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Abstract—In this work, we present a novel traffic prediction
and fast uplink (FU) framework for IoT networks controlled
by binary Markovian events. First, we apply the forward algo-
rithm with hidden Markov models (HMMs) in order to schedule
the available resources to the devices with maximum likeli-
hood activation probabilities via the FU grant. In addition, we
evaluate the regret metric as the number of wasted transmis-
sion slots to evaluate the performance of the prediction. Next,
we formulate a fairness optimization problem to minimize the
Age of Information (Aol) while keeping the regret as minimum
as possible. Finally, we propose an iterative algorithm to esti-
mate the model hyperparameters (activation probabilities) in a
real-time application and apply an online-learning version of
the proposed traffic prediction scheme. Simulation results show
that the proposed algorithms outperform baseline models, such
as time-division multiple access (TDMA) and grant-free (GF)
random-access in terms of regret, the efficiency of system usage,
and Aol.

Index Terms—Age of Information (Aol), fast uplink (FU), hid-
den Markov model (HMM), Internet of Things (IoT), online
learning, resource allocation.

I. INTRODUCTION

ECENT advances in the Internet of Things (IoT) has

led to the deployment of a large number of machine-
type communication (MTC) devices to collect real-time
information. The number of such IoT-MTC devices is rapidly
growing to realize different use cases, such as environment
monitoring, remote surgery, and autonomous vehicles [1]. In
5G, MTC service modes are massive MTC (mMTC) and
ultrareliable low-latency communication (URLLC) [2]. The
Quality-of-Service (QoS) demands vary among the service
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Fig. 1. Traffic correlation scenario: A speed alarm would be active only if
the motion detector is active but not vice versa. The human detector signal
would only be important if the other two sensors are active.

modes. In addition, many use cases have recently had more
strict demands, which need extremely low end-to-end latency
in a massive deployment of IoT devices to collect real-time
information [2].

The behavior of the traffic of MTC devices (MTDs) dif-
fers from that of the traditional human-type communication
devices (HTDs) [3]. The HTDs traffic tends to be heteroge-
neous, whereas the traffic of MTDs is homogeneous and highly
correlated. To elucidate traffic correlation in MTC, we consider
the following road safety example as in Fig. 1: let event 1 and
event 2 correspond to a vehicle moving down the street at
normal speed, and a vehicle breaking the speed limit, respec-
tively. Meanwhile, sensor 1 and sensor 2 are motion detectors,
necessary to control the traffic lights, and speed limit alarm,
respectively. In this scenario, event 1 will be detected by sen-
sor 1 only. However, both sensors may likely detect event 2.
Hence, we infer that sensor 2 will not likely be active except
if sensor 1 is active. Moreover, if sensor 2 is active, sensor 1
will most probably be active but not vice versa. In such a sce-
nario, it is essential to estimate the possible sensor activation
pattern and allocate resources at low latency. If a human is
crossing the street, a human detector or a road safety alarm
could then transmit a signal to the base station (BS). The BS
in turn sends a compulsory brake signal to a high-speed vehi-
cle to enforce it to slow down the speed. This all should occur
within a window of a few milliseconds to avoid an accident.
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The importance of an uplink signal from the human detector
in this scenario is also dependant on whether the speed alarm
is active or not.

Another example to illustrate traffic correlation, let
Markovian event 1 and Markovian event 2 correspond to
the existence of fire or no fire, and someone who smokes a
cigarette or no smoke, respectively. Meanwhile, sensor 1 and
sensor 2 are heat and smoke detectors, respectively. In the
case of fire, both sensors will detect the event. However, in
the case of smoking a cigarette, event 2 will only be detected
by sensor 2. Hence, we infer that if sensor 1 is active, sensor
2 will be active with high probability but not vice versa.

One important metric to measure the freshness of received
data from an IoT device is the Age of Information (Aol).
Aol was first introduced in [4]. It defines the freshness of
information (time elapsed since data at a source has been col-
lected and transmitted to a destination). Therefore, minimizing
the Aol in IoT networks has become essential when designing
scheduling algorithms [5].

A key element in communication systems is the design of
access protocols, which allow the devices to transmit their
data in an organized manner. In what follows, we discuss the
shortcomings of the existing massive access protocols. In con-
ventional LTE systems, the devices communicate with the BS
using the random access (RA) procedures [6], e.g., each device
goes through a 4-handshake procedure initiated by the trans-
mission of a random preamble followed by a random-access
response from the BS side. Afterward, the device requests a
connection and the BS responds with a contention resolution
message. However, this procedure suffers from high signaling
overhead and end-to-end latency, which fails to serve strict
low-latency demands and results in a relatively high Aol.
Furthermore, due to the limited number of preambles, it is sus-
ceptible to a high number of collisions in situations where a
large number of devices sporadically try to access the network
at the same time, such as in an alarm scenario [7].

