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Random-Forest-Bagging Broad Learning System
With Applications for COVID-19 Pandemic
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Abstract—The rapid geographic spread of COVID-19, to which
various factors may have contributed, has caused a global health
crisis. Recently, the analysis and forecast of the COVID-19 pan-
demic have attracted worldwide attention. In this work, a large
COVID-19 data set consisting of COVID-19 pandemic, COVID-
19 testing capacity, economic level, demographic information, and
geographic location data in 184 countries and 1241 areas from
December 18, 2019, to September 30, 2020, were developed from
public reports released by national health authorities and bureau
of statistics. We proposed a machine learning model for COVID-
19 prediction based on the broad learning system (BLS). Here,
we leveraged random forest (RF) to screen out the key features.
Then, we combine the bagging strategy and BLS to develop
a random-forest-bagging BLS (RF-Bagging-BLS) approach to
forecast the trend of the COVID-19 pandemic. In addition, we
compared the forecasting results with linear regression (LR)
model, K-nearest neighbors (KNN), decision tree (DT), adaptive
boosting (Ada), RF, gradient boosting DT (GBDT), support vector
regression (SVR), extra trees (ETs) regressor, CatBoost (CAT),
LightGBM (LGB), XGBoost (XGB), and BLS.The RF-Bagging
BLS model showed better forecasting performance in terms of
relative mean-square error (RMSE), coefficient of determination
(R2), adjusted coefficient of determination (R2

adj), median abso-
lute error (MAD), and mean absolute percentage error (MAPE)
than other models. Hence, the proposed model demonstrates
superior predictive power over other benchmark models.

Index Terms—Artificial intelligence, broad learning system
(BLS), coronavirus disease 2019 (COVID-19) testing capacity,
COVID-19, random forest (RF), time-series forecasting.
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I. INTRODUCTION

THE NOVEL coronavirus disease 2019 (COVID-19),
caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) [1], has high transmissibility [2]. This new
infectious disease spread worldwide in less than half a year in
2020, causing devastation to the human population. The out-
break of COVID-19 has progressed with a tremendous impact
on the economic [3], social behavior [4], environment [5], cli-
mate [6], etc. Evolutionary virologist found bats may be the
origins of SARS-CoV-2 [7], which has a long evolutionary
history [8]. However, at present, there is no unified scientific
conclusion on the origin of SARS-CoV-2 [9]. Although most
countries launched emergency responses early in the outbreak,
the COVID-19 still swiftly spread from metropolitan areas
to urban areas, from countries to countries. By September
30, 2020, more than 200 countries had been affected, with
major outbreaks in the United States, India, Brazil, Russia,
Colombia, Peru, and others. A total of 34 488 636 COVID-
19 cases and 1 026 176 deaths were reported worldwide [10]
and more than 60% of the global population went into
coronavirus lockdown [11]. As a result, the World Health
Organization (WHO) set COVID-19 to the highest crisis
alert level by declaring the COVID-19 outbreak a global
pandemic [12].

The tremendous number of COVID-19 cases may be
attributable to multiple factors [13], [14]. Presymptomatic
and asymptomatic patients play a key role in the spread
of COVID-19 [15], [16]. Confirmed COVID-19 cases are
mostly quarantined or self-isolated [17], while presymptomatic
and asymptomatic patients form a large group of unregis-
tered patients, who can move freely and infect close contacts
easily [18]. The population movement of a large group of
presymptomatic and asymptomatic patients is a key fac-
tor contributing to the spread of COVID-19 [13]. For a
country or an area, sufficient COVID-19 tests can greatly
decrease the number of unconfirmed infections, reduce the
speed of disease transmission [19], and help in an accu-
rate trend analysis to evaluate the pandemic situation [20].
Testing capacity is highly related to the number of con-
firmed cases and essential to elucidate the progress of the
pandemic [19]. However, many low-income countries with
comparatively weak health systems have limited resources for
conducting massive tests and implementing public health mea-
sures to flatten the curve [20], [21]. Hence, the developing
level of countries or regions is also related to the spread
of COVID-19 [22]. The nonpharmacological interventions

c© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

https://orcid.org/0000-0002-1445-3559
https://orcid.org/0000-0003-0781-0308
https://orcid.org/0000-0002-1648-0227
https://orcid.org/0000-0002-0042-7552


ZHAN et al.: RF-BAGGING-BLS WITH APPLICATIONS FOR COVID-19 PANDEMIC 15907

(NPIs) (or public health measures) have been the mainstay
for containing the spread of COVID-19 [23]. Additionally,
the geographical environment and climate also influence the
spread of the COVID-19 [24]. In summarize, the spread of
COVID-19 is a nonlinear complex dynamic progress greatly
influenced by multiple factors, including COVID-19 testing
capacity [19], geographical environment and climate [24], eco-
nomic level [20], [22], human movements [25], NPIs (or public
health measures) [26], air pollution [14], etc.

