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Abstract—Cloud native programming and serverless architec-
tures provide a novel way of software development and operation.
A new generation of applications can be realized with features
never seen before while the burden on developers and operators
will be reduced significantly. However, latency sensitive appli-
cations, such as various distributed IoT services, generally do
not fit in well with the new concepts and today’s platforms.
In this article, we adapt the cloud native approach and related
operating techniques for latency sensitive IoT applications oper-
ated on public serverless platforms. We argue that solely adding
cloud resources to the edge is not enough and other mechanisms
and operation layers are required to achieve the desired level of
quality. Our contribution is threefold. First, we propose a novel
system on top of a public serverless edge cloud platform, which
can dynamically optimize and deploy the microservice-based soft-
ware layout based on live performance measurements. We add
two control loops and the corresponding mechanisms which are
responsible for the online reoptimization at different timescales.
The first one addresses the steady-state operation, while the sec-
ond one provides fast latency control by directly reconfiguring the
serverless runtime environments. Second, we apply our general
concepts to one of today’s most widely used and versatile public
cloud platforms, namely, Amazon’s AWS, and its edge extension
for IoT applications, called Greengrass. Third, we characterize
the main operation phases and evaluate the overall performance
of the system. We analyze the performance characteristics of
the two control loops and investigate different implementation
options.

Index Terms—Amazon Web Services (AWS), cloud, edge,
greengrass, IoT, lambda, serverless.

I. INTRODUCTION

CLOUD native programming, microservices and server-
less architectures provide a novel way of software

development and operation. A new generation of applications
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with features never seen before is promised, while the bur-
den on developers and application providers is reduced or
more exactly, shifted toward the cloud operators. On-demand
vertical and horizontal resource scaling in an arbitrary scale,
dependability, fault tolerant operation, controlled resiliency are
just highlighted features provided inherently by cloud plat-
forms. However, latency sensitive applications with strict delay
constraints, such as several distributed IoT services, gener-
ally do not fit in well with the new concepts and today’s
platforms and pose additional challenges to the underlying
systems. When strict delay bounds are defined between differ-
ent components of a microservice-based software product, or
between a software element and the end device, novel mech-
anisms and concepts are needed. A crucial first step toward
the envisioned future services is to move compute resources
closer to customers and end devices. Edge, fog, and mobile
edge computing [30], [31], [37], [38] address this extension of
traditional cloud computing. Nevertheless, solely adding cloud
resources to the edge is not enough as the cloud platform
itself could significantly contribute to the end-to-end delay
depending on the internal operations, involved techniques and
configurations.

In this article, we adapt some relevant aspects of the cloud
native approach and related operating techniques for latency
sensitive IoT applications operated on public cloud platforms
extended with edge resources. Our general design concepts
are applied to one of today’s most widely used and versa-
tile public cloud platforms, namely, Amazon Web Services
(AWS) [1], and its serverless services. We identify the miss-
ing components, including novel mechanisms and operation
layers, required to achieve the desired level of service quality.
More precisely, we focus on serverless architectures and the
Function as a Service (FaaS) cloud computing model where
the microservice-based application is built from isolated func-
tions which are deployed and scaled separately by the cloud
platform. In our previous work [7], we proposed a novel
mechanism to optimize the software “layout,” i.e., to mini-
mize the deployment costs, in central cloud environment, e.g.,
in a given AWS region, while meeting the average latency
constraints defined on the application. A dedicated compo-
nent is responsible for composing the service by selecting the
preferred building blocks, such as runtime flavors (defining
the amount of resources to be assigned) and data stores, and
the optimal grouping of constituent functions and libraries
which are packaged into respective FaaS platform artifacts.
This approach can be extended to edge cloud infrastructures
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but further considerations are necessary. More specifically,
Amazon provides an edge extension for IoT services, called
Greengrass, where the edge infrastructure nodes are owned and
maintained by the user (or application provider) but managed
by AWS. Obviously, the pricing scheme and the performance
characteristics of serverless components in this realm is totally
different from the regular billing policy and operation, there-
fore, our models should be adjusted accordingly. In this article,
we aim to extend our basic model for edge cloud platforms and
to enable dynamic and automated application (re-)deployment
if an online platform monitoring module triggers that.

Our contribution is threefold.
1) We propose a novel system on top of public cloud

platforms extended with edge resources which can
dynamically optimize and deploy applications, follow-
ing the microservice software architecture, based on live
performance measurements. We add two different con-
trol loops and the corresponding mechanisms which are
responsible for the online reoptimization of the software
layout and constituent modules at different timescales.
The first one addresses the control of the steady-state,
long-term operation of given applications and it is suit-
able for following, e.g., the daily profiles, while the
second one implements a more responsive control loop
which can directly reconfigure the runtime environments
of deployed functions if the monitoring system triggers
that as a response to, e.g., SLA violation.

2) We provide a proof-of-concept prototype. In this arti-
cle, we target AWS and its edge extension for IoT
applications, called Greengrass, however, the concept
is general and it can be applied to other public cloud
environments as well. Our current solution supports geo-
graphically distributed edge cloud infrastructures under
the low-level control of AWS. The system encom-
passes a layout and placement optimizer (LPO), a
serverless deployment engine (SDE) and a live moni-
toring system with dedicated components and operation
workflows.

3) We characterize the main operation phases and con-
duct several experiments and simulations to evaluate
the overall performance of the system. We analyze
the performance characteristics of the two control
loops as well and investigate different implementation
options. Finally, we reveal further challenges and open
issues.

The remainder of this article is organized as follows. In
Section II, the background is introduced and a brief summary
on related works is provided. In Section III, an illustrative
use case is defined which motivated our work. Section IV
highlights the main principles driving our system design
and presents the high level architecture of the system. In
Section V, the proposed models related to the applications and
the underlying platforms are presented, and the optimization
problem is formulated. Section VI is devoted to the proposed
system including the details of the relevant components. In
Section VII, we evaluate the performance of the overall
system and our main findings are discussed in detail. Finally,
Section VIII concludes this article.

II. BACKGROUND AND RELATED WORK

The cloud native paradigm aims to build and run appli-
cations exploiting all the benefits of the cloud computing
service models. It includes several techniques and concepts,
from microservices across DevOps to serverless and FaaS
architectures, and everyone defines that in a slightly differ-
ent way. According to the cloud native computing foundation
(CNCF) [6], the ultimate goal is an open source, microservice-
based software stack, where distinct containers are separately
orchestrated and scaled by the cloud platform enabling the
optimal resource utilization and agile development. The server-
less approach allows to shift the focus from “where to deploy”
to “how to create” the applications. It can be realized by fol-
lowing either the Container as a Service (CaaS) computing
model or the FaaS paradigm, depending on the granularity
level that the developer can consider when creating the soft-
ware. In this article, we focus on the latter approach because
it provides finer granularity in the organization of the appli-
cation and more opportunities for optimization. There are
several public cloud providers offering both services, such
as Amazon [1], Google [13], Microsoft [24] or IBM [15],
and a number of open source platforms are also available for
private deployments, such as Kubernetes [18], Knative [17],
OpenWhisk [2], or OpenFaaS [27]. This section provides
a brief introduction on Amazon’s serverless solutions over
cloud and edge domains. Tools for automated deployment of
serverless components fostering the development and opera-
tion of such applications are also highlighted together with
open issues.

A. Serverless on Amazon Web Services

AWS [1], the platform of the market leader public cloud
provider, offers a wide selection of services that can sup-
port building applications in the cloud. Among those, two
options are adequate for executing serverless code: elastic con-
tainer service (ECS) with the Fargate launch type, and Lambda
which is a FaaS solution. Both can ease the task of deploy-
ing application components in different ways providing diverse
configuration options and pricing models. Lambda offers fewer
options for configuration but at the same time it simplifies
automatic deployment and connecting other AWS services or
Lambda functions. The service increases the assigned CPU
power together with the only adjustable flavor parameter, avail-
able memory size. Instance startup, load balancing between
the instances and networking configuration is taken care of
by the Lambda framework without any need for developer
interaction. There is also a select set of AWS services that have
built-in triggers for Lambda, while other, third party services
can invoke Lambda functions via the software development
kit (SDK). Lambda defines methods for easy versioning and
branching of deployed functions via Lambda versions and
aliases. Compared to Lambda, ECS offers more options for
setting up resources and networking, while also providing pos-
sibilities for quick invocations, however, it lacks the automatic
load balancing options. Larger sized function code and related
artifacts are better suited for deployment with ECS, since
Lambda poses a 250-MB size limit of uncompressed packages.



7956 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 10, MAY 15, 2021

AWS’s CloudFormation service [3] provides possibilities for
automating the deployment process of application components
realized by either of these services. However, code deployment
to edge nodes is only available via AWS IoT Greengrass.

B. Serverless at the Edge With AWS IoT Greengrass

AWS IoT Greengrass is a service that is part of AWS’s IoT
offerings and its main task is to make AWS Lambda func-
tions available on edge devices. The service’s basic building
blocks are Groups that can be configured in the cloud and
their deployment is managed by AWS. They are the collec-
tions of different entities serving different roles. The 1) Core
is at the center of each group that has a two-pronged rep-
resentation. It is present in the cloud as a link to the edge
node while it is also a software instance running on the edge
node and handles communication with the cloud. Every mes-
sage flowing between the edge and the cloud is encoded using
RSA keys for which an X.509 certificate is used. This also has
to be set up in the cloud, and assigned to the Core, as well
as transferred to the edge node before starting up the Core
software; 2) Devices and local resources [e.g., devices con-
nected via USB or machine learning (ML) artifacts] serve as
inputs; for 3) edge Lambda functions which are linked to cloud
Lambdas via AWS Lambda aliases. Configuration of edge and
cloud functions is handled separately which enables exten-
sions upon AWS Lambda functionality. Although code size
limits are inherited from the cloud version, edge functions do
not have lower or upper values in their memory settings and
increments can be made in 1-kB steps, as opposed to the cloud
version’s 64-MB steps. A remarkable difference compared to
on-demand cloud Lambdas is that edge functions can be long-
lived (pinned in AWS terminology) and the single long-lived
function instance can be kept running indefinitely. On-demand
edge functions are handled by the Core similarly to cloud
functions, multiple instances of a single function can run con-
currently and they are stopped after reaching the configured
timeout value. Three containerization method is offered for
executing edge functions: a) Greengrass; b) Docker; or c) no
containerization. The first option is the most versatile while
the rest severely limit available functionality. Access to other
edge and cloud functions is granted; and via 4) subscriptions.

