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Abstract—With a growing number of embedded devices that
create, transform, and send data autonomously at its core, the
Internet of Things (IoT) is a reality in different sectors, such as
manufacturing, healthcare, or transportation. With this expan-
sion, the IoT is becoming more present in critical environments,
where security is paramount. Infamous attacks, such as Mirai,
have shown the insecurity of the devices that power the IoT, as
well as the potential of such large-scale attacks. Therefore, it is
important to secure these embedded systems that form the back-
bone of the IoT. However, the particular nature of these devices
and their resource constraints mean that the most cost-effective
manner of securing these devices is to secure them before they
are deployed, by minimizing the number of vulnerabilities they
ship. To this end, fuzzing has proved itself as a valuable tech-
nique for automated vulnerability finding, where specially crafted
inputs are fed to programs in order to trigger vulnerabilities and
crash the system. In this survey, we link the world of embedded
IoT devices and fuzzing. For this end, we list the particulari-
ties of the embedded world as far as security is concerned, we
perform a literature review on fuzzing techniques and proposals,
studying their applicability to embedded IoT devices and, finally,
we present future research directions by pointing out the gaps
identified in the review.

Index Terms—Embedded system, fuzzing, Internet of Things
(IoT), software testing, vulnerabilities.

I. INTRODUCTION

THE Internet of Things (IoT) is the novel networking
paradigm, where heterogeneous computing devices,
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Fig. 1. IoT system application domain.

known as IoT devices, interact between them with little to no
human intervention to collaborate toward a common goal [1].
Thanks to this total inter connectivity, [oT devices can continu-
ously create and stream information that operators can leverage
and provide value-added services on top of it in areas, such
as industry, smart cities/homes, security applications, health
care, etc., as shown in Fig. 1. Examples of such services
include predictive maintenance, precision healthcare, security
monitoring, smart crop management, or advanced control of a
production process.

Since its recent inception, IoT has undergone a near-
exponential growth and by 2025, the world will have 75 billion
IoT devices [2], if the actual grade of growth continues. In
other words, in five-years time, the number of IoT devices
will be doubled, effectively duplicating the size of the current
IoT.

IoT devices, while heterogeneous in nature, are rather
resource constrained when compared to general-purpose com-
puting devices, such as laptops or workstations. The reason
for this constraint is that IoT devices or things are embed-
ded systems based on a microcontroller that can transmit and
receive information [3], mainly interacting with the physical
world using peripherals and optimizing resource usage. While
this constraint allows to build cheaper IoT devices, easing IoT
adoption, it also means that devices often lack functionalities
that are considered non essential, such as security. Moreover,
this constraint also translates in the difficulty or impossibility
of conducting frequent upgrades on the system securely [4].
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As a consequence, IoT device security is a unique chal-
lenge, vastly different from the traditional security paradigm
in the information technology (IT) domain, as the devices and
systems differ in nature and capabilities. This challenge has
yet to be properly addressed, as the increasing number of
attacks that target IoT devices shows: in the first half of 2019
alone, more than 100 million smart devices were attacked [5].
These attack ranges are varied in nature, ranging from physical
attacks to crypto-analytical ones [6] and their effects can be
both far reaching, as shown by the infamous Mirai Distributed
Denial-of-Service (DDoS) attack in 2016 [7], as well as poten-
tially deadly, as they can target IoT devices inside critical
systems, such as cardiac pacemakers [8] or cars [9]. These
attacks often exploit vulnerabilities, that is, security flaws in
the software that allow attackers to gain control of the system
through their exploitation. In their survey related to IoT vul-
nerabilities, Neshenko et al. [10] also identified the unmet
challenge of vetting deployed IoT code, posing an important
risk for IoT security as a whole. It is, thus, critical to reduce
the number of vulnerabilities to a minimum in order to hinder
exploitation.

The aforementioned particularities of embedded IoT devices
(lack of resources and difficult to update) suggest that in order
to be secured, the most cost-effective approach is to mini-
mize their vulnerabilities before their deployment to the field.
Therefore, it is a matter of discovering and patching as many
security vulnerabilities as possible while the system is still
under development. While many approaches for vulnerability
discovery exist, fuzzing remains as one of the main techniques
for this endeavor. According to Manes et al. [11] fuzzing
remains popular due to its simplicity, its low barrier to deploy-
ment, and its vast amount of empirical evidence in discovering
real-world software vulnerabilities. In essence, fuzzing con-
sists of repeatedly feeding deliberately malformed inputs to
a target (a device or a program) known as the system under
test (SUT) in order to provoke crashes and finding the vulner-
abilities that cause them. It has also been defined as one of
the effective ways to identify software vulnerabilities by test-
ing [12]. Fuzzing has developed wide applications since its
inception in 1990, when Miller et al. [13] developed the first
fuzzing tool [14]. Since then, numerous proposals have been
developed combining different techniques for fuzzing (refer to
surveys [11] and [15]-[17] for a wider analysis on the topic),
improving the general performance both in number of found
vulnerabilities as well as the time to do so.

Therefore, it seems natural to link fuzzing and embedded
IoT, by integrating fuzzing as part of the embedded software
development life cycle to hunt as many vulnerabilities as pos-
sible before the system is finally released. The suitability of
this match was also pointed out by Muench et al. [18] and also
by the ISO/IEC 62 443-4-1 standard, that states that fuzzing is
a necessary step for embedded product certification [19]-[21].
Even if fuzzing has been used effectively on IT systems to
test traditional software and remains widely used, its adop-
tion has not been that widespread inside the IoT or embedded
environments [22]-[24]. The main reason for this lack of adop-
tion resides in the differences of embedded systems when
compared to their IT counterparts, particularly, the scarcity
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of resources available and the lack of informative system
responses. These differences render using general-purpose
fuzzers against embedded device difficulty, as they risk over-
flowing the system with a higher number of inputs that the
systems can handle. Moreover, fuzzers catered to embedded
systems need to be able to restart the SUT in order to re-
establish a clean state for the next test case [18], which is not
as simple as restarting a process as it happens in IT systems.
Early examples of real-life embedded fuzzing include the
discovery of vulnerabilities in smartphones by fuzzing SMS
messages [25], testing GSM implementations [26], fuzzing the
CAN protocol in safety-critical applications, such as in vehi-
cles to unlock doors [27], or in payment systems by fuzzing
credit cards to exceed the limits of payments [28]. Fuzzing
is a promising technique for embedded systems, as it allows
to find vulnerabilities without knowing its internal operation
and only focusing the I/O content of the device. However,
as mentioned earlier, using fuzzing to test embedded systems
and IoT devices, while promising, also presents its own set of
challenges.

This survey article aims to provide the necessary foundation
to enable IoT device fuzzing research, by reviewing, analyzing,
and discussing the existing literature on fuzzing approaches
from the point of view of the embedded and IoT world, as well
as identifying future research areas. As such, this survey com-
plements the past fuzzing surveys ([11], [15]-[17]) by basing
its analysis in an application field not considered previously.
In particular, this article presents the following contributions.

1) A review of the literature on different fuzzing proposals.

2) A comparison and discussion of said proposals based on

their applicability to embedded systems.

3) The identification of different future research lines

related to fuzzing and embedded systems.

The remainder of this article is organized as follows.
Section II introduces embedded systems and their particular-
ities and challenges regarding security. Section III presents
fuzzing and the different existing approaches when comparing
them. Section IV details the current necessities and challenges
of fuzzing embedded systems. Section V compares the exist-
ing fuzzing approaches and outlines the features an embedded
system fuzzer should have. Section VI draws some future
research lines evolved from the necessities identified in the
previous analysis. Finally, Section VII concludes this article.

II. EMBEDDED SYSTEMS

While embedded or cyber—physical systems (CPSs) are not
equivalent terms for the IoT [29], it is true that IoT devices
can be considered embedded systems [3], [30]. Furthermore,
according to the IEEE document titled Toward a Definition of
the Internet of Things (IoT) [31], the main difference between
a CPS and an IoT device is that the CPS does not have
the requirement of being connected to the Internet. This is,
precisely, a key factor in terms of security when a thing is
connected to the Internet, as it vastly expands its attack surface.

