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Abstract—The development of body sensor networks (BSNs)
with rich multimodal signals has enabled highly accurate fine-
grained action detection, which is the cornerstone of many
human—computer interaction applications. However, in the case
of consecutive fine-grained actions, most existing wearable sensor-
based detection methods are constrained by sliding windows
because of their limited temporal receptive fields, and existing
sequence-to-sequence detection methods cannot effectively lever-
age the potential of multimodal information of wearable sensors.
Herein, to give multimodal signals full play in fine-grained action
detection, we propose a novel temporal convolutional network by
designing a channel attention-based multistream structure. We
apply it to a promising application for correct and incorrect
patient transfer nursing action detection. A data set is collected
from a BSN on a patient when nurses perform patient trans-
fer. Extensive experiments on our data set and public data set
(C-MHAD) demonstrate that the proposed method is superior to
the state-of-the-art methods, because it can strengthen the uti-
lization of prediction features from the more convincing modal
stream at each time frame. The source code is available at
https://github.com/zzh-tech/Continuous-A ction-Detection.

Index Terms—Attention mechanism, body sensor network
(BSN), deep learning, fine-grained action detection, multimodal
signal.
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I. INTRODUCTION

ITH the rapid development of Internet of Things (IoT)
Win recent years, various kinds of sensors are now inti-
mately embedded in and connected with our daily lives; these
sensors record dynamic information about the human life
in the form of multimodal signals. The detection of human
actions from time-series signals recorded by sensors is an
important topic concerning the IoT. In particular, fine-grained
action detection is indispensable to IoT-based applications,
such as skill training and health monitoring systems [1]-[3].
Fine-grained action detection, which is fairly challenging,
requires the location and categorization of each occurring
action based on the captured time-series signal [4]. Fine-
grained actions are highly similar; their patterns only differ
slightly at the signal level, which further increases the diffi-
culty encountered in distinguishing between them [5]. Thus
far, highly accurate fine-grained action detection has not been
extensively studied; this detection (especially, its practical
applications) requires further exploration.

The development of body sensor networks (BSNs) [6]-[8]
has enabled highly accurate fine-grained action detection. A
combination of wearable sensors, such as IMUs, placed on
various parts of the body surface (i.e., BSN) can provide
rich contextual activity information and easily capture the
dynamic semantics of human activities in the temporal and
spatial domains. In addition, for human action detection, BSNs
are superior to camera-based sensor systems in the follow-
ing aspects: 1) fewer privacy concerns [9]; 2) no complicated
calibration processes, such as viewpoint fixation [10] and envi-
ronmental constraints [11]; and 3) no viewpoint hindrance due
to multiparticipant interaction. Therefore, BSNs are currently
a favorable hardware platform for developing fine-grained
action detection-based applications. However, the full utiliza-
tion of multimodal information of BSNs for improving the
recognition accuracy remains to be investigated.

In this study, we explored a new branch of smart hospi-
tals for automatic nursing (healthcare) skill assessment. More
specifically, we aim to develop an effective fine-grained action
detection method, which can be applied to construct a self-help
skill training system for assisting nursing learners in learning
specific skills. It could make nursing skill training more effi-
cient and convenient. This is important because the demand for
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Fig. 1.

Scheme for automatic nursing skill assessment. Inertial measurement unit (IMU) signals, including acceleration and rotational speed, are collected

when a nurse performs patient transfer by deploying a BSN on the patient. The proposed detection method can generate a label sequence, including the action

type and correctness by directly analyzing raw time-series signals.

qualified nurses is increasing owing to social issues [12] such
as the aging population and increase in outbreaks of infectious
diseases such as COVID-19 [13]. Owing to the high demands
of healthcare environments, nurses are expected to provide
effective and efficient care to patients, implying that nursing
skills are essential. However, nursing education resources are
limited owing to factors such as the high student—educator
ratio. This hinders the acquisition of nursing skills and path
to become qualified nurses because sufficient individualized
supervision and feedback from traditional teaching methods
are not provided to nursing learners during their training [14].
The previous study [15] has proven that showing whether
a nursing action step is correct or not has an educational
effect and can improve learning efficiency of the learners.
Nursing learners can correct their wrong performance when
training skills by themselves, according to the feedback on
the correctness of action step. Therefore, developing a nurs-
ing skill assessment scheme that can automatically recognize
and assess the correctness of nursing actions of trained nurses
using fine-grained action detection will be beneficial.

According to previous studies [15], [16], the most basic
requirement of a nursing skill assessment system is to inform
the nursing learners about the correctness of each of their
action steps; this feedback can allow the learners to correct
their corresponding actions. Thus, the nursing skill assessment
scheme proposed in this study primarily aims to recognize
and assess the correctness of each performed nursing action
based on the raw time-series signals of BSNs. There is no
prior knowledge about the sequence of actions performed. The
proposed scheme is illustrated in Fig. 1.