Meanwhile, alternative solutions have been proposed to
solve the problems of collisions and signaling overhead in IoT
networks, from legacy time-division multiple access (TDMA)
to grant-free (GF) schemes, and access class barring (ACB). In
TDMA schemes, the resources are distributed equally among
the devices without considering any scheduling algorithms.
Although TDMA is straightforward and efficient in periodic
transmission scenarios, it does not perform well when the traf-
fic is sporadic and event driven. Therefore, GF access has
been proposed as an efficient procedure to reduce the signal-
ing overhead by skipping the preamble request and reply that
constitute the first two steps of the 4-handshake procedure [8].
Although GF solutions reduce the signaling overhead to half
of the grant-based RA, it fails when the number of potentially
active devices exceeds the available resources. In addition, it
suffers from a large number of collisions, which cause high
Aol experienced by the devices. Among the alternative solu-
tions, promising results have been obtained for ACB [9]. The
device generates a random number between 0 and 1 and com-
pares it with the ACB factor broadcasted by the BS. The device
can only access the BS if the generated number is less than
the ACB factor. Although the literature has a vast amount of
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works extending the basic idea of the ACB, such as extended
ACB [10], cooperative ACB [11], and dynamic ACB [12],
ACB still fails to satisfy strict latency requirements [13].

To this end, the need of extreme low latency in IoT urges
the design of novel access schemes to overcome the flaws
associated with the old ones. Learning-based schemes were
discussed in many surveys as the potential solution to the exist-
ing problems of the proposed approaches in the literature to
overcome the RA limitations [14]. Moreover, many emerging
IoT applications can exploit activation correlation and traf-
fic prediction to enable preemptive resource allocation and
achieve ultrareliable and low-latency communications. The
traffic correlation behavior of MTDs enables traffic prediction
and forecasting algorithms to anticipate the set of active and
silent MTDs. In this context, the fast uplink (FU) grant was
introduced in [15] to allow for resource allocation based on
traffic prediction schemes.

A. Fast Uplink Grant

To elaborate more on FU grant, we consider K IoT devices
and L available transmission slots, where K > L. Each
device is stimulated to generate data packets at different time
slots controlled by different processes at the application layer,
e.g., triggered external events. Whenever a device generates a
packet, it will need a transmission slot to transmit it to the BS.
In the FU scheme, the BS allocates the available transmission
slots to the set of IoT devices that it believes will transmit in
the current time slot. The designed resource allocation scheme
should exploit the correlation of traffic pattern based on the
temporal and event dimensions.

The FU scenario relies mainly on traffic prediction. The BS
has to efficiently predict the probability of each device to be
active or silent and grant the available resources to those most
likely to be active, with some fairness guarantees. Some of the
potential advantages of applying FU are as follows.

1) The absence of scheduling requests and collisions lead-
ing to a reduction in the energy consumption of IoT
devices and uplink latency.

2) The clearance of signaling overhead between the devices
since learning occurs only at the side of the BS.

3) It allows for the potential use of the uplink grant signal
to partially or fully estimate the channel condition at the
IoT devices side before actual uplink process (CSIT).!

B. Contributions

In this work, we build upon [16], where we define the main
system model that consists of a set of binary discrete events
that affects the activation patterns of massive [oT devices. The
binary events are modeled as Markovian sources. We introduce
an FU algorithm that exploits the traffic correlation to effi-
ciently predict the IoT devices’ traffic pattern using the hidden
Markov model (HMM) and the forward algorithm. The for-
ward algorithm is a learning algorithm that fits the proposed
HMM. The results show that the FU algorithm outperforms the

Note that channel estimation is a proposed advantage when applying the
FU scheme, e.g., via pilot symbols transmitted within the uplink grant signal.
However, we leave this work for future implementation.
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conventional RA and TDMA schemes in terms of the accuracy
and efficiency of resource allocation.

Another novel contribution is that we postprocess the
prediction of the forward algorithm to lower the average expe-
rienced for Aol all devices at each time step while maintaining
the prediction accuracy as high as possible. We optimize
an age parameter to increase the resulting allocation index
of the high-age devices and guarantee a higher degree of
scheduling fairness. In addition, we formulate a baseline model
based on the forward algorithm that forms a distribution of
the activation probability using extremely low computation
resources. Furthermore, we estimate the model hyperparam-
eters to exploit the formulated FU algorithm in real-time
applications without prior knowledge of the model hyper-
parameters. We then propose an online-learning version of
the FU algorithm, where the BS exploits only the set of
observations at each instant to allocate the resources to the
devices using the learned hyperparameters. The simulation
results illustrate that applying the online-learning algorithm at
each instant still captures the age and the accuracy of the actual
genie-aided model and outperforms the traditional resource
allocation schemes and the HMM baseline scheme.

The contributions of this work are summarized as follows.

1) We formulate the device activation probabilities for the
described HMM system model.

2) We apply the forward algorithm to predict the active
devices and perform preemptive FU grant with low
complexity.

3) We optimize an age parameter to compensate the
Aol of the devices that have experienced high Aol
while preserving the accuracy of the efficient forward
algorithm.

4) For the case of unknown hyperparameters of the model,
we apply an expectation—maximization algorithm to esti-
mate the event transition probabilities and the device
activation probabilities-based only on the observations.
Then, we apply the estimation procedure to present an
offline-learning version of the FU algorithm.

5) Finally, we rely on both the Aol compensation and
the learned parameters to formulate an online-learning
scheme that allows the BS to perform the FU algorithm
in real-time applications, without the prior availability
of large activation data sets.

6) The proposed online and offline schemes clearly outper-
form conventional GF and TDMA in terms of resource
allocation efficiency while guaranteeing a favorable
amount of fairness via age compensation.