Machine learning has shown promising results in forecast-
ing nonlinear dynamic progress and has been recognized as
a potentially powerful tool for fighting COVID-19 [27]–[29].
However, the new pandemic still brings a number of new chal-
lenges, such as predicting the spread of the infection [30],
making diagnoses and prognosis [31], [32], searching for treat-
ments and vaccines [33], and social control [34]. Recently,
estimates of COVID-19 patient volume are urgently required
for local authorities to effectively manage the rising case for
restricting the infections [35]. Generally, scholars develop epi-
demiological models for describing the spread of COVID-19.
However, due to the complexity and the high level of uncer-
tainty of the COVID-19, the standard epidemiological models
always are a high-dimension nonlinear model with many
unknown parameters, which are difficult to determine [25].
Hence, machine learning, which can, in principle, be uti-
lized to build outbreak prediction models, has recently gained
attention [36]. Machine learning always requires sufficient
pandemic data for training. In contrast, most recent works
reporting on using machine learning for a predictive purpose
use small samples of only one or several areas, which may
be biased and make predictions widely uncertain [37], [38].
Some researchers try to enhance the amount of data set by
adding new features, such as social media [36], [39]. However,
a large amount of media data inevitably contains a lot of
false information or noise, which has to be filtered to create a
training set [40]. As a result, it has posed great challenges
in developing machine learning models for accurately and
reliably forecasting the spread of COVID-19 [41]. Different
countries have various attitudes toward COVID-19 and dif-
ferent public health measures. As a result, the daily changes
of COVID-19 in different areas are highly volatile and vari-
able, which makes it a challenging task to develop a prediction
model, which can be applied to all the countries [37].

To alleviate the problem of lacking data and features, in
this work, we developed a data set, including the pandemic
data of 184 countries and 1241 areas with a total popula-
tion of 7 730 029 662, accounting for more than 95% of the
global population. Briefly, these countries varied in popu-
lation size, from less than one million population to more
than one billion. Additionally, we collected COVID-19 test-
ing data, economic level data, demographic information, and
geographic information to establish a large data set to train
machine learning models. A broad learning systems (BLSs)
is a new proposed structure neural network without deep
architecture [42] and shows good potential in time-series
prediction [43]. In this work, we utilize random forest (RF),
a popular ensemble learning method, to derive the impor-
tance score of each feature. Then, we adopted a set of most

important features as a training data set. Combining with
Bagging strategy and BLSs, we developed a random-forest-
bagging BLSs (RF-Bagging-BLSs) model for predicting the
spread of COVID-19 in 184 countries and 1241 areas. For
justification, a number of machine learning models, including
the linear regression (LR) model, K-nearest neighbors (KNN),
decision tree (DT), support vector regression (SVR), adaptive
boosting (Ada), RF, gradient boosting DT (GBDT), extra trees
(ETs) regressor, CatBoost (CAT), LightGBM (LGB), XGBoost
(XGB), and BLS, are adopted to compare with the proposed
RF-Bagging-BLS model. Experimental results demonstrate
that the RF-Bagging-BLS model outperforms other benchmark
models by providing more accurate, stable and robust results.

In this study, our main contributions are as follows.
1) We establish a large data set with comprehensive

information on COVID-19 spreading in 184 countries
and 1241 areas.

2) RF is adopted for feature importance analysis to improve
BLS. A machine learning model, the RF-Bagging-BLS
model, is proposed for forecasting the pandemic situa-
tion in various countries and areas around the world.

3) We developed prediction models based on traditional
machine learning, ensemble learning, and BLS.

4) The new data set is also adopted for multiday-ahead
forecasting to evaluate and verify the predictive power
of these prediction models in different scenarios.

Our approaches and predictive outcomes can help contain the
spread, flatten the curve, and possibly eliminate the current
COVID-19 pandemic.

II. LITERATURE REVIEW

Forecasting the spread of COVID-19 in an area has received
considerable critical attention. Based on a small data set
including pandemic data of 5 countries, a comparative analysis
of the predictive performance of machine learning and tradi-
tional models, including simple epidemiological and statistical
models, is conducted. Two models, the adaptive network-based
fuzzy inference system (ANFIS) and multilayered perceptron,
showed promising results [28]. A nonauto regressive neural
network is trained based on a small data set with 164 samples
for global records and 90 scores of nine different coun-
tries for predicting the cumulative number of infections and
death toll [44]. A modified stacked autoencoder is developed
for real-time forecasting the confirmed cases in China from
January 11 to Febuary 27, 2020 [45]. However, most of studies
focused on prediction of the confirmed cases in just one or few
countries, such as American [46], Brazilian [47], Canada [37],
China [36], France [48], Hungary [38], Italy [49], India [50],
Iran [51], Japan [46], South Korea [51], etc. [52].

The recurrent neural network (RNN) model is a com-
monly used model for predicting time series. A number of
researchers used long short-term memory (LSTM) to build
COVID-19 prediction models [53]–[55]. A modified LSTM
model, trained on the 2003 SARS data, is utilized to predict
the epidemic in China from January 23 to April 24, 2020 [54].
A data-driven estimation methods based on curve fitting and
LSTM is developed for forecasting the number of COVID-
19 cases in India [53]. Convolutional neural network (CNN)



15908 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 21, NOVEMBER 1, 2021

TABLE I
INFORMATION ON COVID-19 DATA RELEASED BY 184 COUNTRIES IN SIX CONTINENTS UP TO SEPTEMBER 30, 2020

is also a good candidate for analyzing and predicting the
spread of COVID-19 [55]. A model combining mechanistic
and machine learning methodologies is developed for allevi-
ating the lack of essential data and real-time forecasting in
China [56]. Also, an improved adaptive neurofuzzy inference
system (ANFIS) is proposed to estimate and forecast the num-
ber of confirmed cases of COVID-19 in the upcoming ten days
in China [57]. Ghamizi et al. [58] tried to combine the classi-
cal susceptible-exposed-infected-recovered (SEIR) model and
machine learning to develop an SEIR-HCD model consid-
ering the impact of mitigation strategies. A hybrid machine
learning method, which is based on a multilayered perceptron-
imperialist competitive algorithm (MLP-ICA) and ANFIS, is
used to predict the number of confirmed cases and mortality
rate in Hungary [38].

