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CoRoL: A Reliable Framework for Computation
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Abstract—Collaborative robots (cobots) are becoming more
prominent in the manufacturing industry due to their abil-
ity to operate outside safety zones and work in tandem with
humans to perform precise and repetitive tasks, such as visual
inspection, product categorization, quality control, etc. Cobots
generally have limited computational resources that limit their
ability to perform complex machine learning (ML) tasks and as
such, various cloud- and fog-based computational task offloading
mechanisms have been proposed. However, a growing reluc-
tance to share manufacturing data on the cloud, cybersecurity
concerns, and demand of agile decision making is encouraging
researchers to design resource-sharing frameworks for on-floor
cobots where they can share the execution of complex ML tasks.
However, agile on-floor environments and the potential presence
of malicious elements make reliable task offloading a signifi-
cant challenge. This article investigates reliability issues and their
effects on executing complex ML task executed by participating
on-floor cobots. Specifically, this article aims to answer whom
to offload? with the objective of ensuring reliability, security,
and data protection when offloading computation tasks. To this
end, a reputation-based collaborative robotic learning (CoRoL)
framework is proposed with the ability to isolate and/or min-
imize the impact of malicious or poor-performing cobots on
computation task execution. In addition, CoRoL is supported
by split learning for privacy-preserving task offloading with
minimum data exchange. Simulation results and comparative
analysis will demonstrate CoRoL’s efficiency in terms of per-
centage of completed tasks, achieved accuracy, and impact on
energy consumption.

Index Terms—Collaborative robotics (cobots), dew computing,
fog computing, reputation.

I. INTRODUCTION

TRADITIONAL industrial robots are programmed to per-
form tasks considered to be dangerous for human work-

ers and thus operate behind fences with minimum physical
interaction with humans. They are difficult to program and
configure and incur a high cost which makes them inacces-
sible for several small and medium scale organizations. On
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the other hand, collaborative robots (cobots) [1] for the man-
ufacturing industry are gaining popularity because of their
low cost, simple programming, and easy deployment. Cobots
work alongside human workers to cooperate in performing
precise and repetitive tasks, such as product quality inspec-
tion, pick and place [2], etc. Most of the cobots are small
in size and can be easily mounted on a workbench, cell, or
sturdy cart. Cobots sense and adapt to the environment by
gathering data (through sensors) from their surrounding con-
text and process this in real time for agile decision making.
Traditionally, real-time data processing on cobots is limited
to enable autonomous decisions relating to the speed, dis-
tance, proximity, and other variables that ensure the safety
of the human worker while performing the designated tasks.
However, industrial cobotic applications, such as vision-based
product quality inspection [3], require cobots to process high-
quality image/video data for inference1 and accurate decision
making. Usually, captured data are offloaded to a cloud server
for inference, however, growing concerns over data privacy
along with the incurred delay in uploading data to a distant
cloud server [4] are prompting organizations to employ a local
server or fog node (FN) on the factory floor (Fig. 1). This
fog computing [5]-based approach deals with the data pri-
vacy and upload delay issues, however, the perils of a single
point of failure remains a concern. Another paradigm known
as dew computing [6] extends the flexibility of the system as
on-floor cobots can collaborate and process a computational
task without the support of cloud and fog devices, and in some
cases even without an Internet connection. It can make use of
centralized nodes such as fog devices as and when required.
However, there is no requirement for centralized control in
dew computing-based solutions.

A. Motivation

Sophisticated machine learning (ML) frameworks [7]
designed to support low latency applications allow cobots
to host ML models for local inference. In addition, recent
advances in such frameworks also enable resource-constrained
devices to locally train the ML model and adjust with
unseen input data [8]. Thus, modern cobots can autonomously
optimize onboard ML model parameters through real-time
training using recently captured input data and make their own
decisions without a need of reprogramming. In such scenar-
ios, instead of offloading the model training to a cloud or fog

1Here, inference is referred to as processing the captured data using a
trained ML model.
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device, on-floor cobots can form a resource-sharing ecosystem
and combine the available onboard computational resources to
collaboratively train their ML models. However, any collabo-
rative ecosystem is susceptible to potential malicious elements
working in a selfish manner and sometimes inflicting bad
behavior toward other elements. Malicious cobots’ behav-
ior can also be influenced by external attackers [9] trying
to jeopardize the collaborative model training process [10].
Thus, privacy preservation and reliable offloading2 are key
considerations for a secure and sustainable resource-sharing
ecosystem.

B. Research Contributions

Considering the identified challenges, the following contri-
butions are addressed by this work.

1) A framework for collaborative robotic learning (CoRoL)
in which co-located cobots on the factory floor can
participate in a resource-sharing ecosystem to offload
their learning tasks to one another (Fig. 2). CoRoL is
driven by the concept of dew robotics and enables on-
floor cobots to behave in an autonomous manner with
minimum centralized control.

2) As any industrial setup comprises of diverse and het-
erogeneous devices supplied by different manufacturers,
CoRoL takes into consideration the past behavior of
cobots while selecting a reliable cobot for offloading
(whom to offload?). CoRoL also has appropriate provi-
sions to isolate and/or minimize the effects of malicious
cobots on task processing.

3) Task offloading in CoRoL is implemented by split learn-
ing which enables privacy-preserving offloading without
revealing the raw data. In addition, it significantly
reduces the amount of offloading data exchange which
saves scarce resources such as energy.

4) CoRoL is evaluated based on its effectiveness to detect
and eliminate malicious nodes, its impact on ML task’s
accuracy, ability to reduce the percentage of unsuccess-
ful task execution, and the impact on device resources
such as energy.

The remainder of this article is organized as follows. Section II
discusses the related research around computational offload-
ing. Section III discusses the system model with problem
formulation. A detailed description of CoRoL is given in
Section IV along with its components for reliable and
privacy-preserving task offloading. Section V discusses the
performance evaluation of CoRoL followed by the conclusion
and future directions in Section VI.

II. RELATED WORK

An offloading decision making process involves several
aspects, such as when, what, how, and whom to offload. The
decision of when to offload is not only governed by the task
requirements and current resource availability but also by
additional external factors, such as network conditions, cost
involved in task offloading, etc. Mechanisms around what to

2Here, offloading is referred to as computational offloading among on-floor
cobots during model training.