C. Outline

The remainder of this article is organized as follows.
Section II discusses the related literature. Section III depicts
the system model for the IoT device. It also explains
performance metrics that are used to evaluate the performance
of the proposed FU schemes. Next, Section IV applies the for-
ward algorithm to predict the traffic pattern of IoT devices.
After that, Section V discusses the online-learning version of
the FU algorithm. Section VI depicts and discusses different
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TABLE I
IMPORTANT ABBREVIATIONS AND SYMBOLS

ACB access class barring

Aol age-of-information

CMAP coupled Markovian arrival process
CMMPP coupled Markov modulated Poisson process
DRL deep reinforcement learning

FU fast uplink

GF grant-free

HMM hidden Markov model

LSTM long short-term memory

MTD machine-type communication device
NOMA non-orthogonal multiple access
PDF probability density distribution
RA random access

RNN recurrent neural network

SVM support vector machine

TDMA time division multiple access

K number of IoT devices

L number of frequency resources

N number of Markovian events

Z number of Baum-Welsh iterations
€0, €1 temporal transition probabilities
Ink activation probabilities

wt wrong allocations

i missed allocations

B age parameter

Iéi)l scheduling priority index

R average regret

A average age

results for the performance evaluation. Finally, Section VII
concludes this article and discusses future research directions.

Notation: Boldface lowercase letters denote vectors. Pr
denotes the probability equation. In addition, [x]* refers to
max (0, x), argmax is the maximization notation, and argmin
is the minimization notation. x is the mean of x and C(a, b)
is the cost function, where a and b are the parameters to be
optimized. To make this article more tractable, we summarize
the key abbreviations and symbols that will appear throughout
this article in Table 1.

II. STATE OF THE ART

Many learning-based schemes have been proposed in the lit-
erature for resource allocation in IoT networks. In this section,
we present a brief literature review of the existing schemes
and discuss their limitations. To begin with, Laner et al. [3]
and Grigoreva et al. [17] studied the activation of devices fol-
lowing coupled Markov modulated Poisson process (CMMPP)
and coupled Markovian arrival process (CMAP) traffic models,
respectively. However, they did not offer resource allocation
schemes based on these traffic models. Rossi et al. [18] used
an HMM model to build a decision fusion algorithm that
investigates the correlation time between binary sources in
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a wireless sensor network (WSN). In the same context, the
work in [19] exploited the correlated activity of devices to
develop heuristic protocols for GF RA. Sinusoidal spreading
sequences were proposed in [20] to enable FU grant based
on free nonorthogonal multiple access (NOMA), whereas
Zhou et al. [21] discussed hybrid resource allocation schemes
to overcome the large signaling overhead and collision prob-
lems resulting from message replications in GF transmission.
Moreover, Ali et al. [22] introduced a multiarmed bandit algo-
rithm to perform FU grant in IoT networks. However, this
work also came short from exploiting the traffic correlation
on the event-temporal basis.

Eldeeb et al. [23] presented an FU grant algorithm based on
support vector machines (SVMs) and long short-term memory
(LSTM). However, the addressed algorithm needs efficient
hardware at the BS to carry out complex neural networks
computations. Habachi et al. [24] presented an FU grant-
based federated learning approach, where the BS relies on
the traffic estimation at the side of the devices. Although
performing the estimation at the side of the devices reduces
the complexity at the BS side, which is responsible only to
perform allocation, it requires the low power end devices
to perform complex computations. In addition, AlQerm and
Shihada [25] formulated a reinforcement learning algorithm
for resource allocation in device-to-device (D2D) communi-
cations, whereas Kalgr et al. [26] proposed a recurrent neural
network (RNN) model based on metalearning to predict the
millimeter-wave (mmWave) link blockages. Shah-Mohammadi
and Kwasinski [27] presented a multiagent deep reinforcement
learning (DRL) solution for resource allocation, Liu et al. [28]
proposed a clustering-based solution to perform resource
scheduling depending on each cluster priority and demands,
and the work in [29] presented a survey of recent artificial
intelligent (Al)-based frameworks for resource allocation in
diverse use cases. Table II summarizes the existing reviewed
literature.

The majority of the referred literature relies on the use
of machine learning and reinforcement learning schemes,
which need to perform complex computations either at the
BS side or the IoT devices side. This requires powerful
hardware and a long training duration that reflects some chal-
lenges on the usage of machine learning in communication
systems [30]. In addition, IoT networks are often driven by
interactive applications, where observations are provided based
on human/machine interaction over time, which means that
adding a set of new observations to the collected obser-
vations for a period of time changes the model and the
learning problem. Therefore, online learning becomes nec-
essary [31]. Hence, generalized complex machine learning
schemes might not be able to train real-time IoT networks
as they require extremely powerful hardware to perform their
learning algorithms online and simpler, specially tailored,
learning schemes are required for online learning scheduling
algorithms [32]. In this work, we present a stochastic-based
solution, which fits well with the proposed HMM model.
Moreover, it is very efficient in terms of prediction accuracy
and simpler than the existing machine learning solutions in the
literature.
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TABLE II
SUMMARY OF THE LITERATURE REVIEW

Main scope Literature Sub-topics
M. Laner et al. [3] CMMPP
Traffic Models | E. Grigoreva et al. [17] CMAP
P. Rossi et al. [18] HMM in WSN
A. E. Kalgr et al. [19] GF-RA

RA-based S. M. Hasan et al. [20] NOMA FU grant
7. Zhou et al. [21] Hybrid resource allocation
S. Ali et al. [22] Multi-armed bandit

