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Abstract—Green energy management is an economical solution
for better energy usage, but the employed literature lacks focus-
ing on the potentials of edge intelligence in controllable Internet
of Things (IoT). Therefore, in this article, we focus on the require-
ments of todays’ smart grids, homes, and industries to propose
a deep-learning-based framework for intelligent energy manage-
ment. We predict future energy consumption for short intervals
of time as well as provide an efficient way of communication
between energy distributors and consumers. The key contribu-
tions include edge devices-based real-time energy management
via common cloud-based data supervising server, optimal normal-
ization technique selection, and a novel sequence learning-based
energy forecasting mechanism with reduced time complexity and
lowest error rates. In the proposed framework, edge devices relate
to a common cloud server in an IoT network that communicates
with the associated smart grids to effectively continue the energy
demand and response phenomenon. We apply several preprocess-
ing techniques to deal with the diverse nature of electricity data,
followed by an efficient decision-making algorithm for short-
term forecasting and implement it over resource-constrained
devices. We perform extensive experiments and witness 0.15 and
3.77 units reduced mean-square error (MSE) and root MSE
(RMSE) for residential and commercial datasets, respectively.

Index Terms—Dependable Internet of Things (IoT), edge
computing, energy forecasting, energy management, GRU, long
short-term memory (LSTM), machine learning, smart grids,
smart homes/industries.

I. INTRODUCTION

ENERGY management at smart grids via automated tech-
niques for future load forecasting is an interesting area of
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research. Smart grids are the secure and trustworthy loca-
tions to distribute the electric energy among diverse sets of
consumers, such as smart homes and industries. The electric
energy retails chain includes production at power plants, dis-
tribution at smart grids, and consumption at residential [1] or
commercial buildings and industrial sectors [2]. The amount
of energy produced in power plants that is distributed at grids
is entirely influenced by its usage at the consumer side. The
majority of the consumers are nonexperts of energy demands
from electric grids, resulting financial loss and futile energy
expenditure. Similarly, the producers want to minimize the
cost and obtain an optimized level of energy generation,
farming the need of appropriate scheduling and management
strategies.

A proper planning for energy production and consump-
tion ensures its purposeful usage at industries/household and
a balanced amount of energy generation at power plants. The
channel holding the energy communication stability between
producer and consumer is smart grid that is responsible for
the equilibrium state of energy for both parties [3]. Energy
forecasting methods are significantly helpful in this regard
that predict the future energy of a consumer and demand
accordingly from the grids. Miss-prediction of energy leads to
additional costs and its wastage. A loss of 10 million pounds
per year is reported with an increase of 1% forecasting error
in the United Kingdom in 1984 for a residential building [4].
Therefore, precise energy demand forecasting methods are
required for optimal future decisions. The energy forecast-
ing methods are in abundance with applications to household
and industrial zones. The representative methods that are par-
ticularly related to the presented work are discussed in the
subsequent paragraphs, while the detailed literature is covered
in Section II.

The individual load forecasting systems are deployable in
many daily life applications, such as day-ahead residential
forecasting assists in appropriate energy demands from smart
grids [5]. The computationally intelligent techniques involv-
ing load forecasting play a vital role in reducing the energy
crisis and contribute to the environmental greenery. Most of
these methods consist of deep-learning-based sequential learn-
ing mechanisms, such as long short-term memory (LSTM),
which is the most popular in energy forecasting related meth-
ods. LSTM is a type of recurrent neural network (RNN) that
is widely used in many computer vision domains, such as
video analytics for sequence and series learning tasks [6].
Despite the usage of LSTMs, hybrid approaches incorporating
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fuzzy neural inference systems with genetic algorithms
are part of energy forecasting related literature. Different
from the aforementioned strategies, Kim and Cho [7] intro-
duced the usage of spatial and temporal features assimilated
together for effective housing energy consumption prediction.
The authors proved the supremacy of convolutional neural
networks (CNNs) to extract the representative features of dif-
ferent variables that affect the energy consumption prediction.
Furthermore, these representative features with CNNs degrade
the error rates over individual household power consumption
dataset.