According to the same document [31], in order for a system
or thing to be considered an IoT device, it must contain the
following set of features (depicted in Fig. 2).
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Features that a system must contain to be considered as an IoT

1) Interconnection of things.

2) Programmability.

3) Self configurability.

4) Connection of things to the Internet.

5) Embedded intelligence.

6) Uniquely identifiable thing.

7) Interoperable communication capability.

8) Sensing/Actuation capability.

9) Ubiquity: Anywhere, anytime.

Depending on the complexity of the IoT scenario at hand,
the capabilities and nature of IoT devices also range from full-
fledged computer hosts to small and very elemental embedded
devices. In this sense, the embedded devices are located in the
opposite end from computer hosts, which are able to perform
very complex tasks at the same time.

In essence, the embedded systems are dedicated software
and hardware solutions that have been designed to perform a
specific function, generally interacting with the physical world
using their peripherals [32]. These systems are generally part
of a larger structure, such as the IoT, where they can be used
in a wide range of applications. It is, precisely, the varied and
specific nature of their applications what yields the complexity
of these systems when trying to classify them. On one end,
for the more simple applications, devices with low memory
and processing power are used, such as STM32 microcon-
trollers [33]. On the other end, for the more complex tasks,
the embedded systems that are used are not that constrained
and are nearer from IT standards, even to the point to be able
to substitute a computer in its most simple tasks, such as in
the case of the popular Raspberry Pi 4 [34]. It is necessary to
note that the hardware and software of the embedded device
is designed according to the needs and it is not oversized,
since the size, consumption, and cost should be minimal to
perform the task at hand [35]. For simpler tasks, the more
constrained devices operate without an operating system (OS),
while for more complex tasks, embedded systems ship OSs
similar to the ones that can be found on desktop PCs [18].
Apart from the computing power at hand, time is also a criti-
cal factor when considering embedded devices. Most devices
need a deterministic response to real-time events [36]. These
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systems are named real-time embedded devices. Next, we
present a classification of embedded systems according to their
capabilities and specific security concerns related to this field.

A. Classification of Embedded Systems

The aforementioned diversity of embedded systems makes
it difficult to designed clear classification, as different cri-
teria can be used to establish this. Some classifications are
based on the functional requirements of the system (real time,
stand alone, networked, or mobile), the complexity of the
microcontroller (small, medium, or sophisticated) [37], the
application filed (manufacturing, security, transport, etc.) or
the type of the OS the system is running. In this article, we
will focus on the classification according to the OS proposed
by Muench et al. [18], relevant to the field of fuzzing.

1) Systems Running General-Purpose OSs: Embedded
systems with general-purpose OS are used to manage
operator interfaces, databases, and general-purpose com-
puting tasks [38]. These OSs are used in some high-end
embedded systems, but they need to be customized to the
corresponding hardware and maintaining the main fea-
tures/services of the OS. Those systems are multicore
and they have more than a gigabyte of RAM memory.
An example of such OS is Busybox, an OS that is based
in UNIX, providing some of its utilities in a single small
executable [39].

2) Systems Running Embedded OSs: Embedded OSs are
designed to be customized in specific hardware los-
ing some of the features/services. As a counterpart, the
embedded OS is more efficient and reliable. The hard-
ware features of the devices that use this kind of OS are
the following ones: between a megabyte and a gigabyte
of RAM memory and with one or two core. In addition,
the embedded OS is configurable for the needs of the
device and it is very useful when the device has limited
processing power [40]. Example of this kind of OSs are
FreeRTOS [41] or VxWorks [42], which are real time
OS:s.

3) Systems With No OS: The limitations of the hardware
such as a memory limited to a few megabytes or the
presence of single core makes impossible to use a full-
fledged OS. However, the use of a simple scheduler
or a debug monitor and the corresponding application
is enough to carry out a simple tasks. Usually, these
devices have a single loop control and the peripherals
trigger interruptions [18]. Some examples of embedded
devices without OS are WiFi cards or GPS dongles,
and sometimes, the code is based on OS libraries, such
as TinyOS [43], which provide OS-like functionalities
without having to ship an OS.

B. Security on Embedded Systems

Nowadays, information security is one of the main con-
cerns of general-purpose systems where many resources are
being invested in different technologies to protect the confiden-
tiality, integrity, and availability of these systems at different
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layers [44]. It is easy to find technologies to protect the perime-
ter, to inspect internal traffic, and also to detect malware in
the OSs among others aspects. More recently, the concept of
zero-trust [45] is becoming more prevailing, that is, the con-
cept that every system should be able to protect themselves
without the help or assistance of external security systems.
The beneficiaries of these technologies are the general-purpose
systems, which still have high enough resources to integrate
these technologies without any operation impact, including
the capability to patch and/or update systems. However, the
landscape in embedded systems is quite far from this sit-
uation, these systems have been traditionally designed with
functional requirements in mind and the security has not
been considered in the design process, only aspects, such as
cost, performance, or power have been traditionally taken into
account. Furthermore, the incorporation of security technolo-
gies is very limited or even impossible due to the hardware
constraints of the embedded systems. As a consequence, the
IoT suffers from a wide range of security vulnerabilities,
exhaustively described by Neshenko et al. [10] in their survey.

In order to increase IoT security, it is necessary to secure
the weakest link, that is, the embedded systems who lack
the proper mechanisms to mitigate security threats. For this
end, designers should consider not only new system architec-
ture designs with security in mind but also complementing
them by adding security features, such as hardware security
modules, cryptographic algorithms, security protocols, secure
configurations and the latest secure and stable versions of soft-
ware libraries, kernels, etc. The inclusion of these new features
also requires the inclusion of the corresponding maintenance
tasks as well as the management ones during the lifetime of
the device. This represents a challenge in terms of the mar-
ket. Whatever advance in the development of secure products
represents an advantage in commercial terms.

In this sense, one of the most consuming tasks in the devel-
opment life cycle is the testing process due to the difficulty of
finding misconfiguration, bugs or vulnerabilities. Therefore, it
is natural to find “low-hanging-fruit” vulnerabilities, i.e., vul-
nerabilities that are easy to find and exploit due to insufficient
testing. As a consequence, traditional testing methodologies
(functional tests and safety-related tests) are being comple-
mented with new testing approaches that are being able to find
more vulnerabilities in shorter time, and fuzzing is one of the
most suitable technologies for this task [18]. Indeed, accord-
ing with the standard IEC 62443-4, in particular “IEC 62443-4
Practice 5, SVV-3 Vulnerability testing,” the application of
fuzzers should be carried out in external interfaces without
additional information the section of the standard correspond-
ing to the component development considers the fuzzing as
mandatory step in every new development.

However, when facing a constrained environment such as an
embedded system, the only viable manner to find vulnerabili-
ties remains external, out-of-device testing, as it is not possible
to run extra security resources on top of the device. Therefore,
fuzzing presents itself as an interesting alternative, where it
has the ability of testing an embedded SUT without needing
to run extra software on the device nor knowing its internal
workings. However, the specific nature of embedded systems
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makes fuzzing more complex, less efficient and prone to errors
than in classical general-purpose systems. There are three
main resources general-purposes have and embedded systems
generally lack that impact fuzzing performance directly.

First, classical fuzzing systems rely on the ability to detect
crashes. In general-purpose IT systems, the OS provides joint
security mechanisms that prevent a program to perform an
invalid operation (e.g., trying to access a memory address not
belonging to the same process), resulting in a crash. Some of
these mechanisms are as follows.

1) Address Space Randomization (ASLR): This mechanism
arranges at random the address space positions of data
areas, including the base of the executable and the posi-
tions of the stack, heap, and libraries. In this way, the
classical computation of memory addresses by malware
pieces does not produce the desired effect, that is, to
exploit a vulnerability in very precise way.

2) Code Integrity Guard: It controls the arbitrary code
generation by reinforcement signature constraints for
loading binaries. This technique is primarily sup-
ported by cryptographic mechanisms, particularly, digi-
tal signatures.

Second, the hardware that is present in general-purpose
systems also provides security mechanisms that jointly with
the OS prevent programs to perform invalid operations (e.g.,
trying to execute memory pages that should contain data).
Some of these mechanisms are as follows.

