
18028 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

Secure Encoded Instruction Graphs for End-to-End
Data Validation in Autonomous Robots

Jorge Peña Queralta , Graduate Student Member, IEEE, Qingqing Li, Graduate Student Member, IEEE,
Eduardo Castelló Ferrer , and Tomi Westerlund , Senior Member, IEEE

Abstract—As autonomous robots are becoming more
widespread, more attention is being paid to the security of
robotic operations. Autonomous robots can be seen as cyber–
physical systems: they can operate in virtual, physical, and
human realms. Therefore, securing the operations of autonomous
robots requires not only securing their data (e.g., sensor inputs
and mission instructions) but securing their interactions with
their environment. There is currently a deficiency of methods
that would allow robots to securely ensure their sensors and
actuators are operating correctly without external feedback. This
article introduces an encoding method and end-to-end validation
framework for the missions of autonomous robots. In particular,
we present a proof of concept of a map encoding method, which
allows robots to navigate realistic environments and validate
operational instructions with almost zero a priori knowledge. We
demonstrate our framework using two different encoded maps
in experiments with simulated and real robots. Our encoded
maps have the same advantages as typical landmark-based
navigation, but with the added benefit of cryptographic hashes
that enable end-to-end information validation. Our method is
applicable to any aspect of the robotic operation in which there
is a predefined set of actions or instructions given to the robot.

Index Terms—Autonomous robots, cryptography, cyber–
physical security, robot security, robotic navigation, secure
navigation.

I. INTRODUCTION

AS ROBOTS become increasingly common across many
domains and application areas, more attention is being

paid to the safety and security aspects of robotic opera-
tion [1]. The differentiation between safety and security is
often ambiguous, with the term safety typically being used to
refer to human–robot interaction [2] or to the protection of the
robot from physical damage [3]. However, what is typically
overlooked is that the safe operation of an autonomous robot
is inherently tied to having tight security of the data involved,

Manuscript received 28 May 2021; revised 5 December 2021 and
7 February 2022; accepted 20 March 2022. Date of publication 4 April 2022;
date of current version 7 September 2022. This work was supported in
part by the Academy of Finland’s AutoSOS Project under Grant 328755
and RoboMesh Project under Grant 336061; in part by the European
Union’s Horizon 2020 Research and Innovation Programme through the
Marie Skłodowska-Curie under Grant 751615; and in part by the Finnish
Foundation for Technology Promotion under Grant 8089. (Corresponding
author: Jorge Peña Queralta.)

Jorge Peña Queralta, Qingqing Li, and Tomi Westerlund are with the Turku
Intelligent Embedded and Robotic Systems Laboratory, University of Turku,
20500 Turku, Finland (e-mail: jopequ@utu.fi; qingqli@utu.fi; tovewe@utu.fi).

Eduardo Castelló Ferrer is with the MIT Connection Science and
MIT Media Laboratory, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: ecstll@mit.edu).

Digital Object Identifier 10.1109/JIOT.2022.3164545

Fig. 1. Classification of data acquisition and analysis processes in
autonomous robots and matching security layers.

including sensor data and data defining mission instructions.
Fig. 1 shows a classification of stages in which information
is either collected or processed by an autonomous robot. The
classification in Fig. 1 extends the cyberattacks categoriza-
tion defined in [4]. It also models the software processes as
a network [5], which corresponds with many robotic frame-
works, such as the robot operating system (ROS) [6]. In this
classification in Fig. 1, the acquired sensor data need to be
both secured and validated, which is essential from a cyberse-
curity point of view and represents an unresolved challenge.
For the secure operation of autonomous robots, it is essential
to be able to validate the data being shared among subsystems
and external systems (e.g., a controller or other robots) and the
data defining or characterizing the way the robot interacts with
its environment.

A relevant precedent in securing multirobot cooperation was
introduced by Ferrer et al. [7], in which the authors leveraged
Merkle trees to improve the security and secrecy of swarm
robotics missions. The main novelty of their work is the intro-
duction of a framework for validating data in robots without

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3091-3217
https://orcid.org/0000-0001-9761-1980
https://orcid.org/0000-0002-1793-2694

PEÑA QUERALTA et al.: SECURE ENCODED INSTRUCTION GRAPHS FOR END-TO-END DATA VALIDATION 18029

relying on the data itself, by encoding mission instructions
in Merkle trees. Merkle trees are cryptographic structures that
enable the validation of data through cryptographic proofs that
do not involve the data itself.

We aim to extend the previous work to build a more general
framework: rather than encoding one set of mission instruc-
tions [7], we encode all possible ways in which a mission
can be completed. In [7], one of the main research questions
is whether it is possible to provide the blueprint of a robotic
mission without describing the mission itself. In this work, we
build upon the separation of data verification from the data
itself, as introduced in [7], and explore new implicit ways for
defining complex robotic workflows. In [7], the robots per-
form predefined actions when they are able to reproduce some
predefined encoded sensor data. In this work, we instead uti-
lize a graph structure with connections between the possible
mission instructions or states, in which paths through the graph
encode all possible mission flows.

In this manuscript, we first describe the proposed frame-
work and several possible applications, including human–robot
interaction and collaborative robots. We then provide a proof
of concept in an example navigation mission. The proof of
concept demonstrates that our framework has minimal impact
on robot behavior and robustness, even when the full mis-
sion is encoded. Our framework is therefore viable for real
applications and opens the door to the more secure and safe
deployment of autonomous robots.

We summarize the current research gap in robust data val-
idation schemes for autonomous or semiautonomous robots
with the following key unanswered research questions.

1) Is it possible for a robot to safely and securely interact
with its environment, operators, and other robots without
a priori knowledge of the mission?

2) Can encoded information that reveals no explicit mis-
sion instructions maintain the performance of unencoded
robotic workflows?

3) Can encoded mission instructions be used to simultane-
ously validate the integrity of robot actions, the progress
of the mission, the sensor data, and the operations of
actuators?

The first question applies to a wide variety of situations. For
instance, consider whether a robot in a factory can be given
assembly instructions that it cannot understand until reach-
ing the respective step in the assembly process, or whether a
mobile robot can be given a map that it cannot understand until
it is navigating the respective location in its environment. An
even more complex situation occurs when a robot can interact
with a human or another robot in a certain way only when a
series of conditions are met. The latter two questions deal with
practical considerations: 1) whether encoded instructions can
be adapted to standard robotic algorithms and workflows and
2) whether robots can use encoded instructions to simultane-
ously validate all processes involved in a mission. In short, we
are asking whether a single framework can provide end-to-end
data validation and provide encoded instructions that enable a
robot to securely and safely interact with its environment.

We consider the validation of a robot’s operation from end to
end: validating sensor data, the correct operation of actuators,

mission instructions, and information received from an exter-
nal controller. We conduct proof-of-concept experiments in
a navigation mission in which limited a priori information
about the environment is available to the mission controller
or the human operator. In this scheme, an operator gener-
ates a set of encoded instructions by hashing the description
of a set of landmarks in the environment that serve as navi-
gation waypoints. The encoded set of landmarks is given to
the autonomous robots, which use them to navigate a real-
istic environment without any other a priori knowledge. The
encoded landmarks are nodes in a navigation map that is given
to the robots in the form of a graph. The graph edges encode
information about how to navigate between consecutive land-
marks. Because all information is encoded, we minimize the
amount of raw data exposed to the robots a priori.