FU grant E. Eldeeb et al. [23] SVM and LSTM

O. Habachi et al. [24]

1. AlQerm et al. [25]

A. E. Kalgr et al. [26]

F. Mohammadi et al. [27]

Federated learning
Reinforcement learning
Meta-learning and RNN
Multi-agent DRL

Deep learning

X. Liu et al. [28] Clustering
D. Hejji et al. [29] Al survey
Frequency
L
2
1
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Fig. 2. Considered activation model, in which N ON-OFF Markovian

processes control the activation of K devices. If process n is in the On-state
it activates device k with probability g,.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an IoT network, such as NB-IoT, with K IoT
devices relay their information to a single BS as depicted in
Fig. 2. As in conventional LTE FU, the transmission resources
that are linked is divided into time slots, and in every time
slot, the BS can schedule up to L devices for transmission
in L frequency slots. The scheduled devices are assigned to
transmission slots and they transmit only if they are active
(i.e., if they have data to transmit). If a device is scheduled
for transmission while being inactive, the uplink resource is
wasted.

We denote the activation of device k in discrete time slots
t=1,2,...by the random variable At(k). A;k) = 1 if the device
is active; otherwise, Afk) = 0. The activation of IoT devices
at time ¢ is indicated by vector A; = {Afl), .. ,Aﬁk)}.

A. State Transition Probabilities

The activation of the devices is controlled by N independent
two-state Markov processes. The Markovian processes swing
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between On and Off states, where at time ¢, the state S, ¢
1, 0}, is governed by temporal transition probabilities e(") and
{ g y p p

€™ as shown in Fig. 2, wh

0 g. 2, where

Pr(s =018 =1) = ¢" (1)
Pr(s) = 18" =0) =" @)
Pr(S) =08 =0) =1 - ¢" 3)
Pr(s‘”1 = 118" = 1) =1-€. @)

To this end, we define the state vector at time ¢ as S; =
{S,(l) , ...,S,(N) }. The Markov processes that are in the On
state, i.e., S,(”) = 1, may activate specific [oT devices, where
the probability that Markov process n activates device k is

given by gnk.

B. Device Activation Probabilities

A certain device becomes active if one or more of the
Markovian states activates it. Thus, the probability that device
k is active at time ? is

Pr(Aﬁ") - 1|s,) —1- ﬁv] Pr(A§k) - O|S,(”)) (5)

n=1

N
—1-[]0 - g™ ®)

n=1
where the activation is considered to be conditionally inde-
pendent, given the state vector S;.
Furthermore, the probability that IoT device k will be active
at the future time instant #+ 1 given the state vector at time ¢
can be written as

Pr(Aiﬁ)l — 1|st) —1- (N] Pr(AEﬁ)l - 0|S§”>) 7

=1 ]_[ h(n) (8)
where
1_ (”)+ ”)1_n , S(")ZO
=1 ! ol oy T ©)
+ (1 - 0 Y —qui), S =1

C. Performance Evaluation Metrics

Next, we define key performance metrics that are essential
to evaluate the proposed FU scheme with traffic prediction and
compare it to existing allocation schemes.

1) Regret: The regret is one of the key metrics used to
evaluate the performance of scheduling algorithms using learn-
ing schemes [15]. We define one unit of regret as wasting a
resource on an inactive device while one active device did not
receive a resource. Therefore, regret is the accumulated regret
units at each time slot that resulted from the prediction and
scheduhn of active devices. Consider the uplink grant vector
U; = e (K)} where u( =1 if a slot is allocated to
device k at tlme t and ut(k) = 0 if device k does not receive
a transmission slot. The number of wrong allocations at time
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instant 7 can be calculated as the difference between the uplink
grant vector ufk) at time instant ¢ and the activation vector A,(k)
at time instant ¢ as follows:

K
W, = Z[ (k) A(k)]

k=1

(10)

where [x]T = max(0, x). In addition, the number of missed

allocations can be computed as the difference between the

activation vector A;k) at time instant ¢ and the uplink grant
(k) ¢ .

vector i, at time instant ¢ as follows:

K
He = Z [At(k)

+
—u] (1n)
k=1
Hence, the regret function at time ¢ is defined as
R(7) = min{wy, fu:}. 12)

Then, minimizing the long-term R(f) is an important target
when designing an FU grant scheme.

The meaning of the regret function can be understood by
considering the following three cases. First, if M > L devices
are active and all the L uplink grants are given to a subset of
the active devices, then w;, = 0 and wu, = 0. This results in
a regret of R(f) = 0, reflecting that the number of unserved
devices is minimized. If no devices are active, and L grants are
given to inactive devices, w; = L and u; = 0. This also results
in R(¢) = 0, again reflecting a minimum number of unserved
devices. Finally, if M < 2L devices and scheduler assigns
grants to M/2 of the active devices and L — M/2 inactive
devices, then w; = L—M /2 and u; = M /2. The regret is then
R() = min(L — M /2, M/2), which renders the number of
unserved devices that could have been served if the allocation
process was more accurate.

2) System Usage: We propose the system usage met-
ric, which would help with evaluation the efficiency of the
proposed FU grant allocation scheme. The average system
usage 7; at time ¢ is defined as the ratio between the num-
ber of transmission slots that are successfully used by an IoT
device to the total number of available slots L averaged over
time. That is

t
= lL Z L— w;. (13)
=0
The average system usage marks the percentage of transmis-
sion slots that are successfully used for uplink by the IoT
devices.