Fig. 1. Typical fog-based cobotic network offloading.

Fig. 2. CoRoL: proposed offloading framework in line with dew computing.

offload involve identifying a subset of tasks to be offloaded
among a pool of tasks. Common methods used include manual
and automatic partitioning of the tasks based on their require-
ments [11], [12]. Generally, approaches around how to offload
are classified into system-level, method-level, and application-
level offloadings. In the context of modern cobot scenarios and
data privacy requirements, this decision is mainly governed
by privacy-preserving offloading techniques [13]. This article
focuses on the decision of whom to offload which involves the
selection of a reliable offloading server which can collabora-
tively execute a complex ML task. In a cobot network, the
offloading server can be a cloud server, FN, or nearby cobot.
A number of solutions have been proposed in the literature to
identify a reliable offloading node, these include approaches
focused on: 1) cloud-based; 2) fog-based; and 3) dew-based
offloading techniques.

A. Cloud-Based Offloading

Cobots can offload their computational tasks to a cloud
server which provides a resource-full computational infras-
tructure often leveraged in scenarios such as mobile data/task
offloading [14]. To this end, various cloud robotic task offload-
ing mechanisms have been proposed for efficient utilization of
both computational and communication resources [15]–[18].
Despite several advantages, manufacturing organizations may
not necessarily be willing to allow data captured by the
cobots to leave the factory floor for cloud-based centralized
processing [19]. Reasons include high cost, compromised pri-
vacy of commercial intelligence, high communication resource
consumption, and hindering agile data processing [20].
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TABLE I
QUALITATIVE COMPARISON OF COROL WITH RECENT OFFLOADING MECHANISMS

B. Fog-Based Offloading

Fog-computing-based task offloading [21], [22] follows the
similar process shown in Fig. 1 where the computational task
received at a cobot (offloading client) is offloaded to the FN or
cluster head (CH) [23] acting as a reliable offloading server at
the edge of the network/factory floor. This can help protect an
organization’s commercial intelligence, reduced task execution
time, and cobot energy consumption [5]; as the incurred com-
munication delay and energy spent in transmitting the data to
the nearby FN are less when compared with that of a distant
cloud data center. However, it brings the perils of a single
point of failure where a large number of task requests can
overwhelm the FN and induce sufficient delay resulting in an
unsuccessful task execution [10]. In this scenario, FN either
executes the offloaded task by itself or acts as a coordinator to
further offload it to another cobot. However, in either of these
cases, complete task information (included training data) is
uploaded by the offloading client to FN. In other words, no two
cobots can directly interact and collaborate for task processing.
Upon task completion, FN uploads the results to the offload-
ing client. Scenarios involving complex computational tasks
offloaded to the FN contribute toward the exchange of a large
amount of training/model data between cobot and FN; which
may result in high resource consumption and delay in task
execution. Moreover, the latency in communicating with the
FN is still a challenge and can negatively impact in scenarios
with scarce local network connectivity [6].

C. Dew-Based Offloading

Dew-based computation [6] offloading fits well for such
use case of modern cobots that are expected to independently
optimize their onboard ML models for agile decision making.
On-floor cobots self-organize and share their onboard comput-
ing resources with each other with minimum centralized control
or oversight. It works on the concept of microservices designed
to support highly distributed applications. Few reliability-based
dew offloading mechanisms for cobots have been proposed,
such as [23] which contributes toward partially answering
the question of whom to offload? by considering reputation-
based offloading, however, the reputation score is dominated
by cobots’ computational resource availability without any
consideration of the presence of malicious cobots. Similar to
the workflow presented in Fig. 1, every offloading instance
involves transmitting complete task information to the FN/CH
which increases the amount of offloading data exchange in
the network and results in increased energy consumption [10].

In addition, the absence of malicious cobots is also assumed
at on-floor industrial environments and thus the mechanism
has no provision for privacy-preserving offloading. Thus, the
aspect to minimize the network resource consumption while
maintaining the data privacy still remains unaddressed.

This article considers complex ML model training tasks
(Section III, Definition 2) which are computationally too
expensive for a single cobot to execute. Thus, the offloading is
referred to as complex ML task offloading during model train-
ing. As shown in Table I, none of the above-discussed work
considers computational offloading during complex ML model
training. Recent proposals [24], [25] on exploiting the under-
utilized nearby computational resources on edge are focused
on appropriate offloading server and task selection to maintain
energy-latency tradeoff. However, none of the existing mech-
anisms consider the presence of nearby malicious nodes and
their impact on the overall model training process.

III. SYSTEM COMPONENTS AND PROBLEM DEFINITION

A cobot resource-sharing ecosystem consists of on-floor
heterogeneous mobile cobots C = {C1, C2, C3, . . . , CD} and
a unique FN interacting with each other to execute a set
of tasks T(t) = {T1(t), T2(t), . . . , TD(t)} in a time period t.
It is assumed that a cobot can execute only one task at a
time. The mobility of a cobot is attributed to its movement
between different processes around the factory floor which
may take place several times a day [14]. However, no con-
stant change in its geographical location is expected once the
cobot is operating for a particular process. The change in a
cobot’s geographical location may impact its network connec-
tivity with other cobots [10], hence, its neighboring cobots
may vary throughout the day.

Definition 1: Cj is considered as a neighboring cobot of Ci at
time t if mindistCj∈C(Ci, Cj) ≤ RCi and mindistCj∈C(Ci, Cj) ≤
RCj , where RCi and RCj are the network coverage values of Ci

and Cj, respectively.
It is assumed that on-floor neighboring cobots (Definition 1)

can communicate with each other and the FN in a single hop
manner. FN has a consistent view of the dynamic on-floor
robotic network topology and receives periodic updates from
the cobots about their available resources. Details on resource
models used are given in Section IV-A.

A task is modeled as an ML task where a cobot is to train
a particular model with its local data. For example, a vision
enabled cobot deployed for product categorization using image
processing is expected to train a given ML model so that it
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can take autonomous decision about the category of an unseen
product.

Definition 2: A cobot Ci’s ML task Ti is defined as 4-tuple
〈Ci, and Mi, di, EAi〉, where Ci is the originating cobot id, Mi

is the learning model to be trained using minimum di number
of data points with the expected accuracy of EAi.