The main contributions of this work are as follows.
1) The definition of an end-to-end validation framework for

autonomous robots based on encoded instruction graphs.
2) The definition and validation of a novel approach to use

cryptographic hashes to encode a navigation graph that
maps environment features.

3) The definition and validation of methods that allow
robots to follow encoded mission instructions while
validating their sensor data without external feedback.

The remainder of this article is organized as follows. In
Section II, we overview previous works that address secu-
rity issues in robotic systems. Section III then introduces
the proposed framework, describes different use cases, and
discusses the potentials and limitations of our framework.
Section IV presents the implementation details of a proof of
concept for robotic navigation, using an encoded navigation
graph. Then, Section V describes the methodology we have
followed in our simulations and experiments and Section VI
presents the experimental results. Finally, Section VII con-
cludes the work and outlines future research directions.

II. BACKGROUND

There is a growing interest in securing robotic systems,
partly due to to the increasing connectivity with which robots
are being equipped. There are many data exchange modali-
ties with new attack vectors, for instance, in remote control
commands [8], telemetry [9], offloading computation [10],
robot-to-robot communication [7], [11], and human–robot
interaction [12].

Existing research efforts that study cybersecurity issues in
robotics generally consider exclusively virtual or data aspects.
Clark et al. [4] reviewed and discussed the main security
threats to robotic systems, including spoofing sensor data,
denial-of-service attacks, malicious code injection, and signal
interference. However, this review only considers the cyber-
netic point of view, not explicitly the physical dimensions in
which robots operate. Some works have considered security
in the context of sensor data and navigation missions. For
instance, in an early work in this direction, Py and Ingrand [13]
introduced an execution control framework for an autonomous
robot to analyze the data it obtained through its behaviors
using a state checker. In a more recent work, Tang et al. [14]

18030 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

ensured the convergence of sensor data under the denial-of-
service attacks. Similarly, Tiku and Pasricha [15] introduced a
methodology for overcoming security vulnerabilities in a deep
learning localization method by making use of adversarial
training samples. In distributed and multirobot systems, most
efforts focus on the analysis and mitigation of security issues
from a networking perspective [16]. All of these approaches
take the point of view of data security in information systems
and do not explicitly involve the cyber–physical nature of
autonomous robots and their interaction with their environ-
ment, which is the objective of this article. The interaction of
a robot with its environment presents new crucial issues that
cannot be addressed with existing risk mitigation techniques
from the cybersecurity domain.

There have been a few studies on data validation for
autonomous robots. Legashev et al. [17] defined a generic
framework from a legislative point of view, for mon-
itoring, certification, and validation of the operation of
autonomous robots, using periodic telemetry data obtained
from autonomous vehicles. The framework developed by
Legashev et al. validates a robot’s operation but not the
data itself. Validation of the data in this work can only be
done through statistical analysis and detection of statistical
abnormalities. Data integrity was the subject of one study
by Yousef’s et al. [18] on cyber–physical threats to robotic
platforms.

In general, we see a research gap in terms of addressing the
physical dimension of security issues in robotic operation. This
becomes even more evident when considering widely used
robotic frameworks, such as ROS, which has become a stan-
dard across both industry and academia. Multiple researchers
have studied the security flaws of ROS [19] and proposed
approaches to address these issues [20]. Many of these are also
being mitigated in the newest version, ROS 2 [21]. However,
these efforts are again mostly directed at securing ROS as
a distributed and networked system, not at securing robots’
interactions with their environment. While it is highly impor-
tant to provide security for data flow, it is also important to
close the gap in securing and validating the way robots receive
instructions and interact with their environment.

In this work, we focus on a framework for validating
data integrity. Other types of cyberattacks, such as denial-
of-service attacks—in which the communication channels are
congested—are not considered. However, it is worth noting
that our proposed approach can provide some benefits even
in the types of cyberattacks we do not directly consider. For
instance, while the communication channel used to transmit
encoded commands to the robot might be known to an attacker,
the sensor data or inputs triggering the different actions will
still be unknown to an attacker, as they are unknown even to
the robot itself. As another example, the channel utilized to
trigger a robot’s actions might be disguised within the encoded
instruction graph sent to the robot before the mission starts.
In these ways, our framework can provide partial mitigation
for a broad range of possible cyberattacks.

III. ENCODED INSTRUCTION GRAPH’S FRAMEWORK

This section presents the framework and how it can gen-
erally be adapted to different application scenarios, before

focusing in the remainder of the manuscript on how it can
be applied to a specific navigation use case.

A. Encoding Robotic Instructions

We extend the instruction encryption ideas from [7], in
which mission instructions are given to a robot by encoding
combinations of sensor inputs and robot actions. We do not
explicitly consider multirobot cooperation at this point. We
describe robust options for encrypting and decrypting mission
instructions and evaluate the performance degradation that is
inherent to the addition of data encryption to robotic operation.

In order to encrypt a robotic operation, the first step is to
encode a set of actions and features from sensor data along
with at least one more variable that enables a hash search. A
hash search is a trial-and-error process in which a robot does
not necessarily reproduce a specific hash but instead can try
multiple hashes until finding a match. The additional variable
that enables the hash search can, for instance, be a spatial
or temporal component. The second step is to define a series
of encoded actions and encoded states based on a combina-
tion of variables (e.g., position, time, sensor data, or other
external inputs). By encoding both states and actions, we can
wrap the set of encoded information into a graph structure.
The encoded information in the edge of the graph gives the
robot information about how to arrive to the respective state
or process. We call this an encoded instructions graph. A sam-
ple encoded instructions graph is shown in Fig. 2. In this
graph, the initial instruction is encoded into a hash H1, which
the robot is able to decode by combining a predefined action
(e.g., movement in one specific direction) with predefined sen-
sor data (e.g., visual or geometric features extracted from the
environment). Most of the nodes in the graph represent states.
In the example shown in Fig. 2, most of the nodes are defined
a priori by the combination of a specific position with spe-
cific sensor data (associated to an environment feature, e.g., a
predefined landmark).