III. DATA DESCRIPTION AND FORECASTING PROBLEM

A. Pandemic Data

Based on several public data sets provided by John Hopkins
University, local Centres for Disease Control and Prevention
(CDC), and other health authorities, we established a large
COVID-19 epidemic research data set covering 184 countries
and 1241 areas (cities, provinces, states, and other prefec-
tures) spanning from December 8, 2019, to September 30,
2020. The cumulative number of confirmed cases in the 184
countries is shown in Fig. 1(a), while Table I summarizes the
information of the COVID-19 data in the six continents. The
data set includes the following contents.

1) For each day t, the COVID-19 spreading data set utilized
in this study includes the number of confirmed cases
IC(t), fatalities D(t) and recovered cases R(t) for 184
countries and 1241 areas (shown in Table I).

2) The information resultant from COVID-19 tests is
a critical factor in ascertaining infection numbers.
Additionally, sufficient testing capacity is essential
to elucidate the progress of the pandemic [19]: the
more tests, the high possibility to identify unconfirmed
COVID-19 patients. Hence, test capacity NT(t), rep-
resenting the cumulative number of conducted test,
is adopted as a feature for forecasting the spread of
COVID-19. Note that the world’s COVID-19 test capac-
ity increases dramatically in six months from less than
10,000 tests per day on March 1, 2020, to more than 4
million tests per day on September 30, 2020 [shown in
Fig. 1(b)].

3) Several studies suggest climate may be one factor
that influences the spread of COVID-19 [24]. The

Fig. 1. (a) Cumulative number of confirmed cases in 184 countries up
to September, 2020. The size of the solid circles represents the number of
confirmed cases. (b) Daily confirmed cases and daily COVID-19 tests over
the world up to September 30, 2020.

environment in an area is closely related to the local
location. Hence, the latitude xLA and longitude xLO of
each country and region are collected. Fig. 1(a) shows
the geographic distribution of confirmed cases in these
184 countries over the world. Additionally, we divide
each area into six categories according to the continent
where it is located. Then, each region has another feature
xCT = {1, 2, . . . , 6}, where 1, 2, 3, 4, 5, and 6 represent
Asia, Europe, North America, South America, Africa,
and Oceania, respectively.

4) Most developed countries have advanced health systems
and strong capacity to offset the economic and can
apply population-level physical distancing measures to
contain the spread of COVID-19, while undeveloped
countries may have limited sources to fight with COVID-
19. Hence, the economic situation of an area is also
an influential factor [20]. According to the World Bank
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TABLE II
INPUT FEATURES FOR MACHINE LEARNING MODELS

indicators, we divide countries into developed coun-
tries, developing countries, and undeveloped countries.
Each region has a feature xD = {1, 2, 3}, while 1, 2,
and 3 stand for developed, developing, and undeveloped
countries.

5) The population xP of each country or area is also adopted
as a feature for forecasting the spread of COVID-19.

Here, public health intervention information is not included
in this data set. Each country or even each prefecture in a
country would have different control measures. For instance,
in the USA, each state implement control measures indepen-
dently. In [59], the authors summarized country-level public
health measures in more than 200 countries from January 1 to
October 1, 2020. However, it is difficult to quantify the effort
of each public health measures. Hence, we do not consider
this factor in this work. Migration is another important fea-
ture influencing the spread of the COVID-19. However, few
countries or areas provide a daily migration or even weekly
migration data [13], [25], [46]. Hence, in our data set, we do
not consider migration data either. For developing predictive
models, we divided this COVID-19 data set into two parts:
1) the training set (73%), ranging from January 1, 2020, to
August 15, 2020 and 2) the test set (27%), from August 16,
2020, to September 30, 2020.

B. Forecasting Problem Formulation

As previously mentioned, we have nine original features,
including cumulative confirmed cases, totally recovered cases,
death toll, cumulative COVID-19 tests, the latitude and lon-
gitude, the continent to which the area belongs, the economic
level, and the population of each area. Based on these original
features, we can derive the following augmented features.

1) Daily Confirmed Cases:

�IC(t) = IC(t) − IC(t − 1). (1)

2) Daily Recovered Cases:

�R(t) = R(t) − R(t − 1). (2)

3) Daily Deaths:

�D(t) = D(t) − D(t − 1). (3)

4) Active COVID-19 Cases:

I(t) = IC(t) − R(t) − D(t) (4)

which represents the number of COVID-19 patients, who
have not been removed yet.

5) Daily COVID-19 Tests:

�NT(t) = N(t) − N(t − 1). (5)

6) Daily Growth Rate of Daily Confirmed Cases:

rI(t) = �Ic(t) − �Ic(t − 1)

�Ic(t − 1)
. (6)

7) Daily Growth Rate of Daily Recover Cases:

rR(t) = �R(t) − �R(t − 1)

�R(t − 1)
. (7)

8) Daily Growth Rate of Daily Death Cases:

rD(t) = �D(t) − �D(t − 1)

�D(t − 1)
. (8)

All the input features are summarized in Table II. Note that
these input features can be classified into two categories

xθ = {
xLA, xLO, xCT , xD, xp

}

x(t) = {IC(t), R(t), D(t), NT(t),�IC(t),�R(t)

�D(t),�NT(t), I(t), rI(t), rR(t), rD(t)} (9)

where xθ ∈ R
5×1 represents constant features, which is time-

independent, while x(t) ∈ R
12×1 stands for time-varying

features.
Here, we provide m-day forecasts for n consecutive days

with quantified uncertainty based on machine learning models.
The prediction model is

ŷ(t + n) = f (x(t − m), x(t − m + 1), . . . , x(t − 1), xθ ) (10)

where ŷ(t+n) represents the predicted value, while f (·) stands
for the machine learning model. Then, the prediction problem
can be formulated as

min
f (·)

∑ ∥∥y(t + n) − ŷ(t + n)
∥∥2

2

s.t. ŷ(t + n) = f (x(t − m), x(t − m + 1), . . . , x(t − 1), xθ )

(11)

where y(t + n) is the true value.