1) Control Flow Integrity (CFI): This technique instru-
ments the code by adding lightweight security code with
the aim of controlling the validity of the origin of the
call. An implementation example is the Control Flow
Guard present from Windows 8.1.

2) Data Execution Prevention (DEP): This is a system-
level protection feature that enables the system to
mark pages of memory as nonexecutable. This mech-
anism prevent the execution of code from the marked
memory pages making harder the exploitation of buffer
overflows.

3) Memory Management Unit (MMU): It performs the
translation of virtual memory addresses to physical
addresses that jointly with the OS can prevent the access
to specific pages corresponding to other privileged
processes.

4) Memory Protection Unit (MPU): This mechanism pre-
vents a process from accessing memory that has not
been allocated to it. The MPU also allows to define
access permissions and attributes to specific regions
of memory, monitoring any kind of access to these
and triggering an access violation exception when is
detected.

Finally, general-purpose systems’ hardware has enough
resources to support maintained load without being affected,
which means that the fuzzer can operate at full performance
without affecting primary functions of the device.

All these characteristics facilitate the use of fuzzers in
general-purpose IT systems. However, these mechanisms are
not commonly found in embedded systems as a consequence
of their constrained environment. As an example, Table I
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TABLE I
HARDWARE PROTECTION MECHANISMS BY HARDWARE FAMILIES [46]

[ Hardware Family [ MPU [ MMU [ DEP | CFI |

ARM 1 to ARM 7
ARM Cortex R
ARM Cortex M

PIC 10 to PIC 24

Intel MCS-51

Infineon XC88X-I

Infineon XC88X-A

T Supported by some micro controllers of the family

x| %|%|%x| || %
x| x| %| % %| x| x
x| x| x| %|<|%x|x
x| x| %| % x| % x

shows the availability (or lack thereof) of hardware-based
protection mechanisms in different microcontroller families.

As a consequence, when a program running on an embedded
device crashes, the behavior of the system as a whole can vary
abruptly, ranging from an increase in response time to a full
crash of the whole embedded system, leaving it completely
unresponsive. Such uncertainty hinders the ability of a external
fuzzer to infer a particular type of error.

III. FuzzING

Fuzzing or, fuzz-testing, is the method that finds vulnerabil-
ities and bugs by inserting specially crafted inputs into a target,
named SUT [47], [48]. These specially crafted inputs trigger
nonexpected behavior in the SUT, and allow to find bugs, such
as faulty memory violations, assertion violations, incorrect null
handling, deadlocks, infinite loops, undefined behaviors, or
incorrect managements of other resources. When compared to
other vulnerability finding strategies, such as code inspection
or reverse engineering, fuzzing has the advantage that can be
performed at large scale and unattended, as the fuzzing pro-
cess is usually automated. This process is classically divided
in the following phases.

Preparation: This is the first phase and it is focused on the
identification and specification of the format of the inputs and
the outputs of the SUT. Based on this, specification is possible
to reduce the possibility of generating initial invalid fuzz data
and create valid and precise inputs.

Fuzz Data Generation: In this phase, the input data of the
SUT are generated, taking into account the input format identi-
fied in the previous phase. Usually, the generation of the data
is done by altering specific data. First, a seed (i.e., original
input) is selected; next, the fuzzer creates new fuzz data by
inserting small modifications into the seed. This generation is
a critical aspect in fuzzing, as the performance on vulnerabil-
ity search is directly related to the quality of these inputs [11],
[15], and particularly, the choice of the initial seed [49].

Execution: In this phase, the previously generated data are
sent to the SUT, by using the specified media (communication
packet, input file, environment variable, analog input, etc.).

Monitoring: In this phase, the outputs of the SUT as well
as the behavior are monitored in order to detect unexpected
outputs or crashes that could be related to triggering a vulner-
ability. This is one of the core basis of fuzzing, an absence of
a monitoring functions may result in poor results in terms of
vulnerabilities findings.
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Fig. 3. Phases of the fuzzing process.

Analysis: In this phase, the crashes and the provided inputs
from the monitoring phase are analyzed with the aim of
determining which test cases cause vulnerability or abnormal
behavior triggering.

Bug Reporting: Finally, when the fuzzing process is fin-
ished, the vulnerabilities that are found in the monitoring phase
and are later analyzed are reported. In addition, the triggering
test cases are saved in order to repeat the test and reproduce
the crash, allowing to analyze the vulnerability more deeply.

Fig. 3 shows the process of fuzzing. The process consists of
six different stages and, in order to perform them, the fuzzers
need to be formed by at least three elements or subsystems.

Fuzz Data Generator: Based on the knowledge of the SUT,
this subsystem generates the fuzz data that will be sent to
the SUT. The effectiveness and accuracy of this subsystem
will depend on two main factors: 1) the prior information of
the SUT and 2) the feedback received from the SUT after
conducting a test.

Protocol Interface: It collects the data that the generator has
created and to be sent to the SUT to be executed.

Monitor: Tt receives the outputs of the SUT with the
purpose of finding unexpected outputs that could relate to
vulnerabilities.
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Although these three elements are the bare minimal compo-
nents that all fuzzers have, more complicated setups can also
add more elements depending the task on hand, such as SUT
instrumentation or result analyzer.

A. Fuzzing Taxonomy

The classification of fuzzers can be performed according
to their behavior in each of the fuzzing phases: prior knowl-
edge of the target and their input (preparation), data generation
approaches (fuzz data generation), data generation intelligence
based on testing feedback (analysis and fuzz data generation),
the exploration strategy (analysis and monitoring), and the
used technique (execution). In the following sections, we out-
line several criteria used for fuzzer classification. However,
it is important to note that a single criterion is not enough
to identify and characterize a fuzzer, but rather a combina-
tion of all of them (e.g., a black-box and mutation-based
fuzzer).

1) Black-Box, White-Box, or Gray-Box Fuzzing: This cri-
terion considers the prior knowledge available regarding the
SUT, based on this, the fuzzing techniques can be divided into
three main categories.

1) Black-box testing refers to the case, where the fuzzer
has no access to the source code nor the internal logic
of the SUT [24]. Most frequently, black-box fuzzers use
random mutation limited by some rules, aimed to create
valid inputs that the SUT will accept [50]. If those inputs
were to be generated in a completely random manner,
the SUT would discard the majority of the generated
inputs and the performance of the test would decrease, as
most of the inputs would fail to even run [16]. The main
advantage of black-box testing is that no source code
is needed; therefore, it can be applied against virtually
any target. However, it is difficult to determine the code
coverage and they are not used to find errors caused by
complex attacks. Initially, all fuzzers were black box,
because to use those fuzzers, it was not necessary to
know the source code and the internal working of the
SUT [11]. One representative black-box fuzzing tool is
zzuf [51].

2) White-box testing makes use of all the information about
the internal logic, that is, the source code [15], [24]. The
main advantage of white-box testing is that it can cover
the code completely, as the source code and the internal
logic is known to the fuzzer [16], it can infer which
part of the code has been executed. In addition, before
starting the testing, it is necessary to analyze all the
information, and techniques, such as instrumentation, are
usual; for this reason, it is more difficult than black-box
testing to start with the testing. Nevertheless, white-box
fuzzers require code access, which is not available in
many cases (e.g., when auditing third-party software)
and are also known to cause false positives [14]. Guided
coverage and the dynamic symbolic analysis [50] are the
most used methods in white-box fuzzing. SAGE [52]
and Dowser [53] are two popular fuzzing white-box
tools.
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3) Gray-box testing has partial access to the internal logic
of SUT. Its execution logic is similar to that of black-
box fuzzers, but it can leverage some limited information
(often gathered through instrumentation) about the SUT
to improve fuzzing performance and coverage [11], [16].
Nowadays, gray-box testing is the most widespread
method, as it does not require full source-code access but
it is able to infer information that makes it more efficient
than black-box testing [14], [47]. The most well known
gray-box fuzzer is the American fuzzy lop (AFL) [54].

2) Input Generation: As stated previously, fuzz data gen-

eration has a central role in the performance of fuzzing, as it
is directly related to the quality of the test. According to this,
fuzzing approaches can be grouped in two main categories.