Ci successfully executes Ti if the corresponding learning
model Mi meets the expected accuracy (EAi) after train-
ing. A binary variable ST is defined in (1) to record the
successful/unsuccessful task execution

STi =
{

1, if Acc(Mi) ≥ EAi

0, otherwise.
(1)

Cobots can independently choose their task completion strate-
gies in terms of training the ML model locally and/or offload-
ing the model training it to another cobot. In the context
of this article, a task offloading step involves an offloading
client (cobot willing to offload its ML task) and an offloading
server (selected cobot to execute the offloaded task). An ML
task offloaded to a reliable offloading server is expected to
result in better accuracy as compared to an unreliable offload-
ing server. Here, reliability indicates the cobot’s capability
to ensure smooth task execution that depends upon available
resources, such as computational power, remaining energy,
available storage, etc., of the cobot(s) involved in executing the
task. However, the unsuccessful task execution can also result
due to the presence of malicious cobots acting in a selfish man-
ner (e.g., dropping out in between the training process). Thus,
it is important to record the behavior of cobots whenever they
are involved in a task execution process. The recorded behav-
ior can be utilized to model their reputation which is leveraged
by CoRoL as a decision variable for offloading.

A. Problem Definition

If there are D number of cobots, their offloading
strategies in time period t can be defined as A(t) =
{a1(t), a2(t), . . . , aD(t)}. In a multicobot offloading scenario,
the objective is to maximize the successful task execu-
tions through selecting reliable offloading servers Co(t) =
{Co

1(t), Co
2(t), . . . , Co

K(t)} ⊂ C, at each time period t. Suppose
in a time period t, Tl(t) and To(t) represent the set of
locally executed and offloaded tasks, respectively, where
{Tl(t)}∪ {To(t)} = T(t). Based on (1), the problem of reliable
offloading server selection can be defined as follows:

max
A(t)

D∑
i=1

[
STl

i
(t)+

K∑
k=1

STo
i
(t)Pr

[
ai(t) = Co

k (t)
]]

(2)

s.t. ∀Ti ∈ T, Co
k (t) ∈ C (3)

∀Ti ∈ T, STl
i
(t) ≥ 0, STo

i
(t) ≥ 0 (4)

where ai(t) ∈ C is the offloading indicator and Pr[ai(t) =
Co

k (t)] is the probability of ai(t) = Co
k (t). A task Ti is

locally executed if there is no offloading strategy (ai(t) = 0).
Otherwise it will be offloaded to the corresponding offloading
server. At time t, STl

i
(t) and STo

i
(t) record the success-

ful/unsuccessful execution of locally executed and offloaded
tasks, respectively. The constraint in (3) makes sure that the

Fig. 3. Logical view of CoRoL.

offloading servers are among on-floor cobots while the con-
straint in (4) ensures that the value of (2) never goes below
0 [as ST is the binary variable defined in (1)]. According to
(2), at time t, a task can be offloaded to any of the offload-
ing servers Co

k (t) ∈ Co(t) available on-floor. However, the
selection of the specific offloading server is dependent on
the offloading strategy (i.e., identifying a reliable offloading
server) utilized by the cobot. Thus, the problem addressed in
this article is to find out reliable offloading servers so that the
value in (2) is maximized.

IV. COROL FRAMEWORK APPROACH

This section describes the workflow involved in CoRoL
for the reliable cobot selection. Fig. 3 shows that offload-
ing enabled by CoRoL involves three distinct entities: 1) an
offloading client; 2) offloading server; and 3) local coordina-
tor (FN). The local coordinator can be any fog device at the
edge of the local network and mainly consists of offloading
manager, task scheduler, resource, and reputation management
components. The local coordinator is responsible for receiving
requests from offloading clients and scheduling them based on
a first-in–first-out approach. It forwards the requests to a task
scheduler which acts as a decision support system for reli-
able cobot selection. The task scheduler consults the resource
manager (maintains a record of the available resources of the
cobots) and the reputation manager (maintains a record of the
reputation) to select a nearby reliable cobot [10].

Upon making the decision the task scheduler communi-
cates the offloading server reference to the offloading manager
which returns it to the offloading client to start the task offload-
ing. Upon completion of the task execution, the offloading
client records its interaction experience (negative/positive) on
the offloading manager to update the reputation record of
the offloading server. Computational steps involved in task
scheduling are given in Algorithm 1.

Step 1: Offloading client sends a request to the local on-
floor FN to return a reliable cobot reference at current time t.
The request consists of the task information including learning
model as stated in Definition 2: task information along with the
originating cobot id are extracted from the task. In the context
of CoRoL, a reliable cobot is considered as the one with high
social reputation (SR) value (details in Section IV-B).
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Algorithm 1 Reliable Cobot Selection at FN
Input : Incoming tasks (Definition 1); Q : task queue
Output: Reliable cobot reference
while true do

if (Tj ← Q.dequeue())==φ then // get tasks
continue

end
// candidate cobot selection
for i = 1to|C − 1| do

if (mindist(Cj, Ci) ≤ RCj ) and (mindist(Cj, Ci) ≤ RCi )
and (LCi < α and ReCi > β and MCi > γ ) then

CC = CC ∪ Ci

end
end
// reliable cobot selection
result = argmax(SRCk ), ∀Ck ∈ CC
Cid = random(result)
return Cid

end

Step 2: FN maintains a record of all cobot’s resource avail-
ability along with their reputation scores in its local database
and executes Algorithm 1 involving two subprocesses: first,
the FN filters out the neighboring cobots based on the cur-
rent cobot topology at time t followed by the selection of
candidate cobots based on resource availability against task
requirements; second, it invokes the reputation function on
the candidate cobots to rank the reliable cobot, the one with
the highest SR value will be selected. Here, SR (Section IV-B)
indicates the reputation value with respect to the on-floor cobot
ecosystem. This is followed by the return of the reliable cobot
reference to the requesting offloading client.

Step 3: CoRoL utilizes split learning [26] for privacy-
preserving task-offloading and execution. Split learning is
enabled by splitting the learning model and letting different
devices process different components of the model. In the con-
text of CoRoL, the learning model is distributed among the
offloading client and the server that consent to collaboratively
execute the learning task. The trained model is consolidated
by the offloading client at the end of training.