IV. METHODS

A. Broad Learning System

Drawing on the idea of the random vector function link
neural network (RVFLNN), Chen and Liu [42] proposed a
BLS, which is a new flat structure neural network without the
need for deep architecture. The BLS simplifies the training
procedure for a fast universal approximation and has provided
competitive results with deep learning and ensemble learning
methods in various fields. In recent studies, BLS has shown
impressive performance for specific tasks, including visual-
based assessment systems [60], predicting the setting time of
cement [61], fatigue detection [62], etc. The BLS has a uni-
versal approximation capability and can approximate the loss
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Fig. 2. Simplified structure of a typical BLS.

function globally. Inspired by this work, several structural vari-
ations of BLS have been proposed [63]. Additionally, the BLS
is a kind of increment learning structure, which can efficiently
and effectively update the system using newly added features
or data. Fig. 2 illustrates the structure of a typical BLS, which
shows the effects of different nodes and information propa-
gation. First, the features are extracted from the training data
set by the mapped feature nodes. Then, the adopted features
are transformed into enhancement nodes. Finally, the output
is a linear combination of all mapping features and the output
of enhancement nodes. The connection weights of a typical
BLS can be derived from the ridge regression approximation
algorithm [64], [65].

Consider the training set {(x(i), y(i)|x(i) ∈ R
D, y(i) ∈

R
C, i = 1, 2, . . . , N}, where D and C are the dimension of

each sample and corresponding outputs, respectively. Then,
the input pattern is X ∈ R

s×D, Y ∈ R
s×C, where X =

[x(1), x(2), . . . , x(s)]T , Y = [y(1), y(2), . . . , y(s)], and s is
the number of input samples. In the feature learning stage,
the input matrix X is mapped into n feature nodes by n fea-
ture mapping φi to generates random features. The following
feature function generates the mapped feature Zi:

Zi = φ(XWei + βei), i = 1, 2, . . . , n (12)

where weights Wei ∈ R
D×ki and bias term βei are randomly

generated matrices with applicable dimensions from the given
proper distribution scope [−a, a]. φ(·) stands for prior activa-
tion functions of mapped feature nodes. The outputs of groups
of feature nodes can be denoted as

Zn = [Z1, Z2, . . . , Zn] (13)

where Zi ∈ R
s×ki and Zn ∈ R

s×∑n
i=1 ki expresse all the mapped

features from n feature modes.
Then, Zn is randomly mapped to enhancement nodes for

nonlinear transformation. Assuming that there are m groups of
enhancement nodes, the output of the jth group of enhance-
ment node is

Hj = ζj
(
ZnWhj + βhj

)
, j = 1, 2, . . . , m (14)

where weights Whj and bias term βhj are also generated ran-
domly, and ζj(·) represents the activation function of the jth
enhancement node. The overall output of the enhancement

layer can be expressed as

Hm = [H1, H2, . . . , Hm] (15)

where Hm ∈ R
s×m. Consequently, the output of BLS can be

derived as

Y = [Z1, Z2, . . . , Zn|Hm]Wm
n

= [
Zn|Hm

]
Wm

n (16)

where Wm
n is the weights connecting the layer of feature and

enhancement nodes to the output layer.
Let Am

n = [Zn|Hm] ∈ R
s×(

∑n
i=1 ki+m), then, the connection

weights of a BLS can be rapidly approximated by the ridge
regression [66]

Wm
n =

(
λI + (

Am
n

)T
Am

n

)−1(
Am

n

)T
Y (17)

where λ ∈ R is a constant. The BLS has a simple structure,
which effectively increases the training procedure and keeps
the generalization ability of function approximation.

B. Random Forest Feature Selection

RFs is a popular ensemble learning methods consisting of
multiple DTs [67]. Correlation between different DTs can
be eliminated via a random adopted strategy. Each DT is
developed from a random sample of the original training set.
Each tree provides a classification or regression result, and
the forest summarizes these results to formulate a more accu-
rate and stable output. Hence, RF shows good performance in
solving high-dimensional, nonlinear, and ill-posed classifica-
tion and regression problems. A highly dimensional problem
always has a vast number of input features. In establishing of
prediction models, a feature xj with a high correlation with the
objective value y may not be an important feature helping the
prediction, while some features with relatively low correlation
coefficients could be more important. It is challenging to man-
ually investigate the feature importance and select the most
relevant features for prediction. Compared with other feature
selection methods, RF is more explanatory and efficient. One
key advantage of using RFs is that it can derive the importance
score of each feature, which can be utilized to evaluate indi-
vidual feature importance regarding the prediction results [68].
Hence, RF is adopted to select the important features.

First, we can utilize ordinary RF to derive the importance
score of each feature. RF uses the mean-square error (MSE)
or mean absolute error (MAE) to develop regression trees and
determine regression results in each tree. The MSE at node v,
MSE(v), measuring the impurity of v can be derived as

MSE(v) =
I∑

i=1

(
ŷi − yi

)2 (18)

where ŷi is the regression results of sample i recording at
node v. I is the number of samples divided for node v.

Again, the MSE of feature xi for splitting the tree node v
is defined as

Gain(xi, v) = MSE(xi, v) − MSE
(
xi, vL)

WL

− MSE
(
xi, vR)

WR (19)
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where Gain(xi, v) represents the impurity of node v; vL and vR

represent the left and right child node of node v, respectively;
WL and WR stands for a fraction of examples assigned to the
left and right child node, respectively. Generally, we adopt the
feature maximizing the reduction in impurity as the splitting
feature.