3) Age of Information: To measure the freshness of data
and the degree of fairness in scheduling the devices, we define
the discrete Aol [5], [33] of device k as the time passed since
the device transmitted a packet. That is the last time instant in
which device k was active and received a transmission grant
and

A —, (14)

where #; < t is the last time slot before ¢, when A(k) = uff ) =1
and the Aol should be a nonnegative integer. The average age
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per device at a certain time is defined as
K

i AR

K k=1

A= (15)
Meanwhile,
maxk{A(k)}.

Aol is important in the proposed scenario since it provides
a measure for the freshness of the data received from each
IoT device. This means that if a device is rarely scheduled for
transmission, the information stored at the BS from this device
will be outdated as the device’s age becomes too high. Hence,
it is also considered as a measure of fairness, where higher
average ages mean that some devices are rarely scheduled and
low average age means that devices are fairly scheduled.

Remark 1: We assume that the BS has preknowledge of the
environment and, hence, knows the state transition probabili-
ties €™ and the device activation probabilities g,x. Therefore,
the BS aims to jointly minimize the regret and the Aol and
maximize the system usage by scheduling the available trans-
mission resources to the devices. In addition, we investigate
the same objective while assuming that the state transition
probabilities and the device activation probabilities are not
fully known by the BS. Hence, the BS needs to estimate the
model hyperparameters via estimation algorithms.

the peak age per device can be noted as

IV. PROPOSED FAST UPLINK ALGORITHM

This section analyzes the device’s temporal activation prob-
abilities and exploits them to develop the traffic prediction-
based FU scheme. The BS uses the set of past observations
of each device to predict the hidden states for each event.
Afterward, it uses the set of predicted hidden states to generate
an estimate for the future observations for each device.

A. Traffic Prediction

The BS does not know the states of the Markov processes
and, hence, continuously needs to estimate them based on
the observations. Note that the activation process of the IoT
devices can be described by an N-HMM as typically detailed
n [34]. Concretely, the forward algorithm can be applied by
the BS to learn the probability of events being in a certain
state given the history of IoT devices activation observations
done by the BS [35]. The BS can exploit the learned state
distribution to estimate future device activation probabilities
and patterns.

To obtain a clear understanding of the forward algorithm,
consider the joint probability p(S;, A;). The forward algorithm
is able to efficiently compute this joint probability in a recur-
sive way as in [36]. Herein, the forward algorithm is described
as follows:

PSt, Ar) =p(AdS) D p(SilSi—1)pSi—1, A1) (16)
Si—1
Then, the most likely hidden state for the events can be learned

using

S} = argmax p(S;, Aiy).
S

a7
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The estimated hidden states at time instant ¢ are used to predict
the activation probabilities of each device at time instant 7+ 1
using (7). The predicted device activation probabilities can be
formulated as

Pr(a;) = 11s7) =1

Alternatively, the BS can use the forward algorithm results
directly to predict the maximum likelihood of the pattern of
the devices in the next time instant

Af,, =argmax Y Pr(A;11[S)p(S:. A1)
At+l S:

— L Pr(af) = 01s7). a8)

19)

— arg max Z P(Sr. Av) ]_[ Pr(4, =bus))  0)

Art1 k=1

where Ay, | is the maximum likelihood estimate of the set of
active IoT devices at time ¢+ 1, and b, € {1, 0}.

Note that (19) evaluates the probability of a full pattern.
Hence, it gives the most likely activation pattern and does not
consider the activation probability of each device separately.
Meanwhile, when performing uplink grant allocation, the BS
should select L devices which are most likely to be jointly
active. In order to determine these devices, we assume that
the system is in the most likely state, found from (17), and
exploit this assumption to compute the transition probability
of the events as follows:

™ _ pe(s*m _
Por=Pr(s

(1)
1 = S Y= 1)

which will be used to determine the activation likelihood of
each device as

1)

k 1
Piovce = Pon - a16J (22)
2
PO a2 | (23)

U (24)

(25)

Finally, the devices are sorted by their activation probability,
and L devices most likely to be active are scheduled in the
next slot.

B. Baseline Model

We develop a baseline model that can capture the behavior
of the devices efficiently with low computational complexity
using the steady-state probabilities of the events p(Sg)) as
follows:

k
Pr(a%, =1) =1 —Z]‘[(l —aw p(s)  @6)
S: n=1
where
<" (n)
wy _ | @ S =0
p(s) =1« & @7)
S S(”)
(")+ (n)

The steady-state probabilities of the events, as calculated
in (27), describe how likely each state will be active long
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enough during the simulation time [37]. We formulate a
probability density distribution (PDF) by multiplying the
steady-state probabilities the device activation probabilities
as in (26). This PDF describes the probability of a device
to be active affected by the steady-state probability of the
states. Hence, this distribution gives a simple description of
the activation pattern of the devices without performing any
forecasting computations. Afterward, the devices are sched-
uled by the BS according to this distribution. Note that we
refer to this scheduling algorithm as the baseline model.

C. Aol Compensation

We introduce the age parameter 8 to map the priority of
scheduling devices that have high Aol. Higher values of g
mean that the BS gives higher priority to devices that have
not transmitted for a long time (i.e., devices with higher Aol).
The scheduling priority index for device k at time ¢+ 1 is thus
defined as

19 =pe(a =18 + B p(5.) AV @8)
N
=1—[]rm + B p(S.,) AP ®. (29)
n=1

Instead of sorting the devices according to their probability of
activation, the BS sorts the devices according to their index /.
Then, the L devices with the highest index I are scheduled for
transmission.

