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Multimodal Event Processing: A Neural-Symbolic
Paradigm for the Internet of Multimedia Things
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Abstract—With the Internet of Multimedia Things (IoMT)
becoming a reality, new approaches are needed to process real-
time multimodal event streams. Existing approaches to event
processing have limited consideration for the challenges of
multimodal events, including the need for complex content extrac-
tion, and increased computational and memory costs. This article
explores event processing as a basis for processing real-time
IoMT data. This article introduces the multimodal event process-
ing (MEP) paradigm, which provides a formal basis for native
approaches to neural multimodal content analysis (i.e., computer
vision, linguistics, and audio) with symbolic event processing rules
to support real-time queries over multimodal data streams using
the multimodal event processing language to express single, prim-
itive multimodal, and complex multimodal event patterns. The
content of multimodal streams is represented using multimodal
event knowledge graphs to capture the semantic, spatial, and
temporal content of the multimodal streams. The approach is
implemented and evaluated within a MEP engine using single and
multimodal queries achieving near real-time performance with a
throughput of ∼30 frames processed per second (fps) and subsec-
ond latency of 0.075–0.30 s for video streams of 30 fps input rate.
Support for high input stream rates (45 fps) is achieved through
content-aware load-shedding techniques with a ∼127X latency
improvement resulting in only a minor decrease in accuracy.

Index Terms—Data management and analytics, event process-
ing, Internet of Multimedia Things (IoMT), service middleware
and platform.

I. INTRODUCTION

W ITH the rise of the Internet of Multimedia Things
(IoMT) and smart environments, there has been a sig-

nificant shift in the nature of data streams. Visual sensors,
such as smartphones and CCTV cameras, are now pervasive
and generate high volumes of unstructured data streams. The
major chunk of these unstructured data are images, audio, and
videos, termed multimedia data. There is a clear need to enable
smart environments (including applications and objects within
then) with the power of observing, sensing, and understand-
ing the world through processing multimodal data efficiently
and effectively. However, existing event processing methods
have limited consideration for the challenges of multimedia
processing [1].
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This article explores the use of the event process-
ing paradigm for real-time IoMT data. It introduces the
multimodal event processing (MEP) paradigm to meet the crit-
ical challenges for processing multimodal event streams. MEP
provides a formal basis for native approaches to multimodal
content analysis (i.e., computer vision, linguistics, and audio)
within the event processing paradigm to support real-time
queries over multimodal data streams.

MEP enables the user to process multimodal streams
under the event-processing paradigm and simplifies the
querying of multimodal event streams. Within the MEP
paradigm, multimodal streams are processed to generate a
knowledge graph representation, which can then be queried
using the MEP language (MEPL). MEPL supports user-
defined event operators, which can be developed using a
neurosymbolic-based hybrid approach with statistical deep
neural network (DNN) models and symbolically based spatial
and temporal reasoning. MEP engines can then be imple-
mented using hybrid processing, combining neural (DNNs)
and symbolic (rules) models. The contributions of this article
are as follows.

1) It motivates the need for MEP and the challenges that
need to be overcome.

2) Introduces the MEP paradigm and establishes its foun-
dations in event model, event representation, query
language, multimodal event, and matching models.

3) Introduces the MEPL, an SQL-like declarative lan-
guage where different operators identify patterns over
multimodal streams.

4) Introduces the multimodal event knowledge
graph (MEKG) to provide a knowledge represen-
tation for the multimodal event stream’s semantic,
spatial, and temporal content.

5) Details the first MEP engine (GNOSIS), providing
details on its microservices-based architecture and
implementation of the MEP concepts, including event
model, query language, matching, and native content
extraction.

6) Demonstrates the use of MEP to build real-time appli-
cations for IoMT-enabled smart environments in occu-
pational health and safety (OHS).

7) A quantitative performance evaluation of the MEP
engine in terms of latency, queries, single modal, and
multimodal optimizations.

The work builds the previous single modal image-only
event processing [14] to detect patterns over multimodal data
streams, such as video and audio. The structure of this arti-
cle is as follows. Section II details the motivation for new
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TABLE I
COMPARISON OF IOT AND IOMT-BASED SYSTEMS (ADAPTED FROM [1])

forms of processing multimodal data within intelligent envi-
ronments and identifies the key challenges. The coverage of
these challenges within existing related works is then ana-
lyzed in Section III. Section IV introduces the MEP paradigm
that includes the multimodal event model, the MEPL, and the
multimodal event matching model. Section V details the fun-
damentals of the GNOSIS MEP engine. Section VI describes
how MEP can create an application for smart environments,
with Section VII presenting a quantitative evaluation of the
MEP engine. Finally, the article concludes and Section VIII
discusses future work.

II. FROM IOT TO IOMT

The IoMT is recently coined to represent multimedia
communications using the Internet of Things (IoT). IoMT
(sometimes referred to as MIoT) can be defined as an IoT-
based paradigm that allows objects to connect and exchange
structured and unstructured data to facilitate multimedia-based
services and applications [2]. The result is smart environ-
ments producing large quantities of multimodal data streams
(including structured, video, and audio) containing rich content
on the environment. Furthermore, analytics can be performed
over these unstructured multimedia streams to detect events
of interest, which can power different applications, such
as business intelligence, environmental surveillance, traffic
monitoring [3], and optimization of agricultural practices [4].

There are significant differences in how we process struc-
tured and unstructured data. As detailed in Table I, IoMT
introduces additional challenges over IoT in areas such
as resourcing, networks, Quality of Service (QoS), and
querying [2], [5], [6]. Furthermore, at the content-level, IoMT
adds new challenges to event processing.

A. IoMT Challenges in Event Processing

1) Multimodal Events Representation: IoT data use a
data model with a predefined schema from various sensors,
including temperature, light, humidity, etc. Therefore, IoT data
are structured with limited heterogeneity compared to unstruc-
tured multimodal (images, audio, and video) data. On the
other hand, the fundamental difference with IoMT data is
that it is unstructured without a predefined schema or data
model. Therefore, to process unstructured IoMT data, there is
a need to analyze the content to extract meaning (structure) to
represent the content in the data.

2) Concept Space and Interpretability: Within IoT, the con-
cept space is the predefined schema that can range from
only a few classes to thousands of classes representing
concepts [7], [8]. Thus, the structure of the data lends itself to
a more straightforward interpretation. However, within IoMT,
the number and size of the concept space can be significantly
larger, with a greater range of human perception and inter-
pretability of rich-content across different modalities, such as
images, audio, and video (i.e., visual gnome has 75K unique
image objects, and the open images data set has almost 20K
classes. In addition, the variation in styles, textures, and colors
of visual objects results in a large number of variations of a
single concept that needs to be identified. This leads to a larger
content space that must be supported within the query and pro-
cessing of multimodal IoMT streams. Challenges include the
semantic gap, interpretability, accuracy, and trust [1].

3) Data Volume and Computational Cost: IoMT streams
are both network and computationally intensive. This
leads to multiple challenges and hinders sustainable
applications [9]–[11]. Stream producers within IoMT are often
located at the edge of the network. Edge-based deployment
using resource-constrained devices has limits on bandwidth
and computation. The size of IoMT data can be significantly
more than IoT data; MB versus KBs and video stream-
ing can quickly saturate the available bandwidth within a
smart environment [12]. The cost of content extraction from
multimodal data is significantly more expensive than struc-
tured data. Content extraction methods for IoMT, such as deep
learning methods, are computationally expensive and often
require GPU for high performance.