A thorough study of the employed load forecasting related
literature leaves several open challenges for future research.
The most prominent and challenging task while presenting
a novel energy prediction technique is achieving exactness in
the forecasting accuracy. Another big challenge that is inad-
equately covered in the employed literature is the execution
of the implemented algorithm over the edge nodes that leads
to fruitful communication between interconnected devices in
an Internet of Things (IoT) network for energy utilization.
Recently, resource-constrained devices in IoT environments
have shown high level of potentials in video analytics [8],
healthcare [9], and many other domains [10]. In continuation
to these challenges, the reduced time complexity of an energy
forecasting method, particularly while dealing the problem of
short-term load forecasting (STLF) is also a primary con-
cern. Furthermore, the cloud [11] and fog computing [12],
[13] paradigms are scarcely utilized in the energy forecast-
ing literature, which are trustworthy platforms for efficient big
data analysis and instant decision making, such as anoma-
lous energy demand prediction. Therefore, to handle these
issues efficiently and effectively in controllable IoT networks
by using deep learning strategies, we propose a novel edge-
intelligence-based energy forecasting framework for smart
grids energy management with the following contributions.

1) We handle energy demand fluctuations via dependable
edge intelligence-based novel and adaptable framework
to bring the energy producers and consumers to a com-
mon platform for effective communication based on
future predictions of our employed algorithm.

2) We present an infrastructure to deploy resource-
constrained controllable devices at variable consumer
locations (smart homes or industries), that are connected
through IoT network with cloud supervising server to
upload their current demands and inform about the future
requirements. Smart grids respond to the domestic and
industrial requests received from the cloud server and
transmit the specific amount of energy, ensuring smooth
energy management. Cloud server filters out each demand
to report about the anomalous energy demands from con-
sumers. It has a bonus of energy forecasting data storage
that can be used for further in-depth analysis.

3) Based on our extensive experiments, we prove
our framework to be a paradigm for future
edge-intelligence-based energy forecasting meth-
ods. The initial experiments include normalization
technique selection, choosing the optimal sequential
model, where we demonstrate the performance of

our framework relative to each model. We analyze
the execution time of different flavors of the series-
learning models to gauge between the running time and
preciseness of a model.

The remainder of this article has four major sections.
Section II explains the state-of-the-art methods for intelligent
load forecasting. The proposed methodology and functional-
ities of our framework are given in Section III. The exper-
imentation details and performance evaluation are explained
in Section IV. The overall research is concluded in Section V
with some future research directions.

II. RELATED WORK

This section has two major subsections: 1) statistical meth-
ods and 2) deep-learning-based strategies. Energy load fore-
casting related literature is very old and can be studied
in detail from a survey [14] that covers research articles
from 1956 to 2013. Similarly, a recent survey is presented
by Fallah et al. [15] with coverage of 52 papers in the
range of 2001–2019. The energy forecasting methods dur-
ing the given tenure [16], [17] lack focusing on the usage
of resource-constrained devices, which are emerging due to
their computational capabilities and instant decision support
system. The subsequent sections discuss these methods in
a classified format, i.e., statistical and deep-learning-based
load forecasting methods.

A. Statistical Approaches Toward Load Forecasting

Statistical methods, such as set theories [18] etc., are widely
used for many applications, such as energy forecasting, and
are observed in comparatively old literature [19]. The major
techniques include clustering [20], support vector regres-
sion (SVR) [21], extreme learning machine (ELM) [22], etc.
The center of focus for the majority of the forecasting meth-
ods is STLF. For instance, Ceperic et al. [23] utilized SVR
machines to predict the future load for short-term duration. In
this article, authors introduced two significant improvements
over the existing SVR-based forecasting techniques. The first
advancement is the mechanism for the generation of model
inputs and the second one is its subsequent model input selec-
tion by utilizing feature selection algorithms. They employed
particle swarm global optimization to optimize the SVR hyper-
parameters which in turn reduces the operator’s interaction.
This research methodology is tested over two load forecasting
datasets and a fair comparison with the state-of-the-art indi-
cates their improved accuracy. In another follow up research
for STLF, Li et al. [22] forecasted energy by wavelet transform
and evolutionary ELM. The presented strategy is not entirely
dependent on ELM, rather it is a hybrid strategy of ELM and
a modified artificial bee colony algorithm that forecasts for
1 to 24 h ahead. The artificial bee colony algorithm is used
to support the ELM in the selection of best parameters from
a set of input weights. The authors achieved new state-of-the-
art results on electric utility data from ISO New England and
North America.
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Fig. 1. Proposed framework for intelligent energy management using controllable IoT with energy distribution, depletion, and management mechanism.