The BS needs to choose an appropriate value for 8 in (29)
to control the tradeoff between the devices’ Aol and regret
optimalities. This introduces an optimization problem at the
BS side, where the cost function C(R, A) is defined as the
multiplication of the average regret R and the average Aol A

argmin C=R- A
B
s.t. B>0.

(30)
€1V

As illustrated in Fig. 3, we can note that the cost function
is convex and can be optimized easily to get the optimal B
that lowers down the Aol while maintaining the regret in an
appropriate region for a given network setup.

To address the tradeoff between the Aol and the regret, we
investigate Fig. 4 that depicts the achievable region for Aol
and regret using different values of g for different setup of
the network (the number of devices, the number of binary
events, and the available number of resources). The smaller
the network setup K, N, and L, the smaller the resulting age
and regret. Therefore, each BS needs to optimize its own S
according to the prior knowledge of the network parameters.
If B is set to 0, the scheduling resets to its basic form without
the age compensation term (fair regret), whereas if 8 is set
to asymptotically oo, the scheduler will act as round-robin,
where the resources are distributed equally among the devices
(fair age).

V. ONLINE LEARNING BASED ON MODEL ESTIMATION

The forward algorithm and the HMM mainly depend on
prior knowledge of the hyperparameters of the model, namely,
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Fig. 4. Achievable region for the Aol and the regret while applying the Aol
compensation for different values of the age parameter f.

the transition state probabilities for each event and the activa-
tion probabilities when affected by active events. Sometimes,
it is difficult to have prior knowledge of these parameters.
Therefore, the BS aims at estimating the hyperparameters of
the model using only the possible observations from the real-
time model. Next, we present the estimation algorithm for both
gnk and €.

The activation probabilities of device k at time instant ¢,
given the set of states S, are the set of values that result in an
activation pattern that is as close as possible to the actually
observed activation pattern At(k). To estimate g,x, we formulate
the following likelihood maximization formula:

T
q);, = arg max HPr(At(k) = bk|S;k)
Uk =1

(32)

where by € {1,0}, and Pr(A[(k) = bi|S}) is calculated as
follows:

_ N _ S*(ﬂ) .
pr(Ai">=bk|s;“)={1 [Tomi (1= qu)® ", e =1

k- (33)
T, = gu0S ",

by =0
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with the constraint 0 < g, < 1. Note that (32) can be solved
via geometric programming which can be solved for each
device k using any programming tool, such as fmincon, which
is available in MATLAB, or cvx (available in both MATLAB
and Python) [38], or even using a basic exhaustive search algo-
rithm to find the solution of the optimization problem. In this
context, the cvx tool is considered the best fit for such com-
plex problems with multiple local maxima, where it can solve
geometric programming problems efficiently. However, the
optimization problem relies on predicting the most likely hid-
den state S; from (17) using the forward algorithm, which uses
the actual hyperparameter values g, and €. This problem can
be solved iteratively using the Baum—Welsh algorithm [36].

The Baum—Welsh method relies on the forward—backward
algorithms, where at time instant ¢, it estimates the expected
number of visits of each state and the number of transitions
from state S; to state S; during the time period T (0 < T < ?).
Afterward, it exploits the number of visits and transitions to
generate an estimate of €*. The estimated temporal transition
probabilities €* along with the previous estimate of g7, are
used to predict the most likely hidden state, which will be used
to update the estimate of ¢gy,. These iterations are repeated
until convergence (desired error threshold). It is expected that
the Baum—Welsh algorithm? converges after a limited number
of iterations Z according to the complexity of the model. After
convergence, we can exploit the estimated hyperparameter val-
ues ¢, and €* to perform resource allocation for the devices.
After initializing g, (0), e(()”) (0) and ei") (0), we apply the fol-
lowing equations that illustrate the expectation—maximization
estimation procedure:

S; (i) = argmax p(S;, Ar.) . 34
S k=i~ ey, =€ " (i=1)
Pr(A,(k) - bk|sf(i))
=TT, (1= g ®, b =1
-1 e (35)
[T=i (L= qu)or ', by =0
T
a5 () = argmax [ Pr(A§k> _ bk|s;*(i)). (36)
Uk =1

In fact, this learning process requires enough number of
observations to ensure an accurate estimation procedure. If
the BS has prior knowledge to a number of observations
that is large enough to perform the estimation, we refer to
it as FU-offline learning. On the other hand, applying this
iterative expectation—maximization procedure at each time-
step converts the ordinary algorithm to an online version of
the FU algorithm. First, the BS collects the observations at
time instant ¢, where it utilizes them to iteratively estimate the
model hyperparameters q,; and €. Afterward, it predicts the
activation pattern probability of each device at time instant
t + 1 using the forward algorithm. Moreover, it optimizes the
age parameter 8 to compensate for the age of the devices that
experience high age. Finally, the BS allocates the resources to

2A more interested reader can refer to [36] for more details about the
Baum-Welsh expectation—maximization algorithm.
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Algorithm 1: Traffic-Prediction-Based Fast Uplink Grant
Algorithm

1t=1.
2 Define K, N, L, and Z.
3 Initialize the age vectors A®.
4 Initialize the regret vectors R®.
5 while True do
6 | Initialize g, (0), €”(0) and € (0).
7 Collect the observations A;.
8 fori=1,...,Z do
9 Sk(i) =
argmaxs, p(Sy. Ar,) :
an=ayi—1).ey=e, " (= 1)
10 Update e;f") ).
m (i) = argmaxq, 1=, Pr(A}") - bk|s;k(i)).
12 end
13 Optimize the age parameter .
14 | Compensate Pr(A;Z(rkl) = 1|S} ) using f.
18, =Pe(Af) = 118:) + B p(S,) AP ).
15 Allocate the L resources.
16 Update the age vector A® for each device.
17 Update the regret vector R®) for each device.
18 t = t+1.
19 end

the devices with the highest priority index. We refer to this
procedure as online-learning-enhanced Aol, which is depicted
in Algorithm 1.