1) Mutation-based approaches generate the new inputs
from the previously generated test cases. The first time it
is necessary to provide a seed to generate the next test
cases, they are created by tweaking the original seed.
Each tweak is named as mutation. The selection of the
seed will condition the quality of the test cases and, thus,
the code coverage. A better seed will yield a wider cov-
erage. For this generation strategy, it is not necessary
to know the specifications of the input data or protocol,
as mutations alter the original seed without checking
whether it complies with a specific syntax. Therefore,
this method is particularly useful when input specifica-
tions are complex and data collection is accessible, as it
is possible to form a seed from a wide range of recorded
inputs specifying its format. When using mutation, there
are two key decisions that can alter its performance: how
to perform the mutation and which of the newly created
values are used for the next mutation. In the first case,
the mechanism to perform the mutation decreases the
efficiency of the fuzzer when it is blind, that is, no feed-
back has been considered and it is not possible to know
whether the mutation strategy is the correct one [15].
The second factor is strongly related with the first one,
because the absence of feedback information does not
provide any clues to select a candidate fuzz data or other.
Moreover, mutation is a never-ending process, requiring
the fuzzer to also specify when to stop the test, which
is not a simple task. There are different strategies for
input mutation, and improving mutation performance is
an active research field [11], [15], [55], [56]. One of
the main performance problems of this method is that
the seed size increases continuously, since the previous
samples are joined to create the new test cases; bigger
seeds cause the fuzzer to slow down. Some well-known
mutation-based fuzzers are AFL [54], Angora [57], and
VUzzer [47].

2) Generation-based method uses the a set of specifica-
tions on the SUT inputs to generate new fuzz test
data. In contrast to the mutation-based generation, it
is necessary to know the syntax of the SUT inputs,
including their format and used protocol. Generation-
based fuzzers are used when it is vital to provide valid
input for a successful test (i.e., when the input format
is constrained and random mutation would render most
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of the created test cases useless). On the one hand,
generation-based fuzzers are faster than their mutation-
based counterparts, because their seed size does not
increase over multiple executions. On the other hand,
modeling complex or unknown input protocols in a set
of specifications might prove a challenging endeavor,
and mutation-based counterparts are better suited for this
task. Sulley [58] and Peach [59] are two of the most
well-known generation-based fuzzers.

3) Fuzzer Intelligence: The fuzzer’s intelligence is related
to its ability to generate new input data taking into account the
feedback it receives after an execution of a test. The feedback
helps to improve the new input generation, because can be
used to decide which part of the test case should be modified,
and how to modify it. In other words, it serves to generate
more inputs that trigger new execution paths in the SUT [60].
According to their implemented intelligence, fuzzers can be
defined either as smart or dumb [15].

1) Smart fuzzers adapt the generation of test cases depend-
ing on the information they receive from the output and
behavior of the SUT, by first learning the behavior of the
SUT (what is the output, has there been a crash, etc.)
how the test case has affected this behavior and then
deciding how to generate the new test cases [61]. The
smart fuzzers are more effective in detecting vulnera-
bilities [15], [62] as they require to execute fewer test
cases. Learn&Fuzz [63], IoTFuzzer [64], and Peach [59]
are examples of smart fuzzing.

2) Dumb fuzzers do not consider feedback from the
previous executions as inputs for new data generation.
As they do not have to receive feedback, analyze it,
and act based on it, dumb fuzzers are faster test execu-
tors than their smart counterparts, but less effective
when considering vulnerability search [15]. A popular
example of dumb fuzzing is zzuf [65].

4) Exploration Strategy: The code exploration strategy
refers to the method fuzzers use to maximize the covering of
different parts of the code. The code coverage of the fuzzer is
dependent on this strategy [15], so it is an important criterion
for performance. It is important to note that only white-box
and gray-box fuzzers can be classified according to their explo-
ration strategy, as having information about the SUT and
program, even partially is needed to be able to define a strat-
egy. Therefore, white-box and gray-box fuzzers are divided
into two main categories.

1) Covered-based fuzzers maximize code coverage with the
support of analysis techniques. The fuzzers with high
coverage find more bugs and they try to maximize as
many execution paths as possible with the minimum
number of inputs [12], [47], [66]. Therefore, covered-
based fuzzing is an efficient and effective method, as
fewer test cases have to be executed [15]. One of the
well-known covered-based fuzzers is SAGE [52], [67].

2) Directed fuzzers aim to audit specific parts of the code
and paths of the SUT. With this type of fuzzers, it is pos-
sible to direct the fuzz test to relevant parts of the SUT
(e.g., code changed in an update or critical parts of the
application) allowing to gather faster results [66], [68].
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Directed fuzzers allow to redirect test execution to avoid
repeating paths and cover all the codes, if necessary [15].
Most directed fuzzers are usually white-box fuzzers
based on the symbolic execution and oriented to gener-
ate test inputs [69]. Dowser is an example of the directed
fuzzer [70].

B. Fuzzing Techniques

As we have described in the previous section, the processing
structure of a fuzzer involves many stages. Since the concep-
tion of the fuzzer, different approaches have been focused in
increasing the performance of the fuzzer by improving spe-
cific phases in the search of vulnerabilities. This motivated a
new line of research in security for evolving every aspects of
the fuzzer that began in 1990.

This history of the fuzzer evolution is consistent with the
evolution of the number of common vulnerabilities and expo-
sures (CVEs) per year as shown in Fig. 4 and the interest
in this type of approaches. Indeed, the evolution of fuzzers
is associated with the capability of automating the search of
vulnerabilities which shows that at the beginning the num-
ber of CVEs was relatively low and the presence of fuzzers
was sporadic. However, the great of evolution of fuzzers
seems to respond to the increase of vulnerabilities published
from 2005 where represented a quantitative leap compared to
previous years reaching more than 4000 vulnerabilities per
year in the best case and more than 15000 vulnerabilities
per year [71]. The evolution of the fuzzers shows that these
have been integrating more complex and modern approaches
such as those based on machine learning and genetic
algorithms.

In this section, we will review from the first technique
proposed in 1990 to the most modern approaches that have
been incorporated in different stages to improve the results.

1) Random Mutation: This was the first technique used in
fuzzing that is categorized as a black-box technique to
generate fuzz data without intelligence and strategy (see
fuzz [13] and zzuf [65]). The operation of this tech-
nique requires an initial seed, and a valid input for the
SUT. Based on this seed and the initial valid input,
the mechanism for generating new fuzz data works by
selecting at random specific field data, and then modi-
fying this field data at random, this process is repeated
in each round of the fuzzer. The main advantages of
this technique are the simplicity for generating fuzz
data, it is not necessary to understand the data struc-
ture, and the performance obtaining initial promising
results. However, the absence of an intelligence has a
main drawback: the low performance. This technique
has a low capability to reach complex paths, which limits
the power of finding new vulnerabilities [15], [24]. This
technique can be considered as a baseline for assessing
new fuzzing techniques in terms of performance.

2) Grammar Representation: This technique is a black-box
technique to generate fuzz data without intelligence and
strategy but with a significant difference, the generation
of data follows a set of grammar rules for decreasing
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Fig. 4. Evolution of the adaptation of the different techniques to fuzzing.

3)

the rate of invalid data at the beginning [56]. This tech-
nique requires a seed, but instead of having an initial
valid input, the (initial) data are generated according to
the grammar rules that check that the basic data struc-
tures are fulfilled and, therefore, there are no problems
for beginning the process of fuzzing. Once the process
has started, in each generation of data, the field data
are selected at random but fulfilling the grammar rules,
then the candidate fuzz data are generated at random.
The result is an increase in the performance compared
to a completely blind technique such as the previous
one because this can deal better with complex struc-
tures [63]. However, this technique has also several
drawbacks such as the need to create the grammar rules
by hand, which requires time and knowledge [16], [72]
and, besides this, it is subject to human errors. On the
contrary, although the use of grammar rules is benefi-
cial during the process, it has a negative impact in the
performance for generating new fuzz data, and the rate
of fuzz data per second is lower than the previous tech-
nique limiting the search space. Some of the fuzzers that
use grammars are Skyfire [49], GWF [24], or Peach [59]
and they use them to fuzz complex SUTs.