The information that nodes can encode is not restrictive,
as it can be any action or state. The edges, however, need to
encode information that enables the robot to transit between
the respective nodes. Therefore, an edge needs to encode one
of the robot’s possible actions or an external input, such as
a message from a controller or another robot. An edge can
also be empty, e.g., if a robot at the previous node already
has enough information to decode the next node, without any
intermediate step. In the example in Fig. 2, the first node trig-
gers an action by the robot when its acquired sensor data
reproduces the respective hash in the graph. The robot then
proceeds to one of two different states in which it must to be
able to reproduce both a specific position and a specific sen-
sor reading. The encoded information in the second node (e.g.,
H2) can be decoded after a certain period of time. The robot
can be forced to go back to the previous state if the sensor
data encoded in H3 cannot be acquired in time, which can,
for example, be used as a failsafe. In practice, the robot is not
aware of the type of information encoded in each hash and
must therefore perform a continuous trial-and-error process to
reproduce the hashes in the graph, by any means for which it
has been preprogrammed. In our experiments, we show that

PEÑA QUERALTA et al.: SECURE ENCODED INSTRUCTION GRAPHS FOR END-TO-END DATA VALIDATION 18031

Fig. 2. Sample encoded instruction graph, with hashes that are defined from different environmental information, or combinations of sensor data, localization
data, and one or more of the available actions. The mission can be completed successfully only if the hashes are decoded sequentially according to one of
the paths encoded in the graph. Note that there is not necessarily a single way of progressing in the mission.

Fig. 3. Different validation modalities and data flows. The same approach can be used for individual mission instructions, event-based commands, chained
instructions, or multirobot communication.

this trial-and-error process has a mostly negligible impact on
robot behavior, compared to the computational cost of extract-
ing features or processing sensor data. However, the process
of deciding how to encode the instructions is not trivial, as
they must be reproducible, but also must be concise enough
to avoid data mismatches.

The graph depicted in Fig. 2 is directed. In, for example, a
mission with only one possible solution in which each step is
followed by only one other step, the graph simply represents
a linear sequence. In more complex missions, the graph will
often remain acyclic, with multiple possible paths to complete
the mission, but without the possibility to repeat a step once it
has been completed. For instance, in a manufacturing process,
the order in which a set of parts are moved to a working bench
might not matter, yet every part must be moved exactly once.
The graph, nonetheless, can also contain cycles. For instance,
in a reconnaissance mission in which a robot has to navigate
an area but without a specific path, the graph would include
an interconnected set of steps (i.e., a cycle). A robot’s higher
mission control should understand these situations and provide
a planning strategy that is not directly sent by the mission
controller (e.g., path planning on the encrypted graph). An
example of this is shown in Section VI.

B. Validation Modalities

The proposed approach can be applied to many types of
scenarios, because the encoded information in the graph is not
necessarily limited to a set of predefined actions and features
extracted from sensor data. Other external inputs can also be
included, such as variables defining the state of the robot or
timing constraints. The addition of these types of variables
brings the possibility to enable secure and secret multirobot
cooperation as well as new ways of defining the conditions
under which human–robot interaction can happen. The node
inputs are all encoded, so the information exchanged between
robots or utilized as external signals triggering robot actions
is only usable when combined with other data and is totally
meaningless for an external agent. Therefore, if the data are
spoofed or a third party gains access to this communication
medium, no meaningful data are actually compromised.

Different possibilities for encoding and decoding instruc-
tions are shown in Fig. 3. In the figure, we show the different
approaches to encoding a robot’s interaction with its environ-
ment. For example, these options include simply encoding a
predefined action (direct actions); combining actions with a
timestamp indicating when they should be carried out (time-
checked actions); combining actions with specific sensor data

18032 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

obtained from the environment (direct actions triggered by the
environment); or a combination of all the previous options.
These actions can then be chained, such that the previous hash
or action is included in the next codified node in the graph.
These approaches are described in more detail and put into
context in the following sections.

1) Independent Validation: The simplest approach is to
encode mission instructions individually and independently. In
this case, an encoded instruction set can be sent to the robot,
similar to the approach followed in [7]. However, this set of
instructions does not define a graph structure and does not
represent the main interest of this article.

An additional layer of security can be added by introducing
time or spatial constraints. Time constraints (e.g., hashing a
timestamp together with the data of interest) provide an extra
layer of security against attacks that could spoof the encoded
data and reproduce it at a different time. Similarly, spatial
constraints can be added by including the robot’s location in
the hash. This, however, only prevents the replication of the
robot’s behavior in other locations.

2) Iterative Validation: An iterative validation happens
when a robot is able to validate its own actions. This modal-
ity is studied in the next sections with the introduction of an
encoded navigation graph.

Encoded instruction graphs defining an iterative validation
process can contain different types of encoded data in their
nodes and edges. For instance, sensor data can be encoded in
the graph nodes, which serve the purpose of process valida-
tion. Additionally, other information can be encoded, such as
positional information or time information, which can be used
in the control loops of the robot itself. Then, the actual instruc-
tion for the robot to move toward the next step is encoded in
the edge of the graph, which encodes both the data in the cur-
rent node being validated and the action or actions that will
enable the robot to decode the next node. An illustration of
this process is shown in Fig. 4. In the figure, we show how, at
each step, instructions can be validated simply by being able to
reproduce the corresponding hash. Moreover, as actions accu-
mulate leading to new reproducible states (defined through
chained hashes in the encoded instruction graph), we are able
to iteratively validate the actions confirming their output with
an expected outcome.

3) Multirobot Simultaneous and Mutual Validation: As
mentioned earlier, one important scenario to which this val-
idation framework can be applied is multirobot cooperative
missions. Complementing the ideas proposed in [7], we are
now also able to break down a mission into two parts that can
be given to two different robots. An example of this is shown
in Fig. 5, which illustrates a collaborative inspection process.
In the example, encoded instructions are defined by combining
a set of different signals or parameters. First, a set of sensor
data is set to trigger an action from features extracted by the
robot from. Now that multiple robots share the same environ-
ment, we can also differentiate between hashes obtained from
sensing the environment and those obtained from sensing the
behavior of other robots. Second, the robots can also exchange
messages in order to trigger each other’s actions. These mes-
sages do not hold any valuable data to the sender but only to

Fig. 4. Illustration of an iterative validation process.

the receiver as part of a hash decoding process. The messages
can be predefined and based on the robot state, or generated
as a function of the features sensed in the environment.

IV. USE CASE ENCODED NAVIGATION GRAPH

One of the most fundamental ways in which a robot inter-
acts with its environment is through navigation. Maps have
long been utilized for autonomous navigation and exploration
in mobile robots to increase the robustness of the long-term
autonomous operation [22], [23]. Maps and landmarks provide
robot means for localization in a known reference frame, while
enabling the calibration and adjustment of on-board odometry
and localization algorithms.

Landmark-based navigation has been successfully imple-
mented in various mobile robots with quick response (QR)
codes [24]–[26] or other identifiable images [27]–[29], wire-
less sensor networks [30], ultrawideband (UWB) mark-
ers [31]–[33], IMU fusion [26], or topological maps for
infrastructure-free navigation [34]. When utilizing landmarks
that are already encoding certain information, such as QR
codes or other text representations, additional information can
be embedded into the landmarks. In an industrial scenario, this
can be utilized to provide further instructions for robots [35].

In order to analyze the viability of the proposed research, we
decided to investigate the problem of robot navigation since

PEÑA QUERALTA et al.: SECURE ENCODED INSTRUCTION GRAPHS FOR END-TO-END DATA VALIDATION 18033

Fig. 5. Illustration of a collaborative inspection process where robots only
have partial instructions.

it is an easy way to make the robot interact with its envi-
ronment. Along those lines, we focus the research questions
to more concrete considerations regarding the navigation of
autonomous robots.