VI. RESULTS AND DISCUSSION

In this section, we present the simulation results of the
proposed FU algorithm based on the forward algorithm and the
further discussed extensions. We consider a setup of a single
BS with L = 10 available frequency resources at each time
instant and K = 50 sensors affected by N = 5 Markovian
events. The temporal state transition probabilities are e(()") and
65") are uniformly distributed on the interval [0, 0.5]. Note
that, low values of € result in forcing the events to be active
for longer times and cause congested traffic. Meanwhile, the
activation probabilities g, € [0, 1]. We present a detailed
comparison between the proposed algorithms and some of
the existing models. For instance, we discuss the GF, where
the active devices send a request to the BS using a random
preamble, and the TDMA, where round-robin is followed to
schedule the resources for the devices. In addition, we present
the FU-genie-aided that refers to the case in which the states
of the events are assumed to be perfectly known to the BS.
Herein, the FU-limited info refers to the scenario in which
the BS observes only the activation of the scheduled sensors.
Meanwhile, in the FU-feedback, the BS is allowed to also
observe the activation of the devices that were not scheduled
through a feedback signal. The FU-baseline is presented as the
low computational version of the FU algorithm as presented
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Fig. 5. (a) Regret and (b) Aol evaluation. K = 50 sensors, N = 5 events, and L = 10 available frequency resources.

TABLE III
PARAMETERS USED IN THE SIMULATION SETUP

Parameter Value \ Parameter Value
K 50 N 5
L 10 T 100
Z 40 B 0.0233
5856? [07 05] dnk [09 1]

in Section IV-B. The term FU-enhanced Aol corresponds
to the FU algorithm after performing the age compensation
as discussed in Section IV-C. Finally, FU-offline learning
corresponds to applying the estimation algorithm discussed
in Section V while assuming a prior knowledge of enough
observations offline to be used to estimate the model hyperpa-
rameters, whereas online-learning-enhanced Aol is the online
version of the presented algorithm, where no prior information
is assumed to be known and age compensation is applied as
discussed in Algorithm 1. Table III illustrates the parameters
used in the simulation.

Fig. 5 demonstrates the regret and the average Aol
performance metrics when applying the discussed sched-
ulers. In Fig. 5(a), we evaluate the regret function, where
the FU-feedback scheme significantly outperforms both
GF and TDMA. Specifically, when applying the proposed
FU-feedback scheme, the regret function is reduced to four
times less than the regret in the case of TDMA and 50 times
less than the regret of GF due to the high number of collisions
in GF. Moreover, the FU-limited info scheme has close results
in terms of the regret to the genie-aided model which assumes
perfect knowledge of the events. The feedback version of the
FU algorithm exploits the cost of having imperfect information
about the activation of the devices, which reflects on the result-
ing regret. However, the performance is still close to that of
the genie-aided model and outperforms existing models (GF
and TDMA).

Fig. 5(b) shows the average Aol per device, where the
proposed FU-feedback scheme has relatively higher ages when
compared to GF and TDMA, which motivates the need for an

enhanced Aol version of the FU algorithm. In addition, we
calculate the system usage using (13), where the FU-feedback
achieves nearly a 0.95 system usage, which indicates that the
BS has successfully allocated 95% of the resource to the trans-
mitting devices. Hence, the proposed scheme is more efficient
than TDMA which uses only 78% of the resources, and the
GF that has only 50% of system usage due to the high number
of collisions.

Solving the optimization problem in (31) renders 8 =
0.0233 as the optimal value for the addressed setup. The BS
applies the age parameter § to address the fairness issue. Fig. 5
shows the age enhancement which results from applying the
fairness parameter 8 = 0.0233 while scheduling the devices.
The average age per device for the FU-enhanced Aol is signif-
icantly improved when compared to the basic implementation
with 8 = 0. The average age per device is much lower than
GF and asymptotically almost converges to TDMA as time
passes instead of being much higher than TDMA in the case
of B = 0. Meanwhile, the FU-enhanced Aol still maintains a
significant performance advantage regarding regret and system
usage when compared to GF and TDMA.

Fig. 6 illustrates the convergence of the estimated hyper-
parameter values ¢y, and e;f"). The error is measured as
the difference between the true regret of the forward algo-
rithm using the true hyperparameter values g,x and € and the
regret resulting from scheduling the resources for the devices
using the estimated h*yperparameter values. We initialize the
values of gy, and ebin) and run the iterative optimization
algorithm as described in Section V. We solve (32) for
each device using both exhaustive search and CVX, where
exhaustive search results in a more accurate estimation, while
CVX is much simpler and more efficient in terms of esti-
mation time. Afterward, we run the Baum—Welsh algorithm
for 40 iterations, where it convergences to reasonable val-
ues for e;:") and gy, that truly describe the observations. We
can note the convergence of the model hyperparameters after
looping the algorithm for a sufficient number of iterations.
Typically, the convergence is significantly faster for a small
setup of the system model as the number of states and devices
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Fig. 6. Convergence of estimation of the model hyperparameters using the
Baum-Welsh algorithm.

controls the number of the hyperparameters to be estimated.
We run the mentioned estimation procedure to be used in
the learning algorithm offline (FU-offline learning) and online
(online-learning-enhanced Aol), where the former assumes
prior knowledge of enough number of observations to run
the estimation upon it, whereas the latter runs the estimation
algorithm online while accumulating the observations.