Dynamic Symbolic Execution: This is a black-box tech-
nique for generating fuzz data without intelligence but
with a strategy that leverages the results obtained by
the symbolic execution to identify data value ranges
for creating fuzz data. In this technique, an interpreter
follows the execution of the SUT from the input as a
normal execution but without requiring a value to the
end of the execution. Every time the interpreter reaches,
a control statement forks the symbolic execution stor-
ing the logical expression in terms of input variables.
At the end of the execution of the different forks, a

Year

Concrete Execution Symbolic Execution

int funcl

2010 2020

i=iinput

i=iinput ; j='iinpyt

i=jinput-1 ; j="linput
i=iinput-1- (-iinput)

(int 1) { i=2
int j=-i;
i=i-j;

if (i<1)

ii_nput'1' ('ii_nput)<1
iinput~1~ (-iinput)

i=-i;

return i;

return 3 | linput~1- (~linput)>=1

iinput-1- (<iinput)

Fig. 5.

Comparison between concrete and symbolic execution.

set of logical expressions in terms of input variables
is obtained and the range of valid values are obtained
from each logical expression. These ranges are used to
seed the fuzz data generation and explore the SUT. As
a result, a significant improvement in the performance
is obtained compared to other approaches. The process
of symbolic execution is described in Fig. 5 compar-
ing it with concrete execution. Although this technique
has a very significant potential for exploring different
paths, it also has several drawbacks. First, the explosion
of potential paths limits the use in complex programs.
Second, the scalability of the technique is also limited
due to path explosion and due to the negative impact
in memory consumption. Finally, the environment inter-
actions when performing system calls may arise when
execution reaches components that are no under control
of the interpreter [73]-[75]. This technique is used in
the context of fuzzing for facilitating the determination
of the initial seed by leveraging the range of values pro-
vided by the symbolic execution, the range value data for
specific sections [68], or for increasing the code cover-
age. This approach is commonly used in the white-box
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fuzzers [76], and KLEE [77] and SAGE [52] are two
fuzzers that use it.

Dynamic Taint Analysis: It is a black-box technique
based on checking variables modified by the user (regis-
ters and memory contents) throughout the execution of
the SUT when a crash occurs. The process is depicted
in Fig. 6. The dynamic nature of the taint analysis
requires a binary instrumentation framework with the
aim of adding a pre/post handler on each instruction.
Thus, it is possible to retrieve all the information about
the instruction or the environment (memory) revealing
useful information regarding the SUT. This information
is very valuable and it is used for generating new
fuzz data [24]. The main advantage of dynamic taint-
ing is the improvement in the efficiency of the fuzzer.
However, it has two major drawbacks: a) under-tainting
and b) over-tainting. The first one indicates that there are
contaminated data that have not been marked as such.
In contrast, over-tainting marks too many values as con-
taminated, as a result the false positive rate is increased.
Some examples of this approach are: Vuzzer [78] and
SYMFUZZ [79] using the dynamic taint analysis to find
the input seed to mutate.

Guided Covered: It is a gray-box fuzzing technique that
is based on program instrumentation to trace the execu-
tion of the SUT identifying code sections reached by the
input provided. This information is used by the fuzzer
to make informed decisions to select which inputs to
mutate in the SUT [75], [80] as shown in Fig. 7. The
main goal of this technique is to increase the code cov-
erage [15] with the minimum test cases necessary [11].
Although this technique has a good performance a pri-
ori, it is governed by the complexity of the SUT, this is
the main enemy of this technique, the higher complexity,
the lower performance [73], [81]. Some of the represen-
tative fuzz tools that use this technique are KALF [60]
and Driller [82].

Fig. 7.

6)

7)

8)
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Scheduling Algorithms: It is a gray-box technique based
on a lightweight instrumentation of the SUT which
provides information of the memory. This approach
is divided in two stages: a) exploration stage and
b) exploitation stage. In the exploration stage, the con-
tents of the memory is partially tainted to observe input
values in memory when specific instructions such as
compare instructions are executed. This inspection of
memory creates the association of input values with
memory states known as configuration, allowing to per-
form educated guesses with regard to which values to
replace. The exploitation stage takes advantage of the
previous results and exploit these to seed the fuzzer [11].
Examples of this kind of technique are BFF [83] and
FuzzSim [24].

Static Analysis: It is a white-box technique that leverages
the results of the static analysis of the source code to
generate fuzz data with the aim of exploiting the weak-
nesses located by the analysis. The main advantage is its
simplicity, however, the false-positive rate is high and
the accuracy is low [73]. Some examples this kind of
fuzzers are Dowser [53] and BORG [84].

Genetic Algorithms: This technique can be a black box,
gray box, or white box depending on the information
used for taking decisions. It is a search-based method
optimization technique based on the natural selection
aimed to find optimal solutions to difficult optimization
problems. In the area of fuzzing, the problem of finding
vulnerabilities can be seen as an optimization problem,
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TABLE II
SUMMARY OF THE ADVANTAGES AND DISADVANTAGES OF DIFFERENT TECHNIQUES ADDED TO FUZZING

Technique Advantages

Disadvantages

Random Mutation

Grammar Representation
Dynamic Symbolic Execution
Dynamic Taint Analysis
Guided-Covered

Scheduling Algorithm

Static Analysis

Genetic Algorithms

Machine Learning

Complex structure

Runs the code to monitor
Reaches specific functions
Scans many inputs efficiently
Improves black-box testing

Improve new generations
Intelligent fuzzing

High implementation speed and scalability

Not executed, approximate behaviour

Many invalid inputs

Not completely automatic

Limited path explosion, environment interactions
Under-tainting and over-tainting

Difficulties with complex checks

Problems in embedded devices

False positives and negatives

Result depends on stop criteria

Needs large data quantities

Generate
Input Data

A
Target Binary

Learning
Covered paths

Fig. 8.

9)

Ye
o Frish

No

Execution Trace
Covered path

Process to fuzz using evolutionary algorithms.

where each candidate solution or individual represents
a candidate fuzz data and the fitness function aims to
represent the distance to a vulnerability in the SUT
by including information of different nature, such as
dynamic information, such as warnings, execution time-
outs, errors, crashes, or others, and static information
such as cyclomatic complexity among others [85], [86].
This technique represents a qualitative leap for searching
new vulnerabilities but this requires a good estimate of
the SUT behavior. The process is represented in Fig. 8.
AFL, one of the most well-known fuzzers today, uses
genetic algorithms to improve test generation [87].

Machine Learning: This is not a technique, but rather
a set of techniques that can play the role of black,
gray or white-box depending on the modeling of the
problem to solve. Machine learning is a set of data
analytic techniques that allow computers to learn from
data like humans and/or animals [55]. This kind of
algorithms utilizes computational/mathematical models
to acquire knowledge from data without human expert
intervention. The algorithms in this field base their
performance on the quality and quantity of samples that
describe the problem. A specific subset of models in this

field is the deep learning very focused in complex and
heterogeneous neural networks. Regarding fuzzing, this
set of techniques has been applied to support different
stages of the process of fuzzing, such as seed generation,
preprocessing of source/binary code, test case genera-
tion, fitness function, mutation operator, exploitability
analysis, etc., [73]. In addition to this, existing met-
rics have been used to assess the performance. This is
the most complete subset of techniques with successful
results. The introduction of this kind of techniques is
relatively new and a very good source of new probed
techniques in this field. However, like the rest of the
techniques there is a fundamental drawback regarding
the need of enough and representative samples. An
example of a fuzzer that uses this kind of technique
is Learn & Fuzz [63].

Table II summarizes the advantages and disadvantages of

the different fuzzing techniques covered in this section.

1V. FuzzING EMBEDDED SYSTEMS

Fuzzers have evolved significantly since the creation of the
first fuzzer, demonstrating its effectiveness finding vulnerabil-
ities, although its use in embedded systems is not widespread.
Hence, it is important to analyze the reasons that limit the use
and the main characteristics that fuzzers should fulfill in order
to be applied to embedded systems.