C. Automated Serverless Deployment and Optimization

Deploying cloud applications across different platform
services is a complex task. In order to ease this pro-
cess, multiple tools exist that are able to set up required
resources with different cloud service providers. For example,
the Serverless Framework [35] uses a YAML configura-
tion file to declare resources in a provider agnostic way
and, with its own CLI, provides an interface for managing
these resources. The service is able to cooperate with, e.g.,
AWS [1], Microsoft Azure [24], Google Cloud Platform [13],
and Apache OpenWhisk [2]. Terraform [34] is a similar tool
that enables setting up and managing cloud infrastructure span-
ning over multiple public cloud domains. The higher level,
provider agnostic interface makes it easier to move the infras-
tructure from one provider to the next but it cannot fully hide

provider specific parameters. These tools were designed to
receive external parameters to be used at deployment from
other services, e.g., for specifying resource types or memory
size. One such external service is Densify [9] that, lever-
aging its separate optimization and monitoring components,
makes cloud applications self-aware. It monitors AWS vir-
tual machine (EC2) instances with a proprietary monitoring
component and collects CPU, memory and network utilization
data. Based on these, the optimization component uses ML to
model the application’s utilization patterns while also estimat-
ing the best fit of compute resources for current needs and
predefined specifications. Such estimations can give recom-
mendations on instance flavors to be used and on the number
of such instances. These recommendations can be forwarded
to application maintainers via different channels (e.g., Slack
or email), or can be applied automatically. Such automatic
redeployments can happen using templating tools that support
dynamic parameter assignment or parameter stores, e.g., AWS
CloudFormation, Terraform or Ansible. The service enhances
change recommendations with a cost monitoring interface as
well. As for AWS specific deployment options, the provider
offers different services for managing resources. All of them
use the same AWS API but they provide different levels of
complexity. Low-level options, such as the Web console, the
SDKs and the CLI have smaller granularity thus they make
handling of applications containing multiple resources overly
complex. CloudFormation [3] (that is also used by the AWS
Cloud Development Kit and many third party options) can treat
a whole deployment as a unit of workload. It can handle the
setup, modification and deletion tasks of complex applications
(called stacks or stack sets in CloudFormation terminology)
using its own templating language. Stackery [33] is a set
of development and operations tools accelerating serverless
deployments on top of AWS. It supports the management of
production serverless applications throughout their life cycle.

Albeit the availability of these versatile tools in deployment,
they do not prove to be adequate for deploying applications
to hybrid edge cloud scenarios when latency is of concern.
While AWS tools offer edge node management, and the AWS
Compute Optimizer [4] serves as a recommendation engine to
help right-sizing EC2 instances, such an optimization engine
for serverless applications is not available. AWS indepen-
dent tools share a similarity in this regard, as they do not
venture into the serverless domain and consider resource uti-
lization but omit the investigation of application performance.
Additionally, they usually lack the capability of handling edge
resources altogether or have started to support this feature
only recently thus not covering yet the full feature set made
accessible by the cloud provider.

Besides the tools supporting deployment and orchestration
over cloud platforms, there are only a few papers in the litera-
ture dealing with cloud native and cost-aware service modeling
and composition. Eismann et al. [10], Fotouhi et al. [12],
Leitner et al. [20], and Winzinger and Wirtz [36] provided
pricing models for microservice-based application deployment
over public clouds, but they focus only on supporting offline
cost analysis for predefined deployment scenarios. Online
cost tracing of a serverless application is a cumbersome task
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Fig. 1. Object detection use case.

due to limited billing information provided by the cloud
platforms. To tackle this issue, Costradamus [19] realizes
a per request cost tracing system using a fine-grained cost
model for deployed cloud services, however, it lacks any
optimization features. Researchers in [11] and [21] studied the
optimization problem of cloud native service composition and
provide offline solutions based on game theoretic formulation
and a constrained shortest path problem. Other recent works
in [5], [8], and [22] target similar problems of performance
optimization of serverless applications leveraging public cloud
resources, but only regarding the placement problem of the
service components and missing any adaptive and automated
service reoptimization task.

III. TARGETED USE CASE

In this section, we highlight an envisioned use case moti-
vating our work. The application exploits cloud features and
serverless tools in order to provide IoT services at large scale.
The use case, presented in Fig. 1, addresses live object detec-
tion on Full HD video streams. As we target cloud native
deployment and follow the serverless approach, we have state-
less functions requiring all data as input. Therefore, making
use of dedicated data stores is the reasonable (or the only
feasible) way of data exchange. Here, we strive to decrease
bandwidth requirements by preprocessing images before sub-
mitting them to elaboration and finally marking them with
detailed object classification results. The preprocessing stage
in steps 1 – 10 resizes and grayscales captured video frames
and performs a preliminary object detection on the modified
picture. At the end of the preprocessing stage, the full size
image is cut into pieces based on the bounding boxes pro-
vided by the preliminary object detection. As a next step, the
Cut function calls the second stage object detection function
for each cropped image which performs the object classifica-
tion task. Observe that the number of calls depends on how
many objects we found during the preprocessing stage which
we consider as an application specific metric. It depends on the

software whether the calls are synchronous and invoked seri-
ally or asynchronous and handled in parallel. Consequently,
the implementation of the next function, Collect Results, could
be different for the two approaches. In any case, it awaits while
each second stage detection function finishes and collects their
individual results. Finally, this function calls the Tag function
that marks detected objects on the full size image and anno-
tates it with object classification results. For our use case, we
interpret the end-to-end (E2E) latency as the average elapsed
time between the arrival of a frame and the event when a
recognized object’s classification is written out into the data
store.

In our implementation, we used Python and leveraged fea-
tures of the OpenCV [26] library for image processing and
object detection steps, relying on its deep neural networks
module and the MobileNet-SSD network. In the remainder
of this article, we focus on steps 1 – 12 , the main parts of
the application, and the components related to the rest of the
steps are not deployed in our tests.

IV. SYSTEM DESIGN

This section is devoted to the main goals and principles
driving our architecture design and the high level system
description is also provided.

A. Design Goals

Our main goal is to foster the development and operation of
latency sensitive IoT applications by adapting the cloud native
paradigm. More specifically, we aim at improving latency
control for serverless applications and allowing optimization
of operation costs on public cloud platforms extended with
privately owned edge infrastructures. We focus on the FaaS
cloud computing model, however, the concepts are general and
can be applied to container-based serverless solutions as well
(such as Fargate containers or Kubernetes pods). Although,
the finer granularity in the construction of the application pro-
vided by the FaaS approach yields more optimization options
and requires more sophisticated solutions. Formally, the oper-
ation cost of the application is to be minimized by finding
the cost optimal software layout required to meet the aver-
age latency bounds. To enable this optimization, we need
to construct accurate application and platform models cap-
turing the performance characteristics and operation prices.
The first reasonable way of controlling latency is the care-
ful placement of software components: the functions can be
run in the central cloud or in available edge domains. Current
APIs of today’s systems typically do not provide sophisticated
placement control based on delay information, therefore, we
strive to explicitly select the domains to run the functions.
We assume that edge resources are scarce, following different
cost models as cloud resources, and the preferred deploy-
ment option is always the central cloud while edge resources
are used only if the delay constraints require that. We argue
that besides placement, the efficient grouping of constituent
functions and libraries, which will be packaged into respec-
tive FaaS platform artifacts, and the selection of the runtime
flavors are crucial tasks which significantly affect both the
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Fig. 2. High level system architecture.

performance (e.g., end-to-end latency) and the operation costs.
A top level component is able to address all these targets and
generate a software layout description including the function
grouping with the selected flavors and placement information.
Based on this general description, an adapter layer can directly
deploy the application to the underlying cloud infrastructure
while exploiting the exposed APIs and related cloud services.

As user demands, application characteristics and platform
performance can vary in time, dynamic reoptimization is an
essential feature which can be provided based on a versatile
monitoring system. We target such a system making use of
available cloud services and custom extensions. Two different
approaches are considered to implement control loops. The
first option is to realize a full reoptimization cycle starting with
a model update gathered from live measurements, followed by
the optimization task and the full redeployment of the appli-
cation. Obviously, this yields a larger operation timescale. In
order to ameliorate the response time, we address an alter-
native option as well, which realizes a shorter control loop.
If different deployment options are onboarded in advance, the
reconfiguration of the application can be executed much faster.
However, we need to add a dedicated component to control
the specific application based on monitored metrics, while a
customized version of the FaaS runtime is also required in
order to allow on-the-fly reconfiguration.

B. High Level Architecture and Operation

The high level architecture of the proposed system is
depicted in Fig. 2. The system is capable of composing,
deploying and dynamically reoptimizing IoT applications
operated on serverless resources. We note, that the first and
basic version of the system, without any support for the edge,
was introduced in [7] and [29]. In the former, we focused
on the optimization layer, while in the latter, we investi-
gated deployment tasks. In the current work, we leverage

their composition and extend upon it with support for edge
deployment and a second option for inducing changes in the
application layout.