4) Complex Processing Pipelines: Processing multimodal
streams requires a complex pipeline topology that must be
dynamic and adapt to changing query needs (see Fig. 3). This
makes the cost of deploying and maintaining the pipelines very
high when new events and concepts need to be detected.

For IoMT, the pipelines need to be suitable for real-time
processing data [13] regarding scalability, latency, volume,
bandwidth, and computation costs. In addition, other QoS
dimensions, such as energy usage, are also critical when
you consider the computational costs and the high energy
consumption of GPUs.

We will now illustrate the challenges with processing events
for IoMT with a motivational example.

B. Motivational Multimodal Event Processing Example

Consider an OHS scenario (see Fig. 1) where the safety
of workers is of the utmost importance at construction and
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Fig. 1. Occupational health and safety scenario for IoMT.

Fig. 2. Traditional approach for processing structured IoT events.

manufacturing sites. The health and safety regulatory author-
ities have issued safety guidelines regarding PPE to prevent
mishaps, construction hazards, and accidents. Monitoring the
safety of a workplace requires several conditions to be con-
stantly checked, which can be monitored using closed-circuit
cameras to ensure safety and compliance with the guidelines,
for example.

1) Is everyone on the construction site wearing PPE?
2) Is the site at a safe temperature?
3) Is smoke detected?
4) Is the wind speed safe on the site?
5) Is there any unsafe behavior?
6) Is the site noise compliant?
As an OHS supervisor, performing manual inspection for

safety compliances from each video camera is time consum-
ing, tedious, and error prone (Fig. 1). Similarly, there can be
other scenarios like counting the number of workers and visi-
tors for a specific day. Custom solutions with specialized ML
models are currently used, leading to multiple challenges in
unstructured video representation, event querying, processing
pipelines, and computation in a distributed deployment.

III. CURRENT APPROACHES

This section provides a brief overview of event and stream
processing techniques, and visual analytics platforms. The
current state-of-the-art approach for event processing offers
limited or no support for unstructured event types. On the
other hand, computer vision libraries provide minimal or no
support for large-scale processing of distributed streams and
dissemination mechanisms.

A. Stream Processing and Continuous Queries

Quickly reacting to an event is a critical require-
ment within many real-world situations. Stream processing
and tactile sensing systems [15] can provide reliable data
processing capabilities suitable for real-time information.
Stonebraker et al. [13] suggested eight requirements for an
effective and efficient design for such systems. Many dis-
tributed applications have motivated the event processing
paradigm that requires on-the-fly and low-latency processing
of information items (see Fig. 2) [16]. Event processing has
evolved from the works of several communities [16], including
active databases, reactive middleware, event-based software
engineering, event-based systems, and message-oriented mid-
dleware. Event processing is an essential technique in devel-
oping “smart” applications that target the analysis of events
captured in real time (i.e., detecting patterns) where the pro-
cessing of streams must be done “in-stream” without persisting
the events [13]. Event processing platforms are a form of
middleware that abstract the application developers from the
underlying technologies providing event processing languages
for users to express event patterns for their detection at run-
time. The limitations of event and stream processing systems
for IoMT include the following.

1) Event Query Language: Current event processing
systems use SQL-like declarative languages [16] to
express patterns over structured events. There is limited
support to define queries over unstructured event types.
Writing declarative queries for human-level concepts
using low-level features (e.g., pixel values) is challeng-
ing. There is a need to support human-level multimodal
queries that can express semantic, spatial, and temporal
event patterns over multimodal events.

2) Event Representation: Current event processing engines
assume events are produced with a well-defined fixed
data model using an event model, key-value pairs, XML,
or RDF triples [17]. They have little to no support
for representing the features (i.e., low-level semantic
features from computer vision) from multimodal data.
Thus, there is a need to express low-level features into
a high-level representation that the event processing
engine can process to detect multimodal event patterns.

3) Content Extraction: Current event processing systems
have no native support to analyze the unstructured
multimodal event streams. Multimodal analysis (i.e.,
image, audio, and video) is computationally inten-
sive, requiring machine learning methods for content
extraction, including DNNs. Furthermore, extracting an
accurate representation of the content from multimodal
streams may require the content to be processed by
multiple content extraction models within a pipeline (see
Fig. 3).

4) Event Matching: Different event models,
such as automata, column [18], semantic [19],
declarative [20], and cognitive [21], have been
proposed in the literature. Existing event process-
ing systems use temporal pattern matching within
single modality streams [16]. However, multimodal
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Fig. 3. Traditional processing flow for IoMT applications.

streams have complex and dynamic characteristics,
which require sophisticated event matching across
multiple streams and modalities. Therefore, pattern
detection is needed across different modalities with
semantic, spatial, and temporal constraints.

5) Neurosymbolic Event Rules: Current event processing
systems focus on rule-based approaches. Event rules
are crafted to perform complex temporal and spa-
tial reasoning over structured streams. As discussed
above, unstructured multimodal event detection war-
rants novel event reasoning. Neurosymbolic approaches
combine logical symbolic reasoning with inductive sta-
tistical methods to create high-level knowledge repre-
sentation and formalism [22]–[24]. Therefore, a novel
hybrid reasoning approach is required where neural-
based inductive techniques can extract low-level content
from unstructured multimodal streams following logic-
based deductive approaches to detect complex event
patterns.

B. Visual Analytics

Video streams are continuous sequences of images. The
image understanding domain focuses on reasoning over image
content and describes the image using high-level human-
understandable concepts. In computer vision, these high-level
visual concepts are termed objects. Objects are the basic build-
ing block of images, which are a collection of low-level
features (pixels, intensity, color, and edges) and have been
given a high-level semantic label, such as a car and bike.

Modern systems for querying images and video content
(i.e., AWStream [25]) rely on extraction techniques based
on deep convolutional neural networks (CNNs) due to their
accuracy in common computer vision tasks, such as classi-
fication and object detection. Visual data are collected and
persisted in stable storage in such systems, and then ana-
lyzed either by domain-specific learning models or accelerated
by lightweight filters following a store and query process-
ing model (i.e., BlazeIT [26], DeepLens [27], NoScope [28],
Optasia [29], Sprocket [30], Tahoma [31], VideoChef [32],
and VStore [33]). The most recent and competitive object
detection models (Faster R-CNN [34], SSD, YOLOv3 [35],
and RetinaNet) have proven to be suitable for image recog-
nition in achieving high-performance results. Several works

TABLE II
COVERAGE OF MULTIMODAL EVENT PROCESSING REQUIREMENTS

have focused on accelerating the extraction process by design-
ing probabilistic and specialized models, like the conventional
predicate pushdown optimization [36]. The intuition behind
this is that queried semantic concepts often occur rarely in
large amounts of visual content being processed by expensive
deep CNNs. Thus, applying lightweight filters allows filtering
out many irrelevant frames, minimizing the processing cost,
and speeding up the query answering process. Edge-centric
event analytics is another research area where data processing
happens locally near the source [37]. Processing video data at
IoT edge nodes can improve throughput, latency with reduced
bandwidth consumption. Bazhenov and Korzun [38] proposed
a camera-based edge-centric solution for personal monitoring
in a smart manufacturing process. However, the work was lim-
ited to video data and lacked discussion on multimodal events.
Edge-based solutions have their challenges in terms of limited
CPU, memory, and low accuracy event detection [39], [40].

Table II details the limitation of current approaches to pro-
cessing events within IoMT streams. It is clear from the
analysis that existing approaches lack support for specialized
middleware [1] to provide services required by multimodal
IoMT applications. In many cases, the queries are complex and
require preprocessing of the multiple heterogeneous streams,
use multiple classifiers and feature extractors, be executed in
a parallel manner, and produce synchronized results.