When considering fuzzers, a wide range of different alterna-
tives exist. However, one of the most popular fuzzers is AFL,
which is widely used in academic and industrial areas [54].
AFL is centered on generating malformed input files to run-
ning processes (e.g., a PDF file to a document reader).
Moreover, the development of many other fuzzers is based
on AFL, such as, AFLFast [88], AFLGo [89], Skyfire [49],
VUzzer [78], Steelix [90], or Angora [91]. Based on the
popularity of AFL and its descendants, many of the newest
fuzzers are compared with it. In addition, other popular fuzz
tools covering other areas and also used for comparison are
Honggfuzz [92], Peach [59], KLEE [77], SAGE [52], or
Radamsa [93]. Although all of them are fuzzers, they have
a different nature, making them more suitable to apply in dif-
ferent environments, particularly based on the input data they
create (files, network traffic, etc.).

As covered in Section II, finding vulnerabilities in embed-
ded systems is a challenging endeavor, as the most restricted
embedded systems do not have additional security mechanisms
in place. Therefore, using fuzzing to detect vulnerabilities is
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an interesting option, as it can run outside the system and
it analyzes the outputs of the SUT to find these vulnerabili-
ties. Even so, it should be noted that IT systems have security
mechanisms in place, such as MMU or MPU, that help to
detect errors. As mentioned earlier, this is not always the situ-
ation in embedded systems. In addition, it must be considered
that when an embedded system with limited resources freezes,
it will probably stop responding. In these cases, the fuzzer
will not have new data for the generation of the next inputs,
decreasing its effectiveness. For that reason, it is necessary to
find and leverage all possible methods to monitor the SUT.

With all its limitations, embedded system fuzzing has
already shown some promising results in the previous proofs of
concepts, such as fuzzing SMS messages [25] and the global
system for mobile communications (GSM) protocol [26] to
detect vulnerabilities in smartphones, fuzzing credit cards to
exceed its limit [28], and also fuzzing the controller area
network (CAN) protocol of cars to unlock their doors or
disabling their lights [27].

A. Measurable Characteristics in Embedded Fuzzing

As out-of-the-box fuzzing for embedded systems is not
viable for vulnerability and crash discovery, it is necessary
to focus on characteristics present in the embedded systems
that could potentially be leveraged for vulnerability detection.
These characteristics can be grouped in four main cate-
gories: 1) fault types; 2) response time; 3) waiting time; and
4) physical response nature.

1) Fault Type: This category groups all kinds of errors
related to the memory and numerical computation that
can derive in a different behavior compared to general-
purpose IT systems.

a) Stack overflow takes place when a program writes

to a memory address in the program call stack
out of the designated data structure. The usual
consequence of the stack overflow is a crash. In
addition, embedded systems with fewer resources
can have problems detecting these errors. In some
cases, the error is detected later when the system
stops responding to requests or it may not have any
effect, so if the memory is not corrupted, it will not
have any visible effect. In more advanced embed-
ded systems with an OS, errors can be detected as
the execution is stopped and it is usually warned
by a message or a signal [18].
Segmentation fault appears when it is not allowed
access to a specific region of the memory from the
main process. When the system throws an excep-
tion of this class, it is providing clues that there
is unauthorized access to memory. However, in the
worst case, when dealing with systems with no OS,
this event usually has no effect [18] and, there-
fore, there are no observable event, in embedded
systems with an OS or embedded OS are usually
detected by an observable crash or reboot but it is
not reasonable to assume the detection of this kind
of events.

b)

Fig. 9.

2)

3)
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¢) Memory corruption takes place when the memory
is modified without an explicit assignment. It can
cause many problems, such as invalid pointer val-
ues, incorrect data, or a crash of the system. On the
embedded devices, the memory corruptions are less
visible, what causes a decrease on the effectiveness
of the dynamic testing techniques, so the silent
memory corruptions are habitual on this devices.
All derived executions from memory corruptions
can be categorized in four types of classes. First,
the system can stop responding to requests or it can
have a late crash. Second, the system will start to
malfunction. Third, it may continue to function in
the same way and the error will not have any effect.
Fourth, in systems with OS, which are usually
the most resourceful embedded systems, the reac-
tion to this type of error is usually an observable
crash [18].

d) Numerical Errors: In addition to the above-
mentioned errors, on one hand, the absence of
managing typical overflow/underflow errors can
take place without any visible effect. On the
other hand, the limitations of embedded systems
such as the absence of subset of instructions for
computing division may involve the use of sup-
plementary numerical computation libraries. As a
consequence, in the most constrained devices, a
numerical error can derive into a pure software
error that, like in the first case, can take place with-
out any visible effect or worse, these can derive
into a memory corruption.

Response Time: This is the elapsed time from the
reception of fuzz data until the data are finally pro-
cessed and ready to be sent back as it shows Fig. 9.
Embedded systems need much more time to respond,
due to the resource limitation, as a consequence, fuzzers
must be adapted to this increase of time; otherwise, the
rate of false negative can increase. The response time
is, therefore, a measure that impacts directly on the
performance [94].

Waiting Time: It is the period of time that elapsed from
the request that is launched to the SUT until its response



ECEIZA et al.: FUZZING IoT: REVIEW ON TECHNIQUES AND CHALLENGES FOR EFFICIENT VULNERABILITY DISCOVERY 10401

Fuzzer SUT
Execution 1

A DExecution 2

Response Time 1

Response Time 2

Waiting Time 1
Waiting Time 2

Fig. 10. Test executions with less time between tests than the waiting time.

arrives. It is necessary to consider the possibility that the
answer could not arrive (e.g., the system is nonrespon-
sive or has crashed). In such a case, the fuzzer has to
decide whether to send another test case or to stop test-
ing because the device has died or it is taking too much
time to run. It can also happen that the time between
tests is less than the waiting time, in this case, it is nec-
essary to be careful, as responses can come mixed as
happens in Fig. 10. In the case of embedded systems,
it will be necessary to increase the waiting time of the
fuzzer, since if it is not adapted, it can detect an error
in the system when it is working correctly, causing an
increase in false positives.

4) Physical Response Nature: The physical response of
a system in different situations can give valuable
information about what is occurring to it. In contrast
to general-purpose IT systems, embedded systems are
small and suffer physically from increasing the temper-
ature of the device when the volume and the rate of
fuzz data increase, they tend to get warmer at higher
loads. Moreover, in this kind of systems, the load on
the system falls only on the CPU. To prevent this, it is
necessary to measure the temperature during the fuzz
testing and observe that the temperature does not reach
undesired values. The temperature affects the reliability
of the system, but can also affect to the operation power
and cost [95]. Therefore, it can be a helpful factor to
determine if there have been any changes in the CPU.

B. Enhanced Observation Techniques

In order to circumvent issues related to poor monitoring and
observation abilities when fuzzing embedded software, several
approaches have been proposed to make crashes and errors
observable. These enhanced observation techniques are based
on the use of emulation, source code analysis, and sanitization.

1) Full Emulation: Costin et al. [96] and Chen et al. [97]

have shown that under specific conditions, applications

2)

3)

extracted can be executed inside a generic system run-
ning on a off-the-shelf emulator. Based on this emulator,
it is possible to collect information regarding the status
of the memory. However, the main disadvantage of this
approach is that it is not possible to test peripheral activ-
ity. That is, when the peripheral use is necessary (e.g.,
to test code interacting with these peripherals), these are
not accessible to the fuzzer, as they are neither present
in the target nor emulated.

FPartial Emulation: In order to overcome the drawbacks
of full emulation, some authors have extended the emu-
lation from systems without an OSs to those with an
OS [98], where only peripheral are excluded from emu-
lation and all instructions related to the peripherals are
redirected to real external peripherals. Based on this
approach, Muench et al. [18] obtained significant results
in detecting classical memory-related errors. However,
such an approach suffers from a significant false-positive
and false-negative rates [46].

Source Code Availability: It has proven helpful to
increase fuzzing performance, particularly aiding explo-
ration. However, this availability is not always possible,
especially when auditing third-party software.

There is a subset of specific techniques related to the assess-
ment of the memory that can guide the fuzzer. These tech-
niques are based on the concept of sanitization. A sanitizer
instruments the applications by inserting checking instructions
in order to monitor all read and write operations to/from the
memory. In this sense, two kinds of sanitizers exist.

1y

2)

Dynamic Binary Sanitizers: This technique allows to
instrument the application at runtime. However, dynamic
sanitizers have a significant drawback in embedded
devices, as they cause a significant performance over-
head and require special software/hardware functionali-
ties that are not widely available in embedded systems.
Due to these reasons, dynamic sanitization adoption is
limited [99].