1) Is it possible to provide a description of the environment
(e.g., a map or a set of landmarks and how to travel
between them) to an autonomous robot in such a way
that the robot is unable to understand the map until it
starts navigating, and such that it can only decode the
information in that map if a series of conditions on how
it sees its environment are met?

2) Is there a way of defining navigation instructions for an
autonomous robot such that any modification of those
instructions automatically renders them unusable ensur-
ing that if wrong sensor data are fed to the robot’s
controller, the instructions cannot be followed?

A. Encoded Graph Definition

Rather than modeling a map of the exploration area and uti-
lizing it for navigation, we utilize a landmark-based navigation
graph that encodes the position of the different landmarks and
the navigable directions between them. In this graph, each ver-
tex represents one encoded position in the map, and each edge

represents a straight or unique path between two positions. By
unique we mean a path that might not be straight but such that
the robot can realistically follow. A sample map and the corre-
sponding encoded navigation graph are illustrated in Fig. 6. In
this and the latter sections, we utilize the following notation:
a graph is an ordered pair G = (V, E), where V represents a
set of vertices, and E represents a set of edges associated with
two distinct vertices, i.e., a set of tuples {(Vi, Vj)|Vi, Vj ∈ V}.
We consider a directed graph, where the order of these tuples
matters.

The most straightforward approach to landmark encoding is
to define the hash of a position given its coordinates �r ∈ R

3.
Thus, we would define Hi = H(�ri). In order to ensure that
hashes will be reproducible, the coordinates need to be given
in a coarse grid with a resolution that is dependent on the
accuracy of the robots’ onboard odometry.

If the environment is accessible a priori, elements, such
as QR codes or Bluetooth/UWB beacons can be placed to
facilitate the localization of robots when they are nearby.
The QR codes contain hashed data and can encode additional
information, for example, instructions for a robot to operate
in a given room or area. An alternative approach is to utilize
the environment geometry and topology. The coordinates of
the features can still be utilized to define their hash without
using a predefined grid. Rather than having a robot utilizing
its own or near position to calculate the hash, it can calculate
it based on the coordinates of a position that depends on the
robot’s current local environment.

B. Deployment and Navigation

We assume that the initial location where a robot is deployed
is either known in an absolute reference frame or utilized as
a common reference in the robots’ local coordinate system. If
only local references are utilized, these must have a common
orientation. This initial location is encoded with a hash but is
also known to robots.

In the encoded navigation graph, each edge in the graph is
given two hashes, as the robots might reach these from differ-
ent directions. Therefore, the adjacency matrix containing the
edge hashes shown in Fig. 6 is not symmetric. Only minimal
information about the local environment required for naviga-
tion purposes needs to be stored at the robots. Odometry-only
navigation, when possible, is preferred to map-based naviga-
tion to minimize the amount of raw information that robots
store.

Global locations and relative positions between features as
well as directions between them are encoded in a way that can
be matched by robots on the basis of trying multiple possible
directions until finding one that produces the corresponding
hash. The edge hashes are calculated on a trial-and-error
basis and, thus, they can be defined with an arbitrary divi-
sion of the [0, 2π] interval. However, the granularity of such
division must consider the inherent computational overhead.
Furthermore, not all the navigable directions are necessarily
selected and, therefore, the real topology of the environment
can be, to some extent, hidden. In addition, multiple features
can be selected within a single room or small area, but even if

18034 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

Fig. 6. Encoded navigation graph construction process. (a) Sample floorplan. (b) Corresponding navigation graph. (c) and (d) contain the information given to
robots, a list of hashes, and an adjacency matrix with the edge hashes to aid navigation between landmarks, respectively. The landmark hashes are calculated
based on the position (x, y, z) and the landmark type (LT) : Hi = H(LTi + xi + yi + zi), where H is the hashing function and + means concatenation. The
edge hashes are Hi

∠i,j = H(LTi + xi + yi + zi + ∠i, j), where ∠i, j represents the navigation direction from i to j.

all are detectable at the same time, a fully connected subgraph
does not need to be generated within the navigation graph. In
general terms, there is a tradeoff between the number of paths
in the navigation graph between two features and the robust-
ness of the navigation. In general, the more paths between two
events, the higher the chance that the robot is able to reproduce
a certain subset of hashes.

C. Landmark-Based Localization

The accuracy of the feature’s position directly affects the
error tolerance for the odometry method utilized when no land-
marks are detected. To cope with this issue, the odometry error
can be estimated and then taken into account to calculate the
hashes from the position of landmarks. This is achieved by
following a trial-and-error approach within a certain spatial
area around the landmark. The number of trials that a robot
needs to perform depends on the accuracy of the odometry
method as well as the granularity of the grid utilized to define
the position of the landmarks. Additionally, the possibility of
the robot identifying a wrong landmark that is nearby must be
taken into account.

V. NAVIGATION GRAPHS: METHODOLOGY

To test the feasibility of the encoded navigation approach
presented in this article, we conducted a series of simula-
tions and real-robot experiments. In these, we analyzed the
computational overhead as well as the performance impact of
utilizing an encoded navigation graph. In all cases, we made
the assumption that the environment is known to the mission
controller. We devised two types of application scenarios in
which we test the proposed framework.

First, we considered an environment where only robots are
present. In this case, we simulated the interior of a building
with empty rooms. For this environment, we encoded geomet-
ric features in the navigation graph, such as doorways, corners,
and rooms. In our simulations, we considered an environment
with no dynamic obstacles and a known geometry. This envi-
ronment is comparable to modern logistic warehouses where
only autonomous robots operate or to large industrial spaces
where autonomous cleaning machines operate at night. This
scenario represents well any environment that does not change
significantly over time. In our simulations, the robot relies on
a 2-D laser scanner for feature detection.

Second, we considered a real office scenario with a dynam-
ically changing environment, people moving in it, and a wide
variety of objects populating the different rooms. The exper-
iments were carried out using visual markers that can be
placed in multiple fixed locations. For this second scenario,
real experiments were carried out in a real office environ-
ment with people and a variety of furniture across multiple
rooms. Because of the large amount of desks, chairs, and
other equipment, detecting geometric features from the envi-
ronment would create multiple situations in which features
cannot be detected due to either objects or people blocking the
field of view of the sensors. To tackle this issue, we have uti-
lized QR codes as markers to encode the landmark positional
information.