IV. MULTIMODAL-EVENT PROCESSING

The core contribution of this article is proposing the
MEP paradigm to meet the critical challenges for processing
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Fig. 4. High-level neurosymbolic MEP for IoMT.

multimodal event streams. MEP provides a formal basis for
native approaches to multimodal content analysis (i.e., com-
puter vision, linguistics, and audio) within the event processing
paradigm to support real-time queries over multimodal data
streams.

MEP enables the user to process multimodal streams under
the event-processing paradigm and simplifies the querying
of multimodal event streams. Within the MEP paradigm,
multimodal streams are processed to generate a knowl-
edge graph representation, which can then be queried using
the MEPL. MEPL supports user-defined event operators,
which can be developed using a neurosymbolic-based hybrid
approach such as statistical DNN models and symbolically
based spatial and temporal reasoning. MEP engines can then
be implemented using hybrid processing, combining neu-
ral (DNNs) and symbolic (rules) models with the deployment
and optimization of multiple pipelines as illustrated in Fig. 4.

The remainder of this section details the fundamentals of the
MEP approach, including the event model, neural-symbolic
event recognition, event representation, query language, and
multimodal event matching models.

A. Multimodal Event Model Definition

Oxford British and World English online dictionary define
an event as: “A thing that happens or takes place, especially
one of importance.” The definition of an event within the event
processing community is provided by the event processing
technical society (EPTS) glossary [46] “an object that repre-
sents, encodes, or records an event, generally for the purpose
of computer processing.” In MEP, we have extended the event
processing concept of the event to define the multimodal event.
We define a multimodal event as follows.

A multimodal event represents a state or change of state in
several modalities that contain part of the description of the
same event of interest.

MEP defines three categories of single modal events, prim-
itive multimodal events, and complex multimodal events.

1) Single Modal Event: An atomic occurrence of an event
in a single modality.

2) Primitive Multimodal Event: An event that occurs in sev-
eral modalities that contain part of the description of
the same things of interest and does not summarize or
represent a set of other events.

3) Complex Multimodal Event: A complex multimodal
event summarizes, represents, or denotes a set of single
modal and/or primitive multimodal events.

Fig. 5. Multimodal event hierarchy.

B. Neural-Symbolic Event Hierarchy

MEP detects events following the multimodal event hier-
archy, as detailed in Fig. 5. The hierarchy is structured as
follows.

1) L1-Raw Data: The foundation of the hierarchy contains
the raw streams in their native formats; this includes
both structured and unstructured streams.

2) L2-Single Modal Events: Individual streams are ana-
lyzed for the occurrence of single modal events. The
content of unstructured streams is analyzed to extract
any necessary features/classes needed for single modal
events.

3) L3-Primitive Multimodal Events: A multimodal knowl-
edge graph establishes a shared representation between
the streams. The shared representation is used to detect
primitive multimodal events across multiple streams.

4) L4-Complex Multimodal Events: Patterns and relation-
ships between single modal and primitive multimodal
events are analyzed to identify complex multimodal
events.

5) L5-Events of Interest: Users express their queries within
the MEPL. A notification message is generated and
forwarded when the event stream matches a MEPL
statement.

C. Multimodal Event Knowledge Graph Representation

Knowledge graphs (KG) provide a flexible knowledge rep-
resentation structure that can describe entities and concepts
from multiple systems and domains and at varying levels
of granularity. As defined by Paulheim [47], a “knowledge
graph: 1) mainly describes real-world entities and their inter-
relations, organized in a graph; 2) defines possible classes and
relations of entities in a schema; 3) allows for potentially inter-
relating arbitrary entities with each other; and 4) covers various
topical domains.”

A knowledge graph is a set of entities (e.g., Person and
Vest), a set of relations between those entities (e.g., “ownerOf”
and “wearing”), and a set of facts. Facts combine the entities
and relationships “Marie Curie, wasResidentOf, France.” More
formally, a knowledge graph is a tuple (E, R, G), where:
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Fig. 6. Multimodal event knowledge graph schema.

1) E is a set of nodes, each representing an entity in the
domain;

2) R is a set of edge labels, each representing a predicate
or a semantic relation type;

3) G ⊆ E × R × E is a set of 〈subject, predicate,
object〉 triples, denoting facts.

A MEP engine converts the unstructured multimodal data
into a formal structured format using the MEKG schema (see
Fig. 6). MEKG models the incoming multimodal streams as a
continuous evolving graph stream. The content of each stream
is modeled using a schema with entities, objects, concepts,
sounds, etc., represented as nodes. In a stream’s MEKG graph,
edges capture the interstream semantic, spatial, and tempo-
ral relationships. MEKG graphs from different streams (and
modalities) can be merged to provide a shared representation
across the different stream modalities. In the shared repre-
sentation, edges capture intermodal relationships, including
“sameAs” equivalence and spatial and temporal relationships.

Definition (MEKG Graph): For any multimodal stream
event, the resulting MEKG is a labeled graph represented as
MEKG = (E, R, Ep, G) where.

1) E is a set of nodes Oi, each representing an entity in the
domain;

2) R is a set of edge labels representing spatial, semantic,
and temporal relation types;

3) EP is a set of properties mapped to each entity node such
that Oi = (id, attributes, label, confidence, features);

4) G ⊆ Ep × R× Ep.
MEKG provides a top-level schema for shared represen-

tation across modalities. As MEKG is a knowledge graph,
it can support schema that are designed to capture the spe-
cific features appropriate for the format of that modality. The
video event knowledge graph (VEKG) [48] and the audio
event knowledge graph (AEKG) are two such specializations
for video and audio data, respectively. Fig. 7 shows how an
MEKG can represent the content of a video and audio stream
at different time instances. The content of the video stream
is represented using VEKG, while the content of the audio
stream is represented using the AEKG. These single modal
graphs are then merged to create the MEKG to represent both
modalities together. The entity nodes in MEKG graphs are
connected using spatial, semantic, and temporal edges. The
semantic relation edge between entity nodes is created by
identifying the same entity nodes across modalities (i.e., entity
linking), while the temporal relation edge between entity nodes
is created by identifying the same entity nodes at different
times using appropriate techniques (i.e., object tracking). Fig. 7
shows the MEKG construction example over a video and audio

Fig. 7. Example of MEKG representing the content of a video and audio
stream at different time instances.

Fig. 8. Multimodal event processing language statement.

stream at four-time points, with the construction process show-
ing the application of intramodal (t2), intermodal (t3), and
temporal relations over time (t1–t4). The resulting MEKG can
be used to get insights into the different facets (modalities) of
an event.

D. Multimodal Event Processing Language

MEP provides an event processing language for querying
event detection over multimodal streams. The user can sub-
scribe to different queries using the MEPL to fetch multimodal
patterns. The MEPL enables users to query multimodal events
in SQL-like declarative syntax that use graph matching clauses
based on openCypher. In addition, MEPL provides various
operator suites enabling a wide range of multimodal event
detection capabilities, such as identifying objects, attributes,
and complex spatiotemporal relationships.

Fig. 8 shows the MEPL syntax with the clauses explained
in Table III. In addition, examples of queries are presented in
Section VI for an OHS use case.

E. Multimodal Event Detection

An MEP engine converts the incoming stream as a struc-
tured graph stream using content analysis pipelines and treats
multimodal event detection as a graph matching problem. MEP
can perform both stateless and stateful event processing. Fig. 9
shows the high-level two-step process used within an MEP
engine for MEKG: 1) construction and 2) matching.

