandwidth. The energy clearly decreases with distance,
although there are points where multipath effects are observed,
probably caused by the signal bouncing off the ground or other
obstacles close to the measurement area.

C. Estimated RTT Versus Raw RTT

After the analysis of the data captured in the different
measurement campaigns, one of the most surprising aspects
detected was the difference in accuracy between the distance
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Fig. 8. ECDF of the absolute error for both outdoor data sets and for both
bandwidth values (20 and 40 MHz).

Fig. 9. RSSI versus actual distance for both outdoor data sets, with bandwidth
values of 20 and 40 MHz.

estimated by the ESP32-S2 and the value computed directly
from the raw RTT values. While in the indoor case, the esti-
mation improved the raw accuracy, this was not the case in
the outdoor measurements, especially for the case with a band-
width of 20 MHz. In the latter case, the ESP32-S2 estimates
were clearly worse than those obtained using the rtt_raw
value directly.

To try to detect the reason for this behavior, and since there
is no documentation from the manufacturer about how the
distance estimate is generated by the device, a study of the
differences between the rtt_raw and rtt_est values was
carried out. Fig. 10 shows the difference between these two
values for all captured measurements (indoors and outdoors)
with respect to the rtt_raw value, in which three linear
correction models that are directly related to the rtt_raw
value itself can be identified. That is, in view of these val-
ues, it seems clear that, to generate the rtt_est value, the
ESP32-S2 simply applies a correction factor to rtt_raw

Fig. 10. rtt_raw− rtt_est for all data sets.

that depends linearly on its value. Such a linear relation-
ship has a different gradient depending on whether the values
are below 10 ns, between 10 and 124 ns, or above 124 ns.
Probably, due to the still recent implementation of the FTM
support on these chips, the chosen correction is not the best.
Although it is difficult to say for sure, it seems that an attempt
was made to improve the accuracy in indoor environments (a
typical scenario to use a Wi-Fi module) at the cost of wors-
ening the results in better conditions, with a good LoS, and
in the absence of obstacles or significant interference between
the devices. What does seem clear is that these thresholds,
located at 10 and 124 ns, are consistent across all measure-
ment scenarios, so they must be hard-coded in the ESP32-S2
firmware.

V. PROPOSED ESTIMATOR BASED ON

MACHINE LEARNING

After observing the limitations of the current ESP32-S2
estimation algorithm described in Section IV-C, an opportu-
nity appears to propose a better alternative. This new method
should be able to operate within the computational limitations
of the ESP32-S2, so that it must compute the distance estimate
from the rtt_raw in real time and for each FTM commu-
nication, providing a more accurate result. Having hundreds
of data records after the measurement campaigns, one of the
direct approaches to the problem would be using ML tech-
niques to generate a regression model of the desired correction.
This approach is very common to deal with this type of prob-
lems [35], [39] and was also used previously by the authors
in previous works for the UWB technology [40].

As training features, we selected the rtt_raw values and
the average RSSI values, discarding other parameters that did
not provide any improvement in a preliminary study, such as
the number of frames successfully transmitted or the variance
of rtt_raw for each sample. To create the training set, we
randomly selected 70% of the samples from each of the three
data sets (the one corresponding to the indoor measurements
and the two outdoors) and merged them into a single one. The
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remaining samples were reserved as test sets. At the time of
training, cross-validation was used with fivefold, an adequate
number for the not excessively large size of the training set
(around 7000 samples). The Bayesian optimization [41] was
used to search for the best hyperparameters of each algorithm.

The considered ML algorithms were regression trees,
support vector machines (SVMs), Gaussian process (GP)
regression, and shallow NNs. Their details can be found in
Section V-A. More complex techniques, such as those based on
deep learning, were discarded because of their computational
needs, out of the capabilities of the ESP32-S2, and because
the number of samples available was too low to apply these
techniques with confidence.

A. Description of the ML Algorithms

The considered ML algorithms are described below. All of
them are classical algorithms in the literature, and they are
widely used in regression problems.

1) Regression Trees: This is an intuitive technique based
on binary search trees applied to the regression
problem [42]. The idea of these algorithms is to asso-
ciate homogeneous input sets with the same output. The
minimum leaf size is a fundamental parameter in this
type of algorithms since, depending on its value, the
trees can easily tend to overfitting. In the case presented
in this work, the regression tree had a minimum leaf
size equal to four.