A. Candidate Cobot Selection

As stated in Algorithm 1, the FN filters out neighboring can-
didate cobots on the basis of their available resources including
the following indicators.

1) CPU Load: A reliable cobot should have enough com-
putational power to support the successful execution of a
complex ML task which usually involves a lot of arithmetic
operations to train the learning model. The CPU load at Ck

at time t (Lt
Ck

) is a function of the number of tasks currently
being executed by the CPU or in the waiting state [27]. We
model the task arrival and processing using M/G/1 queue.
The length of this queue at time t (Lt

Ck
) represents the current

CPU load which is modeled as follows:

Lt
Ck
= λ× ETCk

k (5)

where, λ = (1/inter− arrival time) and ETCk
k (6) are the task

Tk’s arrival rate and execution time, respectively. ETCk
k for Tk

executing on a cobot Ck can be estimated as a summation of
its waiting time in processing queue (ETq

k) and the processing
time = [(ck × dk)/fk]

ETCk
k = ETq

k +
ck × dk

fk
(6)

where ck is the number of CPU cycles required to process dk

data samples and fk is the CPU cycle frequency of Ck. ck =
([O(Tk)]/δt) is a function of computational complexity of the
model used by Tk and the time between consecutive samples
(δt) [28]. Ck can also offload Tk to another neighboring cobot
Cj. In this case, the total execution time ETo

k of Tk can be
estimated as a sum of local execution time on Ck, offloading
data transmission time from Ck to Cj, and local execution time
on Cj

ETo
k = ETCk

k +
d(Tk)

μ
+ ET

Cj
k (7)

where d(Tk) is the amount of data transmitted and μ is the
data transmission rate. Thus, ET depends upon the cobot con-
figuration (CPU cycle frequency), the amount of task data, and
the complexity of the learning model.

2) Residual Energy: Since many cobots are battery pow-
ered and have limited energy budget, it remains one of the
key factors in the process of reliable cobot selection. Every
cobot comes with an initial energy level which gets depleted
over time as more number of tasks are executed on it. In
the context of CoRoL, total energy consumption of a cobot
(ECk ) can be estimated as a sum of energy consumed in data
exchange during collaborative model training, i.e., network
activities (ECk

NET) and energy consumed to process the ML task
data (ECk

PRC). Apart from this, the energy consumed in sending
periodic resource information updates to the FN is assumed
to be negligible

ECk = ECk
PRC + ECk

NET. (8)

ECk
PRC is directly proportional to the processing time of the task

which depends upon the number of CPU cycles to process one
sample of the data (ck) and CPU cycle frequency (fk) [29]

ECk
PRC = μk × ck × dk

fk︸ ︷︷ ︸
processing time

(9)

where μk is the constant energy consumption incurred in one
time unit of computing chip activity of Ck, and dk is the
number of data samples, respectively.

ECk
NET can be estimated as the sum of energy consumed in

transmission (ECk
Trans) and receiving (ECk

Rcv) the data [28], [30]

ECk
Trans = ek

amp × r2 × B× k

ECk
Rcv = e× B× k (10)

where ek
amp is the energy expenditure for running transmit

amplifier, r is the distance to the receiver, B is bandwidth,
k is the number of transmission bits, and e is the energy/bit
consumed for receiving. If one sample consists of k bits,
ECk

Trans = (ECk
Trans/dk) [30].
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3) Available Memory: Training of the complex learning
model also requires a significant amount of available memory
(usually RAM) of the cobot and hence it becomes important
to take into account the current available memory for a reli-
able offloading of the learning task. At time t, a cobot Ck is
selected as a candidate cobot if

LCk(t) < α and ReCk(t) > β and MCk(t) > γ (11)

where LCk(t) is the CPU load, ReCk(t) is the residual energy
level, and MCk(t) is the available memory of Ck at time t. α, β,
and γ are the task-specific thresholds for CPU load, residual
energy, and available memory for its successful completion.

B. Reliability and Reputation

While processing complex ML tasks, reliability is not only
limited to the availability of computational resources or the
quality of model training but also mechanisms to deal with
the behavior of malicious cobots. One of the behaviors of a
malicious cobot is to advertise enough resources to support
a successful task execution but always dropping-off during
model training. In such case, it is important to record every
offloading interaction between cobots as a positive or negative
interaction and utilize this to calculate their reputation scores.

1) Positive Interaction: If Ck is selected as the offload-
ing server for Cj and the training process achieves the
expected accuracy level within a designated number of
training rounds, Cj records a positive interaction for Ck.

2) Negative Interaction: If Ck is selected as the offloading
server for Cj and the training process fails to achieve
the expected accuracy level or achieves the expected
accuracy but exceeds the designated number of training
rounds, Cj records a negative interaction for Ck.

The record of both positive and negative interactions is main-
tained on the FN in two numeric 2-D arrays p[D][D] and
n[D][D], respectively. Entries p(Cj, Ck) and n(Cj, Ck) repre-
sent the cumulative positive and negative interaction values,
respectively, reported by Cj during its offloading interactions
with Ck.

Based on the past interactions, a cobot Ck’s direct reputa-
tion for Cj at time t (DRt

Cj→Ck
) can be calculated using the

following equation:

DRt
Cj→Ck

=
∑t

v=1 p
(
Cj, Ck

)
∑t

v=1 p
(
Cj, Ck

)+∑t
v=1 n

(
Cj, Ck

) . (12)

Direct reputation (12) takes both positive and negative interac-
tions into consideration and is based on the direct interaction
between two cobots. However, a malicious cobot can also
inflict bad behavior toward other cobots. For instance, the
malicious cobot Cj can record a negative interaction for Ck

even if the interaction was positive, to tarnish the reputation
of Ck so that the potential resource (Ck) remains unutilized.
This behavior can impact in scenarios where the cobots need
to satisfy a minimum reputation value (rth) in order to be
selected as the reliable cobot. In a broader perspective, this
can also undermine the performance of the ecosystem as a
whole in terms of the number of ML tasks it can successfully
execute at a time. To mitigate such attempts, CoRoL considers

the indirect reputation of a cobot and models it using subjec-
tive logic [31]. This is enabled by FN consulting all other
cobots which have interacted with Ck up to time t before tak-
ing the offloading decision for Ck. By consultation, we mean
taking into consideration the positive and negative interactions
with Ck.