1) Event Graph Construction: The construction algorithm
creates a knowledge graph for each unstructured data stream
by extracting entities, attributes, and relations using content
analysis. Every single modal MEKG (or the specializations
such as VEKG or AEKG) can then be merged into a single
graph to provide a share representation across the streams.
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Fig. 9. Multimodal knowledge graph construction and event matching.

TABLE III
QUERY CLAUSES DEFINITION

A key challenge in combining the graphs is linking entities and
creating relationships between the different modalities. Entities
can be linked using “sameAs” relationships, and semantic,
spatial, and temporal links can be established using suitable
reasoning techniques. The matching models then reason over
the constructed graph to identify patterns

2) Event Matching Models: MEP can handle complex
and straightforward event patterns across multiple modalities

Algorithm 1 Multimodal Event Matching
Input: MultiModalStreamSet (MSset) = {V1, A1, . . . , Vi, An}

where Vi ε video stream, An ε audio stream
Query Q
where Q ε (V1, A1)

Output: MultiModalEvent (ME)
CreateMultiModalEventKnowledgeGraph(Q, V1, A1)
winaudio ←− initiatewindow(Q, A1)
winvideo ←− initiatewindow(Q, V1)
while V1, A1 not null do

audiosignali ←− getaudio(A1)
framei ←− getvideoframe(V1)

(objectlist, attributelist, bboxlist)←− DNNCascade(framei)
VEKGi ←− createVEKG(objectlist, attributelist, bboxlist)
if (winaudio, winvideo).size < trigger − time then

winvideo ←− addtowindow(VEKGi)
winvideo ←− updateVEKG(Q)
winaudio ←− addtowindow

(
audiosignali

)

continue
if (winaudio, winvideo).size >= trigger − time then

(audiotlabel, audiodecibel)←− classifyaudio(winaudio)
AEKG←− createAEKG(audiotlabel, audiodecibel)
MEKGi ←− createMEKG(winvideo(VEKG), AEKG)
sendtoMultimodalEventMatcher(MEKGi)
resetwindow(winvideo, winaudio)
Continue

MultiModalEventMatching(Q, MEKGi)
MEKGi ←− getMEKG()
ME←−MultimodalCypherMATCH (Q, MEKGi)
notify(ME)

in semantic, spatial, and temporal dimensions. MEP consti-
tutes matching models and window operators (such as sliding
and tumbling time windows) to handle stateless and stateful
multimodal event analytics (See Algorithm 1). The following
matching models are supported.

1) Single Modal Event Matching: Stateless event match-
ing on a single modality primarily focusing on detecting
entities and attributes.

2) Primitive Multimodal Event Matching: Stateless event
matching over multiple modalities primarily focusing on
detecting entities and attributes.
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TABLE IV
OUTPUT CLAUSES FOR MEPL STATEMENTS

3) Complex Multimodal Event Matching: In the complex
event matching engine, data streams are considered an
unbounded timestamped data sequence [44]. Windows
are used to capture the stream state by taking the input
streams and producing a substream of finite length,
which can be persisted in storage if needed. Next, the
complex matcher analyzes the window to identify the
queries’ specified temporal and spatial patterns.

F. Notifications

When an event stream matches a MEPL statement, a notifi-
cation message is generated and forwarded to the subscriber.
Many event processing engines use matching event messages
as notifications. However, MEPL supports both the definition
of the format and the results contained in the notification.
This simplifies the notifications delivered to subscribers and
improves efficiency by eliminating unnecessary information.
The exact format of the notification can be defined in the
MEPL statement using the OUTPUT clause (see Table IV).
The results of the statement can also be expressed using
the RETURN clause. The result may include a subset of
attributes in matching graphs indicated in the MATCH clause
and aggregations or operators defined in the RETURN clause.

Algorithm 1 explains the multimodal event matching
process. The inputs are MultiModalStreamSet (constitute
video and audio data streams) and query Q. The out-
put is a multimodal event ME, which is detected based
on query Q. The process of creating MEKG is described
in CreateMultiModalEventKnowledgeGraph function, which
takes query, video, and audio stream as input. Based on the
query input stream, the audio (winaudio) and video (winvideo)
windows are initiated. Next it reads the audio signals and video
frames (framei) using an encoder. Then, it sends the video
frames (framei) to DNN models cascade to extract metadata,
such as objects (objectlist), attributes (attributelist), and bound-
ing box (bboxlist) information from the frames. Using extracted
metadata information, the VEKG graph is created that is then
added to the video window (winvideo), and its edge relations
are updated using Q. The audio signal is directly added to
the audio window as audio classification over a given time
slice. Both audio and video windows (possibly with multiple

instances in a multiquery scenario) continuously collect the
VEKG and audio signals and trigger when the duration is
completed. winaudio will send the collected audio signals to
an audio classifier to create AEKG. A combined multimodal
MEKG graph is constructed using AEKG and VEKG and sent
to for event matching.

V. GNOSIS: A MULTIMODAL EVENT

PROCESSING ENGINE

GNOSIS is a MEP engine (gnosis-mep.org) using that pro-
cessing IoMT multimodal streams using hybrid processing,
which combines neural (DNNs) and symbolic (rules) mod-
els within the event-based paradigm. GNOSIS simplifies the
querying of multimodal event streams and the deployment and
optimization of multiple pipelines. GNOSIS provides native
processing support of multimodal event/streams, queried using
the MEPL. Once GNOSIS receives a multimodal stream, it
is processed to generate a knowledge graph representation
using query-aware edge-cloud processing pipelines. GNOSIS
follows the following design principles.

1) Microservice Architecture: Open, incremental deploy
ability, synchronization, parallelism, scalability.

2) Query-Driven: In GNOSIS, users can register contin-
uous multimodal queries for a spatiotemporal event
matching over multimodal streams.

3) Self-Adaptive and Autonomic: In ever-changing deploy-
ments, it is vital to promptly adapt to changes in the
environment, workload, and the system’s users. This
can be done with the use of self-adaptive (autonomic)
systems.

4) Neurosymbolic Approaches: MEPL supports user-
defined event operators, which can be developed using
neurosymbolic-based hybrid approach, such as statisti-
cal DNN models and symbolically based spatial and
temporal reasoning.

A. GNOSIS Architecture

GNOSIS is implemented as a distributed microservice-based
event processing system and communicate via configurable
messaging services. Fig. 10 shows the high-level GNOSIS
architecture, which is divided into five major components:
1) query manager; 2) steam manager; 3) content extrac-
tor; 4) matching engine; and 5) adaptation engine. GNOSIS
follows a serverless approach where these components act
as independent microservices and can be deployed over the
cloud or local computing nodes. The microservices pipeline is
broken down into four distinct stages: 1) querying; 2) prepro-
cessing; 3) content extraction; and 4) matching.

The GNOSIS service components are explained below in
detail.

1) Query Manager: The query manager constitutes MEPL
Query Engine, where all EPL queries from different sub-
scribers are stored and indexed. It extracts the EPL query pred-
icates and stores them as a configuration profile. The query
engine sends the configuration values to the Stream Manager
(model pipeline information and publisher information) and
Matching Engine (event rules, windows information, and query
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Fig. 10. Overview of GNOSIS system architecture.

graph) components to initiate the instances for handling dif-
ferent queries. As shown in Fig. 10, the Query Manager
component stores, parses, and instantiates other GNOSIS com-
ponents (like windows, matcher, and event dispatcher) as per
query metrics.

