
IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021 1783

Secure Communication for Multiquadrotor
Networks Using Ethereum Blockchain

Pramod Abichandani , Member, IEEE, Deepan Lobo , Smit Kabrawala, and William McIntyre

Abstract—Ethereum blockchain is a powerful, open-source
technology for creating decentralized and secure information
sharing systems. The main contribution of this article is the exper-
imental validation of an Ethereum blockchain-based software
and hardware architecture that enables secure communication
for multiple small unmanned aerial vehicles (sUAVs). The exper-
iments involved three DJI M100 quadrotors that shared images
captured during flight based on smart contracts created using
Ethereum’s Turing complete programming language. The smart
contract was designed so that only the intended recipient sUAV
could access a specific image. The effect of image size, difficulty
level, and consensus algorithms on image transfer times dur-
ing flight are noted and point to the feasibility of this system in
practical missions. The effects of wireless network disruptions on
the Ethereum network are documented. The fully documented
smart contract code is open sourced to assist readers in quick
prototyping. As efforts for decentralization and security of mul-
tirobot systems continue to grow, the system architecture and
implementation detailed here may serve as a guide for future
research.

Index Terms—Cyber–physical systems, secure communica-
tions, testbed and trials.

I. INTRODUCTION

Multirotor small unmanned aerial vehicles (sUAVs) have
emerged as an aerial platform of choice in commercial,
research, and defense markets due to their distinct advantages.
These advantages include their ability to perform vertical
take-off and landing (VTOL), hover at a spot, and yaw at
a zero-turn radius. Several market studies provide insight into
the $50B+ (and growing) global sUAV market size [1]–[5].
This growth in market adoption of sUAVs is primarily due to
their affordable cost and strict government regulations across
most nations on the use of large UAVs for nonmilitary appli-
cations. Multirotor sUAVs are used for several tasks, such
as agricultural yield monitoring, land surveying, photogra-
phy, air quality assessment, search and rescue operations,
formation control, target tracking, payload transportation, and
military operations [6]–[10]. Additional uses of these sUAVs
are found in meteorological and atmospheric studies [11]–[15]

Manuscript received May 18, 2020; revised July 25, 2020; accepted August
4, 2020. Date of publication August 10, 2020; date of current version
January 22, 2021. (Corresponding author: Pramod Abichandani.)

Pramod Abichandani, Deepan Lobo, and William McIntyre are with the
Electrical and Computer Engineering Department, New Jersey Institute of
Technology, Newark, NJ 07102 USA (e-mail: pva23@njit.edu).

Smit Kabrawala is with the Department of Computer Science, New Jersey
Institute of Technology, Newark, NJ 07102 USA.

Digital Object Identifier 10.1109/JIOT.2020.3015716

Fig. 1. Three DJI M100 drones were fitted with the required hardware for
a three-node Ethereum network.

and inflow mapping [16]–[18]. This article reports on experi-
ments involving a network of multiple quadrotors, as depicted
in Fig. 1, that use Ethereum blockchain for securely sharing
image data during outdoor flight missions.

Blockchain is an open source, distributed, immutable ledger
that maintains a record of every information transaction among
peers in a network. Every peer in the network has a copy of
this ledger. It enables transactions between peers without an
intermediate trusted central authority and verifies the transac-
tions with the same amount of certainty as a central authority.
The trustlessness provided is a key benefit of blockchain
technology—it eliminates the need for an intermediary to
govern and verify interactions on the network. Blockchain
technology has been applied extensively in multiple indus-
tries, including finance, healthcare, energy, agriculture, smart
cities, real estate, and vehicular networks [19]–[35]. A slew
of recent applications illustrates the growing ubiquity of
blockchain-based software systems for artificial intelligence,
5G, Internet-of-Things (IoT) security, identifying deepfake,
and package delivery [36]–[40].