If C represents the set of cobots interacted with Ck in the
past until time t, the SR of Ck, SRt

Ck
, in the ecosystem can be

estimated as follows:

SRt
Ck
=

∑t
v=1

∑
Cz∈C p(Cz, Ck)∑t

v=1
∑

Cz∈C p(Cz, Ck)+∑t
v=1

∑
Cz∈C n(Cz, Ck)

.

(13)

As stated in Algorithm 1, if a cobot Cj is to offload a learn-
ing task to another cobot, FN ranks the candidate cobots in
increasing order of their SR values. The candidate cobot with
the highest SR value is selected as the most reliable offloading
server for Cj.

In scenarios where more than one candidate cobot has the
same SR value, the offloading server is selected randomly
among them. The SR value of a malicious cobot (dropping-
off in between task executions) remains low as other candidate
cobots (with higher SR values) are given preference for the
reliable offloading server selection. As a result of which the
malicious cobot is selected only if there is no other candidate
cobot and its SR value is greater than the rth value specified
by the offloading client. This restricts the cobots ability to
restore their SR overtime. In scenarios with the high rth val-
ues, such malicious cobot are never selected which may result
in underutilization of the on-floor resources in case such cobot
can revert its behavior to a healthy cobot. To deal with such
a scenario, FN randomly (e.g., once a day) offloads a dummy
ML task to the cobot(s) with the SR values below 0.5 (ini-
tial reputation value) to assess whether they have changed their
behavior. If the task is executed successfully, FN records a pos-
itive interaction for the cobot; which helps such cobots to push
their SR values beyond rth in order to get selected as offload-
ing servers. This not only detects the (malicious) cobots with
changed behavior but also helps other healthy cobots whose
SR value was decreased (below 0.5) due to negative interaction
reported by a bad-mouthing cobot. Such assessment by FN
causes minimal overhead to the CoRoL without disrupting the
normal task executions.

C. ML Task Offloading With Minimum Data Exchange

CoRoL utilizes split learning [26] to enable privacy-
preserving offloading while executing the task. Split learning
utilizes artificial neural networks (ANNs) and is driven by
distributing the ANN layers among multiple devices (cobots
in our case) that consent to aggregate the model at the
end of training. A simple split learning architecture (Fig. 4)
can be realized using two cobots (Cj and Ck) where Cj

is executing the front end (layer1, layer2, . . . , layerm) of the
neural network and shares the activations and gradients cor-
responding to layerm with Ck. Ck executes the back end
(layerm+1, layerm+2, . . . , layern) of the neural network and
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Fig. 4. ANN model offloading in CoRoL.

sends back the outputn to the Cj where the cost function,
F(outputn, labels) is executed.

Here, layerm is also known as “split layer.” The process
continues until the model converges. Cj and Ck are learning the
same model in a collaborative manner without revealing the
training data. It is to be noted that split learning also enables
Cj to retain the labels which further strengthens the raw data
privacy aspect. Backpropagation is initiated by Cj computing
σ (14) and sending it to Ck

σ = ∂F

∂an
. (14)

Ck calculates the partial derivatives as shown as follows:

∂F

∂an−1
= σ.

∂an

∂zn
.

∂zn

∂an−1· · ·
∂F

∂am
= ∂F

∂am+1
.
∂am+1

∂zm+1
.
∂zm+1

∂am
. (15)

Ck shares (∂F/∂am) with Cj in order to complete the back-
propagation. Cj calculates the remaining partial derivatives
as shown in (16). This process continues until the model
converges

∂F

∂am−1
= ∂F

∂am
.
∂am

∂zm
.

∂zm

∂am−1· · ·
∂F

∂w1
= ∂F

∂a1
.
∂a1

∂z1
.
∂z1

∂w1
. (16)

On ensuring the privacy of offloading data, if Cj is to offload
its ML task to Ck, it does not need to transmit the training
data and corresponding labels to Ck. Rather the offloading
data transmission from Cj to Ck is limited to the number
of activations in the split layer (Fig. 4). During the training,
only the gradient outputs corresponding to the split layer are
exchanged between Cj and Ck. This significantly reduces the
amount of data exchange between the offloading client and
the server which results in reduced energy consumption. Split-
learning-based offloading also gives the flexibility as to how
many layers an offloading client has to offload based on the
amount of resources it possesses. However, the decision on
the number of offloading layers (when to offload?) is not in
the scope of this work.

1) Reliability and Performance Tradeoff: Although CoRoL
brings the benefits of reliable computation offloading, it is
important to observe its effect on system performance as reli-
ability comes with an additional cost [32], [33]. To this end,
a tradeoff metric (τ ) is defined as follows:

τ = π × X (17)

where X is the reliability metric represented as the system
throughput in the presence of CoRoL. In other words, X can be
measured by the ratio of the number of successful task execu-
tions (1) against the total number of tasks. On the other hand,
π represents the cost involved, which can be measured by
analyzing the computational overhead and the amount of data
exchange during offloading. As CoRoL attempts to maximize
X by providing a reputation-based offloading server selection,
it also minimizes π by minimizing the computational and
communication complexities as discussed as follows.

Computational Complexity: The offloading is governed by
split learning which involves partitioning the ANN layers and
distributing them to multiple cobots for training. If each layer
is represented as a matrix, the computational complexity con-
tributed by propagating from layer0 to layer1 can be calculated
as O(l0 ∗ l1 ∗ z), where l0 and l1 are the number of neurons
in layer0 and layer1, respectively, and z represents the number
of training examples. This is followed by activation operation
which contributes to the complexity of O(l1 ∗ z). Thus, total
complexity contributed by a feedforward from layer0 to layer1
is: O(l1∗z+l0l1∗z) = O(l0l1∗z). The computational complexity
incurred by backpropagation is same as feedforward. Thus, the
total complexity with two layers for one epoch is O(l0l1 ∗ z).
According to Fig. 4, ANN layers at Cj and Ck contribute to the
computational complexity of O(z∗ (l0l1+ l1l2+· · ·+ lm−1lm))
and O(z∗ (lmlm+1+ lm+1lm+2+· · ·+ ln−1ln)), respectively, for
one epoch.