B. Deep-Learning-Based Methods for Future Load
Prediction

With the emergence of deep learning in computer vision,
IoT [24], security, healthcare [25], etc., scientists also utilized
it for energy forecasting [26], [27] to achieve better and precise
prediction results. Mainstream deep-learning-based methods in
energy forecasting related literature focus on prediction for
residential buildings, as Kong et al. [28] proposed STLF using
resident behavior learning and LSTM. They mainly focused
on handling the variable behavior of residential loads that
hinder the precise prediction results. Another research [29]
presented a hybrid technique for energy forecasting of resi-
dential buildings, where they incorporated deep learning and
genetic algorithms with LSTM to propose an optimized objec-
tive function with hidden neurons for energy forecasting. Their
method is tested over residential and commercial buildings
data for VSTLF prediction, and the results are dominant over
existing conventional prediction models. Wu et al. [30] utilized
a multiple kernel learning-based transfer regression method
for load forecasting and performed experiments over residen-
tial buildings data to show the large margin of decreased error
rate. Similarly, a recent research [7] utilized CNN and LSTM
and [31] implemented ensemble structures via wavelet neu-
ral networks for STLF. The deep-learning-based literature for
energy forecasting is dense with a major focus on sequen-
tial data processing techniques, such as RNNs and LSTMs.
Till date, the sequential learning models are not transformed
to the edge nodes with significant accuracy. Therefore, to
handle this problem, we present an energy forecasting frame-
work that is functional over resource-constrained devices.
The explanatory details about our framework are given in
Section III.

III. EFFICIENT MULTILAYER GRU FOR LOAD

FORECASTING

The overall framework is given in Fig. 1, where two
major tiers and the energy consumers scenario at industrial
and residential sectors are separately described. First tier
depicts the energy management with household and indus-
trial demand and supply. The resources (such as windmill,
solar plants, etc.) provide energy to grid stations, where it
is distributed among several types of consumers, primarily
residential and industrial zones. The energy management tier
is entirely responsible for energy consumption prediction and
its appropriate management, where a cloud server is involved
as a third-party communicator between consumers and smart
grids. The cloud server contains demands from household
and industries that are stored, analyzed, and forwarded to the
grid station for energy supply to the respective consumer. The
energy consumption prediction tier has a central role in our
framework, where the consumer parties are equipped with
a resource-constrained device for future energy prediction.
Energy production resources and their related details are out
of the scope of this article and we assume the grid station to
receive enough energy from the given resources.

A. Energy Management via Controllable IoT Devices

A grid is a secure location to distribute the electricl energy
among consumers with varied attributes, such as level of
consumption. A smarter grid with appropriate energy man-
agement (distribution) mechanism saves energy wastage and
its extra depletion. Traditional grids openly supply energy
to the demanding customers, without any information about
their usage, climate changes, and many other situations, yield-
ing poor utilization of energy. On the other hand, a smart
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Fig. 2. Sample scenario to portray the proposed energy management system
using dependable resource-constrained devices.

grid keeps track of the energy demands and distributes
them accordingly. But most of the times, grids show poor
performance as they are overloaded or most prominently
the grids do not preserve energy demands related data.
Therefore, they provide no mechanism to detect anomalous
energy demand from residential or commercial sectors. This
issue is tackled in our framework through an intermediate
cloud analysis concept, where the demands from consumers
undergo certain analysis steps before they are passed on to the
smart grids.

A sample scenario of energy management using our
proposed infrastructure is portrayed in Fig. 2, where the future
load forecasting advanced to its demand transmission and
energy acquisition is performed for “House-1.” The figure has
different colors for the distinction of demands of each house
and industry. In Fig. 2, solid lines show energy demands and
the dotted ones represent the energy supply from the smart
grid, respective to each color for a different location. The
energy data usage in minutes for “House-1” is given as an
input to our proposed trained model that outputs the energy
usage for the future 1 h. House-1 has trained forecasting model
embedded over the resource-constrained device. It gives the
input data for 3 h (X kilowatt) and the trained model predicts
future 1-h usage, termed as “Y.” House-1 transmits the request
to the cloud server which saves it and analyzes the demand
with the previous history for abnormality check, and optimally
transmits it to the smart grid. The abnormality may refer to
sudden fluctuation in demand from residential building or an
industry. Smart grid responds to the request and supplies Y
kilowatt energy to House-1. This cycle continues for all the
houses and industries and rotates smoothly due to the fast
processing over cloud server.