At the top level, the Layout and Placement Optimizer
(LPO) receives input data from the developer (or the oper-
ator in other scenarios). The data consists of the application
model (Application Components with Requirements) and the
platform model (Cloud and Edge Node Properties). The graph-
based service model encompasses functions, data stores (as
nodes) and invocations (function calls), read, write operations
(as edges). Average function execution time, call rates, latency
requirements on critical paths, etc. can also be defined for the
service. The other input of the system is the platform model
which describes the cloud platform’s performance and pric-
ing schemes and the list of available edge nodes with their
properties. It can be given a priori based on previous mea-
surements, however, the model parameters can be adjusted
on-the-fly based on live monitoring. The LPO works with
these service- and platform agnostic abstract models and con-
structs an optimal application layout by grouping the functions
into deployable units (e.g., FaaS artifacts), defining the corre-
sponding minimal flavors together with the hosting domains
(central cloud versus edge) and determining the required data
stores and invocation techniques (e.g., one for invoking func-
tions on the edge, a different one for calling functions in the
central cloud). The main objective is to minimize the oper-
ation costs while meeting the average latency bounds given
by the developer or user. The application layout together with
monitoring conditions is passed to the Serverless Deployment
Engine (SDE) in step 1 that transforms incoming data into
platform specific API calls and adapts the application layout to
the underlying edge or central cloud environments. In today’s
systems (such as AWS), the central cloud and edge domains
are controlled via distinct deployment engines (Cloud/Edge
Deployment Engines on Fig. 2) and APIs in separate calls
(steps 2 and 4 ).

As a result, the Managed Application can have parts running
on edge nodes or in the central cloud launched in steps 3
and 5 , respectively. We assume that the platform can run
the same function artifacts in both runtime environments and
in-memory data stores can be used for state management. In
either case, the grouped application components are executed
by our special-built Wrapper which is an essential extension
to the platform’s own runtime environment. The purpose of
the Wrapper is threefold.

1) It enables grouping of functions into artifacts by han-
dling both the internal interactions among the encom-
passed functions and the interactions with the outside
world: state store access and invocation to other
components.

2) The Wrapper logs measured metrics on these operations,
including platform related and application specific ones,
to the managed monitoring system.

3) The Wrapper grants on-the-fly reconfiguration access
to the runtime environment via a novel API which is
used by the runtime optimizer (RO), the controller of
the shorter control loop (step 9 ). This reconfigura-
tion allows to change the function calls (e.g., invoking
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TABLE I
MATHEMATICAL NOTATIONS USED IN THIS ARTICLE

the central cloud version of a function instead of the
edge variant) or data store access in the artifact based
on live monitoring without the need of redeployment.
The monitoring infrastructure, consisting of the managed
monitoring system and the RO, is deployed in steps 6
and 7 when the application has already been set up.
The monitoring system aims at monitoring performance
and application level metrics and it can send alarms to
the LPO and the RO. In addition, a periodic query-
based operation is also provided to support enhanced
responsiveness (steps 8a and 8b ).

V. OUR MODELS AND OPTIMIZATION PROBLEM

In this section, we define our service and platform mod-
els capturing the main performance and cost characteristics.
The introduced notations are summarized in Table I. To estab-
lish accurate models, a comprehensive performance analysis
of AWS Lambda and Greengrass is the essential first step.

A. Performance of AWS Lambda

In our previous works [7], [28], we provided a comprehen-
sive performance study of delay characteristics of AWS FaaS
and CaaS offerings, based on short- and long-term experi-
ments. Here, we give a summary on them focusing on our
main findings with regards to AWS Lambda.

Each AWS region operates using multiple CPU types
with different capabilities, and the configured resource fla-
vor (memory size) can have an impact on the selected CPU

type. For single-threaded Python code, Lambda performance
approximately doubles as assigned memory size is doubled
until reaching the peak performance at around 1792 MB (one
physical core is allocated). Our measurements indicate that
execution time has no correlation with the time of the mea-
surement but it is highly affected by the assigned CPU type
and the selected Lambda resource flavor. We observed that
AWS, time independently, assigns Lambda instances to dif-
ferent types of CPUs available in the chosen region in an
undisclosed manner. At small flavors we measured signifi-
cant differences among CPU types, but as higher flavors were
selected, the differences diminished. Many different meth-
ods exist for invoking Lambda functions but most of them
are inadequate for handling latency sensitive applications as
they impose high delays with high variation, even for small
transmitted data size. The quickest Lambda invocations are
the SDK’s and the API Gateway’s synchronous calls, how-
ever, they have adverse effects on the execution time (thus the
price) of the invoker function. Therefore, using asynchronous
SDK calls can be a better fit for latency constrained applica-
tions. Long-term SDK asynchronous invocation tests showed
no dependency on either the time of the call, the CPU type or
the flavor of the instance. On average, we measured 103 ms
when transmitting payloads with 130-kB size and 79 ms for
1 kB. Considering the asynchronous nature of the call, we
measured surprisingly high blocking delay (the time while
the invoker function gets blocked during an invocation) in the
invoker function (52 and 44 ms, respectively). As Lambda is
designed to serve stateless functions, whenever states should
be stored we have to use an external service. In our previous
work, we concluded that Amazon ElastiCache for Redis out-
performs every other AWS offering for serving such purposes.
It can handle both read and write operations under 1 ms for
data smaller than 1 kB. Redis performance is among the best
throughput-wise as well, and it handles increasing concurrent
access notably well.

B. Performance of AWS Greengrass

Although Greengrass and cloud Lambda functions share
many features, they differ in multiple aspects, as discussed
in Section II-B, that significantly affect performance. In
case of latency sensitive applications, the most important
performance features to measure are flavor dependent com-
putation proficiency and invocation latency. In order to inves-
tigate these aspects with AWS Greengrass, we repeated the
respective benchmarks discussed in [28]. We used two dif-
ferent edge nodes to execute the tests: a local server with
four Intel Xeon E5-2650 v3 CPU cores, 6 GiB of memory
running Ubuntu 18.04 and an Amazon EC2 t2.micro instance
with 1 vCPU and 1 GiB memory running the same OS in
the eu-west-1 (Ireland) AWS region. Each measurement was
repeated 100 times to obtain average values and standard
deviation.

1) Execution Time: As opposed to AWS Lambda behavior,
Greengrass does not apply a memory size dependent access
to compute resources. The service limits instance access to
resources by using cgroups, however, it always provides
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Fig. 3. Invocation measurement setup for AWS Greengrass.

Fig. 4. Measured invocation and blocking delays.

access to unlimited processor time for each running function
instance as their cpu.share parameter is set to 1024. Our
measurements proved to be perfectly in line with this, as
running multiple instances of the same function cause no sig-
nificant increase in execution time until every core has been
occupied by a function instance. However, when we start up
twice as many function instances as the number of CPU cores,
the execution times doubles. The behavior shows that the man-
agement jobs executed by the Greengrass core do not require
significant CPU resources when no messaging is performed
among the function instances.

2) Invocation Delay: As Fig. 3 depicts, there can be four
different call paths among functions when AWS Greengrass
is used depending on the location of the Invoker and Receiver
functions.

1) When both functions are on the same edge node and
local invocation is used.

2) The function locations are the same, but the call goes
through the AWS IoT Cloud topic.

3) The two functions are on different edge nodes.
4) The Receiver function is an AWS Lambda function

residing in the central cloud.
We benchmarked these scenarios on both of our edge nodes.
In accordance with our previous measurements in [28] using
the same methodology as here, invoking a function in the cen-
tral cloud from the edge is the slowest, taking 125–231 ms to
complete. In terms of latency, this invocation type is one of
the slowest of available AWS Lambda calls and is 20–30-ms
slower than asynchronous SDK calls between Lambda func-
tions. Results for the rest of the cases measured on the
t2.micro instance are shown in Fig. 4 together with the block-
ing delay caused by the invocations. (We opted to exclude
the depiction of edge to central cloud calls from the fig-
ure in order to provide better visibility on invocation delay
characteristics between edge functions). We can conclude
that Greengrass local calls (calls between functions managed
by the same Greengrass Core) are extremely fast compared

to other Lambda function invocation options. As the local
AWS Greengrass Core can handle the invocations, they last
only 2.3–4.3 ms depending on payload size. Because of the
Greengrass service’s architecture, any other invocation has to
interact with the AWS IoT Core, thus calls have to traverse the
IoT Cloud topic. These invocations experience 7.8–19.5-ms
delay when the Receiver function is found on a Greengrass
node. When using our on-premise edge node, the increase in
latency corresponded to the latency between our premises and
the AWS region we used for the test. Blocking delay, the time
while the Invoker function gets blocked during an invocation,
is always small, ranging from 1.5–2.8 ms which is a fraction of
those measured for the asynchronous cloud calls (50–70 ms).

Comparing the above results with those given by [28], we
can conclude, that using AWS IoT Greengrass solutions result
in relatively low latency only when the cloud functions are
not involved. If an application requires low latency as well as
edge and cloud functions, it is better to use SDK calls between
them instead of relying on AWS IoT.

C. Service Model

The service model describes the user-defined service request
including the software components and their interactions. Let
S be the service structure description which is basically a
directed multigraph. Function nodes F represent the simple,
stateless and single-threaded basic building blocks, which use
invocations I to call other functions and read R, write W arcs
to perform I/O operations on data store nodes D. A dedicated
platform node ℘, in the role of the API Gateway or the user,
represents the main entry point of the service and designates
the ingress service invocations. Recursive loops are modelled
in their expanded form in which each iteration step is given
with explicit invocations. This concludes the invocation sub-
digraph S[F℘], unlike Control Flow Graphs, to be loopless,
that is, a directed acyclic graph (DAG). Moreover, functions
are considered to have only a single entry point which has a
strict syntax typically predefined by the execution framework.
The single-predecessor function characteristic further restricts
S[F℘] to be a directed rooted tree with ℘ as the root node.