2) Stream Manager: The stream manager preprocesses the
incoming multimodal streams using libraries for encodings,
such as FFmpeg and OpenCV3, for preprocessing video and
audio streams. It then forwards them to the Content Extractor.
Next, the Event Dispatcher and Scheduler component creates
a control flow of a model pipeline using the CONTENT clause
of the GNOSIS EPL. It then sends the received streams to the
content analysis pipelines.

3) Content Extractor: GNOSIS generates flexible DNN and
ML content analysis pipelines (or models cascade) at runtime,
pretrained on specific data sets. Content Extractor microser-
vices can be implemented using various multimodal techniques
(see Table V). The Content Extractor component feeds the
pipeline information as a directed acyclic graph (DAG). ML
models act as a node, and the edges refer to the input and out-
put flow of data from one node to another node. Fig. 10 shows
a DAG for a multimodal content analysis pipeline for the four
MEPL queries described in Section VI. Queries 1, 2, and 3 use
a pipeline that consists of deep learning-based microservices
M1(PPE), M2(Object/Person), and M3(Color), while Query
4 uses a pipeline of M1(PPE) and M4(Audio). Depending on
the number of streams that needs to be processed, separate
content extraction pipeline instances are created dynamically
to process each stream in parallel. The extracted metadata from
the content analysis pipeline are then passed through MEKG
Builder to create timestamped MEKG. The MEKG model is
detailed in Section IV. The MEKG data are stored in a graph
database, and the references are sent to the Matching Engine
service for event pattern matching based on the MEPL query.

4) Matching Engine: The matching engine is the core of
the GNOSIS framework that handles state management and
multimodal event matching process. The Windows Manager
assigns windows to different multimodal streams as per the
information received via MEPL query engine. The win-
dow captures unstructured streams as MEKG graphs into a

TABLE V
CURRENT CONTENT ANALYSIS SERVICES

fixed bucket size, i.e., state. Inside the windows, the MEKG
graph relations are updated using Event Rules, and the graph
database is updated with the new relations. The completed
windows states are sent to the State Synchronizer, which waits
for all the incoming states from different streams. On receiving
all the stream states for a given window instance, the state syn-
chronizer then sends the captured states to the Event Matcher
for further processing.

The event matcher executes the query matching over
the graph database against the registered EPL queries. The
matcher performs the entity, semantic, spatial, and temporal
matching for the queries received by the query manager, and
then outputs the matches to the forwarder to send notifica-
tions to the subscriber. Based on the OUTPUT EPL clause,
the results are fed back to the Output Generator event pipeline
to visualize the results in formats, such as JSON, graphs, and
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image annotations. The Forwarder component then forwards
the result to the query subscriber or route the results to other
nodes for further processing.

B. Content-Aware Adaptivity

GNOSIS is capable of managing itself to achieve and
maintain predefined goals in specific environments. A typi-
cal architecture for adaptive systems is the MAPE-K, which
stands for monitor, analyze, plan, and execute, using a knowl-
edge base. It allows the system to monitor its components
and analyze their behavior to plan and execute the necessary
changes, such that the adaptation’s goals are met. In GNOSIS,
these adaptations were based on the user queries and the avail-
able services to reduce the latency with a slight tradeoff in
accuracy.

One example of content-aware adaptation is state-aware
load-shedding across data streams. In our experience of devel-
oping GNOSIS, we observed that it is very easy for an
IoMT stream processing system to get overloaded due to
high input data rates. Furthermore, the performance wors-
ens when data-intensive streams (such as video) are processed
over costly DNN-enabled operators. Thus, a state-aware load-
shedding strategy has been devised to improve the overall
system performance in throughput and latency while main-
taining acceptable levels of accuracy. The load-shedding pro-
cess is decoupled across the multimodal streams. Decoupling
enables the system to assign different load-shedding policies
to different streams.

For example, to improve performance in a use case with
video and audio streams, load-shedding is only applied to the
video stream. In contrast, the audio stream is processed nor-
mally. However, such differential load-shedding policies can
lead to synchronization issues and inaccurate results. To avoid
synchronization and out-of-order event problems [49], [50],
a state-based window policy is proposed [40], where states
of the data streams are preserved. In addition, histogram-
based frame similarity is used to drop similar frames across
time. Fig. 11 shows the latency distribution of differ-
ent image similarity algorithms. The selection of the his-
togram approach is based on its real-time and low-latency
(∼2 ms) frame similarity matching performance. For fur-
ther details on this state-based filtering approach, refer to
VID-WIN [40].

The following section discusses the use cases
to show the GNOSIS potential usage in real-world
applications.

VI. APPLICATION USE CASE

A. Occupational Health and Safety

The OHS use case demonstrates four safety compliance
queries using different content analysis pipelines via GNOSIS
to generate hard hat related events and generate an alert to the
OHS supervisor. The queries are listed in the increasing order
of their complexity.

Fig. 11. Latency distribution of different frame similarity algorithms [40].

1) Q1—Count the Number of Workers Wearing Hard Hat
(Primitive Event and Count):

Query 1 (Q1) uses a single content service PPEDetection
to count the number of workers wearing a hard hat using
the CONTENT. The COUNT operator counts the number of
MEKG nodes with the label worker_hat. Fig. 12(a) shows the
worker count message (ANN_IMAGE_QUERY_OUTPUT)
and bounding boxes (ANN_IMAGE_BBOX), which are gen-
erated due to the OUTPUT clause.

2) Q2—Detect Hard Hat Compliance Event (Single Modal
and Spatial):

Query 2 (Q2) detects a complex high-level
HardHatCompliance event using a single PPEDetection
model. The RETURN clause limits the required output and
sets the ComplianceStatus as TRUE [if there are work-
ers and everyone is wearing a hat, Fig. 12(b)] or False
[Fig. 12(c)].
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Fig. 12. Screenshot (a) worker count for Q1; (b) hard hat compliance and (c) hard hat compliance violation for Q2; and (d) safety compliance for Q4.

3) Q3—Person Classification (Single Modal and Spatial):

Safety regulations may specify different color hats for dif-
ferent stakeholders [51], [52]. For example, the site managers
and workers can be classified based on white and blue color
hats, respectively. Query 3 (Q3) uses three DNN-based con-
tent analysis services—1) ObjectDetection (to detect person);
2) HardHatDetection (to detect hat); and 3) ColorDetection (to
detect the hat color). The OVERLAP_TOP spatial operator
is used to find the spatial alignment of “hat” and “per-
son” objects (Fig. 13). Q3 shows the expressive potential of
MEPL and GNOSIS, where events can be detected using a
combination of content analysis pipelines and spatiotemporal
operators.

4) Detect Hard Hat PPE and Noise Compliance
(Multimodal Event With Rule):

Query 4 (Q4) is a multimodal query identifying safety
compliance at a construction site if the workers are PPE com-
pliant and the instruments (such as drilling machines and
jackhammers) are noise compliant. The query uses two con-
tent services PPEDetection for hard hat identification and
AudioDetection for classifying audio stream (drilling machine
and jackhammer). The query is executed over a time window
of 3 s. A decibel operator is used to measure the instrument

Fig. 13. VEKG graph construction for query 3.

sound in decibels. In Query 4, an MEKG is created using
PPEDetection and AudioDetection content analysis services
across two modalities. Fig. 12(d) shows an OverallCompliance
status as false as the system detects the instrument (drilling
machine) is noise compliant, but the person is not PPE
compliant (not wearing a hard hat).

The following section focuses on the experimental design
and evaluation performed over the GNOSIS platform using
different data sets.

VII. EVALUATION

The experiments are performed on a Linux machine run-
ning with a 3.1-GHz processor, 64-GB RAM and Nvidia RTX
2080 Ti GPU. The services talk via Nvidia Docker Runtime
to perform complex DNN operations on the CUDA enabled
GPU. The supported CUDA version is 10.1 with Nvidia Driver
version 440. GNOSIS services can run on the CPU in the
absence of a GPU device.