The most important requirement of a nursing skill assess-
ment system is its reliability, which is determined by its
nursing action recognition accuracy. An unreliable system may
mislead nursing learners and reduce the effectiveness of learn-
ing. Action detection for nursing skill assessment is more
challenging than that for activities of daily living because
there are fine-grained action pairs in the case of nursing skill

assessment, which reflect correct and incorrect ways of per-
forming each nursing action step. Assisting a patient to stand
up “with” (correct) and “without” (incorrect) bending their
waist first is an example of a pair of fine-grained actions.
To improve the action detection accuracy, many researchers
have adopted deep learning methods, such as convolutional
neural networks (CNNs) [11], [17], [18] and recurrent neural
networks (RNNs) [19]-[21], and achieved satisfactory results.
In the case of signals of consecutive actions, the most common
pipeline of existing wearable sensor-based methods is the use
of sliding windows (SWs) to segment the time-series signal,
followed by single-action recognition for each SW. However,
owing to the limited temporal receptive field, the SW size can
easily affect the final performance; excessively large SWs will
inevitably contain the information of adjacent actions, whereas
significantly small SWs will contain only part of the target
action signal [22], and in both the cases, the fine-grained action
detection performance can be severely degraded. Recently,
some sequence-to-sequence (seq2seq) action detection meth-
ods [23]-[25] have been proposed for video-based human
action detection tasks. These seq2seq methods jointly gener-
ate predictions for each time frame based on the entire input
time-series signal, without separate segmentation and recogni-
tion. These methods can obtain optimized temporal receptive
fields for better performance. However, the existing seq2seq
action detection methods do not consider the characteristics
of multimodal wearable sensor signals, yielding suboptimal
performance.

We believe that each separated modality or a combination
of modalities may have advantages in a particular time frame
when recognizing different actions of different individuals.
Therefore, we propose a multistream temporal convolutional
network (TCN) to realize both framewise and stepwise nurs-
ing action detection. A data set of nursing skill, called
patient transfer, was collected for evaluation. We collected
data samples of three consecutive actions of patient trans-
fer by deploying BSNs on the body of a patient. Our data
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set includes the correct and incorrect methods for each action
step of patient transfer. With the help of the proposed channel
attention-based multistream structure, our method could bet-
ter utilize the characteristics of multimodal wearable sensor
signals when testing on the nursing skill data set.

The key contributions of this study are summarized as

follows.

1) We propose a novel seq2seq action detection method to
solve the automatic fine-grained nursing action detection
problem using a multistream TCN.

2) The proposed channel attention-based multistream struc-
ture proved to be effective in utilizing raw multimodal
wearable sensor signals.

3) Through extensive experiments on our nursing skill
data set and publicly available data set (C-MHAD),
we demonstrated the superiority of our method to the
state-of-the-art human action detection methods.

4) To the best of our knowledge, this study was the first
to collect a consecutive nursing action data set with
correct/incorrect fine-grained action pairs using BSNs.

The remainder of this article is organized as follows. We

briefly introduce related work in Section II. In Section III,
we present the details of our nursing skill data set. Then, we
explain the architecture of the proposed method in Section IV.
The experimental configuration, results, and discussions are
presented in Section V. Finally, we conclude the article and
discuss future work in Section VI.

II. RELATED WORK

In this section, the research on human action recognition
(HAR) is presented. Then, human action detection methods
are further discussed. Finally, the attention mechanism in deep
learning is briefly introduced.

A. Human Action Recognition

Recent HAR methods can be roughly divided into three
categories based on the sensors used: 1) wearable sensor-
based methods; 2) camera-based methods [26], [27]; and
3) WiFi device-based methods [28], [29]. We focus on wear-
able sensor-based methods. Traditional wearable sensor-based
HAR methods typically require two steps: 1) feature extraction
and 2) classification. Experienced engineers need to manually
decide the appropriate features from the time domain (e.g.,
variance mean, max, and min) or frequency domain (e.g.,
skewness, amplitude, DC, and energy) based on the character-
istics of the target actions and their domain expertise. Various
machine learning classifiers, such as support vector machines
(SVMs) [30], decision trees (DTs) [31], and ensemble meth-
ods [32], are widely used to make action class predictions. In
addition, hidden Markov models (HMMs) [33] are also used
to model the intrinsic features and the continuous observed
hidden state for the time-series signals of each action class.
When new signals are fed, the output is determined based on
the likelihood value of the HMM of each action class.

However, heuristic handcrafted features are often not infor-
mative enough and too shallow to help classical machine
learning methods learn useful information for recognition.
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In addition, HMM is limited by the number of possi-
ble hidden states that it can have. Thus, an increasing
number of deep learning methods have been applied for
wearable sensor-based HAR tasks in recent years. The
effectiveness of CNNs for wearable sensor-based HAR has
been demonstrated in [11], [17], and [34]. For example,
Jiang and Yin [17] first converted the time-series signals
into activity images and then proposed a deep convolu-
tional neural network (DCNN) that automatically learns the
discriminative features for action recognition. Furthermore,
owing to the strong ability of RNNs to capture the long-term
temporal correlation between time-series signals, many vari-
ants of RNNs, such as DeepConvLSTM [35], DRNN [20],
ResBidirLSTM [36], and MA-RNN [21], have been proposed
to solve the HAR problem. Essentially, these methods utilize
long short-term memory (LSTM) [37] to model wide-range
dependencies of time-series signals recurrently. Bidirectional
and stacked structures are used to enhance the recognition
performance.

B. Human Action Detection

While all these HAR methods are based on segmented
signals for individual action recognition, the task of human
action detection is to recognize a series of actions based on
unsegmented consecutive time-series signals. The mainstream
scheme for human action detection is to segment consecutive
signals through an SW and then recognize them successively
with the help of the aforementioned HAR methods. This
means that all the time frames within the same SW will be
recognized as the same label. However, the SW-based scheme
is limited by its temporal receptive field for single-action
recognition. Determining the window size is often challeng-
ing as the appropriate window size depends on the type of
corresponding action and even on the subject. A size either
too large or too small will cause undesired conditions for
recognition, introducing irrelevant temporal features or lead-
ing to information loss. To overcome this issue, some seq2seq
detection methods have been proposed for realizing framewise
recognition with optimized temporal receptive fields. For the
prediction at each time frame, seq2seq methods automatically
mine the relevant information from all the time-series signals
based on their structural design. Deep Bi-LSTM [23] draws
support from the transferred global hidden features of bidi-
rectional LSTM [38]. Motivated by the WaveNet [39], dilated
TCN [24], and MS-TCN [25] adopt stacked dilated convolu-
tional layers to continuously improve the temporal receptive
field for action detection. However, these seq2seq methods
were originally designed for video signals; hence, they do not
consider the characteristics of multimodal wearable sensor sig-
nals. We believe that each separate modality or a combination
of modalities may have advantages at certain time frames when
recording different actions of different individuals. Therefore,
inspired by the structure of seq2seq methods, we designed
a multistream TCN to fully utilize the different modali-
ties of wearable sensor signals for achieving high detection
accuracy.
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C. Attention Mechanism