Moreover, we can derive the importance score of the tree-j
for feature xi from the Gain(xi, v)

Impj
i =

∑
b∈Vj

xi
Gain(xi, b)

Gain
(
Vj

) (20)

where Vj is the set of split nodes of the tree-j; b ∈ Vj
xi is a

node set splitting on feature xi; Gain(Vj) is the sum of the
impurity of all nodes in tree-j.

Normalization of the importance score is defined as

NormImpj
i = Impj

i

Impj
sum

(21)

where Impi stands for the importance score of xi and Impj
sum

stands for the sum of all features impurity in the tree-j, while
the normalized importance score is 0 ≤ NormImpj

i ≤ 1.
Finally, in RF, the importance score of xi is defined as

ImpRF
i =

∑ntree
j=1 NormImpj

i

ntree
(22)

where ntree represents the number of tree.

C. Bagging

Bagging [69] is a kind of ensemble learning strategy that
ensemble many weak learners to build a strong learning idea.
It is mainly used for model improvement in machine learning
and has wide applications in classification and regression tasks
in prediction. Boostrap Sampling is a technique in Bagging.
Algorithm 2 describes the process of Boostrap Sampling.
Suppose one has a data set that contains M samples; then,
each sample is randomly selected and put back into the origi-
nal sample set. Repeat this procedure for N times. A subdata
set containing N samples can be obtained. The probability
of each sample in the original data set being selected is the
same. In this work, we utilized the Boostrap Sampling strategy
to establish T subdata sets containing ns samples. Then, we
utilize T subdata sets to establish T weak learners. Finally, a
combination strategy is used to combine T weak learners into
strong learners.

Assume that the sample data set of COVID-19 information
is D = {S1, S2, . . . , SN}, where Si represents a sample of the
data set composed of features and predictive value. All the
samples can be divided into a training and a test data set,
the sizes of which are N1 and N2, respectively. A sampling
ratio of p is set to determine the number of samples extracted
from the original training data set to form a subtraining data
set. The bootstrapping technique is adopted to make the selec-
tion procedure of the subtraining data set completely random.
Bootstrapping technique draws samples after choosing these
samples and then puts samples back into the original training
data set. The process is shown in Algorithm 2.

Algorithm 1 Derive RF Feature Importance Score
Input: Training dataset: Dtrain = {S1, S2, · · · , SN1 }; Number of fea-

tures in Dtrain: nf ; Number of selected features: ns(ns ≤ nf );
Feature set of Dtrain: Fe;

Output: Selected feature set Fe;
Use Dtrain to build a RF model;

2: Set the number of RF trees: ntree;
for j = 1 to ntree do

4: Set Impj
sum = 0;

for i = 1 to nf do
6: Set Impinit = 0;

Set the set of split nodes: Vj;
8: Set the set of split nodes on feature xi: Vj

xi ;

for b in Vj
xi do

10: Impinit = Impinit + Gain(xi, b);
end for

12: Impj
i = Impinit

Gain(Vj)
;

Impj
sum = Impj

sum + Impj
i;

14: end for
for i = 1 to nf do

16: NormImpj
i = Impj

i

Impj
sum

;

end for
18: end for

for i = 1 to nf do
20: Set NormImpi = 0;

for j = 1 to ntree do
22: NormImpi = NormImpi + NormImpj

i;
end for

24: ImpRF
i = NormImpi

ntree
;

end for
26: ImpRF = {ImpRF

1 , ImpRF
2 , ImpRF

3 , · · · , ImpRF
nf

};
Sort ImpRF from largest to smallest, get the sorted set
SortedImpRF ;

28: Base SortedImpRF to extract the feature set Fe of the first ns
scores.
return Fe.

Algorithm 2 Boostrap Sampling
Input: Sample ratio: p;

Number of iterations: T; Training dataset: Dtrain =
{S1, S2, · · · , SN1};

Output: The sampled sample set Dbs
Set the number of subsamples: Nb = �N1 · p�;
for i = 1 to T do

3: for n = 1 to Nb do
Use random sampling to sample Sn from Dtrain;
Sn goes back to the data sample set Dtrain;

6: Put Sn into the data set Dbsi ;
end for
Dbsi = {S1, S2, · · · , SNb }

9: Put Dbsi into the Dbs;
end for
return Dbs = {Dbs1 , Dbs2 , Dbs3 , · · · , DbsT }.

D. Random-Forest-Bagging Broad Learning System

Here, the classic RF and ensemble learning-bagging are
adopted to enhance the performance of BLS for the prediction
of the spread of COVID-19. Here, we leverage the RF feature
selection strategy for adopting important features to improve
predictive performance. Then, we randomly sample data in
these important features to form a number of subtraining data
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Fig. 3. Structure of bagging-BLS and RF-bagging-BLS.