A. Simulation Environment

The proposed encoding approach has been implemented
within the ROS in Python. ROS is the current de facto stan-
dard for production-ready robot development [36], [37]. The

PEÑA QUERALTA et al.: SECURE ENCODED INSTRUCTION GRAPHS FOR END-TO-END DATA VALIDATION 18035

Algorithm 1: Feature Extraction and Hash Calculation

1 Callback:
2 Calculate:
3 F = getF(data); // Orientation-ordered F set
4 Fcv = getCv(F) ⊆ F; // Set of concave features
5 Fcc = getCx(F) ⊆ F; // Set of convex features

6 Define:
7 H = []; // List of hashes

8 foreach fpi, fpj ∈ Fcv do
9 if ‖fpi − fpj‖ < δdw then

10 H.append(doorwayHash(fpi, fpj));

11 foreach fpi ∈ F do
12 if fpi+j ∈ Fcx ∀j ∈ {−1, 0, 1} then
13 H.append(roomHash(fpi-1, fpi, fpi+1));

14 foreach fpi ∈ Fcv do
15 if isCorner(fpi) && notDoor(fpi) then
16 H.append(cornerHash(fpi));

17 // Utilize any matching hashes to update the robot’s
18 // position with respect to the global reference frame
19 if ∃ h ∈ H | h ∈ NavGraph then
20 updateAbsolutePosition(H)); // Use matching hashes

simulations were carried out within the ROS/Stage environ-
ment. A TurtleBot 3 is simulated with a 2-D lidar and wheel
odometry. The robot was set to explore an indoor environ-
ment with a floorplan illustrated in Fig. 9. The environment is
40×40 m2, and the robot has a circular shape with a diameter
of 0.35 m. The simulated environment contains nine rooms
with a single entrance and six more spaces with corridors
between them. The starting exploration position of the robots is
near the main door, in the bottom-left. The 2-D lidar had a field
of view of 270◦ and produced 1080 samples (0.25◦ resolution)
in each scan, with a scan rate of 10 Hz. In this experiment, we
did not study the effect that different odometry methods have
in the exploratory mission. Instead, we used wheel odometry
and varied its error to study the impact that the corresponding
computational overhead had due to a larger number of hashes
being calculated.

Feature Extraction

In the simulation experiments, we utilized three types of
features to localize the robot and navigate the environment:
1) doorways; 2) concave corners (CCs); and 3) rooms. These
are defined from the same set of F feature points which
we denote as Features of Interest FoI = {fp1, . . . , fpF},
where fpi ∈ R

3. The feature extraction process is out-
lined in Algorithm 1. The NavGraph variable stores a list
of hashed positions as well as an adjacency matrix with the
edge hashes. A sample of this is shown in Fig. 6(c) and (d).
The function search() calculates a certain number of hashes
over a predefined area around the identified feature until it
either finds a matching hash from NavGraph or ends the
search unsuccessfully. This function ensures that the hashes

are reproducible even if odometry error accumulates over the
interlandmark navigation. The search area is defined based
on the expected odometry error as well as the granularity
of the grid utilized to define the hashes. Finally, the func-
tion updateAbsolutePosition() takes the matching hashes as
arguments, calculates the relative position of the robot with
respect to the landmarks that have been identified, and uti-
lizes the known position of the landmarks (which is encoded
in the hashes) to recalculate its own position and restart the
odometry estimation.

Doorways: We define doorways as any set of two con-
cave feature points that are within two predefined distances
(δdw,min, δdw,max) from each other. In our simulations and
experiments, we set these distances to δdw,min = 1.2 m and
δdw,max = 2.5 m. Note that these feature points might not be
consecutive if we consider the ordered set of feature points
by orientation. We define the corresponding waypoint to be
encoded according to

Hdw(fpi, fpj) = H

(
“doorway”,

fpi + fpj

2
,∠fpifpj

)
. (1)

Corners: For each CC not in a doorway, we define its
corresponding hash with

Hcv(fpi) = H(“corner”, fpi,∠fpi) (2)

where ∠ now represents the orientation of the normal vector
to the wall surface at the position of the corner.

Rooms: A room waypoint is defined as the centroid of any
three consecutive convex points and calculated as the arith-
metic mean of their positions. To reduce the probability of
having a mismatch in rectangular rooms where two consecu-
tive subsets of three convex corners are visible by a robot, we
add the area � of the triangle that the points define

Hdw(fpi, fpi+1, fpi+2)

= H

(
“room”,

fpi + fpi+1 + fpi+2

3
,�i,i+1,i+2

)
. (3)

B. Real-Robot Experimental Settings

The experimental environment has a size of 30 m by 25 m.
For the experiments, an EAIBOT DashGo D1 was used. We
installed on the mobile robot a 16-Channel Leishen 3-D Lidar,
an SC-AHRS-100D2 IMU, and a Logitech c270 USB camera.
The DashGo platform also provides wheel odometry from its
differential drive system. The 3-D lidar was used to accurately
localize the landmarks and provide ground truth (GT) with
map-based localization algorithms for 3-D point clouds intro-
duced in [38]. The camera was used to detect the QR codes
and extract the encoded information in them. Fig. 7 show
the implementation diagram with different ROS nodes. The
3-D lidar odometry and mapping are adapted from the LeGo-
LOAM-BOR package [39]. The QR code decoding node has
been written in Python using OpenCV and the Zbar library.
The hash-based localization node utilizes the QR codes for
localization when available and the wheel and inertial odome-
try as an estimation between landmarks. The QR codes utilized
during the experiment are of known size (12 cm by 12 cm), and

18036 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

Fig. 7. Data flow in the experiments. Each box represents a ROS node
which has been implemented either in C++ or Python. The outputs are the
GT, odometry (odom) error, and hash-based localization error (loc. error).

the localization node was calibrated to map the size in pixels
of a detected QR code in the camera to the distance to it. The
localization also takes into account the relative orientation of
the QR code.

C. Feature Hashing

We utilized SHA3-256 for hashing [40], which generates
32 byte hashes. It took an average of under 500 ns on an
Intel Core i5-6200U CPU with the pysha3 implementation
in Python. If additional security is required against offline
attacks on exposed hashes, other hashing algorithms such as
Bcrypt [41] can be utilized. Bcrypt needs around 300 ms to
generate a hash with the same CPU. However, there is a trade-
off between security and real-time operation as robots need to
calculate multiple hashes per lidar scan. We believe that, in
most applications, SHA3-256 is enough and can be utilized
even in resource-constrained devices.

VI. SIMULATION AND EXPERIMENTAL RESULTS

We carried out a series of simulations with one and multiple
robots to evaluate mainly the cost of utilizing hash matching
for localization and navigation, but also the impact on the
accuracy of the encoded landmarks.

A. Metrics

To evaluate the simulation results, we measured the absolute
localization error of the robot with odometry only and hash
matching. Furthermore, we analyzed the distribution of the
computational load among the different tasks that the robots
are carrying out: feature extraction, hash calculation, and hash
matching. In the simulations, we also measured the effect of
the odometry-based localization noise and the choice of spatial
granularity for landmark positions.

B. Single-Robot Simulation Results

The aim of the simulations is to prove whether our encoded
landmark localization and navigation scheme adds a significant
computational overhead or not.

Fig. 8(a) shows the path recovered from odometry measure-
ments and hash-based localization with doorway hashes only,
and all three types of hashes, together with the GT. The data
were recorded over 150 s; the translation odometry noise was
set with σt = 0.03, and rotation noise with σr = 0.05. The
error distribution for the two methods is given in Fig. 8(c).