Functions are characterized by the execution time τ mea-
sured on one vCPU core, while arcs have the average invoca-
tion rate ωr attribute along with the explicit blocking delay
δ� introduced in the invoker function. Data stores can be
described by their workload capacity in general. In addition to
the graph-based description, the service model also keeps track
of user-defined node-disjoint path(s) � with associated latency
limit lπ as the basic constraints for the layout optimization.

D. Platform Model

Our platform model captures the performance characteris-
tics and cost models of function execution, invocation and data
store access methods, respectively. For the runtime environ-
ment, we only consider single-threaded serverless functions.
However, our models can be extended to use containers [7] or
to support multithreaded functions by using explicit function
execution profiles. Runtime flavors � are specified by their
offered vCPU fraction nc. To extend our previous model with
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edge computation capabilities, we introduce edge nodes as
standalone flavors. Thus, an assigned flavor implicitly carries
basic placement information, that is, designating the specific
edge node or the central cloud as required by the deploy-
ment engine. While Greengrass Lambdas always have access
to one vCPU core on edge nodes, i.e., nc(�E) � 1, the core
fraction of cloud Lambdas can be derived from their assigned
memory as nc(�λ) = min{([
m(�λ)]/[
m(�∗λ)]), 1}. The first
Lambda flavor granting one core is �∗λ = 1792 MB as stated
in Section V-A.

Regarding invocation types, we assume two different
options relevant to latency sensitive applications. More specif-
ically, async SDK invocation, depicted in Section V-B, and
local invocation are considered. Local invocation is used when
one function directly invokes another function in the same
group and its blocking overhead is negligible in terms of
latency.

E. Cost and Latency Models

Making use of our service and platform models, we can
describe the end-to-end latency and the operation costs of the
application. While serverless platforms support parallel func-
tion execution via autoscaling, internal parallelization (within
a Lambda function) could also be realized by applying mul-
tithreading and internal asynchronous calls scheduled by the
runtime. However, we consider single-threaded functions and
runtime environments with a single core. Therefore, in order
to calculate overall latency (and costs), we can model all
functions as single-threaded components.

These functions can be composed together, where they can
call each other directly in a synchronous manner, and exe-
cuted in a single Lambda function. This way, the grouping
of functions can reduce the overall latency by eliminating
SDK invocation overheads in return for additional costs. In
the same time, function grouping introduces serialized exe-
cution of the encompassed functions resulting in increased
group execution time. The number of consecutive executions
of a function is determined by its caller component’s behavior.
This can be modelled with a multiplier, i.e., the serialization
ratio, which is the ratio of the caller and called component’s
invocation rates. This quotient is greater than 1 when the caller
iteratively performs invocations, around 1 if it realizes one-to-
one mapping and less than 1 if outgoing calls are filtered by
conditional statements. First, let Ts define the overall service
runtime. Then, let tp denote the execution time of function
group p ∈ PF on selected flavor φp ∈ �. In (1) we define
tp as the sum of the actual function execution times including
flavor-related data and egress invocation overheads A+(p), and
multiplied by the serialization ratio. Invocation if and ip mark
the ingress invocations of function f and belonging group p

tp =
∑

f∈p

ωr
(
if
)

ωr
(
ip

)

⎛

⎝ τ(f )

nc
(
φp

) +
∑

a∈A+(p)

δφp(a)

⎞

⎠. (1)

In accordance with AWS billing patterns, we use rounded
up group execution time for the Lambda cost calculation. In
addition, we define the summed number of received requests
as rp � ωr(ip)Ts for group p ∈ PF . The flavor-dependent group

cost function cp is formulated in (2), where Cr, and Cp are the
billing constants specified by the cloud provider for the total
number of requests and rounded group execution time

cp
(
p, φp

) = rp
(
Cr + Cp�tp�100 ms

)
. (2)

Although service cost calculation relies on the entire group
execution time, the observed latency differs from tp values.
The end-to-end latency measured at a function can include dif-
ferent number of consecutive executions of the preceding func-
tions based on their position in their serialization sequence.
Thus, the number of distinct execution variations from which
the measured latency value is computed is determined by
the serialization ratios of the preceding functions. As these
execution variations contribute evenly to the average latency
value we define a modified formula l̄p for the group latency
calculation in

l̄p
(
p, φp

) =
∑

f∈p

ωr(if )
ωr(ip)

− 1

2

⎛

⎝ τ(f )

nc
(
φp

) +
∑

a∈A+(p)

δ�p(a)

⎞

⎠. (3)

With the same approach, we can formalize the cost function
for data stores as well. As there are no outgoing data transfers,
the data store cost only depends on the service runtime Ts and
instance type Ci. Therefore, it can be expressed as a single
layout-independent cost value CiTs.

F. Optimization Problem

The LPO’s output is the service layout which defines the
function partitioning PF (equivalently called as clustering in
the literature) along with the flavor assignment ϕ. Thus, the
optimization task is to find the cost-efficient layout over the
cloud/edge environment considering latency requirements.

Our problem, which falls under the topic of graph partition-
ing, is a complex task in general. For simplicity, we make the
following assumptions without losing the original target.

1) We consider only one central cloud Lambda flavor and
one edge flavor.

2) Since data stores S[D] do not form a connected subdi-
graph and their cost is layout-agnostic depending on Ts

solely, data store flavor assignment can be realized as
a separated upper-bounded aggregation. Thus, we focus
on the S[F] partition problem in the following (as ℘

must not be part of any group).
3) We do not assume internal thread-based parallelization

as functions represent simple software building groups.
This means, PF has to be technically a valid graph par-
titioning of S[F] where partition groups are considered
to be directed linear chains with no limit either on their
number or size.

Summarizing the above, we define our objective function as
to find the chain partitioning (PF, ϕ) with the minimal cost

min
∑

p∈PF

cp(p, ϕ(p)) (4)

such that the following constraints must be met.
1) Latency limit lπ of a given path π is not to be violated.
2) Function group p ∈ PF must contain exactly one chain.
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Fig. 5. Partitioning examples of a tree service (left) with no constraint
(middle) and with strict latency constraint lπ (right).

Fig. 5 shows two illustrative partitioning of an example ser-
vice. The latency constraint lπ leads to a substantially different
grouping regarding the number and composition of the groups.

VI. PROPOSED SYSTEM

We have applied our general design principles presented in
Section IV to AWS Lambda and Greengrass and the complete
system is shown in Fig. 6. Our prototype was implemented
in Python3 making use of the AWS SDK and AWS IoT
Greengrass SDK. In this section, the main components, algo-
rithms and workflows are described in detail and we present
how the exposed APIs of AWS are exploited by our system.

A. Layout and Placement Optimizer

The main task of the LPO is to solve the optimization
problem defined in (4). Graph partitioning or clustering have
been well-researched for decades. While partitioning is known
to be NP-complete for arbitrary directed graphs as well as
weighted trees [14], several polynomial-time algorithms exist
for sequential graph partitioning (SGP) which restricts the par-
tition groups to contain only consecutive nodes [16], [25]. The
available techniques for solving SGP assume either an upper
bound for the group sizes or consider only fixed number of
groups. However, our problem differs from the traditional vari-
ants of SGP in several aspects. Since we aim to split up trees
explicitly into chains and the partition groups are bounded by
the latency limits of service-wide critical paths in contrast to
the locally verifiable group size or count limits, the aforemen-
tioned methods cannot be applied directly to our problem. By
extending our prior algorithm designed for public clouds [7],
we propose a heuristic approach for cost-efficient and latency-
constrained partitioning of trees into chains on cloud and edge
resources, called Chain-based Tree-Partitioning (CTP).

1) Chain Partitioning: First, we define the relaxed Chain-
Partitioning (CP) algorithm utilized by CTP as a subproblem
to solve tree partitioning. CP specifies chain partitioning as a
variant of noncrossing sequence partitioning and leverages its
related divide-and-conquer approach [23]. Suppose an n-length
chain of functions f with their measured performance charac-
teristics, the number of counted subcase latency bounds B and
an optional path [πs, πe] limited by lπ as the algorithm’s input.
Here, the cost-efficient partitioning along with the assigned
flavors, overall cost and latency values can be derived by
iteratively evaluating the recurrence relations in (5).