Algorithm 3 RF-Bagging-BLS
Input: Training dataset :Dtrain = {S1, S2, · · · , SN1 }; Number of fea-

tures in Dtrain : nf ; Number of selected features: ns, ns ≤ nf ;
Feature set of Dtrain : F; Number of features in Dtrain : nf ;
Number of iterations : T; Sample ratio : p; Basic learning model
:ξ ;

Output: A prediction model H;
1: Enter Dtrain, nf , ns and F into Algorithm 1 to get the feature set

Fe.
2: Selected data set : Ds = {Fe(D)|Fe ⊆ F};
3: Enter p, T and Ds into Algorithm 2 to get the sampled set Dbs =

{Dbs1 , Dbs2 , Dbs3 , · · · , DbsT };
4: for i = 1 to T do
5: Randomly generate feature set Fr from Fe;
6: Sub-training set :

D2
bsi

= {Fr
(
Dbsi

)|Fr ⊆ F};
7: Using D2

bsi
Training the sub-BLS :

hi = ξ
(

D2
bsi

)
;

8: end for
9: return H(x) = argminy∈Y

∑T
i=1 ‖hi(x) − y(t + n)‖2

2.

sets based on bagging strategy and then build multiple inde-
pendent BLS prediction models based on these subtraining
data. Finally, we combine these results to provide a final
prediction. The structure of the RF-Bagging-BLS model is
shown in Fig. 3, in which Xtrain is the training input, Ytrain
is the expected training output. After the training data pass
the feature importance analysis, Xs is the input after the fea-
ture selection in data set Ds, Ys is excepted output in data
set Ds.

The establishment of an RF-bagging-BLS includes the
following parts.

1) Feature Selection: Multiple factors are related to the
spread of epidemics. However, part of the features may
be less relevant to the spread and redundant, decreasing

learning ability. As the multiple features are mutually
independent, we adopt an RF feature selection strategy
to automatically adopt the most suitable features (shown
in Algorithm 1).

2) Establish Subtraining Data Set: The whole data set is
divided into two data sets: a) a training data set (of size
N1) and b) a test data set (of size N2). �N1·p� samples are
chosen from the training data set using the Boostrapping
technique, where 0 < p < 1 is the sampling ratio and �x�
represents the largest integer no more than x. This sam-
pling process is repeated T times to prepare T different
subtraining data sets for training submodels.

3) Build the Sub-BLS Models: In this model, each sub-BLS
model is regarded as a weak learner in the ensemble
learning model. Then, we combine multiple weak learn-
ers to form strong learners. Finally, the output of the
RF-Bagging-BLS model (shown in Algorithm 3) can be
computed by

yp = yp1 + yp2 + · · · + ypT

T
(23)

where ypi is the predicted value of the ith learner, while
yp is final predicted value.

V. EXPERIMENTAL RESULTS

In order to assess the performance of the proposed tech-
nique, we adopt several forecasting methods to evaluate the
results. We employed LR model, KNN, DT, Ada, RF, GBDT,
ETs regressor, SVR, CatBoost (CAT), LightGBM (LGB),
XGBoost (XGB), and BLS approaches in the comparisons.
We trained each model with data until September 30, 2020,
reported by local health authorities in 184 countries and 1241
areas. Meanwhile, multiple evaluation metrics are adopted to
evaluate the predictive power of each model.

Due to the large amount of human and financial resources
required to achieve a comprehensive picture of the spread
of COVID-19 in an area, the data released by many local
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Fig. 4. (a) Probability distribution of y(t + n). (b) Probability distribution of
log 10(y(t + n)).

authorities will occasionally have some errors. For instance,
the number of daily confirmed cases or the daily increase
in the number of recovered people is negative. Hence, we
have to process the data set by removing the abnormal data
or filling in missing data. In this study, the predictive value
y(t + n) is the cumulative number of confirmed cases in an
area, which increases monotonically. Here, we adopt m = 7
and n = 7; namely, we provide 7-days forecasts for 7-
consecutive days in an area (cities, provinces, states, and
other prefectures). According (10), we have more than 100
different candidate features. Studies indicate that, in some
scenarios, data-driven methods perform well when the output
data have a distribution close to a uniform or normal distri-
bution [70]. We hope that the predicted value distribution is
closer to the normal distribution to improve the model’s gen-
eralization ability after training. However, the distribution of
y(t + n) is far from a normal distribution [shown in Fig. 4(a)
with n = 7], while the distribution of log10(y(t + n)) is
similar to a normal distribution [shown in Fig. 4(b)]. Here,
we consider two scenarios: under scenario-I, first, machine
learning models are developed to predict log10(y(t + n))

to achieve prediction value log10(ŷ(t + n)), and then per-
form the reverse operation to achieve the predictive value of
ŷlog10

(t + n) = 10log10(ŷ(t+n)); under scenario-II, we establish
machine learning models predict y(t + n) directly.

A. Correlation Analysis

In our case, there exists a large number of features that may
influence the spread of COVID-19. In the proposed methods,
we use RF for feature selection, while we adopted correla-
tion analysis for feature selection for other classical models
for a fair comparison. In order to adopt features highly corre-
lated with the predictive value as the input of machine learning
models, the violin chart is utilized. First, we derived all the cor-
relation coefficients between input feature xj and the predictive
value y. Then, the violin chart (Fig. 5) shows the frequency
(or probability distribution) of the absolute value of correlation
coefficients. The correlation coefficients range from 0.0004 to
0.9953, while upper and lower quartiles are 0.0436 and 0.8052,
respectively. The median of the correlation coefficient is about
0.2. Note that the violin chart is clearly separated into two parts
(the dashed line in Fig. 5): one class of the features with the

TABLE III
50 IMPORTANT FEATURES FOR CLASSICAL MODELS

Fig. 5. Absolute value of the correlation coefficient between features and the
predictive value: the white point is the median value of data; the upper and
lower bounds of the middle black box represent the upper and lower quartiles
of the correlation coefficients, respectively; the upper and lower bounds of
the middle black line represent the maximum and minimum values of the
correlation coefficients; the shape of the violin indicates the frequency (or
estimated probability distribution) of correlation coefficients.

absolute value of the correlation coefficient is greater than 0.5,
while the other is less than 0.5. Then, according to this obser-
vation, γthr = 0.5 was taken as the threshold. The feature with
a correlation coefficient greater than 0.5 after taking the abso-
lute value is taken as the input of machine learning models.
Finally, 50 features are selected as the input of classical models
except for the proposed RF-BLS and RF-Bagging-BLS. The
50 features are divided into two categories, including original
and augmented features (shown in Table III).