In the simulated environment, we predefined the position
of landmarks with an accuracy of 0.1 m. Therefore, when
analyzing the errors in Fig. 8(b), any values below 0.15 m
represent virtually zero error. Fig. 8(b) shows that the localiza-
tion method is robust even when the odometry error increases
significantly (σt = 0.05). However, there is a limit, around
σt = 0.06, for which the size of the environment is big enough
so that the robot is unable to match the correspondent land-
mark hashes due to the accumulated odometry drift. In order
to calculate these hashes, we assumed an error tolerance with
respect to its estimated position of ±0.5 m, independently of
the size of the grid utilized to locate the landmarks and gen-
erate the hashes. This limit defines the computational time
required for the hash search together with the grid size.

Regarding the computational overhead necessary to calcu-
late the hashes, estimate the robot’s position, and perform path
planning accordingly, Fig. 8(c) shows the distribution of com-
putational time utilized to extract the set of features, or points
of interest, from the raw lidar data and the distribution of com-
putational time utilized in calculating and matching hashes.
For an error tolerance of ±0.5 m, the graphic shows situations
in which the robot tests up to 9, 25, 121, 441, and 1681 grid
positions, respectively. The search for a hash match is gradu-
ally done in a spiral manner around the estimated position and
within the aforementioned error tolerance. These results show
that even with a fine-grained grid search, in average the time
required to localize the robot based on hashes is two orders of
magnitude smaller than the time required to extract features
from lidar data. In the worst case scenario, the time required
can be comparable, with an equivalent order of magnitude for
both hash matching and feature extraction.

C. Multirobot Exploration Simulation Results

In terms of cooperative exploration, we provide a quali-
tative analysis of four-robot cooperation. Fig. 9 shows the
paths of four robots exploring different areas of the same sim-
ulation environment. By utilizing encoded landmarks, these
robots can share their progress upon meeting in the cen-
ter of the maze without revealing the raw data they have
acquired. If the mission’s nature is to perform surveillance
or detect a series of items, robots do not need to store raw
map data at all. Nonetheless, even if they did, the knowledge
of the objective environment remains divided, as shown in
Table I. In this case, robots acquire in average raw data form
only 30% of the objective exploration environment, and 41%
at most.

PEÑA QUERALTA et al.: SECURE ENCODED INSTRUCTION GRAPHS FOR END-TO-END DATA VALIDATION 18037

(a)

(b) (c)

Fig. 8. Simulation results. (a) Reconstructed path with GT wheel and inertial odometry (O), only doorway hashes (D), and all features: doors(D), rooms
(R), and CCs. (b) Odometry and hash-based localization errors for different odometry noise levels. (c) Execution time distribution for the feature extraction
(red) and hash matching (blue) processes, where the grid size represents the search space when trying to find a hash match.

TABLE I
ENVIRONMENT KNOWLEDGE DISTRIBUTION DURING THE

COLLABORATIVE EXPLORATION SIMULATION

D. Experimental Results

Fig. 10(a) shows the path recovered from odometry mea-
surements and hash-based localization (QR codes). The error
in the odometry is significantly higher than in the simula-
tion experiments due to a drift in the yaw measurements.
However, the translational odometry error is much smaller.
The hash-based localization is able to correct this orienta-
tion whenever a QR code is within the field of view and,
therefore, it does not suffer from the yaw drift. The maxi-
mum hash-based localization error that we observed was of
41.3 cm (between observations of landmarks and owing to the
accumulated odometry drift). This allowed the utilization of a
fine grid of 2 cm for calculating the landmark hashes. We set,
experimentally, a 1 m2 hash search area around the estimated
location.

A total of 23 QR codes were installed in the office environ-
ment, and the tests were done with a small number of persons
in their offices. Out of those, 17 QR codes were utilized by the

Fig. 9. Illustration of the paths followed by four robots during the multirobot
collaborative exploration simulation.

robot during its navigation. The mission times at which at least
one code was in sight, the error from each observation and the
global error distribution are shown in Fig. 10(b). The execution
time of the hash matching algorithm was on average over one
order of magnitude smaller than the time required to extract
the QR codes from camera images. Thus, the overhead was
mostly negligible. Only in a reduced number of occasions was
the latency of these two processes comparable, as Fig. 10(c)
shows.

E. Viability and Usability

We have seen that the computational overhead added when
encoding landmarks is mostly negligible. Thus, our approach

18038 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

(a)

(b) (c)

Fig. 10. Experiment results. (a) Reconstructed path with GT, wheel and inertial odometry (Odom), and hash-based localization (Hash). (b) Scatter plot with
the localization error every time that a QR code is within the field of view of the camera, and a boxplot with the global error distribution. (c) Execution time
for the different processes involved in the localization, with the hash search and matching being one to two orders of magnitude below the image processing
processes that would still be in use in a traditional approach.

could be incorporated on top of many existing navigation and
localization schemes, whether they are landmark based or not,
to increase the level of security if the error tolerance allows.

This approach has additional uses when more than one robot
is taken into consideration. In multirobot cooperation, different
robots can share their plans, progress, or position (based on the
navigation graph only) with others by utilizing the same hashes
or parts of them. This would reduce the possibility of raw
data being exposed but also virtually eliminate the options for
attackers or byzantine agents to affect the mission, as has been
shown in [7]. Moreover, as we have shown with the multirobot
simulations, the framework allows for multirobot exploration
or other collaborative missions, reducing the fraction of raw
data or environment information that has to be made available
to each individual unit.

F. Validation of Sensor Data

In the navigation experiments conducted, we were also able
to leverage the encoded landmarks for validating the sensor
data leading to odometry estimations. In these experiments,
the robot was able to estimate the error (i.e., drift) in the
odometry as a function of the computational time required
to decode the landmark position (i.e., the number of hashes
that need to be tested against the encoded map information).

If the odometry error is too large, or a sensor malfunction,
then the hash cannot be decoded unless the hash search radius
and computational timeout are extended consequently. In both
the simulations and real-robot experiments, we utilized only
IMU and wheel odometry data (e.g., versus visual inertial or
lidar odometry) to evaluate the performance of the proposed
methods in more adversarial conditions where the odometry
error between landmarks may increase significantly.

G. Tradeoff and Security Considerations

We have shown through simulation and real-world experi-
ments that the proposed framework has a negligible impact in
terms of usage of computational resources. In the simulations,
performing a hash search in a grid map with a resolution of
2.5 cm requires on average over an order of magnitude less
computational resources than the lidar feature extraction that
is inherent to any localization process. Nonetheless, for each
specific application in which an encoded instruction graph is
used, there will be a certain size of the hash search space
where the instruction decoding is no longer negligible.