In the recursive formulas, the subcase of the first i nodes
of the chain grouped into j groups is divided into two sub-
parts: the previously calculated subcase of the first k−1 nodes
into j − 1 groups and the remaining last k

∗−→ i nodes as a
single group. Since the assigned flavor φ of the last group
and its invoker group’s flavor ν inherently predetermine the
group execution times and the invocation delay between the
two subparts, the selection of a minimal cost subcase cannot be
guaranteed to be globally optimal regarding the overall latency
constraint. Therefore, we use B precalculated latency bounds
for each subcase and cache the related cost-optimal partition-
ing which enables tracking of more expensive subcase variants
with better latencies that are optionally chosen during a sub-
sequent iteration. These bounds are calculated evenly between
the overall latency limit lπ and the smallest execution time of
single function groups in descending order, keeping cheaper
variants with lower bound indices b. The cost-optimal parti-
tioning of a subcase is designated by the specific k∗ value
where the summed cost of the two subparts is minimal. In
case of multiple minima, the subcase with the lowest index
k, that is, the lowest group count, is chosen. During each
iteration, all flavor combinations ν, φ are examined and only
those prior subcases with feasible bounds bk

ν,φ are taken into
account which meet the given bound b including the execu-
tion time of the last group and its invocation delay. To track
the relevant subcases’ values, dedicated matrices C and L are
introduced for storing the summed cost and latency calculated
with cp and l̄p from (2) and (3). Latency calculation formu-
lated in l(k, i, ν, φ) is performed only for the constrained path
[πs, πe] using the flavor-dependent invocation delays formed
in matrix D. To be able to reconstruct the partition groups,
matrices K, B and F are used for caching the barrier node
k∗, by which the optimal subcase is divided, the opted latency
bound b∗ of the prior subcase and the last group’s flavor φ∗
opted for k∗, respectively

C
[
i, j, b

] = C
[
k∗ − 1, j− 1, b∗

]+ cp

(
f
[
k∗ ∗−→ i

]
, φ∗

)

L
[
i, j, b

] = L
[
k∗ − 1, j− 1, b∗

]+ l
(
k∗, i, ν∗, φ∗

)

K
[
i, j, b

] = k∗ B
[
i, j, b

] = b∗ F
[
i, j, b

] = φ∗

b∗ = min
ν,φ∈� bk∗

νφ ν∗, φ∗ = argmin
ν,φ∈�

bk∗
νφ

k∗ = argmin
j≤k≤i

min
ν,φ∈�

{
c(k, ν, φ)+ cp

(
f
[
k
∗−→ i

]
, φ

)}

c(k, ν, φ) =
{

C
[
k − 1, j− 1, min bk

νφ

])
, if bk

νφ �= ∅
∞, otherwise

bk
νφ =

{
β | L[

k − 1, j− 1, β
]+ l(k, i, ν, φ) ≤ b

∧F
[
k − 1, j− 1, β

] = ν
}

l(k, i, ν, φ) =
⎧
⎨

⎩

0, if [πs, πe] ∩ [k, i] = ∅
l̄p

(̂
fki, φ

)
, if πs ≥ k

D[ν, φ]+ l̄p
(̂
fki, φ

)
, otherwise

f̂ki = f
[
max{πs, k} ∗−→ min{πe, i}

]

i = [2 . . . n]; j = [2 . . . i]; b = [1 . . . B]. (5)

The dynamic programming technique provides an efficient
way to solve the recursive formulas in (5). Algorithm 1
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Algorithm 1 Chain-Partitioning
1: procedure CHAINPARTITION(. . . , πs = 0, πe = n, B = n, lπ = ∞)
2: Define DP← n× n× r matrix with 5-tuples as 〈C, L, K, B, F〉
3: Apply memoization to functions l̄p, cp with cache size n ∗ |�|
4: if lπ = ∞ then � Calculate latency bounds
5: bounds← [∞]
6: else � Decreasing bounds of evenly spaced r ranges
7: bounds← LINSPACEBOUNDS(lπ , minf∈F,φ∈� l̄p(f , φ), B)

8: for i← 1 to n; b← 1 to |�| do � Precalculate trivial subcases
9: DP[i, 1, b]← 〈cp(f1i, �b), l̄p(f1i, �b), 0, 0, �b〉

10: REVERSESORTBYLATENCY(DP[i, 1])
11: for i← 2 to n; j← 2 to i; k← j to i; ν, φ ∈ � do
12: for b← 1 to B do
13: if bounds[b]− D[ν, φ]− l̄p(fki, φ) ≤ 0 then � No residue
14: break
15: bidx ← GETFEASIBLEBOUNDINDEX(DP[k− 1, j− 1], b, ν)
16: if bidx = NULL then � No sufficient bound with flavor ν

17: break
18: cost← DP[k − 1, j− 1, bidx].C + cp(fki, φ)}
19: if cost < DP[i, j, b].C then � Subcase with lower cost
20: lat← DP[k − 1, j− 1, bidx].L+ l̄p(fki, ν, φ)

21: DP[i, j, b]← 〈cost, lat, k, bidx, φ〉
22: k∗, barr, flav, kb, bb ← argmink DP[n, k, 1].C, [ ], [ ], n, 1
23: for jb ← k∗ to 1 do � Reconstruct groups
24: barr[jb], flav[jb]← DP[kb, jb, bb].K, DP[kb, jb, bb].F
25: kb, bb ← DP[kb, jb, bb].K − 1, DP[kb, jb, bb].B
26: return GETBLOCKS(barr, flav), DP[n, k∗, 1].C

presents the pseudocode of our implementation which uses one
matrix DP with 5-tuples. At the first step, the bound values
are calculated based on B. Before calculating the subcases, DP
is initialized with default values as grouping the first i nodes
into a single group is trivial. During each iteration, the latency
residue is calculated for the prior subcases and used for find-
ing the feasible bound with the lowest index b and the subcase
with the lowest summed cost is stored. As the last step, the
partition groups are reconstructed. Groups are determined by
the list of barrier nodes and the assigned flavors, which can
be obtained recursively from the stored values. The barrier
and bound values and their indices in the matrix designate the
last group’s first node and its assigned flavor, and inherently
mark the next barrier’s position. The cost-minimal partition-
ing values C[u

∗−→ v] and L[u
∗−→ v] can be obtained using

indices [n, k∗, 1] where k∗ = argmink C[n, k, 1]. Additionally,
function cp and lp are enhanced with memoization, where
the calculated result for given function parameters is stored
in a least recently used (LRU) cache to reduce the repeating
computation steps.

Theorem 1: CP has time complexity of �(([n(n +
1)]/2)B|�|2).

Proof: With memoization, each iteration step can be
computed in O(1) time. Since i nodes can be grouped into
maximum i groups, CP uses the left triangular part of the n×n
matrices per bounds B, which results in ([n(n + 1)]/2)B|�|2
iterations.

2) Tree Partitioning: Following an analogous formaliza-
tion, CTP recursively calculates the partitioning of a subtree
in S by leveraging the CP algorithm and previously calculated
subtree groupings to enforce the node-disjoint critical paths �.
To accomplish this efficiently, CTP precalculates all the reach-
able leaves from each node by labeling the nodes using pos-
torder DFS and the label definition in the following equation,

where N+(v) is the out-neighborhood of node v ∈ V(S[F])

L(v) =
{⋃

u∈N+(v) L(u), if deg+(v) > 0
{v}, otherwise.

(6)

In order to ensure CTP to inspect every candidate partition-
ing of a subtree, we define the Subchain-Pruning action which
leverages Node-Labeling to track the chain from subtree root
r to target leaf l, while it also fetches the chain-adjacent sub-
tree roots N+c (r

∗−→ l). It operates roughly as follows: Starting
from the subtree root, Subchain-Pruning iteratively checks the
labels of descendant nodes. The child node that has the tar-
get label is a member of the actual chain and marked as the
next step, while the remaining successors belong to the chain
neighbors.

We can get valid chain partitioning of an arbitrary subtree if
we perform Subchain-Pruning, then apply Chain-Partitioning
on the resulting root-leaf chain and take the partitioning
of chain-adjacent subtrees. Consequently, we shall cover the
cost-optimal subcase if we perform Subtree-Pruning on each
leaf-ending chain designated by the subtree root’s labels. To
ensure the latency constraints, a separated chain traversal
step is realized, similarly to Subchain-Pruning. Each critical
path originating on the chain is checked during the traver-
sal, while the related latency fragments of impacted paths
are cached in L. The latency limit that fits entirely on the
chain is enforced by CP itself. This follows that CTP accepts
constraints assigned for distinct node-leaf subchains solely,
otherwise only the critical path originating the closest to ℘

can be guaranteed. Finally, we formulate our recursive CTP
algorithm in

T[n] = min
l∈L(n)

⎧
⎪⎪⎨

⎪⎪⎩

∑

m∈N+c
(

n
∗−→ l

)
T[m]+ t(n, l)

⎫
⎪⎪⎬

⎪⎪⎭

t(n, l) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
[
n
∗−→ l

]
, if ∀π : L

[
πs
∗−→ πe

]
≤ lπ

s.t. πs
∗−→ πk ⊂ n

∗−→ l

πk+1 ∈ N+c
(

n
∗−→ l

)

∞, otherwise

L
[
πs
∗−→ πe

]
= L

[
πs
∗−→ πk

]
+ D

[
φπk , φπk+1

]

+ L
[
πk+1

∗−→ πe

]
. (7)

To ensure the proper processing order of S[F], CTP utilizes
reversed BFS tree traversal. Evidently, the optimal partitioning
cost of S[F] is cached in T[r], where r is the root node of S[F].
Partition groups are tracked by the array P which caches the
set of reconstructed groups as intervals for each subtree. The
pseudocode in Algorithm 2 summarizes the CTP algorithm.

Theorem 2: If c is the longest chain size and � is the high-
est degree in S[F] CTP has time complexity O(n(B|�|2 +
�)c3).

Proof: First, Node-Labeling is a slightly modified DFS
traversal where in each backtracking step the labels are
collected from the node’s successors. Since DFS requires
O(|V| + |E|) steps and in trees n ≡ |V| = |E| + 1, node
labeling has O(n) complexity. To track a chain in a subtree,
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Fig. 6. Proposed system: overall architecture and details of our deployment, monitoring and reoptimization cycles.

Algorithm 2 Chain-Based Tree-Partitioning
1: procedure TREEPARTITION(tree, root, � = {}, B)
2: Define T, P as |F|-sized lists, L as |F| × |F| matrix with value ∞
3: DONODELABELINGS(tree, root)
4: for all node ∈ REVERSEDBFS(tree, root) do
5: for all leaf ∈ L(node) do
6: chain, nghbrs← SUBCHAINPRUNING(tree, node, leaf )
7: 
π , πs, πe ← GETCRITICALPATH(tree, chain,�)

8: params← GETCHAINPARAMETERS(chain)

9: part, cost← CHAINPARTITION(params, πs, πe, B, lπ )

10: valid, sub_lats← CHECKCRITPATHS(chain, part, �, L)

11: sum_cost← cost +∑
m∈nghbrs T[m]

12: if valid is true and sum_cost ≤ T[node] then
13: T[node]← sum_cost
14: P[node]← GETPART(tree, part) ∪⋃

m∈nghbrs P[m]
15: L← L ∪ sub_lats
16: return P[root], T[root]

Subchain-Pruning checks each node in the chain with all their
neighbors, which can be upper bounded with the longest chain
c and maximum degree � of S[F]. It leads to O(c�) time
complexity.