B. Experimental Results by Classical Methods

After selecting the relevant features, we used all the mod-
els mentioned above to build the predictive models. Since the
scale of different features varies in a large range, we first
adopted the Z-score standardized method to normalize the
feature data on the same scale

x∗ = x − x̄

σ
(24)

where x̄ and σ represent the mean of feature and the standard
deviation of feature, respectively.
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TABLE IV
SCENARIO-I: THE EVALUATION VALUE OF DIFFERENT MODELS WITH THE PREDICTIVE VALUE ŷlog 10(t + n)

TABLE V
SCENARIO-II: THE EVALUATION VALUE OF DIFFERENT MODEL

WITH PREDICTIVE VALUE y(t + n)

Each machine learning model has a large volume of hyper-
parameters to be adjusted to achieve a satisfying performance.
Here, a grid search method is adopted for searching the
optimal hyperparameters [71]. The regression task evaluation
metrics, including MAE, relative MSE (RMSE), coefficient
of determination (R2), adjusted coefficient of determination
(R2

adj), median absolute error (MAD), and mean absolute
percentage error (MAPE), were adopted to evaluate the
performance of each model. Suppose that the test set has n
samples, the characteristics of the model input are k, ŷ is the
predicted value of sample i, yi is the actual value of the sample,
mediann(.) represents the median value of n samples

RMSE =
√√√√1

n

n∑

i=1

(
ŷi − yi

)2 (25)

MAE = 1

n

n∑

i=1

∣∣ŷi − yi
∣∣ (26)

MAD = mediann
(∣∣ŷi − ŷi

∣∣) (27)

MAPE = 100%

n

n∑

i=1

∣∣∣∣
ŷi − yi

yi

∣∣∣∣ (28)

SSres =
∑(

ŷi − ŷi
)2 (29)

SStot =
∑(

ŷi − y
)2 (30)

R2 = 1 − SSres

SStot
= 1 −

∑(
yi − ŷi

)2

∑
(yi − y)2

(31)

Radj
2 = 1 −

[(
1 − R2

)
(n − 1)

n − k − 1

]

(32)

where SSres is residual sum of squares and SStot represents
total sum of squares.

Tables IV and V show the regression task evaluation met-
rics for each model under two scenarios. Without considering
the proposed RF-BLS and RF-Bagging-BLS methods, LR
takes a good effect in predicting y(t + n), with 3394.6494 for
RMSE, 1601.8012 for MAE, and 0.9994 for R2. DT makes
a better effect to predict ŷlog 10(t + n). The RMSE and MAE
of DT in case two are 20441.1788 and 9758.9613, respec-
tively. However, DT shows better robustness in predicting
y(t + n), with 1423 for MAD. For ensemble learning models,
Ada has the best predictive effect compared to other mod-
els. In case one for predicting y(t + n), RMSE and MAE are
17861.0283 and 5933.6822, respectively. LGB has the best
robustness among the classical ensemble learning models with
MAD equals 939.8207. Among all the classical methods, the
predictive performance of BLS is better than all the other
methods. In scenario-II, The RMSE, MAE, and R2 of BLS
are 2269.8906, 1362.8407, and 0.9997, respectively. It means
BLS has a better fitting effect on the test set. By compar-
ing Tables IV and V, we find that DT and LGB have better
results in predicting ŷlog10

(t + n), which means that the data
has a normal distribution and a certain lifting effect for some
models.

C. Experimental Results by RF-Bagging-BLS

1) RF-BLS: The RF-BLS is established by BLS using the
features adopted through RF. Compared with classical BLS,
the predicted RF-BLS results are slightly improved, indicating
that the feature selection strategy base on RF helps improve
BLS performance. Table V shows the predicted results of
RF-BLS and BLS. The RMSE, MSE, and MAE of RF-
BLS predicting y(t + n) are 4171692.9897, 2042.4723, and
1018.2183, respectively. It can be observed that the RMSE,
MSE and MAE of the RF-BLS are lower than that of BLS.
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Fig. 6. Forecast results generated by BLS, RF-BLS, Bagging-BLS, and RF-Bagging-BLS; (a) New Mexico. (b) New York. (c) Wiscosin. (d) Kansas.
(e) Missouri. (f) Indiana.

Meanwhile, compared with BLS, RF-BLS is also more robust
and the MAD is 565.5706.

2) Bagging-BLS: The Bagging-BLS is a combination
model of Bagging and BLS [72]. Fig. 3 shows the structure
of Bagging-BLS. It is worth noting that the feature selection
used by Bagging-BLS is still a correlation analysis. Through
RMSE and MAE in Table V, Bagging-BLS also has better
robustness than classical BLS. The MAD of Bagging-BLS pre-
dicts y(t+n) is 565.5706. However, by comparing RMSE and
MAE, the Bagging-BLS model only increase the predictive
accuracy slightly.