B. Energy Consumption Prediction

The technical contributions of our framework are the future
energy prediction using a resource-constrained device with the
reduced error rate and optimized computation. There are sev-
eral steps involved in achieving the final trained model that
is functional in real-world scenarios. The first step is prepro-
cessing raw data of an existing dataset, followed by our novel

sequential learning mechanism to obtain the optimum trained
model, as explained below.

1) Data Preprocessing: Electric energy data contain sev-
eral parameters, such as date, time, active and reactive power,
voltage, etc., that are involved in data recording via smart
meters. The smart meter acts as a hub to connect the wires
of different appliances or machineries in a single main board.
Normally, the data is collected for a month or year, where
it has several issues, such as redundancy, missing values,
long-ranged parameters, etc. These errors are caused due to
defects in measuring device, climate change, metering prob-
lems, and individuals’ mistakes. Thus, the electric energy
data need cleansing and data normalization techniques for
better refinement and appropriate results.

In our framework, we apply several preprocessing tech-
niques to purify the data for training purposes. First, we
remove the missing values and extract the purposeful data.
Second, we perform outlier detection, prior to the normaliza-
tion method. It has a key advantage of ignoring the exceptional
odd digits that may affect the range of normalization val-
ues and drag the parameters toward the maximal or minimal
range. The next important preprocessing step is normaliza-
tion, where we applied several techniques before preceding
to the optimal “standard transform selection” for final experi-
ments. These normalization techniques include minmax scalar,
standard scalar, maxabs scalar, quantile transform, and power
transformer. The transition effect of data after normalization is
visualized for the residential parameters in Fig. 3, where the
data in range of 0 to 250 is normalized between −2.5 and 3.5.
The majority of the parameter values in normalized data lie
between −1 and 1, therefore, it can play a significant role in
precise model training. Finally, we convert the original datasets
(residential and commercial) into shorter intervals because we
are dealing with STLF. The preprocessing techniques over the
raw format of data for both the datasets provide enhanced
prediction performance.

2) Proposed Sequential Load Forecasting Model: The
trending sequential learning neural networks used in the
employed energy forecasting literature are RNNs and LSTMs.
Traditional neural networks consider only a single input, while
RNNs [32], in contrast, take input

it = σ
[
wi

[
ht−1, xt

] + bi
]

(1)

ft = σ
[
wf

[
ht−1, xt

] + bf
]

(2)

ot = σ
[
w0

[
ht−1, xt

] + b0
]

(3)

at multiple time steps and analyze the series of patterns. The
RNNs take input and generate output at each time stamp,
therefore, they encounter vanishing gradient problem, i.e., for-
getting the effect of a longer sequence. The RNNs always
suffer while carrying information from earlier time stamps in
long-lasting sequential information. For instance, processing
a long sequence of energy raw data will lead in losing some
important information from the initial sequences. This problem
is solved by LSTMs, which has several gates (input, forget,
and output gates) to learn long-term sequential information as
shown mathematically in (1)–(3). In these equations, “it,” “ft,”
and “ot” are input, forget, and output gates, respectively. “σ”
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Fig. 3. Visualization of residential dataset parameters; before and after
applying the optimal normalization technique.

refers to the sigmoid function, which is used to coerce the
output between 0 and 1. “wi,” “wf ,” and “w0” are the weights
of the corresponding gates, “ht−1” indicates the output of the
previous LSTM block at varied timestamps (t), “xt” shows the
input at the ongoing timestamp. Finally, “bi,” “bf ,” and “b0”
are the biased terms for the respective gates, i.e., input, forget,
and output gates, correspondingly. The structure of the LSTMs
is more complex and needs huge processing complexity due to
the presence of gated recurrent units and memory cell, working
together to achieve final output. Another effective yet efficient
solution to this problem is gated RNN (GRU) [33], that con-
tains only two gates; reset and update gate with an activation
unit. To simplify the mathematics behind the GRU, suppose
an update gate “Ut” at time duration “td.” When any input “i”
is fed into the network with time “it,” it is then multiplied with
its own weights, given as “W1” and the same process contin-
ues for “it−1” that is the previous unit and is multiplied by its
own weight “W2.” A sigmoid activation function is applied on
their resultant sum to acquire the output value of the update
gate between 0 and 1, as given in the following equation:

Ut = σ
[
(W1 × it) + (W2 × it−1)

]
. (4)

Following this, consider a reset gate “Rt,” then the formula to
compute its value is given in

Rt = σ
[
(W1 × it) + (W2 × it−1)

]
. (5)

It is used to decide how much of the previous information to
forget.