CTP visits each node and tests the partitioning subcases
based on the node labels and Subchain-Pruning. It requires∑

v L(v) checks in total which is exactly the sum of the sizes
of all chains in S[F]. This value can be upper bounded by the
longest chain size c multiplied by the maximum leaf count
which is n−1 in trees. Each iteration needs c� steps from both
the Subchain-Pruning and the latency segment testing, and

([c(c+ 1)]/2)B|�|2 < c2B|�|2 steps from Chain-Partitioning
as we can overestimate the partitioned chain size with c. This
follows that c(n− 1)[c2B|�2 + 2c�]� n(B|�|2 +�)c3.

B. Serverless Deployment Engine

One level below the LPO, the SDE is responsible for trans-
lating application layout and monitoring conditions arriving in
step 1 (see Fig. 6) from the LPO to calls that AWS can pro-
cess for setting up resources. On a high level, the SDE commu-
nicates directly with AWS accessing its CloudFormation (CF)
and Greengrass services. The former is configured via its own
templating language. CF processes incoming template requests
describing what resources to set up, in which order and what
connections will these resources have with each other, and
creates individual CF stacks or stack sets from them. In our
implementation, the SDE synthesizes templates specifying sin-
gle CF stacks as a simplification. In step 2 , the SDE passes
a template to CF that defines all the components for the AWS
Managed Application in the cloud as well as it configures
Greengrass related resources to be deployed to edge nodes.
When cloud resources have been set up by CF in 3 , the SDE
calls AWS Greengrass directly for deploying resources to edge
nodes in step 4 , since CF is incapable of deploying code to
edge resources. After completing the whole application setup
with edge deployment in step 5 , the SDE configures elements
required for the AWS Managed Monitoring of the deployed
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application and the RO component. These are also exchanged
with CF in step 6 and are set up in step 7 . In steps 2 and 6 ,
application and monitoring code and other artifacts are shared
between the SDE and CF in compressed format using AWS’s
own object storage service, Amazon S3.

In accordance with these, the SDE goes through four
phases internally for creating the Application and Monitoring
CloudFormation templates and artifacts for applications writ-
ten in Python. (Of course, the concept can be applied for
other programming languages supported by AWS Lambda as
well). In phase D1 , external libraries and developer defined
function resources required by the application components
are collected. These are compressed depending on component
placement and then uploaded to Amazon S3. In phase D2 ,
the actual code of application components gets processed.
The code for every component group defined by the LPO is
collected and purpose-built Wrapper code is added to them
as well. Two special functions are added to the application.
The Entry point function is able to divert incoming requests
to the application’s own entry point be it on an edge node
or in the cloud. The Edge monitor function performs CPU
and memory load measurements on edge nodes. The resulting
AWS Lambda functions are compressed and uploaded to S3.
In phases D3 and D4, the SDE formulates the application
and monitoring CF templates, respectively. During application
template creation, incoming layout and flavor specifications are
used. These are complemented with code and artifact locations
in S3 as well as additional AWS resources that are needed in
order to set up the application properly. Such resources include
but are not limited to AWS Lambda layers, versions, aliases,
Amazon VPC, subnets, Internet Gateways, NAT Gateways,
ElastiCache clusters, AWS IAM security policies and roles
as well as Greengrass groups, cores, resources and subscrip-
tions. The SDE’s Python3 implementation contains around
2500 LoC.

The AWS Managed Application is ready to run as soon
as CF finishes with step 3 if the application does not use
edge resources or at step 5 otherwise. As depicted by the
bottom side of Fig. 6, all interactions among application com-
ponents with each other or with data stores, traverse our
Wrapper. This lightweight runtime extension is capable of hid-
ing (edge or cloud) placement differences, function invocation
and data store access specifics from application components.
It serves as the unique standardized entry point to functions
that have been grouped together by the LPO, and it even
relays function specific environment variables. Configuration
of the Wrapper is also performed via environment variable
assignment in the template at phase D3 within the SDE.
Here, the specific Lambda, IoT topic and Redis endpoints are
supplied to the Wrapper. During normal application opera-
tion, our Wrapper implementation, comprising of 630 lines
of Python code, adds negligible latency to application E2E
latency as configuration parameters are cached (in Python
dictionaries and objects) and the Wrapper’s internal handler
components are extremely lightweight. In case of cold start up,
when configuration parameters need to be processed, Wrapper
overhead is slightly greater but still remains under 2 ms.

C. Automated Monitoring

Since every communication attempt between application
resources goes through the Wrapper, it proves to be ideal for
handling monitoring related functionality as well. As these
invocations and data store accesses traverse the Wrapper, it
measures then logs call latency and rate, blocking delay as
well as function execution time. An interface for logging
custom application level metrics of application components
is provided as well. Measured values are reported to the
AWS Managed Monitoring component. This entity has three
tasks: aggregating metrics, sending out alerts and providing a
queryable interface. The first two tasks are handled by Amazon
CloudWatch (CW). When logging monitoring data to CW,
the Wrapper experiences significant, available CPU dependent
delay. In case of the smallest Lambda flavor (128 MB), we
experienced 125 ms on average with high variance using the
highest available batching (20 metrics). However, thanks to
implementation details, this does not contribute to application
delay at all (metrics logging is running virtually in paral-
lel with the application). It does, however, contribute to the
price of maintaining the application. Data coming from the
Wrapper goes to CW Metrics and limit violations are handled
by CW Alarms. This latter AWS service is configured within
the monitoring template in phase D4 of the SDE for condi-
tions coming directly from the Developer or the LPO. Alerts
are sent out from the Monitoring component to the LPO and
RO in steps 8a and 8b , respectively, using the integration
between CW and Amazon Simple Notification Service (SNS).
For measurement data that does not trigger alarms, the com-
ponent offers access via a Metric Inquirer function that is also
deployed at steps 6 – 7 .

D. Dynamic Reoptimization

The above discussed features of the Monitoring compo-
nent serve as a basis for the closed loop reoptimization of
the application. After deployment, the application starts to log
usage metrics automatically that either trigger an alarm, or
one of the optimization components discovers a nonalerting
change in the application’s behavior and initiates a change (see
steps 8a and 8b ). Depending on which component reacts, we
define two control loop behaviors that differ in their reaction
timescale as well as in their possibilities to make changes in
the application.

1) Steady-State Control: The steady-state control loop
strives to follow usage trends, daily profiles, or changes
in the application users’ behavior. As a default means to
accomplish this, the LPO periodically queries the Managed
Monitoring component via the Metric Inquirer facility of
the latter (see step 8a ) and updates its own Platform and
Application Models. Periodicity of the query is dependent on
LPO configuration and certain use cases can require more fre-
quent updates than others. For convenience, the Monitoring
component is able to trigger the LPO directly as well, sup-
plying notifications about changes in reported metrics out of
regular query periods. In the current implementation, the SDE
sets up such triggers as application E2E latency alarms in the
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Monitoring component in step D4 of the deployment, when
a latency constraint is provided in the service specification.
Both types of changes can induce service reoptimization in
the LPO. In order to decide whether the deployed layout is
worth replacing with a new one, a dedicated redeployment
metric is applied. The LPO compares the user-given thresh-
old value with the weighted sum of the following values to
make the deployment decision: 1) costs of the relative change
in the layout; 2) relative profit gain which is the difference of
the deployed layout cost calculated with the updated service
parameters and the new layout cost; 3) summed latency gain;
4) relative latency margin on critical paths; and 5) the number
of avoided latency constraint violations. When the LPO deems
a new layout better than the currently deployed based on this
metric, it initiates a full redeployment incorporating steps 1
through 6 .

2) Dynamic Runtime Reconfiguration: In this case, the RO
is the component making changes in the application. This has
limited possibilities as it can switch between predeployed lay-
outs by offloading functions from edge nodes or reverting these
changes. The RO interacts with the Monitoring component in
step 8b . With push-based alerting, the RO cannot get trig-
gered sooner than 10 s after an alarm condition presents itself,
because of CW Alarms limitations. Faster reaction time is
achieved by placing periodic queries to CW Metrics, realizing
poll-based execution. In order to perform such queries by the
RO, we use a combination of an Amazon EventBridge event
and an AWS Lambda function. Both of these are deployed at
step 7 , and EventBridge sets up a trigger event that gets fired
every minute (which is the shortest time period for the ser-
vice). The event trigger invokes our custom-made RO Trigger
function that schedules the RO to run frequent periodic queries
to the monitoring component. In either push or poll-based exe-
cution, the RO interacts directly with the Wrapper as shown
by step 9 in Fig. 6. For on-demand functions in the cloud,
the SDE configures a Redis instance at deployment, while for
edge functions it uses the one available on the edge. The
RO writes offloading information to these Redis instances
and the Wrapper checks them before each function execution.
As this data is small in size and Redis read operations have
small latency, the average delay of this overhead is negligi-
ble (less than 1 ms) compared to the execution time of the
application component. After reading a change request, the
Reconfiguration Handler in the Wrapper changes subsequent
invocations from edge local calls to cloud calls or vice versa.