2) SVM: This is another classic ML algorithm originally
described in [43] that can be used in both classification
and regression problems [44]. Among the hyperparam-
eters that can be configured in this algorithm, the main
one is the type of kernel used to map the input ele-
ments in the n-dimensional feature space in which the
regression process is applied. In the implementation con-
sidered in this work, a Gaussian kernel was chosen with
the form

k
(
xi, xj

) = exp
(
−∥∥xi − xj

∥∥2
)

(2)

being xi, xj ∈ Rn with n = 2 since the input vectors
consider two features in our case.

3) GP: This is a generalization of the Gaussian proba-
bility distribution in which the behavior of a function
is described. Using this idea, regression and clas-
sification models are built with high accuracy and
performance [45]. In the implementation considered in
this work, we considered an exponential kernel

k
(
xi, xj

) = σ 2
f exp(−r/σl) (3)

being xi, xj ∈ Rn, σf is the signal standard deviation, and
σl is the characteristic length scale. Finally, r is defined
as the Euclidean distance between the vectors xi and xj

r =
√(

xi − xj
)T(

xi − xj
)
.

After the validation phase, the kernel parameters for the
best case were set to σf = 4.6873 and σl = 0.7051.

4) Neural Network: The last of the considered classical
algorithms was a fully connected feedforward NN. This

TABLE I
MAIN PARAMETERS OF TESTED ML ALGORITHMS

Fig. 11. ECDF of the absolute error. Test set: indoors with a bandwidth of
20 MHz.

is one of the most classic ML algorithms, already ref-
erenced in the middle of the last century, and a pillar
of the most complex networks used nowadays in deep
learning [46]. In this work, we implemented a sim-
ple configuration with a single hidden layer consisting
of 100 neurons with a rectified linear unit (ReLU)
activation function, and a linear activation function in
the output layer. All these parameters, as in the rest
of the algorithms, were obtained using the Bayesian
optimization mechanism limited to 50 iterations.

Table I shows a summary of the parameters of each algorithm.

B. Results of the ML Algorithms

This section shows the results obtained after applying the
trained algorithms to the different test sets, each one com-
ing from a different data set. Fig. 11 shows the ECDF of the
absolute error in the indoor scenario in which all the trained
ML algorithms exhibit a clear improvement over the estimates
from the ESP32-S2. Even with a simple algorithm, such as
the regression trees, a noticeable improvement is achieved
for most of the samples, being able to place 80% of them
below 1.5-m error, whereas with the original estimates, the
corresponding error increases up to 6 m.

Fig. 12 shows the ECDF of the absolute error in the outdoor
scenario considering a bandwidth of 20 MHz. This was the
case in which the ESP32-S2 estimates were clearly worse than
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Fig. 12. ECDF of the absolute error. Test set: outdoors with a bandwidth of
20 MHz.

Fig. 13. ECDF of the absolute error. Test set: outdoors with a bandwidth of
40 MHz.

those computed using the rtt_raw parameter directly. In
view of Fig. 12, all the ML algorithms outperform both the
ESP32-S2 estimates and the values computed from rtt_raw.

Finally, Fig. 13 shows the ECDF of the absolute error also
in the outdoor scenario, but in this case using the 40-MHz
bandwidth configuration. With this configuration, and accord-
ing to the ECDF in Fig. 8, there was originally very little
difference between the ESP32-S2 estimates and the values
computed from the rtt_raw parameter (although the esti-
mates yielded the best result, as shown in Fig. 8). However,
in view of Fig. 13, a significant improvement is observed when
the ML algorithms are employed.

In a conclusion, in view of the results shown in
Figs. 11–13, ML-based estimators improve the accuracy of the
measurements to some degree. However, it should be noted
that, although the test set did not include any samples in com-
mon with the training set, it is true that the general distribution
is similar because they all come from the same data set. For
this reason and to assess the robustness of the models, a new

Fig. 14. Scenario in the Scientific Area building.

Fig. 15. Measurement setup of the scenario in the Scientific Area building.
Anchors 0 and 1 use a bandwidth of 20 MHz, whereas anchors 2 and 3 employ
40 MHz.

experiment was carried out in a completely new measurement
scenario. The details and results obtained from this experiment
are shown in Section VI.