Fig. 7 shows the performance evaluation of the online-
learning-enhanced Aol algorithm in terms of regret and aver-
age Aol, respectively. As the algorithm has no prior knowledge
about the states and the hyperparameters of the model, it
applies the forward algorithm and the age compensation strat-
egy based on the given set of previous observations collected
at each time step. We can see in Fig. 7(a) that the behavior of
the algorithm is not efficient in the initial time steps as there
are not enough observations that can describe the model and
correctly estimate the model hyperparameters. Afterward, the
hyperparameters estimation gets better (almost after 16 time
instants) as the model collects a suitable amount of observa-
tions that truly describe the model and are used efficiently in
the estimation procedure. In Fig. 7(b), the algorithm experi-
ences a large Aol compared to the TDMA in the initial time
steps, where the age compensation strategy optimizes the age
parameter 8 assuming that the prediction results are efficient
enough to compensate the true high age devices. Afterward,
the online-learning-enhanced Aol algorithm collects enough
observation to efficiently predict the model hyperparameters,
where the age compensation strategy almost captures the Aol
of the TDMA after 40 time instants.

Fig. 8 summarizes the regret, Aol, and system usage
performance metrics when applying the proposed resource
allocation schemes. It is worth mentioning that the GF results
are omitted from the bar plots as it has extremely poor
performance compared to all other schemes due to high num-
ber of collisions, and this would affect the comprehensive
comparison of the schemes on the plots (namely, on the regret
bar plot). It results in regret of around 3000, an Aol of 52, and
system usage of 65%. The FU-feedback achieves a reduced
regret to 50 times less than the GF and a slightly less system
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Fig. 7. (a) Regret and (b) Aol evaluation of the online-learning-enhanced

Aol algorithm. K = 50 sensors, N = 5 events, and L = 10 available frequency
resources.

usage than the FU-genie-aided case with 2% difference. The
TDMA has the best Aol results as it is considered as the fair
age scheduler. Therefore, age compensation is applied within
the FU-enhanced Aol algorithm that captures the Aol of the
TDMA of 2.3 at the expense of slightly higher regret, where
it has a 40 more regret than the FU-feedback. However, it still
outperforms the regret and the system usage of TDMA and
GF schemes. We can observe that the FU-baseline achieves
three times lower regret than and 9% higher system usage
than TDMA. Therefore, the FU-baseline still outperforms the
TDMA and the GF resource allocation schemes regarding
regret and system usage with lower computational demands.

Moreover, we fit the estimated parameters to the schedul-
ing algorithm to calculate the model’s regret, system usage,
and average Aol. We can observe that both FU-offline learn-
ing and online-learning-enhanced Aol outperform the regret
of the TDMA and almost captures the regret of the FU-
feedback. In addition, the online-learning-enhanced Aol has
almost double the regret of the FU-offline learning (65 and
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Fig. 8. (a) Regret, (b) Aol, and (c) system usage evaluation. K = 50 sensors,
N =5 events, and L = 10 available frequency resources.

120 for the FU-offline learning and the online-learning-
enhanced Aol, respectively) as the online version suffers from
inaccurate estimation at the beginning of the simulation as
there are not enough observations to be used in the estima-
tion, whereas the offline version assumes prior knowledge of
enough observations for the estimation. In addition, the online-
learning-enhanced Aol performs an Aol compensation step
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after estimating the model hyperparameters, which enables the
algorithm to achieve the Aol of the TDMA while preserving
the regret to still outperform the TDMA. Finally, there is
an interesting analogy between the FU-limited info and the
FU-offline learning results, where both algorithms suffer from
missing information as the former has limited information
about the actual activation of the devices and depends only
on its prediction, whereas the latter relies on a collection of
past observations to estimate the model hyperparameters.

VII. CONCLUSION

This article considered the Markovian events which serve to
model the activity of the massive deployment of IoT devices.
We proposed an FU algorithm that efficiently predicts the
activation pattern of the IoT devices based on the forward
algorithm and grants the available resources to the devices
with the highest likelihood of activation probabilities. We for-
mulated an optimization problem that compromises a small
value of the regret to minimize the Aol of the IoT devices
and achieve a desirable degree of fairness. In addition, we for-
mulated an expectation—-maximization algorithm based on the
Baum—Welsh procedure to estimate the system hyperparame-
ters. Finally, we developed an online-learning version of the
proposed scheme. Simulation results showed that the proposed
algorithm outperforms the existing models, e.g., TDMA and
GF, regarding regret, system usage efficiency, and Aol.

The proposed algorithms were much simpler than machine-
learning-based predictors regarding the complexity of the
computations. Therefore, the proposed algorithms could be
used as traffic predictors in critical applications, e.g., predictive
UAV positioning [39], road safety, and other applications with
low-latency communication demands [6].
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