Allocating more attention toward more informative or con-
vincing parts of signals is a wise strategy to improve the
performance of deep learning models. The concept of attention
mechanism [40], [41], a selective focusing rule, originated in
the field of natural language processing. Speech and text sig-
nals are also a type of time-series data. Thus, the attention
mechanism can be naturally applied to HAR tasks. For exam-
ple, Zhong et al. [21] used an attention module to determine
the time period in which discriminating features were located.
Furthermore, Zhang et al. [18] attempted to utilize a multi-
head attention module to learn the relevance and importance
of each feature produced by multihead CNNs. In this study,
we applied the channel-attention mechanism [42] to our mul-
tistream TCN to give full play to the advantages of different
wearable signal modalities.

IIT. NURSING SKILL ASSESSMENT DATA SET

In this section, we introduce our nursing skill assessment
data set of a nursing skill named patient transfer. The main
purpose of this data set is for developing data-driven nursing
skill assessment schemes to alleviate the burden on nursing
educators caused by high nursing student—educator ratio.

A. Target Nursing Skill

Nursing activities typically involve complicated and labo-
rious physical work. To conserve energy, avoid injuries, and
ensure the comfort and safety of the patient [43], nurses must
master many nursing skills in their careers. Patient transfer is
one of the most significant nursing skills that they need to mas-
ter. The process of patient transfer involves helping patients
with mobility problems to move from a bed to a wheelchair.
It is one of the most frequent and difficult nursing skills.
According to a previous study, patient transfer is performed
very frequently (on average, 26 times per nurse during a 4-h
shift) in a hospital and nursing house [44]. During each step of
patient transfer, nurses must apply proper body mechanics at
appropriate times and also help the patient with the same. At
the same time, nurses need to bear most of the weight of the
patient. Incorrect procedures or postures may make the patient
uncomfortable [45] and even cause injuries to both the patient
and the nurse. Many nurses have been reported to suffer from
occupational diseases, such as lower back pain, owing to the
inadequacy of patient-transfer techniques [46], [47]. Therefore,
we chose patient transfer as our target nursing skill to build
the data set.

B. Fine-Gained Action Pairs

In this data set, we followed the setting of the former
study [16]. We focused on the situation of basic patient trans-
fer training for the beginner, i.e., transferring a patient from a
bed to a wheelchair. According to the suggestions of experi-
enced nursing teachers, the nurses were assumed to have the
knowledge of basic patient transfer learned from textbooks
and demonstration videos, while the patients were assumed to
be weak person who cannot stand up by themselves. Based
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Fig. 2. Target nursing actions of patient transfer.

on these assumptions, basic patient transfer mainly involves
three consecutive core action steps: 1) assisting the patient
to stand up; 2) turn around; and 3) sit down (see Fig. 2).
Also, the pattern of each nursing action was confined to com-
mon nursing training guideline, such as assuming that the
nursing learner grips the lower back of the patient when assist-
ing patient to stand up. We collected data samples of patient
transfer considering a correct method and a typical incorrect
method for performing each action step. It is worth noting that
the incorrect method for each action step corresponds to the
most common mistake made by the nursing learners according
to the experience of professional nursing teachers.

First, the correct and incorrect ways of assisting the patient
in standing up are illustrated in Fig. 3. As for the correct way,
the nurse needs to grab the clothes and bend the waist of the
patient before helping them to stand up; the most common
mistake made when assisting a patient to stand up is to allow
them to stand up without bending their waist. The incorrect
way makes it difficult for the nurse to complete the action
and increases the risk of injuries and accidents. The correct
and incorrect ways of assisting patients to turn around are
illustrated in Fig. 4. The correct way for the nurse is to use
the right foot as the turning pivot when the wheelchair is on
the right side; the most common mistake made is to use the left
foot as the turning pivot. Using the wrong foot as the pivot will
cause inconvenience when turning around. Finally, the correct
and incorrect ways of assisting a patient to sit down on a
wheelchair are illustrated in Fig. 5. The most common mistake
made when assisting the patient to sit down is to allow them to
directly sit down on the wheelchair without bending their waist
first. In total, there are six action step classes, denoted as cu,
iu, ct, it, cd, and id, in our data set. For data set collection,
nurses were asked to perform patient transfer correctly and
incorrectly for each action step. During the patient transfer,
a BSN with 17 IMU sensors was attached to the patient for
kinematic information collection, including acceleration and
rotational speed signals. The detailed configuration of our data
set is presented in Section V-A.

IV. PROPOSED METHOD

First, we present an overview of the proposed method in
Section IV-A. Then, we further introduce the multistage TCN,
channel attention-based multistream structure, and label selec-
tor in Sections IV-B, IV-C, and IV-D, respectively. Finally, we
present the loss functions in Section I'V-E.