VI. ASSESSMENT OF THE ML TRAINED MODELS IN

DIFFERENT ENVIRONMENT

A proposal was presented in Section V to use classical ML
algorithms to estimate the actual distance from the rtt_raw
value and the signal level. These algorithms were trained with
part of the samples collected in the two proposed scenarios,
the outdoor and the indoor one. The results of this training
were tested with the samples from these data sets that had not
been included in the training set. In a further step, to validate
this approach and check if it can be used in other different
environments, a new measurement campaign was carried out
in a different scenario. This new environment is described in
Section VI-A.

A. Test Scenario

To test the trained models, we looked for a scenario differ-
ent from the outdoor and indoor scenarios already considered.
The place chosen (see Fig. 14) was the ground floor of the
Scientific Area building, a research building located in the
Campus of Elviña at the University of A Coruña, Spain. From
the point of view of radio propagation, it is a complicated sce-
nario due to its low ceiling, glazed areas, and metal structures
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Fig. 16. ECDF of the absolute error. Test set: Scientific Area building with
bandwidth values of 20 and 40 MHz.

located at different points. In addition, being a research build-
ing, there are several nearby devices radiating in the 2.4-GHz
band that could affect to some degree the communications with
the ESP32-S2. Specifically, after scanning inside the area, 5–7
APs with a medium-low signal level were detected.

To perform the measurements, four tripods were placed at
the corners of a 10 × 5 m rectangle, mounting an ESP32-S2,
configured as an anchor, on each of them (at different heights),
as shown in Fig. 15. Anchors labeled with 0 and 1 employed a
bandwidth of 20 MHz, whereas anchors 2 and 3 used 40 MHz.
A series of points were marked within a grid as shown in
Fig. 15 and measurements were taken with a fifth ESP32-S2
device mounted on another tripod and moved over each of
the measurement points. FTM measurements were captured
for 120 s at each point using the same software and hardware
configuration as in the previous data sets. That is, a Raspberry
Pi 3B connected to the ESP32-S2, which acted as a tag, was
in charge of reading the measured values through the serial
port and publishing them within a ROS environment to be
later saved in a remote PC. All the samples collected, as well
as those from the other data sets, are publicly available to the
research community in [30].

B. Results

After performing the measurement campaign in the
Scientific Area building, the algorithms trained with the other
data sets were run on the new samples. All the results from
this measurement scenario consider simultaneously values cor-
responding to 20 and 40 MHz bandwidth values. Fig. 16 shows
the ECDF of the absolute error and several details of interest
can be observed. First, we see that the error is slightly lower
than in the indoor scenario (see Fig. 11), but much higher than
in the outdoor scenario (see Figs. 12 and 13). On the other
hand, we see that the ESP32-S2 estimation improves the value
computed directly from rtt_raw, although the differences
are smaller than in the indoor scenario. These differences are
found in the values with the highest level of error, whereas

Fig. 17. Mean RSSI on the measurements captured in the Scientific Area
building with bandwidth values of 20 and 40 MHz.

the number of values with errors below 4 m is practically the
same using both approaches.

As for the predictions of the ML algorithms, we see in
Fig. 16 that we do not achieve a performance improvement
similar to that obtained with the other data sets. The values
obtained are very close to the ESP32-S2 estimates, slightly bet-
ter in some cases. The reason for this difference with respect
to the results is due to the nature of the chosen scenario and its
propagation problems, as well as by the ESP32-S2 antenna and
its radiation pattern. Fig. 17 shows the RSSI-level distribution
of the samples with respect to the distance. There are hardly
any differences between the values obtained at a distance of
1.5 m with respect to those captured at distances of more than
10 m. If we compare these values with those obtained from
the other scenarios (see Figs. 6 and 9), we can see that, in this
case, the values are strongly affected by multipath, and there
is not a clear energy drop as the distance between the emitter
and the receiver increases. This explains, at least in part, why
the estimation algorithms in this scenario, which were trained
with the rtt_raw features and the RSSI, do not perform as
well as in the other scenarios. However, it must be said that
the estimations are never worse than those provided by the
ESP32-S2, hence it is realistic to think that, in less aggressive
scenarios, the results will be better and more similar to those
obtained in the initial test scenarios. Therefore, ML algorithms
provide stability and robustness against any kind of scenario,
being a more adequate solution than the one included with the
ESP32-S2 firmware.