Static  Binary  Sanitizers:  First presented by
Salehi et al. [46], static sanitizers have lower overhead
than their dynamic counterparts and they also yield
better results when compared to proposals based
on partial emulation. Static binary santization is a
multistage process (depicted in Fig. 11).

a) Stage 1 (Static Disassembly): This is the process of
parsing the executable region of the input binary
file and decoding the content into their a human
readable format.

The process of instrumentation is typically divided into
two steps. The first one is responsible for locating every
relevant instruction of the code that needs to be instru-
mented; whereas; the second one is responsible for
inserting the instrumentation code. In this case, the pro-
cess is much more sophisticated and structured, and it is
divided into four steps: a) memory instruction extraction;
b) specification generation; c) binary instrumentation;
and d) mapping generation.

a) Stage 2 (Memory Instruction Extraction): The goal
of this stage is to identify which instructions
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are relevant for the next stage: the specification
generation.
Stage 3 (Specification Generation): This process
is in charge of creating the specification based
on the information obtained from the extracted
instructions.
Stage 4 (Binary Instrumentation and Mapping
Generation): Based on the specification generated
in the previous stage, this process performs the
instrumentation of the assembler code. The new
segments of code perform two tasks.
i) Creation of a metadata structure in memory,
where all out-of-bound memory regions are
controlled by means of storing the boundary
address.
The access control to out-of-bound memory
addresses by consulting the metadata structure.
d) Stage 5 (Reassembling): Based on the previous
instrumentation, the source code is reassembled in
order to create a new binary.
Once this process has finished and starts executing, a
specific region in memory is created called the meta-
data region, which contains the boundary address of
every memory value facilitating the control of any access
to address out of the bounds. As a result invisible

b)

)

ii)

errors become observable. All this processes have been
depicted in Fig. 11. This technique has reduced the false
and positive errors obtained with previous techniques
without requiring a full/partial emulation.

Although these mechanisms partially circumvent the dif-
ficulties posed by embedded systems, it is still necessary
to increase the performance of fuzzers by different reasons.
First, it is necessary to reduce the false-positive rate, response
time, and waiting time, and fault type can affect negatively to
this rate. Second, it is necessary to reduce the false-negative
rate by improving the detection of some type of fault types.
Finally, as an improvement of the test rate, it is necessary
of an improvement in the capability of generating more test
data while maintaining the false-positive and false-negative
rates low without manipulating or modifying the binary or the
source code and without overflowing the embedded system.

V. DISCUSSION

In this section, we will provide a review of the existing
fuzzing techniques summarized in Table II, as well as a review
of the features of these techniques that are required in embed-
ded systems summarized in Table III. A discussion on the
evolution and motivation of these techniques will be provided
with a special focus on the application in embedded systems.
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TABLE III
COMPARISON OF Fuzz TOOLS TAKING ACCOUNT THE FEATURES OF FUZZERS TO DISTINGUISH EACH OTHER

Methods Input Generation

Intelligence

Exploration Strategy  Techniques

Random Mutating
Grammar Representation
Dynamic Symbolic Execution

1. White-Box 1. Mutation 1. Smart 1. Covered Dynamic Tmpt Analysis
2. Grey-Box 2. Generation 2. Dumb 2. Directed Coverage Guided
3. Black-Box ’ ’ ’ Scheduling Algorithms

Static Analysis
Genetic Algorithms
Machine Learning

AFL [16], [100]
AFLFast [66], [88], [89]
AFLGo [66]

Angora [57], [101]
BFF [83], [102]
BORG [84]
BUZZFUZZ [103]
Dowser [53], [70]
DrE [104], [105]
Driller [82]

FIE [106]
Frankenstein [107]
fuzz [13]

FuzzSim [83]

GWF [50]
Honggfuzz [92]
IoTFuzzer [64]
kALF [60]

KLEE [77]
Learn&Fuzz [63]
libfuzzer [11], [108], [109]
MoWF [110]

PAFL [111]

Peach [17], [59], [112]
QuickFuzz [113]
Radamsa [93]
RedQueen [11], [114]
S2E [115]

SAGE [52], [116]
Skyfire [49]

SLF [117]

SmartFuzz [65]
SPIKE [17], [22]
Steelix [90]

Sulley [58], [118]
SYMFUZZ [72]
Syzkaller [119], [120]
TaintScope [121]
T-Fuzz [80], [122]
VUzzer [78]

zzuf [65]
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A. Fuzzing Trends

A fuzzer is a method that aims to find vulnerabilities
by sending specially crafted data and analyzing the feed-
back received. The first fuzzers did not take into account
the feedback of the SUT to generate the data, the only rel-
evant information used was the successful findings of new
vulnerabilities. As a consequence, the results were very poor
compared to any recent approach. The next leap in the evolu-
tion was to consider a proper mechanism to generate crafted
inputs but this was still without considering the feedback, this
change only represented a small improvement not a major one.

The next great qualitative leap in the evolution of the fuzzers
begins by considering the information provided from the SUT
in order to improve aspects such as the generation of crafted

data. At this point, the fuzzers improve the capability to detect
vulnerabilities. This represented a clear division between smart
and dumb fuzzers, where no information is used. Table III
shows that the majority of the fuzzers are smart and few of
them are dumb.

From this point, the nature of the information considered
to improve the fuzzer makes the difference between the two
main families of fuzzers: 1) black box and 2) white box. The
first family ignores the information based on the source code,
considering only the binaries in the best case. Whereas, the
second family takes into account the information based on
the source code. The source code is instrumented to provide
additional information jointly with response of the SUT when
the fuzzer is operating.
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A white-box strategy represents the most used techniques
because this provides the maximum possible information.
However, this is not always possible, which limits the use
in specific situations. As a consequence, some fuzzers do not
make use of the complete information but they use partial
information and the instrumentation to operate. Table III shows
that the proportion of strategies is close to one third.

The use of information used represented a clear difference
between the different families of fuzzers. Now, the next qual-
itative leap was in the technique that best makes use of this
information according to the family. The initial techniques
made use of the instrumentation; whereas, the last ones are
based on evolutionary approaches that can take advantage of
different sources of information. In this sense, there has been a
displacement in the last few years from less flexible techniques
to the most modern approaches based on machine learning.
Consequently, the use of machine learning represents a clear
advantage in any of the approaches.

B. Embedded Fuzzing

The evolution of fuzzers represents a priori a significant
and promising technique for finding weaknesses in embedded
systems. However, the nature of these systems imposes several
constraints that limit the use of a great number of the fuzzers as
we will show. In this section, we will show a different taxon-
omy of fuzzers according to a set of more suitable features for
embedded systems, such as: source code, fault types, instru-
mentation, support of the OS, and the target (see Table IV) as
well as an analysis of the impact of these features.

First, the availability of the source code in embedded
systems is not always possible. In many cases, the manu-
facturer imposes their software-developing kit for develop-
ing applications limiting the possibilities of using tools. In
addition to this, according to the standard “IEC 62443-4
Practice 5, SVV-3 Vulnerability testing,” the application of
fuzzers should be carried out in external interfaces without
additional information. This reduces possible candidate fuzzer
numbers by 25%, that is, decreasing the number of eligible
fuzzers from 41 to 31.

Second, the capability of the detection of fault types plays
a significant role in embedded systems as we have depicted
previously in Section IV. The behavior of an embedded system
when a failure takes place does not correspond to the expected
behavior as in standard systems. In embedded systems, a fail-
ure can involve that the system can continue operating with
wrong values because there is no MMU or the system can stop
completely. As a consequence, the number of fuzzers that are
able to detect different kind of failures is very low.

Third, as a consequence of the first point, the possibility of
instrumenting the source code is not possible due to the same
constraints but in very constrained embedded systems there is
no user interface, or shell to interact which makes impossible
any collection. This involves that is necessary to discard 17
additional fuzzers representing a reduction of a 65% of the
total.

Fourth, embedded systems can operate with/without the sup-
port of an OS, so it is not always possible to assume the
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support of this to carry out the fuzzing process. This may
be the primary factor for discarding many fuzzer techniques
reducing the remaining 14 fuzzers to four fuzzers.