Now, to store the reset gate information, introduce a memory
content “M′

r” which has information related to the past and has
the following equation tangent function corresponding to the

weights:

M′
r = tanh

[
(W1 × it) + (Rt � it−1)

]
. (6)

The elementwise product between the reset gate “Rt” and “W2”
determines the information to be removed from the previous
time stamps. The final memory at current timestamp is calcu-
lated using elementwise multiplication and sum operation, as
illustrated in the following equation:

Mr = (
Ut � it−1 + (1 − Ut) � M′

r

)
. (7)

The simple structure of GRU makes it implementable in real-
time over resource-constrained devices, such as Raspberry-Pi.
Although some research studies [33] advocate the superior-
ity of LSTMs for specific problems but in our framework,
the multilayered GRU dominates LSTM in terms of accuracy
and computational complexity, as evident from experimen-
tal results given in Section IV. The proposed model has two
stacked layers of GRU that help better learning of sequen-
tial data. In our architecture, we use 0.2 dropout after each
layer of GRU. The detailed explanation of sequential learn-
ing mechanism (memory cells and gates) and its mathematical
computation is out of the scope of this article and can be
deeply studied from the referred research works [6], [34]. After
the stacked GRU layers, we pass its output to a dense layer for
final sequential data prediction. The number of epochs used
for both residential and commercial datasets is 150 and its
learning is shown in Fig. 4.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We perform extensive experiments including comparison
with state-of-the-art on two datasets and time complexity anal-
ysis for personal computers (PCs) and resource-constrained
devices. We utilize two datasets: individual household elec-
tric power consumption [35] and commercial dataset [36] for
comparison and the results are convincing for our multilayered
GRU, as compared to recent methods in energy forecasting
related literature. In this section, first, we explain the evalu-
ation metrics used in this research work. Second, we explain
the datasets utilized for experiments and provide discussion
about the dominant performance of our framework. Finally, we
evaluate our model’s size and execution time over resource-
constrained devices and PCs, as explained in the subsequent
sections.

A. Evaluation Metrics

For the performance evaluation, MSE, RMSE, mean abso-
lute error (MAE), and mean absolute percentage error (MAPE)
are used in our experimental results. The following equations
demonstrate the mathematical formulation of these metrics:

MSE = 1

n

n∑

1

(y − y)2 (8)

MAE = 1

n

n∑

1

| y − y| (9)
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Fig. 4. Training loss of our proposed multilayered GRU over commercial and residential dataset. The training loss over commercial dataset is better as
compared to residential due to the parameters difference between these datasets.

RMSE =
√√
√√1

n

n∑

1

(y − ŷ)

2

(10)

MAPE = 100%

n

n∑

t−1

∣∣
∣∣
At − Ft

At

∣∣
∣∣. (11)

The first used metric is MSE that measures the average of
the squares of errors, i.e., it is considered as the mean-squared
difference between the predicted and the actual values, as given
in (8). Second, we compute MAE that is the average magnitude
of the prediction errors without considering their directions. In
other words, it is the average of the absolute differences between
a model’s prediction and its actual values for all instances in the
testing set. Equation (9) shows the mathematical formula for
MAE computation. RMSE is the standard deviation of prediction
errors and is a commonly used metric in climatology, forecasting,
and regression analysis to verify the experimental models and is
determined in (10). The last metric, namely, MAPE is a measure
of prediction accuracy of a forecasting method, such as time
series prediction. This metric expresses accuracy in percentage,
as depicted mathematically in (11).

B. Performance Comparison With State-of-the-Art Methods

We compare the performance of the proposed method on
competitive benchmarks using individual household electric
power consumption and commercial datasets. The comparison
with recent methods over residential and commercial datasets
is explained in the coming sections, where the supremacy of
our proposed model is described in detail.