Communication Complexity: As for data exchange between
the offloading client and the server, Cj shares the activations
corresponding to the split layer with Ck (Fig. 4) for feed-
forward and the same number of activations are shared by
Ck with Cj during backpropagation. After the training fin-
ishes, Ck shares the trained model weights with Cj for trained
model integration. To this end, if N represents the number of
model parameters and ls as the size of split layer then the total
communication complexity can be estimated as follows:

Communication per epoch = z ∗ ls︸︷︷︸
feedforward

+ z ∗ ls︸︷︷︸
backpropagation

+ ηN =

= O(2 ∗ z ∗ ls + ηN) (18)

where, η is the fraction of model parameters Ck shares with
Cj at the end of the training.

V. PERFORMANCE EVALUATION

A. Experiment Setup and Scenarios

The factory-floor scenario is simulated using the PySyft [34]
environment where cobots are virtual workers interacting each
other to execute ML tasks. A total of ten cobots and one FN
are considered for experiments in which two are malicious



18202 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 19, 1 OCTOBER 2022

TABLE II
SIMULATION PARAMETERS

cobots and eight are nonmalicious. For representation purpose,
malicious cobots are termed as follows.

1) MCobot1: Always advertises enough resources to com-
plete the task but drops-off in between task execution.

2) MCobot2: Launches bad mouthing (reports negative
interaction) whenever interacts with other cobots.

The reputation database is populated over 15 days in which 20
tasks were executed every day. Every cobot can only perform
a maximum of two tasks in a day. The benchmark MNIST data
set is used to train the task models and the expected test accu-
racy for the successful completion of the task is kept as 97%.
A lightweight MLP model is considered as the task model with
the following architecture: (784∗128)(128∗640)(640∗10). For
simulation purpose, the training is performed on a device with
Intel core i7 processor (2.3 GHz), 32 GB RAM, and 256-GB
SSD. Sixty thousand images were used for training whereas
10 000 were used for testing purpose. Table II lists the key
simulation parameters used during the course of the experi-
ments. Each task is considered to be a model training task for
the MNIST data set using 60 000 training images. Given the
number of cobots in the ecosystem and the number of tasks
per day (Table I), algorithm parameters (α, β, γ ) were calcu-
lated using (5)–(10). The values of α are calculated as 250 J,
whereas the value of β is calculated in terms of a maximum
number of tasks a cobot can execute in a day (kept as 2). The
value of γ (100 MB) is adopted from the empirical results
presented in [13] about the memory expenditure in split learn-
ing. Another algorithm parameter, i.e., cobot’s transmission
range’s value (25 m) is assumed to be half of the factory-floor
area.

This section demonstrates the evolution of Algorithm 1
and the process of reliable offloading server selection. It also
explores the utility of CoRoL in terms of its ability to detect
MCobot1 and prevent its participation toward the task execu-
tion in the on-floor ecosystem. To show CoRoL’s effect on
minimizing the impact of MCobot2, we consider applications

(a) (b)

Fig. 5. Performance of different scenarios in presence of MCobot1 (number
of tasks = 140, simulation duration = 7 days, and rth = 0.5 for Scenario 3a).
(a) Percentage of successful task executions. (b) Average task accuracy.

with different reputation threshold requirements (as discussed
in Section IV-B). The following scenarios are defined for
evaluation purposes.

Scenario 1: Represents the baseline scenario for random
cobot selection without the presence of malicious cobots.

Scenario 2: This scenario considers first filtering out the
neighboring candidate cobots on the basis of their available
resources to execute the task followed by randomly selecting
one of those candidate cobots.

1) Scenario 2a (With No Malicious Cobot): Scenario
commonly used in the literature to enable networked
robotics.

2) Scenario 2b: With the presence of MCobot1.
Scenario 3: This scenario represents CoRoL with different

operational settings and reputation threshold (rth) values.
1) Scenario 3a: Direct-reputation-based cobot selection

with MCobot1.
2) Scenario 3b: Direct-reputation-based cobot selection

with MCobot1 and MCobot2.
3) Scenario 3c: SR-based cobot selection (Algorithm 1)

with MCobot1 and MCobot2.

B. Results and Analysis

1) Effect of MCobot1 and CoRoL Response: Fig. 5 shows
the results obtained by the experiments performed across the
different scenarios. Scenario 1 results in the least number of
successfully executed tasks (60%) many of the them were
assigned to the cobots without sufficient resources available
because of the random selection approach used.

The performance improves with Scenario 2a (97% accuracy
and 94% successful task execution) when the offloading deci-
sion is taken on the basis of distance and available resources,
and thus results support the rationale for its incorporation into
offloading decision. However, in the presence of MCobot1,
Scenario 2b suffers on both accuracy (59%) and the percent-
age of successfully executed tasks (70%) as MCobot1 always
advertises enough resources to execute the task.

Fig. 6 shows Scenario 3a and the DR value progression for
MCobot1 when it starts dropping-off in between task execu-
tion from day 2 of the simulation, compared with that of the
reliable cobot.
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Fig. 6. Direct reputation value progress for MCobot1 and reliable cobot.

Fig. 7. Effect of different rth values on Scenario 3b with one MCobot2.

Low DR value for MCobot1 prevents its participation in
the ecosystem which results in improved test accuracy (96.1%)
and increased percentage of successfully executed tasks (90%)
in Scenario 3a (Fig. 5).

2) Effect of MCobot2 and CoRoL Response: Scenario 3a
deals with the MCobot1 (Figs. 5 and 6) by identifying it based
on its low DR value, however, MCobot2 can still launch a bad-
mouthing attack and degrade the performance of the overall
system in terms of the number of successful task executions.
The effect of MCobot2 can be observed in an application
which requires a reliable cobot to satisfy a reputation threshold
value (rth) in order to be selected as the offloading server. As
MCobot2 records negative interaction every time it interacts
with other cobots, i.e., bad mouthing, its DR values get smaller
over time and fewer options are available for the selection of
offloading server in the presence of a larger rth. This is evident
from Fig. 7 as when Scenario 3b is exposed to MCobot2, the
percentage of successfully executed tasks varied with different
rth values. The effect of MCobot2 is observed early (day 7)
with high rth value (0.5). On the other hand, low rth values
(0.2, 0.3) exhibit better performance as the reduced DR values
of other cobots due to MCobot2 are still greater than rth and
thus satisfy the criteria to be selected as offloading servers.