A. Overview

An overview of our proposed method is illustrated in Fig. 6.
The importance of signal features from different forms of
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Correct standing up (CU)

Fig. 3. Correct/incorrect ways to assist the patient to stand up. When assisting
the patient to stand in the incorrect way, the nurse pulls him or her directly
upward without first bending the waist of the patient.

modalities will change over time. Different modalities, such
as acceleration, rotational speed, and mixed modalities, have
their own advantages for action detection of certain individual
and certain action classes. It is helpful to focus more on the
features from a particular form of modality that has more use-
ful information for action recognition. Therefore, instead of
using only one kind of modality by implementing the existing
multistage TCN [25], we explore the potential of jointly using
multiple forms of modalities and selecting the most reliable
information from them. Based on this idea and the concept of
the attention mechanism, we design a channel attention-based
multistream architecture according to the existing multistage
TCN.

In the first phase of the proposed architecture, we treat
the time-series input of a form of modality as a stream
branch. Specifically, we denote the time-series input signals
from the IMU, including both acceleration and rotational
speed signals, by X;, = {xu;, Xim,, - - ., Xy}, Where T denotes
the total time frames of all the time-series signals. X, =
{xXa;s Xay, ..., Xar} and X, = {x,%,..., %} denote the
acceleration and rotational speed signals, respectively. We con-
sider X,, X,, and X;, as three wearable sensor input streams
to three independent multistage TCN modules to give full
play to the advantages of the respective modalities and their
combination. Consequently, we can obtain framewise prepre-
dictions Y, = {yr, Yrs - - -» Yrrbs Ya = {Yay» Yar» - - - » Yar}, and
Yo = {Ymy»Ymys---»Ymy} according to each input stream.
Through the channel concatenation operation, we can obtain
intermediate prediction features as Yy = CAT(Y,, Y4, Yin).
By applying channel-attention mechanisms to Yy, we obtain
the prediction features Y, with the optimized channel weight,
which means that the importance of prediction features from
more convincing channels is magnified. Subsequently, we
feed Y. to one more multistage TCN module to gener-
ate the framewise prediction Yz, = {y1,y2,...,yr}, which
implies that an action class label (e.g., cu) will exist for
each time frame. Finally, by using our label selector to filter
the framewise predictions Yy, the action stepwise predictions
Yow = {V1,¥2,...,ys} are generated, where S = 3 for our
patient-transfer application.

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 23, DECEMBER 1, 2021

Correct turning around (CT)

Fig. 4. Correct/incorrect ways to assist the patient to turn around. When
assisting the patient to turn to the wheelchair in the incorrect way, the nurse
uses the left foot as the turning pivot, which cannot be fixed during turning.

Correct sitting down (CD)

Fig. 5. Correct/incorrect ways to assist the patient to sit down. When assisting
the patient to sit in the incorrect way, the nurse allows the patient to fall
vertically onto the wheelchair without bending the waist of the patient.

B. Multistage Temporal Convolutional Network

Not long ago, RNNs were the best choice for sequence
modeling tasks because of their great ability to extract long-
term temporal dependencies from time-series signals, such
as LSTM [37] and GRU [48]. However, RNN-based recur-
rent models are empirically limited and difficult to train for
actions defined by changes in features over too many time
frames [24]. TCNs [39] were proposed to solve this problem
by capturing longer and optimized temporal dependencies
through stacked temporal (dilated) convolutional layers. Thus,
we adopt a multistage TCN structure from [25] as our sub-
module to extract high-level temporal patterns from time-series
data and features.

The structure of the multistage TCN is illustrated in Fig. 7.
It consists of N stacked single stages. Each stage starts with
a 1 x 1 convolutional layer to adjust the channel numbers of
the input, followed by several stacked temporal convolutional
layers with the same structure as that in [25]. The temporal
convolutional layer mainly includes a 1-D dilated convolu-
tional layer [49] with a kernel size of 3, a ReLU activation
layer [50], a normal 1 x 1 convolutional layer, a dropout
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Fig. 6. Architecture of the multistream TCN. X, X4, and X,;; denote the different modal streams corresponding to rotational speed only, acceleration only,
and mixed modalities, respectively; Yy, Y4, and Y;,; denote the prediction features generated by independent multistage TCN modules (see Fig. 7); Yy denotes
the concatenation of multistream prediction features, Y. denotes the prediction feature obtained by the channel-attention module (see Fig. 8), and Yp, and
Y5y denote the framewise predictions and stepwise predictions generated by the label selector module (see Fig. 9).
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Fig. 7. Multistage TCN module. X represents the input of the multistage

TCN module, which can be X, X4, X, and Y. Yy, is the output of each
stage. Yy can be Yy, Y4, Yy, and wa. Each circle in each stage represents
the feature map at each time frame. Each row of circles represents the output
of a temporal convolutional layer as H;.

layer [51], and a skip connection [52] from the input (i.e.,
the output from the last temporal convolutional layer). Thus,
the process of one TCN can be expressed as follows:

r=2"1 1)
HF = ReLU(W; %, Hi_1 + by) )
HID = Dropout(Wz * Hf + bz) 3)

H =H_1+ HID “4)

where r denotes the dilated rate of the dilated convolutional
layer in the I/th temporal convolutional layer; H; denotes the
output of the /th temporal convolutional layer; Dropout denotes
the dropout operation; * and *, denote the standard convo-
lutional operation and dilated convolutional operation with
dilated rate r, respectively; Wi and W> denote the weights of
the dilated and standard convolutional layers, respectively; and

b1 and by denote bias vectors. According to the above equa-
tions, the dilated factor is doubled with increase in the number
of temporal convolutional layers (1,2,4,...,2’). Thus, as
shown in Fig. 7, the farther the position of the temporal con-
volutional layer, the larger its temporal receptive field. In other
words, a farther layer can access a larger range of optimized
temporal dependencies from time-series signals. Finally, the
output of the last temporal convolutional layer is the output
of that stage, given by

Hn,L = Sn(Hn,O) (%)

where L denotes the total number of temporal convolutional
layers in the stage; H, ; and H, o denote the output of the last
temporal convolutional layer in the nth stage and the input of
this stage, respectively; and S, denotes the function of the nth
single temporal convolutional stage.