Another tradeoff occurs between real-time operation and
security. The larger the hash search space, the more computa-
tional resources are needed to perform a brute-force attack
on the encoded information. Nonetheless, performing such

PEÑA QUERALTA et al.: SECURE ENCODED INSTRUCTION GRAPHS FOR END-TO-END DATA VALIDATION 18039

an attack requires information on the encoding algorithm,
therefore requiring physical access to the robot or access to
the control algorithms and data processing stack. The spe-
cific threshold on the hash search granularity will be defined,
among other factors, by the hashing algorithm, and the ways
in which the hashes are generated (e.g., involving time or
unknown external inputs from the controller can, in many
situations, render the brute-force attacks unfeasible).

In terms of the resilience of the proposed framework against
adversarial attacks, the main security vulnerability that we
have detected is the ability of an attacker to reproduce the
encoded commands even without decoding them, potentially
triggering the robot into repeating actions. If data are spoofed
when transmitted to the robot, the robot’s behavior could
be studied under different encoded commands, and then an
attacker could trigger a known mission. While this cannot be
completely mitigated within our proposed approach, we have
introduced time-checked actions and event-triggered actions.
If a one-time action is required and either the start of the mis-
sion or its timing is known, then it is feasible to include the
time component into the encoded instructions to avoid repeated
actions even if the encoded data are spoofed. Moreover, other
generic strategies designed against data spoofing could be
introduced on top of our framework.

VII. CONCLUSION AND FUTURE WORK

Security and safety in robotics are crucial aspects to con-
sider given the current surge of autonomous systems. In this
direction, further research is needed on the validation of data
at the different layers of robotic systems and, in particular, the
validation of the interaction of a robot with its environment.
This interaction often starts with navigation, which has been
studied in this article.

Navigation and localization in autonomous robots require
large amounts of raw data for a long-term operation, either
given a priori by a mission controller or acquired by robots
while performing their missions. In addition, validating the
integrity of both mission instructions and sensor data without
any external feedback is an open problem. In this article, we
have presented a framework that enables robots to validate
both the correct operation of their onboard hardware and sen-
sors and the integrity of information received from an external
controller.

In particular, to the best of our knowledge, this article intro-
duces and evaluates the first framework which allows robots to
effectively perform their missions while also performing end-
to-end validation of information, demonstrated on navigation
and localization with encoded landmarks. We have shown that
utilizing an encoded navigation graph adds only a negligible
computational overhead even when high-accuracy positioning
is required.

The end-to-end validation scheme demonstrated in this work
for navigation tasks can be naturally extended to cover vir-
tually all domains of robotic operation. In future work, we
will focus our research efforts on experimentation in more
realistic environments and in particular industrial settings.
We will aim at extending this approach to other forms of

interaction between a robot and its environment from mul-
tirobot collaborative assembly to human–robot interaction and
control.

REFERENCES

[1] L. A. Kirschgens, I. Z. Ugarte, E. G. Uriarte, A. M. Rosas, and
V. M. Vilches, “Robot hazards: From safety to security,” 2018,
arXiv:1806.06681.

[2] S. Braganç̧a, E. Costa, I. Castellucci, and P. M. Arezes, “A brief
overview of the use of collaborative robots in industry 4.0: Human
role and safety,” in Occupational Environmental Safety Health. Cham,
Switzerland: Springer, 2019.

[3] J. Huang et al., “ROSRV: Runtime verification for robots,” in Proc. Int.
Conf. Runtime Verification, 2014, pp. 247–254.

[4] G. W. Clark, M. V. Doran, and T. R. Andel, “Cybersecurity issues in
robotics,” in Proc. CogSIMA, 2017, pp. 1–5.

[5] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and
S. Guizani, “Securing software defined networks: Taxonomy, require-
ments, and open issues,” IEEE Commun. Mag., vol. 53, no. 4, pp. 36–44,
Apr. 2015.

[6] S. Rivera, S. Lagraa, C. Nita-Rotaru, S. Becker, and R. State, “ROS-
defender: SDN-based security policy enforcement for robotic applica-
tions,” in Proc. Security Privacy Workshops, 2019, pp. 114–119.

[7] E. C. Ferrer, T. Hardjono, A. Pentland, and M. Dorigo,
“Secure and secret cooperation in robot swarms,” Sci. Robot.,
vol. 6, no. 56, 2021, Art. no. eabf1538. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abf1538

[8] J. N. K. Liu, M. Wang, and B. Feng, “iBotGuard: An Internet-based
intelligent robot security system using invariant face recognition against
intruder,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 35, no. 1,
pp. 97–105, Feb. 2005.

[9] N. M. Rodday, “Exploring security vulnerabilities of unmanned aerial
vehicles,” in Proc. IEEE/IFIP Netw. Oper. Manage. Symp., 2016,
pp. 993–994.

[10] J. Wan, “Cloud robotics: Current status and open issues,” IEEE Access,
vol. 4, pp. 2797–2807, 2016.

[11] E. C. Ferrer, E. Jiménez, J. L. Lopez-Presa, and J. Martín-Rueda,
“Following leaders in Byzantine multirobot systems by using blockchain
technology,” IEEE Trans. Robot., vol. 38, no. 2, pp. 1101–1117,
Apr. 2022.

[12] J. Miller, A. B. Williams, and D. Perouli, “A case study on the cyber-
security of social robots,” in Proc. ACM/IEEE HRI, 2018, pp. 195–196.

[13] F. Py and F. Ingrand, “Dependable execution control for autonomous
robots,” in Proc. IEEE/RSJ IROS, vol. 2, 2004, pp. 1136–1141.

[14] Y. Tang, W. Yang, D. W. C. Ho, D. Zhang, and B. Wang, “Event-
based tracking control of mobile robot with denial-of-service attacks,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 9, pp. 3300–3310,
Sep. 2020.

[15] S. Tiku and S. Pasricha, “Overcoming security vulnerabilities in deep
learning–based indoor localization frameworks on mobile devices,” ACM
Trans. Embedded Comput. Syst., vol. 18, no. 6, p. 114, Nov. 2019.

[16] A. H. A. Rahman, R. Sulaiman, N. S. Sani, A. Adam, and R. Amini,
“Evaluation of peer robot communications using cryptoros,” Evaluation,
vol. 10, no. 7, pp. 658–663, 2019.

[17] L. V. Legashev, T. V. Letuta, P. N. Polezhaev, A. E. Shukhman, and
Y. A. Ushakov, “Monitoring, certification and verification of autonomous
robots and intelligent systems: Technical and legal approaches,”
Procedia Comput. Sci., vol. 150, pp. 544–551, Jan. 2019.

[18] K. M. A. Yousef, A. AlMajali, S. A. Ghalyon, W. Dweik, and B. J.
Mohd, “Analyzing cyber-physical threats on robotic platforms,” Sensors,
vol. 18, no. 5, p. 1643, 2018.

[19] N. DeMarinis, S. Tellex, V. Kemerlis, G. Konidaris, and R. Fonseca,
“Scanning the Internet for ROS: A view of security in robotics research,”
in Proc. Int. Conf. Robot. Autom. (ICRA), 2019, pp. 8514–8521.

[20] R. Amini, R. Sulaiman, and A. H. A. R. Kurais, “CryptoROS: A secure
communication architecture for ROS-based applications,” Int. J. Adv.
Comput. Sci. Appl., vol. 9, no. 10, pp. 189–194, 2018.