Fig. 8. CoRoL’s impact on reputation values of reliable cobot and MCobot1
in the presence of MCobot2.

Fig. 9. Comparison between Scenarios 3b and 3c (days = 15 and number
of tasks >200).

To minimize the impact of MCobot2, CoRoL not only con-
siders DR values but also the SR [enabled by (13)] at the time
of the reliable cobot selection. Fig. 8 shows MCobot2’s repu-
tation value comparison for a cobot under attack in Scenarios
3b and 3c with rth value of 0.5. Scenario 3b considers only
DR values for reliable cobot selection. As soon as MCobot2
records a negative interaction, its DR value for the cobot under
attack is decreased to 0.33 (day 2) which remains constant till
day 7 as rth = 0.5(>0.33) prevents the cobot under attack to
become the offloading server for MCobot2. However, for this
duration (days 1–7), the cobot under attack continued to be
selected as the offloading server for other cobots. Due to this,
when CoRoL (Scenario 3c) takes over from day 8, the indirect
reputation value of the cobot under attack improves its SR in
the ecosystem (Fig. 8) and pushes it beyond the rth value of
0.5 to be selected as the offloading server.

However, it is to be noted that the reputation value of
MCobot1 remains low even after consideration of indirect rep-
utation. This shows that CoRoL can not only detect MCobot1
and prevent it from participating in the task execution process
but also minimizes the effect of MCobot2 on a reliable cobot.
The impact of CoRoL is manifested in Fig. 9 as Scenario 3c
(CoRoL) improves the performance of DR-based Scenario 3b
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Fig. 10. Energy saving benefits of split-learning-based computation
offloading.

in terms of the percentage of the successfully executed tasks.
For each rth value, extensive simulations were conducted
and the values in Fig. 9 represent the average of the values
obtained over 15 days of task execution. Scenario 3b clearly
shows a decline trend in the percentage of successful exe-
cutions with increasing the rth value when exposed to both
MCobot1 and MCobot2. On the contrary, Scenario 3c exhibits
the stability irrespective of the rth value. As the average task
accuracy is proportional to the number of successful execu-
tions, Scenario 3c also shows higher average task accuracy as
compared to Scenario 3b.

3) Effect of CoRoL on Energy Consumption: This sec-
tion discusses the benefits of utilizing split-learning-based
offloading on energy consumption and performs the com-
parative analysis with recent dew-based offloading mecha-
nism [23]. The result of task execution is trained model
parameters to be utilized by the offloading client for the
prediction. For instance, the learning model used for exper-
iments in this work comprised of 188672 (= 784 ∗ 128 +
128 ∗ 640 + 640 ∗ 10) weight parameters. Existing dew-
based offloading mechanisms [6], [23] involve model param-
eters to be shared between: 1) offloading client→FN/CH;
2) FN/CH→offloading server; 3) FN/CH←offloading server;
and 4) offloading client←FN/CH. offloading such ML tasks
in full involves transmitting corresponding model parameters
along with the input data, thus increases the energy consump-
tion [10]. To reduce this model parameter data exchange,
CoRoL limits the FN’s usage to the reliable offloading server
selection and reputation management. This is followed by the
direct interaction of the offloading client and the server for task
execution using split learning. As discussed in Section IV-C,
split learning eliminates the need to share raw data and com-
plete model parameters with the offloading server. Instead, the
data exchange between the offloading client and the server
while task execution is limited to the size of the split layer.
Finally, the offloading server transmits the model parame-
ters corresponding to the offloaded layers to the client when
the training process terminates. Fig. 10 shows the numeri-
cal results corresponding to overall energy consumed by split
learning (used in CoRoL) and without split-learning-based

Fig. 11. SR value progression for MCobot1 with changeable behavior.

offloading during the execution of ML tasks. The image data
size for [23] is kept as (32 × 32 × 3). The energy consumption
in [23] is contributed by model size and training data of the
task, on the other hand, CoRoL prevents transmitting training
data and also reduces the offloaded model data. To test the
robustness of CoRoL, we performed the experiments with dif-
ferent split layer indices (=1 & 2) for the used MLP model as
the amount of offloaded model data varies with the split-layer
index value. Thus, CoRoL not only minimizes the adverse
effects of the malicious elements in the ecosystem but also
helps cobots minimizing their energy consumption in the task
execution process.

4) Cobots With Changeable Behavior and CoRoL
Response: This section discusses CoRoL’s response to
MCobot1 and MCobot2 with uncertain or changeable behav-
ior. The frequency of periodic check performed by FN for
behavior change (Section VI-B) of malicious cobots is kept
as once in a day for this experiment. Fig. 11 shows the results
corresponding to a scenarios where MCobot1 is active3

from day 3 to day 6 and is inactive on all other days. As
shown in Fig. 11, the SR value of MCobot1 decreases as it
starts dropping-off in between task executions (i.e., becomes
active). However, when it wants to change its behavior, it
is observed by FN as a result of its periodic checks and a
positive response is registered for MCobot1 at the end of day
6 which pushes its SR value above rth. This enables inactive
MCobot1 to be selected as an offloading server as can be
observed from its increased SR value when it is inactive.

Fig. 12 shows the results corresponding to a scenario where
MCobot2 is active from day 1 to day 5 and changes its behav-
ior on day 6 till day 7; further it becomes active again on
day 8 till day 10. During day 1 to day 10, MCobot2 interacts
with Cobot1, Cobot2, Cobot5, Cobot7, Cobot8, Cobot9, and
Cobot10. Thus, we observe the SR values of these cobots (in
the presence of CoRoL) throughout this duration as the objec-
tive of an active MCobot2 is to record negative interaction
for the other cobots it interacts with so that their SR value
is decreased and falls below rth. This decreases the over-
all system throughput as the resources (i.e., attacked cobots)

3Here, “active” and “inactive” are referred to as when a cobot behaves like
a malicious cobot and healthy cobot, respectively.
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Fig. 12. Effect of MCobot2 on SR values of cobots under attack.

remain underutilized. The rth value for this experiment was
kept as 0.5. As shown in Fig. 12, on day 2, the SR value of
Cobot2 goes below rth because of MCobot2 as it was observed
that none of the unsuccessful task execution involved Cobot2
on that day. However, periodic checks from FN for cobot(s)
with lowest SR value push the SR value of Cobot2 beyond
rth, i.e., restoring it reputation. Apart from Cobot2, none of
the attacked cobots’ SR value is less than rth during the active
and inactive periods of MCobot2 as its effect is minimized
by taking into consideration the SR value instead of DR. SR
includes the recommendation (13) from other healthy cobots
also which minimizes the effect of a bad-mouthing cobot, i.e.,
active MCobot2.