From the perspective of the stage, we can obtain the
intermediate prediction Y, made by adding the SoftMax func-
tion to the output of the stage H, ;. Then, the intermediate
prediction of the current stage will be refined by feeding itself
as input to the next stage. Thus, the process of feeding the
input to N stacked stages is described as follows:

Yo=X (6)
Y, = SoftMax(S,(Y,—1)), ne{l,...,N}
= SoftMax(H,,.), n€{l,...,N}. (7)

Finally, the output Yy of the last stage is the final output of
that multistage TCN module

Yy = MSTCN(X) ®)

where MSTCN(+) denotes the function of the multistage TCN,
and X denotes the input.

In our architecture, there are three input streams: X, X,
and X,,. These represent an input stream with only rotational
speed signals, an input stream with only acceleration sig-
nals, and an input stream with mixed signals of the former
two streams, respectively. Through individual multistage TCN
modules, we can obtain prepredictions for each stream as Y, =
MSTCN(X,), Y, = MSTCN(X,), and Y,, = MSTCN(Xp,),
respectively.
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Fig. 8. Channel-attention module. Yy denotes the concatenated intermediate
prediction features, and W, denotes the channel weight vector.

C. Channel Attention-Based Multistream Structure

To integrate the advantages of prediction features from
different input streams, we adopt the channel-attention mech-
anism [42] for attaching an attention weight to each channel
of the intermediate prediction features Yr. The structure of our
channel-attention module is illustrated in Fig. 8. Here, aver-
age pooling and max pooling are used together to compute
temporal statistics and distinctive object features by downsam-
pling the temporal dimension of input features as one with an
average filter and a max filter, respectively.

By feeding the intermediate feature F), to these pooling lay-
ers, we can obtain the features M,y; and Myax, respectively.
Then, the channel-attention map W, can be generated by a
weight-shared network. The outputs of forwarding M,y and
Mmax to a multilayer perceptron (MLP) will be merged by ele-
mentwise summation. Finally, the sigmoid function is applied
to constrain the attention-weight values in a relatively small
range. The entire process of the channel-attention module can
be expressed as follows:

Mipax = MaxPool(Yf) ©))
My Angool(Yf) (10)
W, = o (WMmax + WMayg + b) (11)

where o denotes the sigmoid function, and W and b denote
the weights and bias vectors of the MLP, respectively.

D. Label Selector

The framewise prediction results may not be intuitive or user
friendly for nurses, especially when oversegmentation occurs.
Considering the application purpose, we propose a label
selector to extract valid action class labels from framewise
predictions, named stepwise predictions. Here, we assume that
the number of performed action steps is fixed at three. The
label selector counts the number of framewise labels in each
action step class as follows:

T
N, = ZEqual(ArgMaX(yz), 0)

=1

1, ify =

12)

13)

where ¢ € C with C = {cu,iu,ct,it,cd,id}, y; € Yp,
denotes the prediction for each time frame, and ArgMax(y;)
denotes the class label with the largest probability value at
time frame 7. The label selector saves three action labels with
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Fig. 9. Label selector module.

the largest counts. Furthermore, it calculates the “center of
mass” for each of these labels as follows:

YN 1

éfc = N.

(14)
where f, denotes the time frame for each prediction that
belongs to class c¢. According to &., the label selector can
determine the order of selected labels from small to large.
Consider Fig. 9 as an example. The proposed label selector
can extract a stepwise prediction of iu-it-id (red-blue-green)
from the framewise prediction.

E. Loss Function

For the loss function, a combination of classification loss
and smoothing loss is applied to the output of each temporal
convolutional stage as our optimization goal

L= (Leiss + Mosms) (15)

where A denotes the hyperparameter that adjusts the contri-
butions of different loss functions. The classification loss is
defined as the cross-entropy loss as follows:

T

1 ~
Leos = 7 Z —log(V:.¢1)

t=1

(16)

where y; o; denotes the predicted probability for the ground-
truth class at time frame . Additionally, we adopt a smoothing
loss [25] to reduce the over-segmentation errors as follows:

1
Lomt = =— 7 (17)
C e
Yt.c
Are = { )l(’gyffl,c c Ae =T (18)
T, else

where y; . denotes the predicted probability for class c at time
frame ¢, and 7 is the smoothing loss threshold.