[21] J. Kim, J. M. Smereka, C. Cheung, S. Nepal, and M. Grobler, “Security
and performance considerations in ROS 2: A balancing act,” 2018,
arXiv:1809.09566.

[22] B. R. Hilnbrand and P. Robert, “Automated vehicle map localization
based on observed geometries of roadways,” U.S Patent 10 289 115,
May 14, 2019.

18040 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

[23] H. Sobreira et al., “Map-matching algorithms for robot self-localization:
A comparison between perfect match, iterative closest point and nor-
mal distributions transform,” J. Intell. Robot. Syst., vol. 93, no. 2,
pp. 533–546, 2019.

[24] R. S. Andersen, J. S. Damgaard, O. Madsen, and T. B. Moeslund, “Fast
calibration of industrial mobile robots to workstations using QR codes,”
in Proc. IEEE ISR, Oct. 2013, pp. 1–6.

[25] H. Zhang, C. Zhang, W. Yang, and C.-Y. Chen, “Localization and navi-
gation using QR code for mobile robot in indoor environment,” in Proc.
IEEE ROBIO, Dec. 2015, pp. 2501–2506.

[26] P. Nazemzadeh, D. Macii, D. Fontanelli, and L. Palopoli, “Indoor
localization of mobile robots through QR code detection and dead reck-
oning data fusion,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 6,
pp. 2588–2599, Dec. 2017.

[27] A. R. Zamir and M. Shah, “Accurate image localization based on google
maps street view,” in Proc. ECCV , 2010, pp. 255–268.

[28] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized
matching for large-scale image-based localization,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 9, pp. 1744–1756, Sep. 2017.

[29] J. Thoma, D. Paudel, A. Chhatkuli, T. Probst, and L. Gool, “Mapping,
localization and path planning for image-based navigation using visual
features and map,” in Proc. IEEE CVPR, 2019, pp. 7375–7383.

[30] L. Cheng, C.-D. Wu, and Y.-Z. Zhang, “Indoor robot localization based
on wireless sensor networks,” IEEE Trans. Consum. Electron., vol. 57,
no. 3, pp. 1099–1104, Aug. 2011.

[31] C. M. Almansa, W. Shule, J. P. Queralta, and T. Westerlund,
“Autocalibration of a mobile UWB localization system for ad-
hoc multi-robot deployments in GNSS-denied environments,” 2020,
arXiv:2004.06762.

[32] W. Shule, C. M. Almansa, J. P. Queralta, Z. Zou, and T. Westerlund,
“UWB-based localization for multi-UAV systems and collaborative
heterogeneous multi-robot systems: A survey,” 2020, arXiv:2004.08174.

[33] Y. Song, M. Guan, W. P. Tay, C. Law, and C. Wen, “UWB/LiDAR fusion
for cooperative range-only SLAM,” in Proc. Int. Conf. Robot. Autom.
(ICRA), 2019, pp. 6568–6574.

[34] M. Gadd and P. Newman, “A framework for infrastructure-free ware-
house navigation,” in Proc. ICRA, 2015, pp. 3271–3278.

[35] Q. Qin, D. Zhu, Z. Tu, and J. Hong, “Sorting system of robot based on
vision detection,” in Proc. IWAMA Workshop, 2017, pp. 591–597.

[36] M. Quigley, “ROS: An open-source robot operating system,” in Proc.
ICRA Workshop Open Source Softw., vol. 3, 2009, pp. 1–6.

[37] A. Koubâa, Robot Operating System (ROS). Cham, Switzerland:
Springer, 2017.

[38] Q. Li, J. P. Queralta, T. N. Gia, Z. Zou, and T. Westerlund, “Multi sensor
fusion for navigation and mapping in autonomous vehicles: Accurate
localization in urban environments,” in Proc. 9th IEEE CIS-RAM, 2019,
pp. 1–7.

[39] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in Proc.
IROS, 2018, pp. 4758–4765.

[40] J. Czajkowski, L. G. Bruinderink, A. Hülsing, and C. Schaffner,
“Quantum preimage, 2nd-preimage, and collision resistance of SHA3,”
IACR, Lyon, France, Rep. 2017/302, 2017.

[41] P. Sriramya and R. A. Karthika, “Providing password security by salted
password hashing using Bcrypt algorithm,” ARPN J. Eng. Appl. Sci.,
vol. 10, no. 13, pp. 5551–5556, 2015.

Jorge Peña Queralta (Graduate Student Member,
IEEE) received the B.S. degree in mathematics
and physics engineering from UPC BarcelonaTech,
Barcelona, Spain, in 2016, the M.Sc. (Tech.) degree
in information and communication science and tech-
nology from the University of Turku, Turku, Finland,
in 2018, and the M.Eng. degree in electronics and
communication engineering from Fudan University,
Shanghai, China, in 2018. He is currently pursu-
ing the Doctoral degree with the Turku Intelligent
Embedded and Robotic Systems (TIERS) Group,
University of Turku.

Since 2018, he has been a Researcher with the TIERS Group, University
of Turku. His research interests include multirobot systems, collaborative
autonomy, distributed perception, and edge computing.

Qingqing Li (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
and the M.Sc. degree in electronics and communi-
cation engineering from Fudan University, Shanghai,
China, in 2016 and 2018, respectively, and the M.Sc.
degree in information and communication science
and technology from the University of Turku, Turku,
Finland.

Since 2019, he has been a Researcher with the
Turku Intelligent Embedded and Robotic Systems
Group, University of Turku. His research interests

include sensor fusion for autonomous robots and vehicles, 3-D point cloud
data analysis, and multirobot collaboration.

Eduardo Castelló Ferrer received the B.Sc. degree
(Hons.) in intelligent systems from the University
of Portsmouth, Portsmouth, U.K., in 2007, and the
M.Eng. and Ph.D. degrees in robotics engineering
from Osaka University, Suita, Japan, in 2011 and
2016, respectively.

His experience and interests comprise robotics,
blockchain technology, and complex systems. He
is a Marie Curie Fellow with the MIT Connection
Science and MIT Media Lab, Massachusetts Institute
of Technology, Cambridge, MA, USA, where he

explores the combination of robotic systems and blockchain technology. His
work focuses on implementing new security, behavior, and business models
for distributed robotics by using novel cryptographic methods.

Tomi Westerlund (Senior Member, IEEE) received
the Ph.D. degree from the University of Turku,
Turku, Finland, in 2018.

He is an Associate Professor of Autonomous
Systems and Robotics with the University of Turku,
Turku, Finland, and a Research Professor with Wuxi
Institute of Fudan University, Wuxi, China. He
leads the Turku Intelligent Embedded and Robotic
Systems Research Group, University of Turku. His
current research interest is in the areas of Industrial
IoT, smart cities, and autonomous vehicles (aerial,

ground, and surface) as well as (co-)robots. In all these application areas,
the core research interests are in multirobot systems, collaborative sensing,
interoperability, fog and edge computing, and edge AI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