3) RF-Bagging-BLS: Experimental results show that the
proposed RF-Bagging-BLS achieve the best value among all
the comparison algorithms. All the evaluation metric of BLS
are all the best (shown in Table V). In case one, the RMSE,
MAE R2 of RF-Bagging-BLS predicts y(t+n) are 1989.1970,
952.5739 and 0.9998, respectively. Additionally, the metric

MAD shows that RF-Bagging-BLS has great robustness.
Fig. 6 shows the prediction results of New Mexico, New
York, Wisconsin, Kansas, Missouri, and Indiana by BLS,
RF-BLS, Bagging-BLS, and RF-Bagging-BLS, respectively.
Several researchers utilize CNN, LSTM, and GRU models to
forecast the spread of COVID-19 based on a data set of one or
a few countries. In this work, we also test CNN, LSTM, and
GRU based on our data set. However, these methods are easily
overfitting. For instance, LSTM (with three layers, 64 nodes),
GRU (four layers, 128 nodes) would converge in 1000 epochs,
and 1-D CNN (one layer, three kernel size, one stride) would
converge in 100 epochs. GRU achieves 25021.441 RMSE in
training data, while 147259.83 RMSE in testing data; LSTM
achieves 18975.209 RMSE in training data, while 169766.4
RMSE in testing data; 1-D CNN achieves 11937.837 RMSE
in training data, but performed poorly in the testing data.
Experimental results indicate that these neural network models
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are easily overfitting based on a small data set and provide
poor performance in this task.

Previous work points outs that in some cases that data-
driven methods perform well when the output data have a
distribution close to a uniform or normal distribution. Hence,
in this work, we tested two scenarios: under scenario-I, first,
we develop machine learning models to predict log10(y(t+n))

to achieve the predictive value log10(ŷ(t + n)), then derive
ŷ(t + n), while under scenario-II, machine learning mod-
els predict the cumulative confirmed cases y(t + n) directly.
However, experimental results indicate that, under scenario
one, all the models achieve a worse performance in forecast-
ing y(t + n). Hence, the predictive output log10(y(t + n)) with
a normal distribution cannot help improve the performance.
Additionally, according to the experimental results presented
in Tables IV and V, most machine learning models can achieve
relatively better performance under scenario-II. The proposed
RF-Bagging BLS show the best performance in predicting
y(t + n), which is also the best result under two scenarios.
Experiment results indicate that the distribution of predictive
value affects the performance of data-driven models [73].
However, in our case, the predictive value with a uniform or
normal distribution may not help in improving the predictive
performance. BLS algorithm is efficient for training. In our
work, the mean training time of RF-BLS, Bagging-BLS, and
RF-Bagging-BLS, is 15.346, 0.500, and 17.175 s, respec-
tively. After training, the time required to predict a result
is 0.273, 0.287, and 0.467 s for RF-BLS, Bagging-BLS, and
RF-Bagging-BLS, respectively.

VI. CONCLUSION

COVID-19 has become a global public health threat and
spread to more than 200 countries by September 30, 2020.
How to contain the spread of COVID-19 becomes a challeng-
ing task for policymakers to assess health care requirements
to estimate the present trends, determine public health mea-
sures, and flatten the COVID-19 curve shortly. Until now,
most researchers just developed classical models based on
epidemic spreading data covering one or several countries.
However, the behavior of the COVID-19 outbreak varies from
region-to-region. The number of confirmed cases released
by the local authorities could be influenced by multiple
factors, such as testing capacity and other related factors.
Additionally, classical epidemiological models usually do not
consider extra details, such as testing capacity, population,
geographic information, etc. With limited testing capacity and
human resources, significant delays in identifying, isolating,
and reporting cases due to the magnitude of the epidemic are
unavoidable, which has a negative impact on the predictive
performance. Hence, whether these models can be applied to
other countries or not is a question.

Due to the complex nature of forecasting the COVID-19
trend, we suggest machine learning as an effective technique
to model the outbreak. Recently, most of the local authori-
ties provide COVID-19 information, which scatters on dozens
of public databases. In this work, we collect and unified
these data sets into one comprehensive data set, including

the epidemic spread data, geographic information, economic
information, population, COVID-19 testing information of
184 countries and 1241 areas (cities, provinces, states, and
other areas). Then, a hybrid machine learning model of RF-
Bagging-BLS is developed for predicting the COVID-19 trend
in more than 180 countries and 1200 areas. The proposed
models showed promising performance in timely short-term
forecasts without the requirement of epidemiological mod-
els. RF-Bagging-BLS model outperformed other models by
delivering accurate results on validation samples. Experimental
results show that the proposed method presents the best
result in all evaluation criteria, indicating the RF-Bagging-
BLS model is suitable with this training data set. An accurate
prediction of the pandemic situation can help the authority
to evaluate the hospital capacity needs and provide effec-
tive help for the government to adopt epidemic prevention
policies [74], [75]. However, inaccurate predictions of cases
may lead to a loosening of containment policies, leading
to the emergence of another wave of infection and a rapid
increase in the number of infected cases [76]. The effec-
tive implementation of public health interventions, such as
social distancing, lockdown, and personal protection, will be
critical to bringing the epidemic under control. Short-term
forecasting of COVID-19 can help policymakers, including
health managers, public health officials, etc., to prepare med-
ical resources, organize health care to confront the epidemic,
plan nonpharmaceutical interventions required to mitigate an
outbreak, finally contain the epidemic outbreak or even elim-
inate the pandemic. This work can help local authorities to
make suitable decisions in the future.

The world today is connected with smart devices [77]–[79].
Data is recorded and shared between the regions in an
unprecedented way than ever before [80]. The availability
of timely and high-quality pandemic data can help scholars
develop data-driven methods to analyze the pandemic situ-
ation. Weather and air quality are other important factors.
However, the proposed data set did not include the detailed
weather and air quality data, such as daily temperature, wind
speed, etc. We replace the weather data with geographic loca-
tion data, which may be too rough in this work. Experimental
results show that the proposed method present the best result
in all the evaluated criterion, indicating the proposed method
is suitable with this training data set. In the future work, we
would quantify the effort of public health measures, and con-
sider migration data and weather data. Machine learning has
been shown as a powerful tool in healthcare. We would explore
the true capability of the proposed hybrid model.
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