V. EXPERIMENT AND RESULTS

First, we present experimental implementation details in
Section V-A. The comparison results and performance on nurs-
ing skill data set are detailed in Section V-B. Furthermore, the
effectiveness of the proposed channel attention-based multi-
stream structure is evaluated in Section V-C. The effect of
using different combinations of sensor placements is explored
in Section V-D. Finally, we also show comparison results on
publicly available data set, C-MHAD.
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TABLE I
DETAILS OF THE NURSING SKILL ASSESSMENT DATA SET

Nurse cu-ct-cd cu-it-cd cu-ct-id cu-it-id iu-ct-cd iu-it-cd iu-ct-id iu-it-id Total
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TABLE 11
COMPARISON WITH STATE-OF-THE-ART METHODS ON NURSING THE
SKILL ASSESSMENT DATA SET. BOLD FONT INDICATES
THE BEST PERFORMANCE

#1 4 4 4 4 4 4 4 4 32
” 2 2 1 7 2 1 1 1 = Accstep Flstep Accframe Flframe
#3 4 4 4 4 4 4 4 4 32 DCNN [17] (SW) 50.7%  41.8% - -
Mo 4 4 4 4 4 4 M HMM [33] (SW) 76.6%  74.3% - -
#5 4 4 4 4 4 4 4 4 32
" ’ 7 " ; ; ; ; ; P Catal et al. [32] (SW) 78.1% 77.2% - -
Total 24 24 24 24 24 24 24 24 192 DRNN [20] (SW) 79.2%  77.9% - -
MA-RNN [21] (SW) 82.6% 81.7% - -
Bi-LSTM [23] 90.8% 90.5% 89.7% 87.5%
S.z MSTCN [25] 93.1% 92.1% 91.9% 88.5%
<80 8" Te e~ Ours 94.6% 93.7%  93.2%  90.0%

E‘\. front ; ® ::‘.“‘,'}
L] e ‘
® L)
AR

Fig. 10. Placements of IMU sensors on the body of the patient. In total, 17
IMU sensors were integrated into our BSN. The blue and red nodes represent
the placements at the back and front, respectively.

A. Implementation Details

Our patient-transfer data set contains a total of eight com-
binations of consecutive action steps (e.g., iu-ct-cd). Overall,
six nurses (four females and two males) were asked to per-
form four trials of each possible combination on the same
male patient, as summarized in Table 1. Based on previous
works [53]-[56] on the effect of sensor placement for HAR
tasks, different actions prefer different sensor placements. For
example, the waist and thighs are considered as the best place-
ments for fall detection [57], [58]. In our case, we used
a total of 17 IMU sensors (ZMP, IMU-Z2) to cover the
optimal placements mentioned in the previous studies, such
as waist, wrist, chest, arm, thigh, ankle, and so on. These
sensors were attached to the clothing worn by the patient.
Inevitably, these sensors will move slightly during patient
transfer. However, data-driven methods trained on the data
from these sensors should learn how to robustly handle these
movement disturbances. The placement of each IMU sensor
and the corresponding sensor number is shown in Fig. 10. Each
IMU has six kinematic variables (channels), including acceler-
ation and rotational speed, in the x, y, and z axes. The working
frequency was 50 Hz. Thus, there is a 102-dimensional vec-
tor that contains the kinematic information at each time frame.
Finally, we obtained 24 samples for each nurse and 32 samples
for each combination of consecutive actions. Overall, there
were 192 samples for patient transfer and 576 samples for all
action steps.

Leave-one-subject-out cross-validation (LOSOXV) was
used to evaluate the performance of the proposed method and
other state-of-the-art action detection methods, including the
SW-based and seq2seq schemes. We implemented an SW-
based scheme using DCNN [17], HMM [33], the ensemble
model of the J48 decision tree, MLP and logistic regres-
sion [32], DRNN [20], and MA-RNN [21]. Each of these
models was implemented as described in the corresponding
paper. The SW size was fine-tuned for each model based on
our data set for better performance. For HMM, the window
size was 0.4 s, whereas the window size of the remaining mod-
els was 0.8 s. All the overlapping sizes are half of the window
size. As for the seq2seq scheme, to the best of our knowl-
edge, all the existing models, including Bi-LSTM [23] and
MSTCN [25], are designed for video signals. Guided by the
paper and original code , we attempted to fine-tune the hyper-
parameters and structures of these two methods [23], [25] to
better handle wearable sensor signals. The main hyperparam-
eters of our method were set empirically. We set the numbers
of stages of multistage TCN before and after channel atten-
tion at 3 and 1, respectively, with ten temporal convolutional
layers in each stage. The number of output channels for each
convolutional layer in our model was 256. The dropout rate
was set at 0.3. With regard to the loss functions, A and t
were set at 0.15 and 4, respectively. We trained the method
using the ADAM optimizer [59] with a learning rate of 1073,
The number of epochs and batch size was 30 and 32, respec-
tively. Furthermore, the stepwise accuracy (Accsep) and Fl1
score (Flgep), as well as the framewise accuracy (AcCframe)
and F1 score (Flframe), were used as the metrics in this study.

B. Comparison on Nursing Skill Assessment Data Set

The results of the comparison between the proposed method
and the state-of-the-art SW-based and seq2seq action detection
methods on our nursing skill assessment data set are presented
in Table II). In the case of SW-based methods, the framewise
accuracy and F1 score are easily affected by the window size,
and the prediction areas overlap because the step size of the
SW is smaller than the window size. Thus, we only generated
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Fig. 11.

accuracy. (c) Stepwise F1 score. (d) Framewise F1 score.

the stepwise accuracy and F1 score for the SW-based meth-
ods. As for the seq2seq methods, both framewise and stepwise
performances are detailed. We can observe that seq2seq meth-
ods significantly outperformed SW-based methods in terms of
all the metrics. The experimental results demonstrate that the
seq2seq methods are superior in terms of action detection,
which is a result of their optimal temporal receptive field.
Our method outperforms the seq2seq methods, achieving a
stepwise accuracy of 94.62%, stepwise F1 score of 93.67%,
framewise accuracy of 93.23%, and framewise F1 score of
89.96%.