Finally, in contrast to classical fuzzers, the target in embed-
ded systems is much more limited than general-purpose
systems. In some embedded systems makes no sense to target
file-systems because there is no such possibility, and therefore
it is not realistic to assume this. As a consequence, all remain-
ing fuzzers focused in this class of targets that involves the
presence of a file-system should be discarded.

In summary, the mere fact of imposing some limitations,
such as the use of source code or the instrumentation has a
significant impact on the availability of fuzzers. If we add addi-
tional constraints, such as the participation of the OS, it depicts
an overview where it is necessary to invest more resources to
create specific fuzzers for embedded systems.

C. Embedded System Fuzzing Qualities

The previous sections have shown a broad range of fuzzing
techniques but also the challenge that poses to choose/design
a suitable fuzzer for embedded systems when specific features
are taken into account in contrast to general-purpose systems.

Embedded systems impose some constraints, but the most
important factor is the limitation of feedback information from
the embedded system. As we have explained previously, the
information from the SUT is essential to find weaknesses in
the source code, and it is precisely the lack of information what
characterizes the nature of embedded systems. The difficulties
for obtaining or instrumenting the source code involves that
it is not possible to obtain more information from the SUT
requiring the use of black-box approaches, that is, the most
difficult approach.

As a consequence, a suitable fuzzer for embedded systems
should compensate this lack of information with more intel-
ligence jointly with the most advanced techniques as pri-
mary requirements. The fuzzer should only deal with the
response of the SUT without taking into account the source
code/instrumentation, that is, without any additional help. This
involves that it is necessary to use advanced techniques such
as those based on machine learning for learning from all the
available information.

In addition to this, it is also relevant and significant with the
consideration of the behavior of each type of failure. A specific
type of failure in an embedded system does not behave in the
same way as in the general-purpose system, which can impact
in the operation in two aspects. First, the first situation is when
a failure is not detected and the fuzzer continues operating
normally, this involves a false negative. The second situation
is when the failure is detected much more later, and the fuzzer
learns from incorrect information, generating incorrect inputs.
As a conclusion, the fuzzer should be able to detect at least
some of these situations and learn correctly from the original
input and not from later inputs.

Finally, many approaches require the intervention of the
OS to support the fuzzer, in the case of embedded systems,
the fuzzer should operate without any help from the OS,
the limitations of some embedded systems make this not
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TABLE IV
COMPARISON OF FUZZERS CONSIDERING NECESSARY FEATURES TO FUzZZ EMBEDDED SYSTEMS

Methods Source Code  Fault Type Work with OS Instrumentation ~ Target Support
File
Library
Firmware
1. Stack Ove.rﬂow 1. Yes 1. Yes OS Kernel
1. Yes 2. Segmentation Fault
2. No 2. No Network Protocol
2. No 3. Memory Errors . . o
3. Not specified 3. Not specified Applications
4. Other
General-Purpose
Embedded Systems
Web browser
AFL [16], [100]
AFLFast [66], [88], [89]
AFLGo [66]
Angora [57], [101]
BFF [83], [102]
BORG [84]

BUZZFUZZ [103]
Dowser [53], [70]
DrE [104], [105]
Driller [82]

FIE [106]
Frankenstein [107]
fuzz [13]

FuzzSim [83]

GWF [50]
Honggfuzz [92]
IoTFuzzer [64]
kALF [60]

KLEE [77]
Learn&Fuzz [63]
libfuzzer [11], [108], [109]
MoWEF [110]

PAFL [111]

Peach [17], [59], [112]
QuickFuzz [113]
Radamsa [93]
RedQueen [11], [114]
S2E [115]

SAGE [52], [116]
Skyfire [49]

SLF [117]

SmartFuzz [65]
SPIKE [11]

Steelix [90]

Sulley [58], [118]
SYMFUZZ [72]
Syzkaller [119], [120]
TaintScope [121]
T-Fuzz [80], [122]
VUzzer [78]

zzuf [65]
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recommendable. Thus, the design of a fuzzer specialized for
embedded systems should not be based on the OS of the SUT.

VI. FUTURE DIRECTIONS

In this article different fuzzing tools have been categorized
and classified showing the relevance and usefulness of the
fuzzing approach to find weakness in software with indepen-
dence of the target and the strategy used. However, this survey
has also shown several flaws in the design of fuzzers when
applied to embedded systems as well as in the methods used
for measuring the performance of these. Therefore, there are
several open issues that could lead to future research directions
in the field of fuzzing and IoT and embedded devices. We have
grouped such directions in three main categories: 1) fuzzer

evaluation; 2) enhanced embedded fuzzing architecture; and
3) IoT and embedded fuzzing algorithms.

A. Fuzzer Evaluation

This section covers the current challenges for accurate com-
parison of fuzzers in general and, particularly, in the embedded
field.

1) Evaluation Methodology: The survey shows that there
is no a standardized or consensual methodology to perform
an assessment of the performance of any fuzzing tool accord-
ing to a predefined set of key performance indicators [79].
Even it is not a standard evaluation methodology, it is nec-
essary to measure the performance of any fuzzer in terms of
quality and quantity in the most objective and fair way. The
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quality of a fuzzer should be measured by using standardized
metrics, such as accuracy, the false discovery rate, or other
classical metrics found in statistics and machine learning that
can reflect with more objectivity the quality. In this sense, only
a small portion of the authors use subsets of these metrics to
assess the performance and the majority of them use their own
mechanisms in a specific context to show the advantages, so
nowadays, it is not possible to compare the fuzzers only ana-
lyzing the literature. The quantity, on the other hand, is also
a key performance indicator specially relevant in embedded
systems due to the limitations of these, and it should measure
the capability to perform a number of valid fuzz tests in a
period of time without exhausting the resources of the system.
The combination of both sets of key performance indicators
can provide a more accurate view of the performance of any
fuzz tool and this should be a future direction in the design
of fuzzers.

Hence, the use of a clear and standardized methodology
to measure the performance could represent a significant
advance in measuring the performance of fuzzers, but it is
no less important to have standardized test data to mea-
sure the performance. In this context, the test data should
represent a set of well-defined programs that implements
known weaknesses. The availability of data sheets of this
nature could help when comparing results, with standardize
data, it would be easier to compare the quality of differ-
ent fuzzers. In addition to this, it is necessary to implement
these vulnerabilities under different levels of complexity in
terms of control structures. This could provide insights of the
capacity of the fuzzer under different levels of complexity
present in the real world, from low-hanging fruits to complex
vulnerabilities.

Therefore, before developing a new fuzzer algorithm it will
be necessary to define a evaluation methodology specifying
the metrics for measurement and the data to perform the eval-
uation. In addition, it is necessary to set the experimental
conditions.

2) Means of Evaluation (Data and Program Availability):
One of the main issues when aiming to compare results from
different embedded fuzzing techniques is the necessity of a
common benchmark and resources that can aid in interpreting
results and choosing the best alternative. Such resources can
be grouped in three main types.

1) Vulnerable SUT Targets: This refers to targets that
contain specific and/or undiscovered bugs and, when
necessary, bugs present only in specific types of devices.
In this sense, the scientific community have used as two
kinds of data.

a) Artificially Injected Vulnerabilities in the Existing
Libraries and Applications: The most popular
example for this purpose is LAVA [123] that injects
vulnerabilities in GNU/Linux applications.

b) Existing Opensource Applications and Libraries
With Known and Unknown Vulnerabilities: In
this case, programs of different nature have been
used ranging from classical tools in Linux (such
as tcpdump [124], jasper [125], objdump [57],
unig, ...,) to the NIST Juliet test suite [126]
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for C/C++ or even utilities present in embed-

ded systems, such as mbedTLS [127], [128] and

expat [18], [129].
While there are some tools at the disposal of the research
community, there is still a wide range to cover: no
LAVA-like framework [130] exists for embedded and
IoT vulnerability addition and the public availability of
embedded-only binaries with well known vulnerabili-
ties (found or induced) is still scarce. The creation of
such data sheets and binaries would greatly benefit the
community as a whole.

2) Fuzzers and Tools Source Code: Source code avail-
ability is necessary to be able to build fuzzers on top
of different platforms and architectures. This would
ease result reproducibility across different environments.
Therefore, it would be necessary to