VII. DEPLOYMENT IN THE ESP32-S2

Taking advantage of the ESP32-S2 capabilities, one of the
previously trained algorithms was implemented inside the
chip. In particular, due to its simplicity, we implemented
the regression trees algorithm. This algorithm, once trained,
has very low computational requirements to generate a new
estimate. In this way, real-time estimates could be obtained
at the same time as the ESP32-S2’s own estimates were
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Fig. 18. ECDF of the absolute error. Test set: Scientific Area building. Offline
versus real-time ESP32-S2 implementation considering bandwidth values of
20 and 40 MHz.

calculated. Thus, the measurements obtained during the mea-
surement campaign in the Scientific Area building already
include an additional own_est parameter that corresponds
to the real-time estimation provided by this algorithm.

Hence, the ESP32-S2 firmware was modified to include a
new function whose workflow was:

1) get the rtt_raw value of the last FTM measurement;
2) generate the average RSSI of all frames correctly sent

within the measurement;
3) normalize these values with the same normalization

parameters used during the training phase;
4) run the regression tree algorithm to estimate a distance

value;
5) add this new value as the own_est parameter within

the measurements written to the serial port.
For the implementation, we started from the code gener-

ated using the MATLAB Coder utility. Once this base was
obtained, it was modified and adapted to the needs of the
ESP32-S2, both in terms of memory management and the
use of libraries. This implementation is also publicly avail-
able as open source [31]. The final size of the executable is
only 403 kB, out of a total of 4 MB available on the ESP32-S2.

Fig. 18 shows the ECDF of the absolute value of the two
versions: 1) the offline algorithm and 2) the real-time algorithm
implemented within the chip. It can be seen how the results
are practically identical, the small differences being due to
possible inaccuracies in some values at the time of averaging
the RSSI or the normalization process.

A. ESP32 Current Consumption

Within the IoT world, sensor energy consumption is often
a factor of utmost importance. This section shows the current
consumption details of the ESP32-S2 when performing posi-
tioning tasks using FTM. These measurements were obtained
using an N6705 Keysight DC Power Analyzer (see Fig. 19).
Notice that the voltage applied to the power supply was set to

Fig. 19. ESP32-S2 current consumption measurement setup.

5 V, hence the conversion from current to power consumption
is direct.

In order to get the current consumption values, the board
was switched to the deep-sleep mode, and the red LED was
removed to save energy and to obtain more realistic cur-
rent measurements. The current consumption obtained was
560.6 μA, which basically includes the consumption of the
ESP32-S2, the USB-UART bridge, and the low-dropout reg-
ulator (LDO). To break down the consumption of each of
these components, the ESP32-S2 and the USB-UART bridge
were disassembled, and the consumption was measured again.
In this way, the LDO consumption was obtained, which was
337.9 μA. Taking into account the USB-UART bridge, and the
ESP32-S2 datasheets [37], [47], the typical current consump-
tion, when they are not in use, ranges between 195 and 200 μA
in the case of the USB-UART bridge, and between 20 and
25 μA in the case of the ESP32-S2. The difference between
560.6 and 337.9 μA results in 222.7 μA, which corresponds
to the current consumption specified for the ESP32-S2 and
the USB-UART bridge. Once these calculations were avail-
able, the current consumption of the ESP32-S2 module was
estimated, which varies between 222.7 − 200 = 22.7 μA and
222.7 − 195 = 27.7 μA.

Finally, after assembling the components that were removed
from the board, the current consumption was measured while
performing FTM with a resolution of 128 000 points/s. The
setup can be seen in Fig. 19, whereas Fig. 20 shows the
obtained results. When the ESP32-S2 is transmitting, high
consumption peaks appear with a maximum of 454 mA, and
when it is not transmitting, the consumption is almost constant
around 73 mA. Since an FTM operation takes 636 ms to com-
plete, during that time the average consumption is 75.6 mA.
This is a large current value since the microcontroller unit
(MCU) cannot be switched to the deep-sleep mode when it is
transmitting data. If the chip were switched to the deep-sleep
mode when it is not transmitting, the average consumption
could be reduced significantly.