We also illustrate the performance of each seq2seq method
for each nurse in Fig. 11. The performances of the methods
vary between individuals. All the methods deliver the worst
performance in the case of nurse #5. Nevertheless, our method
clearly outperforms the other methods in the cases of more
individuals. The average confusion matrix for different nurses
using our method is presented in Fig. 12. It demonstrates
that our method only makes mispredictions between the fine-
grained action class pairs, i.e., the correct and incorrect ways
of performing the same nursing action step. This indicates that
reducing the mispredictions between fine-grained action class
pairs is the key to improve the accuracy. The correctness of
assisting a patient to turn around (ct and it), which accounts
for 77.46% of all the mispredictions, is more difficult to assess
than the correctness of the other two action steps. However,
from the confusion matrix for each individual, we find that all
ct actions for nurse #5 are wrongly predicted as it, which is

Comparison of accuracy and F1 score between our method and state-of-the-art methods for each nurse. (a) Stepwise accuracy.
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Fig. 12.  Stepwise confusion matrix of our method on the nursing skill

assessment data set.

the main reason for the low accuracy of correctness assess-
ment of assisting a patient to turn around. This demonstrates
the importance of appropriately addressing individual differ-
ences in action detection tasks. Data samples of individuals
such as nurse #5, whose pattern is fairly different from those
of other nurses, are unavoidable. The recorded video suggests
that nurse #5 is considerably gentler than other nurses when
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Fig. 13. Visualization of channel attention for the multistream structure. Rows Y, Y4, and Y, represent framewise predictions according to each modal

stream; row W, represents the most convincing stream at each time frame; Y, represents framewise predictions considering We; and Yp, and Yy represent
final framewise predictions of our method and the corresponding ground truth, respectively. (a) Example #1. (b) Example #2.

TABLE III
FURTHER COMPARISON WITH MSTCN USING DIFFERENT STREAMS AS INPUT. BOLD FONT INDICATES THE BEST PERFORMANCE

Accstep Flstep Accframe Flframe
avg. std. avg. std. avg std. avg. std.
a-MSTCN  93.1% 6.6 x 1072  92.0% 84x1072 91.8% 58x1072 87.0% 9.1 x 1072
r-MSTCN  92.9% 5.7x1072 91.9% 7.6x1072 91.7% 3.6x 1072 88.6% 7.5x 1072
MSTCN  93.1% 5.5x1072 921% 7.2x10"2 91.9% 3.1x10"2 885% 7.2x 1072
Ours 94.6% 5.2x1072 93.7% 7.2x1072 93.2% 2.8x1072 90.0% 6.8 x 10~2

performing actions classified as incorrect. Furthermore, the use
of the wrong foot as the pivot when assisting the patient to
turn around mainly affects the state of the nurse rather than
that of the patient, but BSNs are only placed on the patient.
These may be the reasons why none of the methods performed
well for this action of nurse #5.

C. Effectiveness of Multistream Structure

The proposed method is novel in that a channel attention-
based multistream structure for multistage TCN modules was
designed to effectively utilize the multimodal signals of the
IMU sensor. Thus, to demonstrate the effectiveness of our mul-
tistream structure, we further compared our method with the
pure multistage TCN (i.e., MSTCN) by using different signal
modalities. In addition to using full signals, we tested the sig-
nals with respect to only rotational speed and only acceleration
on MSTCN , denoted by r-MSTCN and a-MSTCN, respec-
tively. We can directly observe that the use of full data with
mixed modalities only achieves a performance similar to those
of -MSTCN and a-MSTCN (see Table III). However, our
proposed method can outperform the pure MSTCN because it
dynamically considers the characteristics of each modality of
the IMU signals. Our method obtains the lowest values of the

standard deviations of both framewise and stepwise accuracies
and F1 scores for all the nurses, as presented in Table III. This
implies that our method is more stable than pure MSTCN in
the presence of individual differences.

To further demonstrate the effectiveness of the proposed
structure, we visualized the output of each critical module in
our method (see Fig. 13). Rows Y, Y,, and Y;, in both exam-
ples #1 [see Fig. 13(a)] and #2 [see Fig. 13(b)] represent the
labels with the largest probability at each time frame; row W,
represents the stream to which the largest predicted probabil-
ity belongs to, or in other words, the most convincing stream
at that time frame; row Y, represents the label with the largest
probability from the output of the most convincing stream;
and rows Yj, and Y, represent the framewise predictions of
our method and the corresponding framewise ground truth,
respectively. First, for example, #1, the oversegmentation of Y,
occurs between the steps of turning around and sitting down.
All the predictions of Y, and part of the predictions of Y,
are incorrect for the turning step, shown in blue (it) instead
of light blue (ct). According to row W,, our method mainly
focuses on the predictions of rotational speed stream Y, for the
first half of the data signals and those of the mixed modali-
ties stream Y, for the second half of the data signals. Thus, Y,
can avoid the oversegmentation and misprediction problems of
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TABLE IV
PERFORMANCE OF OUR METHOD USING DIFFERENT SENSOR
COMBINATIONS

Combination Accstep Flstep AcCirame Flframe
1-17 94.6%  93.7% 93.2% 90.0%
1,2,4,8,12, 15 92.4% 91.6% 92.0% 88.0%
1, 7,11, 12, 15 87.7%  87.2% 86.0% 85.7%
7,11, 12, 15 79.0%  78.4% 79.4% 79.7%
1,7, 11 86.8%  85.4% 83.3% 83.5%
1, 12, 15 85.2%  84.1% 86.7% 81.3%
7, 11 66.3%  60.9% 63.1% 60.6%
12, 15 67.2%  63.3% 73.6% 65.6%
1 76.9%  74.0% 78.5% 71.9%

each stream, and help generate the framewise prediction Y.
In example #2, we can directly observe that the prediction
features of Y, are the most useful for making predictions
with this sample. Our method mainly uses the prediction
features of the acceleration stream Y, and mixed modalities
stream Y,, for this example. Although mispredictions, shown
in red (iu), still exist at the beginning of Y., the latter multi-
stage TCN module helps further restore these parts, shown in
orange (cu).