A. Data Sets

The experiments were performed with OHS-related events
over three video streams (V1, V2, and V3). Table VI enlists
the key characteristics of the selected data. First, queries Q1,
Q2, and Q3 have been evaluated on video data V1 and V2,
respectively. Next, query 4 (Q4) is executed on data stream
V3, which constitutes audio and visual data.

Data Set Ground-Truth Preparation: The ground-truth data
are manually annotated using the similarity technique. The
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(a) (b) (c)

Fig. 14. End-to-end system latency for Q1, Q2, and Q3 for Video 1 at (a) 15 fps; (b) 30 fps; and (c) 45 fps.

TABLE VI
DATA SET DESCRIPTION

video frames are temporally correlated, and the content
changes gradually across frames. A histogram-based similarity
measure is used to create the batches of similar frames. The
first frame of each batch is then manually annotated, and the
same label is assigned to other frames of the batch. The goal is
to create generic ground-truth data, which can be used across
different queries. The labels were assigned from atomic events
to high-level, complex events, including objects, attributes, and
spatial relations. For query 4 (Q4), the audio signal is divided
into smaller chunks using a time window and are annotated
manually.

Benchmark Configuration: For each query, the performance
is evaluated based on throughput, latency, accuracy, and memory
consumption. To stress-test the system, performance evaluations
are performed at different input streaming loads by varying
frames processed per second (fps) at low (15 fps), standard
(30 fps), and high (45 fps) rates. Similarly, the benchmark
results are evaluated for different durations, i.e., 5, 10, 15, and
30 min. Table VII details the benchmark configurations set to
evaluate various performance metrics. Single modal queries,
such as Q1, Q2, and Q3, are evaluated for video V1 and V2,
while multimodal query Q4 is evaluated against video V3.
Three load-shedding policies are devised to evaluate queries
based on different histogram similarity (Sim.) scores. The
load-shedding is performed for the highest input rate (45 fps).
Three histogram similarity scores, 0.999 (nonaggressive fil-
tering), 0.99 (mild-aggressive filtering), and 0.98 (aggressive

TABLE VII
BENCHMARK CONFIGURATIONS FOR EVALUATIONS

filtering), are identified empirically for video V1, V2, and V3.
The histogram similarity scores are highly sensitive to color
pixels, changing rapidly due to object motion and lighting con-
ditions. Therefore, the above-identified score can be different
for different video streams. The detailed single and multimodal
evaluations are now explained in the following sections.

B. Single Modal Evaluation

1) End-to-End System Latency: The end-to-end latency
includes the total time an event takes from GNOSIS input
to its sink. As per (1), the system latency is defined as

tsystem−latency = tstream−manager + tcontentextractor + tmatchingengine

+ tforwarder + tdelay. (1)

In (1), tsystem−latency is the average latency of all the events
across the GNOSIS components. The end-to-end latency also
consists of delays (tdelay) in processes, such as tracing, mes-
saging, network [53], [54], and graph databased input/output
(I/O). The GNOSIS experiments were conducted on the same
machine where the input source was present. Since all the
microservices were running on the same machine, there was
no network communication delay overhead (only internal com-
munication). Figs. 14 and 15 show the system latency of
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(a) (b) (c)

Fig. 15. End-to-end system latency for Q1, Q2, and Q3 for Video 2 at (a) 15 fps; (b) 30 fps; and (c) 45 fps.

(a) (b) (c)

Fig. 16. System throughput for Q1, Q2, and Q3 for Video 1 at (a) 15 fps; (b) 30 fps; and (c) 45 fps.

query Q1, Q2, and Q3 for video V1 and V2, respectively.
In Fig. 14(a), the system latency of V1 for 15 fps rate ranges
between 0.069 and 0.150 s for Q1, Q2, and Q3. The latency
of Q1 and Q2 is nearly the same across different benchmark
times, while Q3 (0.150 s) is ∼2.1X of Q1 and Q2. This is due
to Q3 complexity that requires three content analysis services
(ObjectDetection, HardHatDetection, and ColorDetection) to
detect the multimodal complex event pattern. The Q2 latency
ranges between 0.14 s (5 min) and 0.31 s (30 min) for 30 fps
video stream [Fig. 14(b)]. The Q2 latency is more than Q1 due
to increased matching time despite having the same con-
tent analysis pipeline. As shown in Fig. 14(b) and (c), the
Q3 performance deteriorates with an increase in input rate and
benchmark time. The Q3 latency increases from 9.17 (5 min)
to 52.01 s (30 min) for 30 fps [Fig. 14(b)] and 61.61 (5 min)
to 74.16 s (30 min) for 45 fps input rate [Fig. 14(c)].

The above results show that latency increases for Q1–Q3
due to increased matching complexity and the number of
models in the content analysis pipeline. Similarly, the latency
increases with an increase in input rate and benchmark time.
This is due to the increase in backpressure [55], [56], where
an event gets buffered in an internal messaging queue to get
processed due to the high input rate and fixed ML model cost.
The cost performance of content analysis services is explained
in Section V-B related to load-shedding operations. The other
reason for increased latency over benchmark time is memory
constraints. The current evaluations have been performed in
limited experimental settings (like 64-GB RAM, 1 GPU).
GNOSIS latency performance will improve with large memory
and multiple GPU instances. Fig. 15 shows the system latency
of Q1, Q2, and Q3 for Video 2 and follows the same pattern

discussed in Fig. 14. For 15 fps, the Q1 latency is around
0.075 s and for Q3 is between 0.10 and 0.14 s [Fig. 15(a)].
For 30 fps, the Q3 latency ranges between 52.06 and 54.49 s
[Fig. 15(b)] and is higher than Video 1 due to the increased
number of objects and their motion over time. The system per-
forms worst for 45 fps [Fig. 15(c)] with a minimum latency
of 41.8 s (Q1—5 min) and maximum latency of 72.38 s
(Q3—30 min).

2) System Throughput: System throughput is the number
of event messages that the system processes within a specified
period. In GNOSIS, the throughput is measured as the number
of fps. As per (2), system throughput is defined as

t = total number of event messages

total time
. (2)

Figs. 16 and 17 show the system throughput of Video 1 and
Video 2 for Q1, Q2, and Q3. For a 15 fps video stream,
the throughput is ∼15 fps for all three queries [Figs. 16(a)
and 17(a)]. Therefore, the system gracefully processes the
incoming video data (Video 1 and Video 2) in real time with no
backpressure. Fig. 17(a) shows that the throughput for Q1, Q2,
and Q3 is slightly higher than the input stream rate. This is due
to fluctuations in the ffmpeg streaming. The encoder, when set
to a specific input rate, does not exactly stream at the same
rate as the vsync parameter,1,2 by default, and it is set at −1.
Thus, continuous minor fluctuations depend on muxer capa-
bilities (e.g., 14.8, 15.6, 15.8, and 16 fps), leading to minor
observations. For 30 fps, queries Q1 and Q2 achieve nearly

1https://itectec.com/superuser/ffmpeg-libx264-how-to-specify-a-variable-
frame-rate-but-with-a-maximum/

2https://superuser.com/a/883951
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(a) (b) (c)

Fig. 17. System throughput for Q1, Q2, and Q3 for Video 2 at (a) 15 fps; (b) 30 fps; and (c) 45 fps.

(a) (b)

Fig. 18. System latency for Q1, Q2, and Q3 for different load-shedding policies for (a) 45 fps Video 1 and (b) 45 fps Video 2.