VII. EVALUATION

In this section, we evaluate the performance of our system
investigating the use case presented in Section III, in vary-
ing operating regimes. First, the main operation phases of
the overall system are characterized. Second, the performance
of the steady-state control loop is analyzed, and finally, we
evaluate the performance of the dynamic runtime reconfig-
uration loop. For describing our software deployment lay-
outs, we introduce the following interval-based notation:
P = {[i]C|E, [j–k]C|E, . . . }. Here, groups of single or multiple
consecutive application functions denoted by their ordinals

TABLE II
MEAN DELAY OF DEPLOYMENT PHASES

1–n indices i, j, k ∈ N (see also in Fig. 1) are defined
using square brackets and subscripts C or E identify the
assigned cloud or edge flavors, respectively. E.g., in case of
PECC = {[1–4]E, [5]C, [6]C}, functions #1–#4 (Image Grab–
Object Detection Stage 1 in Fig. 1) are placed within a group
assigned to the edge, while functions #5 (Cut) and #6 (Object
Detection Stage 2) are deployed in two distinct groups in the
cloud. The experiments are conducted in Amazon’s data cen-
ters located in the Ireland (eu-west-1), Frankfurt (eu-central-1)
and Oregon (us-west-2) regions.

A. Overall System Performance

Table II illustrates the performance characteristics of the
overall system when deploying select layouts. The first five
options are generated by our system during normal oper-
ation. These show how the LPO changes the application’s
layout as it transitions from being completely cloud-based to
completely deployed to the edge node, depending on differ-
ent circumstances. (We discuss these cases and circumstances
in more detail in Section VII-B.) The last three layouts in
the table are corner cases created manually for comparison.
The operation of the SDE is split into four distinct phases:
translation from LPO to AWS CloudFormation (CF) format,
application code management (application source code and
external library collection, and upload), CF and edge deploy-
ment. For each layout, we executed 25 iterations where only
application components were updated, state stores were not
changed. Our system was executed on a t3a.2xlarge Amazon
EC2 instance running in the same region chosen for deploying
the application.

As shown in the table, LPO execution, and LPO→CF for-
mat translations have the lowest impact on deployment delay,
both having subsecond values (under 7 ms) with our simple
application. The LPO does not display high variance between
different layouts as its execution time is dependent only on
the number of used flavors which is now a fixed parame-
ter. Using a fixed application, the translation’s execution time
depends on two factors: 1) number of groups in the layout
and 2) the placement of these groups. As Table II shows,
creating more groups naturally increases translation time, as
setting up a function in AWS usually requires the specification
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Fig. 7. Simulation results of the LPO. (a) Calculated groupings of the use case application. (b) Predicted values of operational costs and E2E latency.

of multiple resources. Assigning functions to the edge node
slows down the translation step for the same reason. Code
management and CF deployment take significantly more time.
The former requires 20–81 s to complete, as handling external
libraries and ML models contribute heavily to phase latency.
In case of the simplest PC layout, a single artifact containing
all the code, libraries and ML models is created and uploaded
to AWS. In the worst case, P6C, all these are packaged sepa-
rately and sequentially for the six different functions, resulting
in six comparatively big deployment packages. Phase delay
is reduced when functions are mainly deployed to the edge,
thanks to merging libraries and ML models in one single arti-
fact on the edge. In case of PECC, however, the SDE still has
to create deployment packages for functions #1–#4 and their
shared libraries as well as separate ones for functions #5 and
#6 that results in a comparatively high phase delay. CF deploy-
ment adds another 1–3.3 min to complete deployment time
since connected Lambda functions are deployed sequentially
instead of parallelly by CF and their update takes around 20 s
each. As the difference between P6C and P6E (every function
deployed separately in the cloud or on the edge, respectively)
shows, edge related setup further adds to phase delay. The
increase is due to the fact that for the edge, AWS needs to
configure the complete Greengrass setup. Not only functions
but the merged artifact containing libraries and ML models, as
well as AWS IoT communication topics between the function
groups. Edge deployment is comparatively quicker and less
dependent on function grouping as external packages, shared
among application functions, are deployed together in a com-
mon edge resource by AWS Greengrass. One or two function
groups are deployed in 6.1–7.3 s, while assigning each func-
tion to a different group increases phase latency only with
an additional 0.9 s. Overall, our measured complete deploy-
ment delay is 1.2–4 min depending on application layout. As
the LPO’s measurement update period is 15 min in our tests,
delay for a complete reoptimization cycle via the steady state
control loop can reach 19 min in total.

B. Reoptimization via the Steady State Control Loop

In order to design and conduct comprehensive test scenarios
covering all cases for our proposed system, we perform pre-
liminary simulations with the LPO module. The optimization
algorithm is validated using a test request based on our
use-case application described in Section III. The service

TABLE III
CONFIGURATION PARAMETERS USED IN THE EXPERIMENTS

description is constructed with reference parameters obtained
from CloudWatch measurement logs and listed in Table III.
The generated test cases are constrained with decreasing
latency limits starting from 4.0 s. The tests are conducted
until the service request is declined by the LPO due to
unachievable E2E latency (at 1.56 s). The horizontal bar plot
in Fig. 7(a) depicts the resulting groupings for the applied
limits (horizontal) and the assigned flavour for each func-
tion component (vertical), while Fig. 7(b) shows the predicted
values of E2E latency, overall application cost and partial
cost required to be paid to the cloud provider. The results
align with our expectation as stricter latency limits enforce
the LPO to utilize compute resources at the edge, otherwise
prefer the cheaper but, in terms of E2E latency, underper-
forming public cloud. It can be observed that the jumps in
the overall cost at 2.1 and 2.6 s correlate with the increases
in the aggregated function execution time assigned to the
edge, while the predicted latency values give close approx-
imation to the upper latency limits, but always fall below
them.

Regarding the different deployment scenarios, we can also
notice that only five distinct and feasible software layouts
are distinguished and generated by the LPO, out of the 132
possible grouping options. (Since the number of noncrossing
partitions of an n-element set/chain is given by the nth Catalan
number Cn, where n equals to the number of functions in
our case, our use case application has C6 = 132 distinct lay-
outs [32]). These results show that the LPO can also be used
to calculate feasible application layouts for a given latency
limit in advance, thus, significantly reducing the state space
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Fig. 8. Calculated and measured application metrics during Phase 1 of our experiment. (a) CloudWatch logs with vertical markings at the end of each
reoptimization period. (b) Predicted/measured values in the LPO.

of deployment options for additional layout reconfiguration
features (see Section VII-C).

Based on the simulation outcomes, we construct a com-
prehensive and all-encompassing experiment to validate the
behavior and performance of our system on AWS. Although,
our proposed system implicitly manages the cloud-related
performance fluctuations with the help of the control loops,
there is no way to control the internal network characteristics
and server workloads in a public cloud environment. For this
reason, we select E2E latency and detected object count (an
application specific metric) as the two input parameter which
may vary in time and may affect the deployed application
layout considerably. Therefore, our steady state control loop
experiment is divided into two phases to observe the effect of
these parameters’ change separately, from a common initial
state, while covering all the feasible deployment options.

For the experiment, we utilize dedicated requests gener-
ated during the previous simulations and apply two distinct
input sources: a low (LO) and a high (HO) object count
video stream resulting in 1 and 5 objects per frame in aver-
age, respectively. The detected object count directly influences
the invocation rate between the last two functions, Cut and
Object detection stage 2, as highlighted in Section III. The
experiment is conducted in the Ireland region, whereas a ded-
icated VM with 8 vCPU in Frankfurt is set up as edge node.
Each function is assigned to the runtime flavor with 1024-MB
memory. The LPO is configured to apply a 15-min reoptimiza-
tion period which is the time window used for periodically
obtaining the measurement updates and for predicting the dif-
ferent layout costs, as well. The used system parameters are
also summarized in Table III.

1) Phase 1: In the first phase of our experiment, we
deploy our use case application using a reasonably permis-
sive latency limit of 3.0 s and apply the LO video stream as
test input. Then, we switch to the HO stream during reop-
timization period 2, altering the application specific metric.
At the initial deployment, the LPO decides to encompass
all functions in a single group (PC = {[1–6]C}) resulting
in 2.2 s measured E2E latency. Based on live measurements
acquired directly from CloudWatch, shown in Fig. 8(a), we
can state that both the deployment and detected object count
metric remain unchanged after the first reoptimization period.
As the input stream is altered from LO to HO, the detected
object count, thus, the invocation rate of the last function rises.

Consequently, the measured E2E latency of the active deploy-
ment layout exceeds the 3.0 s constraint, which is detected
by the LPO at the end of the second period. At this point,
the LPO initiates the service redeployment process. During
the reoptimization, the LPO calculates a new optimal lay-
out, while meeting the given latency constraint by moving the
last component into a separate group (PCC = {[1–5]C, [6]C}).
The reason behind this decision is that the E2E latency can
be reduced by eliminating the significant intragroup serializa-
tions and leveraging the platform-supported parallelization, in
exchange of higher operational cost and additional intracloud
invocation delay. Afterwards, the new layout remains optimal,
keeping a steady state setup with an experienced 2.7 s E2E
latency, and no other redeployment is performed in spite of
the fluctuations in the measured values.

Fig. 8(b) sheds light on the decision process of the LPO
from an internal point of view. It depicts the predicted cost
in millionth dollar units (μ$) and the E2E latency predicted
at the beginning of the given periods along with the mea-
sured E2E latency acquired at the end of the periods for
each step. It also visualizes the predicted cost of the non-
reoptimization option, which is the recalculated cost of the
layout in operation, but with the updated metrics, and used
at the layout replacement decision. We can observe at period
2, when the measured value exceeds the limit and deviates
from the predicted latency, that the LPO opts for a new lay-
out, despite being 3.4% more expensive, in order to avoid the
constraint violation. Fig. 8(b) also confirms that the predicted
E2E latency aligns with the measured values in steady state,
having only 0.8–2.6% difference.