The above experiments show how CoRoL can facilitate
behavioral changes of cobots over time and support them to
restore their SR values’ in a manner that does minimizes the
risk to task execution (i.e., use of dummy task).

5) Comparative Analysis: This section discusses the com-
parative evaluation of CoRoL with state-of-the-art offloading
mechanisms proposed in [23], [35], and [36]. The mechanism
proposed in [35] works on the principle of uniform selec-
tion probability of the offloading server and mainly focuses
on the decision of whether to offload the task on a local FN
or not by comparing the energy and time expenditures for
available FNs (i.e., resource aware), whereas [36] selects the
nearest available device as the offloading server (i.e., distance
based) to minimize the response time. In addition to these
two approaches, CoRoL is also compared with a reward-based
offloading server selection mechanism [23]. The mechanism
proposed in [23] works on the principle of rewarding an
offloading server (robot) upon a successful task execution
and recording the reward values for future offloading server
selection. As CoRoL is focused on executing ML tasks, we
considered the definition of successful task execution for [23],
the same as given in (1). A cluster of on-floor cobots with a
CH is implemented to reproduce [23] for fair comparison with
CoRoL. Results presented in this section correspond to the
scenarios where both type of malicious cobots, i.e., MCobot1
and MCobot2 are active in the ecosystem. Since the proposal
deals in ML tasks, we choose: 1) average task accuracy and
2) percentage of successful task execution, as the evaluation

(a) (b)

Fig. 13. Comparative evaluation of CoRoL with state of the art. (a) Average
task accuracy. (b) Percentage of successful task executions.

parameters for this comparative evaluation. For fair compar-
ative evaluation, we implemented split-learning-based model
training for [23], [35], and [36], although the decision of
offloading server selection was based on their selection mech-
anisms. Results shown in Fig. 13 correspond to the simulation
duration of 7 days with more than 100 tasks executed in that
duration. The rth value for the CoRoL scenario is kept as 0.5.

CoRoL outperforms [23], [35], and [36] in terms of average
task accuracy and percentage of tasks successfully executed
for the simulation duration. Although both [35] and [36] are
resource aware but have no provision for identifying the mali-
cious cobots which can be selected as offloading servers if
not isolated. On the other hand, [23] is able to deal with
MCobot1 as the offloading server selection is reward based,
however, it is not resource aware and does not have any pro-
vision to mitigate the effects of MCobot2 on the overall task
execution process. Whereas CoRoL is not only resource aware
but also considers both direct and SR to mitigate the effects
of MCobot1 and MCobot2, respectively. From computational
complexity point of view, each of the mechanisms: [23],
[35], [36], and CoRoL, sort the devices on the basis of their
available resources (energy and time), distance, reward, and
SR values, respectively. If C represents the set of potential
offloading servers, all mechanisms exhibit the computational
complexity of O(|C| log |C|) for the reliable offloading server
selection. However, since CoRoL also supports collaborative
model training using split learning (Section IV-C1), the overall
computational complexity can be estimated as follows:

O(|C| log |C|)︸ ︷︷ ︸
Offloading server selection

+ O(z ∗ (l0l1 + l1l2 + · · · + lm−1lm))

+ O(z ∗ (lmlm+1 + lm+1lm+2 + · · · + ln−1ln))︸ ︷︷ ︸
Model training

. (19)

VI. CONCLUSION AND FUTURE WORK

This article presented a framework for on-floor cobots
resource sharing to support complex ML tasks’ execution in
a collaborative fashion across an cobot ecosystem. CoRoL
focused on supporting resource efficiency as well as managing
the potential presence of malicious entities, in a manu-
facturing setup with heterogeneous devices and potentially
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safety-critical application scenarios. Thus, the identification
and provision to minimize the impact of malicious or under-
performing cobots on ML task processing are essential for the
sustainability and effectiveness of such on-floor ecosystem.
The reputation-based reliable offloading in CoRoL enables
a context-driven cobot selection by taking into account both
available resources and reputation values of the cobots. Split
learning is utilized to implement offloading among cobots.
Simulation results indicate that CoRoL successfully detects
and isolates malicious cobots and minimizes their impact on
computation tasks. In addition, it significantly reduces the
energy consumption in computation task processing when
compared to the state of the art.

Future work will involve the implementation and deploy-
ment of the CoRoL approach under real world conditions
(physical testbed) to analyze its behavior during both stringent
and flexible network conditions. In addition, functionalities
of CoRoL can also be extended by troubleshooting malicious
cobots with certain bad behavior. The benefits of CoRoL can
map to existing scenarios currently being developed by indus-
try. For example, automated visual inspectors developed by
IBM in collaboration with Apple [37] utilize the CoreML
framework [7] to deploy a predictive model trained for prod-
uct quality inspection and damage detection on iOS devices
with multiple connectivity options, such as 5G and Bluetooth.
These visual inspectors are mobile and easy to install when
compared with stationary cameras. Although CoreML pro-
vides the flexibility of training the model on-device, current
solutions are limited to on-device inference. CoRoL can be
leveraged to enable on-floor visual inspectors form an ecosys-
tem and share their computational resources to execute an ML
task. The use of a reputation-based offloading server selec-
tion mechanism as proposed in CoRoL could ensure reliable
ML task execution, while also allowing the use of the hetero-
geneous on-floor inspector infrastructure (i.e., different types,
makes, cost, and functionalities).

Another consideration is answering the question of when
to offload based on the current state of onboard and network
resources. In the context of CoRoL, this will involve identi-
fying the optimum number of neural network layers required
to be offloaded in the presence of resource constraints.
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