1) Evaluation Over Residential Dataset: The actual data
and our predicted results for residential dataset are plotted

Fig. 5. Visualization of our proposed GRU-based trained model when com-
pared to original values present in the residential household prediction dataset.
The difference between real and predicted power is very narrow, thus, the bet-
ter performance of the proposed model for future load prediction is clearly
observable.

in Fig. 5 and the comparative graph is illustrated in Fig. 6,
where the better performance of our trained model compared
to existing methods is observable over the residential load fore-
casting dataset. On this dataset (UCI dataset) [35], our method
achieved the lowest error score compared to all the recent
methods under consideration. For instance, Kim and Cho [7]
proposed a novel energy load prediction methodology based
on deep neural and CNN-LSTM-based network and achieved
0.37, 0.34, 0.61, and 34.84 error rate for MSE, MAE, RMSE,
and MAPE, respectively. Another autoencoder-based network
introduced in [37] attained 0.21 unit MSE and 0.25 value for
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Fig. 6. Comparison of the proposed model with recent existing methods and LSTM sequential forecasting over residential dataset, where our trained
multilayered GRU dominates Kim and Cho (CNN-LSTM) [7], Kim and Cho (autoencoders) [37], and Wu et al. (multikernal learning-based regression) [30]
for all the used metrics. MAPE of our proposed model lags behind Kim and Cho (CNN-LSTM) [7], which has higher computational complexity of CNN
and LSTMs.

MAE. A follow up research by Wu et al. [30] reduced the
MAPE error rate for the same dataset up to 73.07 (between
1 and 100, non normalized) using MKL regression, that is
normalized between 0 and 1 in Fig. 6. In contrast to these
methods, the proposed GRU model achieved the lowest error
rates of 0.17, 0.19, and 0.22, for MSE, MAE, and RMSE,
respectively. Similarly, the MAPE of the proposed model is 60,
which is normalized to the range of 0 and 1 and is plotted in
Fig. 6 against recent state-of-the-art methods. Besides the best
and accurate performance, our proposed method has a lower
computational complexity that is discussed in Section IV-
C. The ground truth values graph when compared to the
predicted power by the proposed model is given in Fig. 5
with minor observable variations between both the values
(ground truth and prediction), indicating effective real-world
deployment of the proposed model.

2) Evaluation Over Commercial Dataset: The proposed
framework has high level of adoptability for both indus-
trial and residential buildings, and for approval of this claim,
we also made experiments over a well-known commercial
dataset, “PJM hourly energy consumption dataset [36].” It is
collected by a regional transmission organization in United
States, known as PJM Interconnection LLC (PJM). PJM is
a part of Easter Interconnection grid, which is responsible
for energy supply to 14 different regions including Delaware,
Illinois, Indiana, etc. The data given in this dataset are hourly
and measured in megawatts, where it has coverage of the
aforementioned regions and is collected between 2006 and
2018. The prediction results of the proposed model on this
dataset against the test data ground truth values are visu-
alized in Fig. 7, where a slight gap is observable in the

Fig. 7. Visual representation of actual data and prediction output results
using commercial dataset, where the data is plotted for time series in minutes
against the actual power in kilowatt.

time duration of 40 to 80 min. The rest of the values are
highly overlapping, indicating the higher accuracy of the
proposed model.

After an extensive research, we compared our results with
two recently published energy forecasting methods; [39] and
various flavors offered by Mujeeb and Javaid [38]. The overall
comparison is given in Table I, where the lowest error rates
are reported by our multilayered GRU-based energy forecast-
ing model. There are several types of data available in the
PJM dataset, where we experimented over the already used
sequences by [39] and [38] in their methods. In Table I, it
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TABLE I
COMPARATIVE ANALYSIS OF THE PROPOSED MULTILAYERED GRU WITH

GAO et al. [39], MUJEEB AND JAVAID [38], AND VARIOUS FLAVORS OF

CONVENTIONAL METHODS PRESENTED BY [38]. IN THE TBALE, NARX
IS NONLINEAR AUTOREGRESSIVE NETWORK WITH EXOGENOUS INPUTS,
DE-ELM REFERS TO DIFFERENTIAL EVOLUTION ELM, RELM STANDS

FOR RECURRENT ELM, DE-RELM REFERS TO DE RECURRENT ELM,
AND ESAENARX INDICATES EFFICIENT SPARSE AUTOENCODER

NONLINEAR AUTOREGRESSIVE NETWORK WITH EXOGENOUS

is illustrated that the proposed model achieved 0.09 RMSE
value over commercial dataset [36], which is the lowest error
rate when compared to recent energy forecasting methods
using this dataset. Therefore, it is evident from experiments, as
reported in Table I and Fig. 7 for actual and predicted output
data, that our proposed model is malleable and can be uti-
lized for both household and industrial sectors in real-world
scenarios.