Both quantitative and visualization results reveal that the
proposed method can better leverage the advantages of differ-
ent modalities of IMU signals. It achieves a higher recognition
accuracy than those of state-of-the-art methods.

D. Sensor Combination Exploration

The number of sensors is typically constrained based on the
application. Additionally, sensor placements are not arbitrary
because real-world applications need to consider the feasibil-
ity of sensor placements. Hence, it is important to explore
the effects of using different placement combinations of IMU
sensors, illustrated in Fig. 10, especially for some meaning-
ful placements. The results of using different wearable sensor
combinations are listed in Table IV. First, if we only use
the sensors at the trunk of the body, which are numbered
1,2,4,8, 12, and 15, the performance of our model is compa-
rable to that achieved when using the data of all 17 sensors.
In addition, we choose some meaningful placements of IMU
sensors that are likely to be adopted in daily life. Examples
include placements 7 and 11, where one may wear a smart-
watch, and placements 12, 15, and 1, where one may place
their smartphone. The results reveal that the placements at
relatively passive parts of the body of the patient, such as
1, are better choices for assessing nursing skills, such as
patient transfer, when the number of IMUs is constrained.
Furthermore, the results indicate that our method has the
potential to assess nursing or other skills using only everyday
devices with embedded IMU sensors (e.g., smartphones).

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 23, DECEMBER 1, 2021

TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON C-MHAD, IN
TERMS OF F1 SCORE. BOLD FONT INDICATES
THE BEST PERFORMANCE

Transition Movements TV Gestures Data
Wei et al. [60] 56.4% 60.3% inertial
Wei et al. [60] 75.7% 77.8% video
Wei et al. [60] 78.8% 81.8% inertial&video
HMM [33] 28.0% 57.4% inertial
Catal et al. [32] 50.0% 62.8% inertial
DRNN [20] 68.8% 81.1% inertial
MA-RNN [21] 82.0% 78.7% inertial
Bi-LSTM [23] 89.7% 96.1% inertial
MSTCN [25] 93.4% 97.0% inertial
Ours 95.3% 98.5% inertial

E. Comparison on Public Data Set (C-MHAD)

To show effectiveness and robustness of the proposed
method, we also did experiments on publicly available data set,
C-MHAD [60] (continuous multimodal human action dataset).
C-MHAD consists of two action sets: 1) transition movements
(e.g., stand-to-sit, stand-to-fall, lie-to-sit, etc.), seven action
classes in total and 2) smart TV gestures (e.g., draw-clockwise-
circle, swipe-to-left, right-hand wave, etc.), five action classes
in total. In C-MHAD, 12 subjects performed ten trials of
randomized continuous actions (2 min per trial) within the
action set.

We followed the training and test data set setting and mea-
surement metrics of the benchmark performance [60] to con-
duct experiments. In addition to the benchmark performance
provided by the data set authors, including the use of iner-
tial data, video data, and their fusion, our and other methods
are based on inertial data only. The results are shown in the
Table V, in terms of F1 score. Regarding transition movements
of C-MHAD, we correctly detected and recognized 102 out
of a total of 107 test actions from 12 subjects. Most of the
mis-predictions occurred between similar action classes, i.e.,
fine-grained action pairs, such as lie-to-stand and lie-to-sit,
sit-to-lie and stand-to-lie, etc. Regarding smart TV gestures
of C-MHAD, we correctly detect and recognize 99 out of
a total of 100 test actions from 12 subjects. Mis-predictions
were mainly caused by interference from irrelevant gestures.
Our method achieves the best performance, using only inertial
data, with F1 score of 95.3% for the action set of transition
movements and 98.5% for the action set of smart TV ges-
tures. Our results even surpass the benchmark performance
using both inertial and video fusion data (F1 score of 78.8%
for transition movements and 81.8% for smart TV gestures)
by a large margin.

VI. CONCLUSION AND FUTURE WORKS

Herein, we proposed an innovative seq2seq method
for wearable sensor-based fine-grained action detection. In



ZHONG et al.: MULTISTREAM TCN FOR CORRECT/INCORRECT PATIENT TRANSFER ACTION DETECTION

contrast to the existing seq2seq action detection methods, the
proposed method can utilize the advantages of each modal
signal or a combination of modal signals in the case of dis-
tinct actions of different individuals. We realized the proposed
method by incorporating a multistage TCN module into a
channel attention-based multistream structure. Each stream in
the structure represents a form of modality or a combination
of modalities. We applied these BSN-based fine-grained detec-
tion techniques for a promising application, namely, automatic
nursing skill assessment. By collecting a nursing skill data
set of patient transfer using BSNs, the proposed method real-
ized automatic nursing skill assessment with average stepwise
and framewise accuracies of 94.62% and 93.23%, respectively.
The proposed method outperformed the state-of-the-art action
detection methods on our nursing skill data set and public data
set (C-MHAD) owing to its ability to leverage the features of
more convincing IMU modalities.

In the future, we plan to collect a larger data set with
more nursing actions and skills. We will further consider how
to provide nursing learners with more informative feedback
in addition to correction information. Furthermore, lack of
training data may be an inevitable problem encountered by
supervised machine learning applications such as ours. The
quantity of labeled data samples is small owing to the cost of
data acquisition and privacy concerns. We will aim to deter-
mine how a reliable nursing skill assessment system can be
built based on a small data set.
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