2) Phase 2: In the second phase, we examine the effects of
different E2E latency limits on the generated layouts, similarly
to the simulation tests before. Continuing our experiment, we
carry on with the HO video stream and set a 4.0 s latency
limit to ensure the same initial cloud-only deployment as for
Phase 1. After reaching the steady state (PC), we deploy
different layout options by iteratively sending new service
requests with decreasing latency limits. The used arbitrary lim-
its, which are 4.0, 3.0, 2.6, 2.1, and 1.7 s, are chosen from
the simulations’ results to cover all the generated deployment
options. Between the deployments we leave enough time (at
least 15 min) for our system to update the application metrics
and confirm the steady state before proceeding to the next
deployment.



PELLE et al.: OPERATING LATENCY SENSITIVE APPLICATIONS ON PUBLIC SERVERLESS EDGE CLOUD PLATFORMS 7969

Fig. 9. Measured and predicted E2E latency and calculated cost values obtained during Phase 2 of our experiment. (a) CloudWatch log of the measured
E2E latency. (b) Predicted and measured values in the LPO.

Fig. 9(a) presents the measured E2E latency acquired from
CloudWatch for the entire duration of Phase 2. We can
observe that the experienced latency values stepwisely fol-
low the decrease of the applied limits, providing stricter E2E
latency in each step. As it is examined in the previous phase,
between the first two cloud-only deployment, PC and PCC,
we can achieve around 0.9 s latency gain due to the platform-
provided parallelization. By applying the next two constraints,
we get mixed deployments of PECC = {[1–4]E, [5]C, [6]C}
and PEC = {[1–5]E, [6]C}, where the limits force the first
several functions to be grouped together and assigned to
the edge. With these layouts we can further reduce the
E2E latency, despite introducing higher edge-cloud invocation
latency. Utilizing edge resources moves processing closer to
the video source, while keeping the last function in the cloud
can still leverage its innate parallelization capabilities. Finally,
applying the strictest latency limit results in a two-group, edge-
only layout PEE = {[1–5]E, [6]E}. Apart from the cloud-only
scenarios, we can observe notable downtime during the layout
replacement operation when the edge flavor is involved. The
lack of support for seamless transition stems from the limita-
tion of AWS CloudFormation, as described in Section VII-A.
Although, supporting downtime-free replacement in the steady
state control loop is matter of future work, our system offers
rapid and seamless switching between layouts leveraging the
runtime reconfiguration loop. Additionally, we also observed
increased relative standard deviation (2.9–6.0%), which is
calculated offline from exported CloudWatch logs, in the mea-
sured E2E latency compared to cloud-only layouts (0.8–1.1%).
This stems from the presence of edge-cloud invocation in the
deployments.

Fig. 9(b) depicts the predicted and measured latency val-
ues along with the predicted costs for the aforementioned
layouts. For the sake of comparison, we also deploy and mea-
sure three manually assembled layouts, which represent the
de facto, cloud-native deployment approaches of executing
each code component separately (P6C, P6E), or encompass-
ing them together (PE). Applying these corner cases we can
achieve similar E2E latency as with the corresponding cloud-
only and edge-only layouts (PC, PEE) generated by the LPO,
but at 2–2.4 times a higher cost (up to 22%). In addition, if we
compare the LPO-calculated layouts to these manually crafted
ones, while considering the associated latency limits, we can
observe a significant 3.2 times cost increase in the worst case

Fig. 10. Test scenario for measuring alert delay.

(PEE ↔ PCC). These differences in the layout costs confirm
our argument, that is, an additional optimization mechanisms
with precise models are required for operating serverless appli-
cations over public cloud in a cost-efficient manner. Moreover,
it is worth highlighting that during Phase 2 of the experi-
ment, the predictions approximate the measured values well,
including the mixed deployments, experiencing only 0.5–3.8%
overestimation.

C. Dynamic Runtime Reconfiguration

As presented in Section VI-D2, two versions of the runtime
reconfiguration loop are available: a push-based solution where
Amazon CloudWatch (CW) sends out alarms to the RO, and
a poll-based mechanism where the RO actively queries CW
for limit violations. Both approaches are affected by the capa-
bilities of CW. The former is limited by a 10 s, while the
latter by a 1 s measurement window. CW also needs an undis-
closed amount of time to consolidate metric data. As depicted
in Fig. 10, we set up a test environment using our system to
investigate detection time of limit violations. Our test applica-
tion consisting of a single Trigger Event Source component is
deployed in the cloud. Monitoring happens the same way as
described by Section VI-C, via CW Metrics. The application
component sends out trigger events that cause limit violations
and logs their generation time. The RO also logs the time when
it detects these violations. Time difference between the event
generation and its detection is calculated by a separate Lambda
function. Our measurements show that the effective feedback
delay in case of the push-based option is 20.13 s, on average
with 15.25 s minimum and 20.4 s maximum values based on
our 100 tests. For the poll-based one, however, we can achieve
3.2 s average delay with 0.58 s minimum and 8.95 s maximum
values. To determine total reconfiguration time of the applica-
tion, we have to add another approximately 2 ms in both cases,
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Fig. 11. Application and performance metrics logged into CloudWatch during
the dynamic runtime reconfiguration experiment.

when communicating with cloud functions. This delay is due
to data exchange between the RO and function Wrappers via
Redis instances. Edge reconfiguration is slower, as the 2 ms
exchange latency is increased by network delay between the
RO’s cloud region and the edge location.

We also investigated the performance of component offload-
ing from edge to cloud in our object detection application
with both available options. We set up our edge node hav-
ing four CPU cores in the eu-central-1 (Frankfurt) AWS
region while us-west-2 (Oregon) was chosen for cloud execu-
tion. The sample video was streamed from Budapest, outside
of AWS, with a sample frame rate of 2/s. In this experi-
ment, we use two layouts from those given by the LPO in
Section VII-B: PEE = {[1–5]E, [6]E} as initial deployment, and
PEC = {[1–5]E, [6]C} for offloading Object Detection Stage 2
to the cloud. RO-driven offloading is triggered by the object
count application level metric, supplied by the Cut function,
surpassing the number of the edge node’s CPU cores. In case
of the application being triggered more frequently than the
minimum execution time of the Object Detection Stage 2
function, the metric can signal an edge node overload condi-
tion. In such cases, concurrent instances of the function would
consume more CPU resources than available.

Fig. 11 depicts the effect the different alarm detection
options have on the application performance. Displayed met-
rics are taken from CW and in case of the object count and
E2E delay, use a 1 s measurement window for aggregation. In
case of CPU load, however, the Edge Monitor component logs
the aggregated utilization metric less frequently. As expected,
the poll-based mechanism outperforms the push-based in every
regard. As the object count in the video stream increases,
the push-based loop is slow to react and the edge CPU load
reaches 100% while E2E latency tops at 9.87 s. The poll-based
option experiences far lower rise in the E2E latency (with a
maximum of 2.75 s) and manages to to keep the CPU load on
the edge in check, with a maximum of 79% which is a 16%
rise compared to normal behavior. After the end of application
reconfiguration and function cold start latency, the E2E latency
settles at 2.3 s (up from the original 1 s) and edge CPU usage
at 33%. The 16 s transient time of the poll-based option is sig-
nificantly shorter than the 43 s of the push-based (refer to the

intervals T3 and T1, respectively, in the figure). The compara-
tively long transient time is caused by the increased execution
time on the edge node as well as clod start delay for starting
up functions in the cloud. After the object count decreases
below four, the RO shifts Object Detection Stage 2 back to
the edge. As both E2E latency and edge CPU usage return to
their original values, we can observe that transition, in case of
the poll-based reconfiguration, is unsurprisingly quicker again
(T4 = 7 s compared to the push-based version’s reaction time
of T2 = 16 s).

Based on our tests, it is clear that although push-based
application reconfiguration is cheaper to realize, it might not
be sufficient for avoiding edge node overload. Depending
on application characteristics, the poll-based option can
improve performance, but with higher invocation rates that
might fail as well. As our implementation reaches the lim-
its of CW, if an even smaller reaction time is required, a
different solution should be used for collecting application
metrics.

VIII. CONCLUSION

In this article, we adapted the cloud native programming
and serverless operating techniques for latency sensitive IoT
applications. A novel system was proposed on top of public
cloud platforms providing serverless solutions for central and
edge domains. The general approach was applied to Amazon’s
AWS leveraging its FaaS offerings, Lambda and Greengrass.
Our main findings are summarized as follows.

1) We argue that application latency and operational costs
are significantly affected by the grouping of the con-
stituent functions (how to group and package user
functions into FaaS platform artifacts); the selected fla-
vors providing the runtime for the functions; and the
placement of the components (central cloud or edge
domains). Developers or operators of latency sensitive
applications can benefit from defining their expectations
on latency and cost, while scaling to current workload
is delegated to the cloud providers.

2) We propose to add an optimization component on top of
public cloud stacks to optimize deployment costs while
keeping soft latency boundaries. This component con-
trols the deployment via available services and exposed
APIs. Such a control loop allows supervising serverless
deployments in the range of minutes or tens of minutes,
which is sufficient to follow daily profiles and usage
trends.

3) In order to support control on lower timescales, the
platform and the FaaS runtime are required to provide
direct configuration interfaces for swapping layouts. We
presented an extension to a state-of-the-art FaaS plat-
form implementation. As a result, control within a few
seconds can also be realized if different deployment
options are onboarded in advance.

4) Instrumentation is needed to implement the detailed
monitoring required as input for optimization.
Customization of cloud monitoring offers a sim-
ple implementation, which enables capturing the
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performance characteristics of the deployed applications
and the underlying platforms with acceptable accu-
racy. Therefore, adequate models of applications and
platform components can be established, hence such a
monitoring system fulfills all requirements to enable
closed-loop control for latency sensitive serverless
applications.
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