∼30 fps throughput, but Q3 throughput ranges between 22.7
and 28.4 fps [Figs. 16(b) and 17(b)]. The low throughput of
Q3 is due to increased content analysis pipeline complexity
having three models for processing the data. For 45 fps, the
throughput ranges between 34.08 (Q3—5 min) and 42.72 fps
(Q1—30 min) for Video 1 [Fig. 16(c)] and 34.10 (Q3—5 min)
and 42.70 fps (Q1—30 min) for Video 2 [Fig. 17(c)], respec-
tively. Compared to the input rate, the low throughput is due
to the backpressure built as the number of input events (here,
video frames) is higher than the cost of deployed models.
For 45 fps, there is an increment in the throughput with an
increase in benchmark time [Figs. 16(c) and 17(c)]. This is
due to an increase in the number of events (video frames) over
time. Therefore, a higher number of input events led to higher
throughput. Still, it may have a cost burden like increased
latency [Figs. 14(c) and 15(c)] that affect the overall system
performance.

We tackle these issues using optimization techniques,
including load-shedding and filtering to improve overall
performance, i.e., reduced latency with increased through-
put. The following section evaluates the content-aware load-
shedding described in Section V-B to assess the overall
performance.

C. Content-Aware Load-Shedding Optimization

As stated in benchmark configuration (Table VII), three
load-shedding policies are used to evaluate the performance
for 45 fps video stream: 1) nonaggressive (Sim. score-0.999);

2) mild aggressive (Sim. score-0.99); and 3) aggressive poli-
cies (Sim. score-0.98). The evaluations are performed on
latency and relative throughput (RT) and are discussed in the
following sections.

1) System Latency and Filtering Performance: Fig. 18
shows the latency distribution of Q1, Q2, and Q3 for Video 1
and Video 2 at different filtering rates. In Fig. 18(a), for Q1, the
median latency is around ∼0.122 s for aggressive filtering
(0.98 Sim. score) and increases to ∼0.132 s for nonaggres-
sive filtering (0.999 Sim. score). A similar latency pattern
is for query Q2. Compared to Q1 and Q2, query Q3 results
in higher latency of ∼0.281, 0.323, and 0.324 s for aggres-
sive, mildly aggressive, and nonaggressive filtering policies.
For V2 [Fig. 18(b)], Q3 has the highest latency distribution
of ∼0.543 s for nonaggressive filtering due to the increased
complexity of video content. Overall, from Fig. 18, the two
key takeaways are: 1) Q1 and Q2 have similar latency distri-
bution while Q3 has the highest latency across videos due
to its complexity and 2) the latency distribution increases
from aggressive filtering to nonaggressive filtering. This makes
sense as the system needs to process more data in a nonag-
gressive approach, leading to increased latency. On the other
hand, the filtering approach over 45 fps input rate achieves
near real-time latency, reducing ∼127 X latency even in the
worst case scenario (Q3).

Fig. 19 shows the filtering percentage of events across video
V1 and V2 for different load-shedding policies. For V1, the
similarity algorithm filters 92.88%, 98.47%, and 98.50% of
frames for nonaggressive, mildly aggressive, and aggressive
filtering policies. The V2 filtering percentage is 33.65%,
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Fig. 19. Filtering percentage of Video 1 and Video 2 for different load-
shedding policies.

88.39%, and 94.02% for the same filtering policies. The filter-
ing rate of V2 is lower than V1 due to higher object motion
leading to a rapid content change in V2. The current filtering
policy is query agnostic and only depends on frame similarity
metrics. The intent is to send only nonredundant video frames
to the system to prevent backpressure. More complex query-
based filtering techniques [40] can be deployed to improve
system performance further.

2) Relative Throughput: The system processes less data due
to filtering leading to an overall drop in system throughput.
Thus, (2) does not hold in load-shedding as it does not give a
clear picture of processing events within the system. To handle
such a situation, RT [57], [58] is devised to understand system
performance. Equation (3) defines RT as

Relative Throughput (RT) = Throughputachieved

Operatorcost
. (3)

In (3), Throughputachieved is the current throughput achieved
and Operatorcost is the maximum throughput that an opera-
tor (here, content extractor service) can perform without any
backpressure. For example, if the Operatorcost is 30 fps, then
for an input video rate of 30 fps, RT will be 1. This is the
maximum input rate that a system can process without any
backpressure. RT less than 1 represents a no backpressure zone
and vice versa. Fig. 20 shows RT of V1 and V2 for Q1, Q2,
and Q3 for different input rates, including load-shedding poli-
cies. In Fig. 20(a) and (b), the blue area represents the no
backpressure zone. For 30 fps input rate, the RT is ∼1 sug-
gesting the GNOSIS system operators can process Q1 and
Q2 with no backpressure and Q3 with little backpressure.
For 45 fps in both videos, RT is greater than 1 (∼1.3), sug-
gesting a high backpressure scenario. The situation can be
validated from Figs. 14(c) and 15(c), where the system has
very high latency due to backpressure. For nonaggressive fil-
tering (45 fps + 0.999 score), the RT drops to nearly 0.1 for
Q1, Q2, and Q3 with about 13X improvement [Fig. 20(a)].
The performance improves further for mild and aggressive
filtering where the system performs faster data processing
with no backpressure. V2 [Fig. 20(b)] follows a similar pat-
tern where RT for filtering policies is higher than V1 due to
increased complexity in video content and more frames pro-
cessing. The results can also be validated from Fig. 19, where
the V2 filtering percentage is lower than V1, processing more
frames.

3) Memory Consumption: Fig. 21 shows the memory usage
for different input rates, including load-shedding policies of
Q1, Q2, and Q3 for video V1. The memory usage increases
from∼10% to∼23.1% over a given video duration. The 45 fps
input rate has the highest memory consumption across queries
(Q1, Q2, and Q3), followed by 30 fps. Q3 has the highest
memory consumption across different input rates. Aggressive
load-shedding improves memory usage by ∼1.9X, ranging
from 10% to 12.16%. A similar pattern is followed for other
videos and thus, not reported in this article.

D. Multimodal Query Evaluation With Load-Shedding
Optimization

This section evaluates multimodal query Q4 on V3, includ-
ing video and audio streams. The evaluation is performed
using the metrics discussed above in the single modal queries
Q1, Q2, and Q3.

1) End-to-End System Latency: As per (4), the multimodal
latency is defined as

tmultimodal−latency = tsystem−latency(video, audio)

+ tsynchronization−delay. (4)

In (4), tsynchronization−delay is an additional time that GNOSIS
takes to synchronize the states of multiple streams (in this
case, video and audio). The system waits for the incom-
ing stream states and sends the data to the matcher when
it receives all the data of a given window. For example, in
Q4, the system processes the data only when it receives 3-
s state window information for the audio and video streams.
Since these streams are processed with different content anal-
ysis services with varying operators’ costs, the system waits
for the complete information. Fig. 22(a) shows the system
latency for Q4 over Video 3 across different benchmark tim-
ings. The 45 fps stream has the highest latency ranging from
28.9 (5 min) to 129.75 s (30 min). Q4 is evaluated over a
time window of 3 s, which adds up a synchronization delay;
thus, the overall latency increases. We apply load-shedding
over 45 fps, latency nearly equivalent to 15 and 30 fps input
stream. The aggressive load-shedding latency ranges between
1.53 and 3.15 s. Currently, the load-shedding is only applied
to video frames due to their computationally intensive nature.
The audio streams are kept intact without any sampling.