This large difference in power consumption between the
idle mode and the FTM transmission mode can be seen more
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Fig. 20. ESP32-S2 current consumption while FTM protocol.

clearly using the concept of the energy budget. This concept
describes the energy consumption of the chip depending on the
different working modes in which it is configured throughout
the day. This idea is similar to the one presented in other
works, such as [48] and [49]. Thus, we define the daily energy
budget as

E(daily budget) = E(idle) + E(FTM) (4)

where E(daily budget) is the energy consumed by the chip in one
day, E(idle) is the energy consumed when the chip is in the idle
mode, and E(FTM) is the energy consumed when FTM pro-
tocol messages are being transmitted. Obviously, this energy
consumption will be different depending on the number of
FTM measurements taken during the day. Thus, as an exam-
ple, Fig. 21 shows the daily energy budget considering two
different intervals. In the case of Fig. 21(a), the energy values
are considered when performing a single FTM measurement
per minute, while in Fig. 21(b), the values correspond to a
measurement periodicity of 10 min. It can be seen that how
the impact of the FTM measures is very large in the total, even
though the chip spends most of the day in idle mode (98.8%
of the time when the FTM periodicity is 1 min, and 99.89%
of the time when the FTM periodicity is 10 min).

In order to verify the impact on the current consumption
caused by the proposed solution based on ML, new measure-
ments were taken with and without this functionality activated.
Table II shows an estimation of the average current consump-
tion if the number of FTM frames were 1 every 10 s, 1 every
min, etc., considering a 2000-mAh battery to estimate the bat-
tery lifetime. The estimation was made taking into account
that the chip was in the deep-sleep mode when it was not
transmitting. As it can be seen in Table II, the proposal hardly
has an impact on the current consumption.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have analyzed the performance of the
ESP32-S2 module as a device capable of providing distance
estimation using FTM Wi-Fi technology implemented accord-
ing to the IEEE 802.11-2016 standard. For this purpose, we

(a)

(b)

Fig. 21. Energy budget for one day performing a different number of
FTM transmissions. (a) Performing a single FTM transmission per minute.
(b) Performing a single FTM transmission per 10 min.

TABLE II
FTM CURRENT CONSUMPTION ESTIMATION AND ESTIMATED

BATTERY LIFETIME WITH A 2000-MAH BATTERY

have performed several measurement campaigns in different
scenarios, using several ESP32-S2 devices with a specific
firmware. Subsequently, we have evaluated the estimates
obtained, resulting in high error values in indoor environments
(up to 5 m for the 75% of the measurements with a bandwidth
of 20 MHz) and lower errors in outdoor environments (up to
around 1.5 m for the 75% of the measurements with a band-
width of 40 MHz and up to 2.5 m when the bandwidth is
20 MHz). This difference in the error levels is due to several
factors. One of them is the utilization of an algorithm based
on an energy threshold to perform the temporal marking of
the packets during the FTM protocol. In this case, multipath
and interference problems in indoor environments cause that
the first path of the signal be missed, and a bounce is taken
instead. In this case, the time of flight (TOF) of the signal
becomes longer than the actual one, and therefore the distance
estimation is also longer.
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During the study, it has also been found that the ESP32-
S2 employs RTT distance estimates different than the
ones observed in the frames during FTM communications.
Although this is not detailed in the ESP32-S2 documenta-
tion, we have experimentally verified that a linear correction
is applied to the raw RTT values depending only on the val-
ues themselves. We have found that this approach improves
the accuracy in some cases but produces large errors in other
cases.

We have proposed to use classical ML algorithms to per-
form the final distance estimation, taking as training features
the raw RTT values and the signal level indicator of each
sample. We have trained and tested the algorithms, showing
an improvement in the absolute error obtained. Additionally,
we have implemented one of these trained algorithms inside
the ESP32-S2, so that we have been able to generate the esti-
mates in real time and simultaneously with those provided
by the chip. An additional measurement campaign was car-
ried out, in a totally different scenario from those considered
to obtain the training samples, with the objective of validat-
ing the ML algorithms and the real-time implementation. The
results obtained, despite the difficulties of the environment,
demonstrated that our proposal based on ML is suitable to
address the problem of generating the final estimates from the
RTT values.

Overall, the FTM implementation in the ESP32-S2 is
still far from being usable in complex indoor environments.
While its performance in outdoor environments exhibited good
results, with almost 90% of the samples below 2 m of absolute
error for a bandwidth value of 40 MHz, in indoor environ-
ments, only 40% of the samples fall below such a threshold
(for a bandwidth value of 20 MHz). In addition, in the indoor
scenario, there were very large estimation errors for some of
the samples, with almost 10% of the measurements having
more than 8 m of error. Thus, with these results, it would be
very difficult to generate 2-D or 3-D position estimates with
an error smaller than the size of a medium-sized room.

In future work, new experiments will be designed to assess
the accuracy obtained in a 3-D environment, considering not
only the location in a plane but also the height.
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