C. Time Complexity Analysis

The efficient time complexity of a trained model is a difficult
task to achieve along with higher accuracy, particularly, when
a model is implemented over resource-constrained devices.
Therefore, we carry out a detailed time complexity analy-
sis with a major focus on the model size and its execution
time, while considering the proposed GRU-based approach
as well as other possibilities. Since, the employed energy
forecasting literature lacks focusing on resource-restricted
devices, therefore, to present a fair comparison, we analyze
the execution time on both, Raspberry-Pi and PC. The tested
PC for experiments has Intel Core i7-7700 CPU (3.60 Hz)
processor with 16-GB RAM, 64-bits Windows 10 operat-
ing system, Python version 3.6.4, Tensorflow version 1.12.0,
and Keras version 2.2.4. The Raspberry-Pi used for exper-
iments has ARM Cortex A53 processor, with the Raspbian
operating system. The possible details related to time com-
plexity analysis are given in Table II, showing that for PC
and a resource-constrained device the best performance in
terms of model’s size and execution time is shown by our
multilayered GRU. The closest match after GRU is LSTM-
based forecasting model, where it has 779.6-kB model size
and running time for 2-h prediction is 6.43 s. The model
size for CNN and bidirectional LSTM is very huge, i.e.,
20336 kB and as compared to all the flavors of LSTM,
the lowest execution time is 6.38 s and 591-kB model
size. We implemented the given sequential forecasting mod-
els and computed their time complexity. The future time
is predicted for coming 2 h, where the proposed model

TABLE II
TIME COMPLEXITY ANALYSIS OF OUR PROPOSED MODEL WHEN

COMPARED TO EXISTING SEQUENTIAL LEARNING-BASED

ENERGY FORECASTING APPROACHES

consumes minimum time among all the given options and
has the least model size with accurate results. The best
performance in Table II is given as bold, where the time anal-
ysis proves that our proposed model fits the requirements of
smart grids and can transform the forecasting problem into
the edge.

V. CONCLUSIVE REMARKS AND FUTURE LINEATION

The influence of IoT devices for various problems is increas-
ing on a daily basis with numerous solutions to real-world
tasks. These devices are mostly used in computer vision
and image processing problems for intelligent surveillance
and activity recognition. The future energy prediction and
its appropriate management using IoT devices is rarely stud-
ied, particularly the deep learning and its related concepts
are not inferenced to the edge. In our research, we applied
lightweight computationally intelligent techniques, functional
over resource-constrained devices for future energy prediction,
facilitating its effective management.

To this end, we investigated controllable IoT devices for
energy load forecasting and presented a functional algo-
rithm over the edge nodes in smart homes/industries. In
the proposed framework, a controllable resource-constrained
device was equipped with our pretrained model for STLF.
The obtained model was trained using existing datasets
via multilayered GRU that has efficient and accurate out-
put prediction results. The dependable resource-constrained
device predicts the future energy usage which is demanded
from the smart grid using the cloud server as a channel of
communication. Smart grid supplies the demanded energy
to that specific residential building or industry, obtained as
a request from the cloud server. Thus, through our users’
friendly framework, energy management has become very effi-
cient and effective and is feasible for installation at smart
homes/industries.

Besides the edge intelligence using dependable IoT, in the
future, the resource-constrained devices can be interconnected
together in an IoT network for mutual energy sharing to fulfill
each others’ demand and save energy resources. Similarly, we
intend to integrate sequential learning with fuzzy logics for
effective real-time energy forecasting methods. Furthermore,
we aspire to study efficient set theory concepts integrated
with effective CNNs using weighted fusion schemes and
implementing cloud and fog computing for highly accu-
rate and quick output predictions for weekly and monthly
forecasting.
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