2) System Throughput, Relative Throughput, and Filtering
Performance: Fig. 22(b) shows the system throughput of
Q4 for Video 3 at different benchmark times and input rates.
The throughput for the multimodal query is also reported in
fps. The reason is that the audio stream of the same duration
is added to the MEKG and later processed for event matching.
Thus, fps is a better metric to represent the throughput for Q4.
However, the throughput metric can be generalized like events
per second depending on the query context. For example, for
the 15 fps input rate, the GNOSIS throughput ranges between
14.9 and 15.18 fps. The throughput increases with the increase
in the input rate. For 45 fps, the maximum throughput rate is
38.94 fps (5 min), but increased latency due to backpressure
is visualized in Fig. 22(a).
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(a) (b)

Fig. 20. RT for Q1, Q2, and Q3 for different input rates and load-shedding policies for (a) Video 1 and (b) Video 2.

Fig. 21. Effect of load-shedding on memory usage for query Q1, Q2, and
Q3 for Video 1.

Fig. 22(c) shows the RT for Q4. The pattern is like sin-
gle modal queries Q1, Q2, and Q3 where 45 fps led to an
RT of 1.29, suggesting increased backpressure in the system.
The audio classifier has less cost than the video classification
model. Therefore, Operatorcost of 30 fps is considered based
on the costliest model pipeline. In Fig. 22(c), all the filtering
policies achieved RT less than 1 in no backpressure zone.

Fig. 23 shows the filtering performance of devised load-
shedding techniques for Q4 over V3. Since load-shedding
is performed over video data, the performance of the differ-
ent policies is reported. The nonaggressive (0.999) filters out
∼81% of the video frames. On the other hand, the aggres-
sive filtering (0.99) technique shed nearly 1.16 X more frames
(94.2%) than nonaggressive filtering. Overall, the filtering per-
centage of V3 is lower than V1 and V2 due to increased object
motion leading to less redundancy of frames.

E. Event Accuracy

The accuracy is evaluated by comparing pipeline results
against the ground-truth data prepared beforehand. As per (5),

the average (Av.) accuracy is defined as

Av. Accuracy =
∑n

i=1

(
event detected

total events

)

n
. (5)

The task gives the aggregated accuracy of the RETURN
statement. The accuracy is the combined evaluation of all
the content services output and the matcher engine outcome.
For example, in query Q2, the return clause sends a Boolean
ComplianceStatus event in true or false format. These Boolean
events are then matched against the ground-truth data to
evaluate the accuracy.

Since load-shedding is performed over incoming data, it
impacts the overall accuracy. As more data are dropped,
thus the overall accuracy will be reduced [40]. A new event-
centric query accuracy is formulated to calculate the event
accuracy in a filtering scenario. The metric is motivated
from [59] and [60] to calculate the accuracy. For a given query
Q, the event accuracy is calculated as

Event Occurence (EO) =
{

1, if an event is detected in win
0, if no event is detected in win

Event Extra (EX) = |E| ∩ |G||G|
where

{
E, ε extra events detected in win
G, ε groundtruth events in win

(6)

Event Accuracy = α ∗ EO+ β ∗ EX

Av.Accuracy =
∑n

i=1 Event Accuracy

n
. (7)

There can be the possibility of multiple events occurring
in the same window (win) as the overall aim is to detect
events over a given window length. Thus, detecting one event
will suffice the query, i.e., Event Occurence (EO). Equation
(6) works on the above assumption and set the value of α and
β as 0.9 and 0.1, respectively. Finally, the event accuracies are
averaged over n windows. For example, in query Q2, suppose
for a given window of 1 s (30 frames), the ground truth (G)
of OverallCompliance event is 30 (all frames comply with the
query). After filtering, suppose the total events detected are 5.
The EO = 1 and EX = 4/30. As per (6), the event accuracy
will be 0.9×1+0.1×0.13 = 0.913. This event accuracy will
then be averaged across the given video length for n number
of windows (7).
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Fig. 22. Evaluation of multimodal query Q4 for Video 3 for (a) system multimodal latency; (b) system throughput; and (c) RT.

Fig. 23. Filtering performance for different load-shedding over Query 4 for
Video 3.

Fig. 24. Query accuracy of Q23, Q2, Q3, and Q4 for Video 1, Video 2, and
Video 3 with (0.99 similarity score) and without load-shedding (L.S.).

Fig. 24 shows the accuracy of queries Q1, Q2, and Q3 for
V1 and V2, and Q4 for V3 with and without load-shedding.
Before load-shedding for V1, the Q1 and Q2 accuracy are
around 0.96. The accuracy drops to 0.77 (Q1) and 0.89
(Q2) after load-shedding (0.99 similarity score). Q3 has the
lowest accuracy of 0.65 (before LS) and 0.51 (after LS). Such
a low accuracy of Q3 on V1 is due to query complexity where
the false detection in the initial stage of the pipeline is carried

further downstream. Another issue is that V1 has a minor con-
tent change because it has the least object motion. This filters
out most of the frames leading to further accuracy drop. A sim-
ilar pattern is found across queries in V2, where the accuracy
of Q1, Q2, and Q3 are 0.98, 0.87, and 0.69, respectively, before
load-shedding. The accuracy drops to 0.97 (Q1), 0.83 (Q2),
and 0.68 (Q3) after load-shedding. Overall, V2 has better accu-
racy than V1 as the content analysis service could detect most
objects correctly. Another reason is that V2 has a high change
in content due to objects motion; thus, lower frames were fil-
tered, resulting in better accuracy than V1 across queries. For
multimodal Q4 (V3), the accuracy is shown for safety compli-
ance only. The accuracy for Q4 is 0.89 (before LS) and 0.79
(after LS), respectively. Video 3 has the highest object motion
resulting in a lower frame and accuracy drop.

VIII. CONCLUSION AND FUTURE WORK

This article proposes the MEP paradigm as a formal basis
for native approaches to multimodal content analysis (i.e.,
computer vision, linguistics, and audio) within the event pro-
cessing paradigm to support real-time queries over multimodal
data streams. Multimodal streams are processed to generate
a knowledge graph representation, which can then be queried
using the MEPL. MEPL supports user-defined event operators,
which can be developed using a neurosymbolic-based hybrid
approach, with statistical DNN models and symbolically-
based spatial and temporal reasoning. MEP engines can
then be implemented using hybrid processing, combining
neural (DNNs) and symbolic (rules) models.

This article details an initial MEP implementa-
tion (GNOSIS) with near real-time performance with a
throughput of ∼30 fps and subsecond latency of 0.075–0.30 s
for 30 fps input rate video streams. The inclusion of a
content-aware load-shedding for high input stream rates
(45 fps) can significantly improve performance with only a
minor drop in accuracy.

As a new paradigm, MEP has significant potential for future
work, including the following.

1) Adaptivity: Adaptive techniques are a rich area to
optimize the performance of MEP engines. In par-
ticular, the need for optimizations of pipelines for
multiple queries, scheduling and workload placement
across cloud-edge deployments, QoS, and Quality of
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Experience, and the creation of query-specific deep
learning models will be explored.

2) Neurosymbolic Visual Reasoning: The integration of
visual and commonsense reasoning in MEP could
improve and enhance the expressivity of event rules
and queries. This can be achieved by carefully integrat-
ing knowledge about entities, relations, and rules from
rich knowledge bases via reasoning over multimodal
streams [61].

3) Subjectivity: Traditional event processing engines
answer objective queries using the objective attributes of
events. However, within MEP, we can have subjectivity
as the content analysis process can produce a subjective
representation of the event. Therefore, MEP engines will
need to support subjectivity.
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