An important aspect of blockchain technology is the imple-
mentation of smart contracts. A smart contract is an executable
software program that governs the transactions between peers
in the network. Rules for the network can be programmed into
smart contracts to automate sophisticated information-centric
tasks. The introduction of Ethereum Blockchain in 2013 pro-
vided the ability to program smart contracts in a Turing
complete language called Solidity. Carefully developed smart
contracts enable autonomous systems comprised of multiple
agents (peers) that can perform decentralized decision making

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3572-4458
https://orcid.org/0000-0002-7434-8013

1784 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

Fig. 2. Each node included the flight control hardware and a separate computer running an Ethereum blockchain node. Flight control data was communicated
via a 915-MHz mesh network. Ethereum blockchain data was communicated via WiFi.

in applications, such as IOT, multirobot systems, smart cities,
and artificial intelligence [36], [41].

In a multirobot system, each robot performs a specific
task as the group works together toward completing a larger
goal. Multirobot systems have been used in precision farm-
ing, creating interactive displays, IOT networks, and industrial
robotics [42]–[45]. Blockchain can provide security for trust-
sensitive multirobot systems in the form of data confidentiality,
integrity, entity authentication, and nonrepudiation [46]. The
distributed ledger of a blockchain ensures that decision making
is distributed and collaborative missions can be easily pro-
grammed while eliminating a single point of failure for data
storage.

This article elucidates the hardware and software archi-
tecture; the quadrotor, computing, and radio hardware used;
and the software development tools used to implement an
Ethereum-based secure communication system.

The main contributions of this work are given as follows.
1) Experimental validation of an Ethereum blockchain

system for secure data transfer between three DJI
Matrice M100 quadrotors during flight. Fig. 2 depicts
the conceptual architecture of this system.

2) A software architecture that seamlessly integrates the
Ethereum software stack with a quadrotor flight control
stack.

3) Results of four key experimental studies:
a) the effect of varying blockchain difficulty on

inflight data transfer rates between three quadrotor
sUAVs;

b) the effect of varying data size on inflight data
transfer rates between three quadrotor sUAVs;

c) the effect of Ethereum network disruption on the
communication between three quadrotor sUAVs
while inflight;

d) the effect of increased payload (Ethereum network
hardware) on the flight-times of the quadrotor
sUAV.

4) To further assist the development of such systems, the
smart contract developed in this work has been open
sourced and shared for use by the community [47].

The remainder of this article is as follows. Section II dis-
cusses existing literature with Ethereum blockchain applied
to robotic systems. In Section III, the hardware and soft-
ware architecture used in the experimentation is described.
Section IV provides in-depth results of the experiments.
Section V provides discussions about the results and future
directions.

II. RELATED WORK

The body of work that applies blockchain technology
in robotics applications continues to grow [46], [48]–[58].
A majority of these studies have covered blockchain-based
robotic system design and associated simulations. A common
theme in these studies is improved security, behavior differ-
entiation, and data integrity provided by using the blockchain
technology to enhance robotic operations [46].

A. Simulation Studies

The intersection of blockchain technologies and robotics
has been the focus of several simulation studies [48]–[51],
[55]–[58]. Kapitonov et al. [48] simulated a communication
protocol for multiagent systems to participate in business
activities using Ethereum blockchain and smart contracts.
The communication protocol consisted of smart contracts
interacting with autonomous agents running the robot operat-
ing system (ROS). The verification of transactions took place
using Air-token and Ether [59]. The authors used the proposed
communication protocol for an sUAV employee management
system that consisted of a dispatcher node and an air traffic
control (ATC) node.

Strobel et al. [49] simulated an approach to establish secure
swarm coordination mechanisms for a group of robots and
exclude Byzantine members using smart contracts deployed
on the Ethereum blockchain. The proposed approach was sim-
ulated in autonomous robots go swarming (ARGoS) robot
swarm simulator interfacing with a Geth Ethereum client [60].
Smart contracts were used to register the robot members,
define movement strategy, and select a decision making strat-
egy using a voting system to create a consensus among

ABICHANDANI et al.: SECURE COMMUNICATION FOR MULTIQUADROTOR NETWORKS USING ETHEREUM BLOCKCHAIN 1785

the members. The smart contract implemented strategies that
included a member’s time limit to cast a vote, a renewal
of the decision strategy each time a new strategy was
selected, and check on different blockchain versions by ver-
ifying the hash value of the blocks. The performance of the
blockchain approach proved superior over classical swarming
approaches [61].

Youssef et al. [55] proposed a cloud system architecture for
an sUAV and sensors designed for surveillance of a dam site.
The sUAV collected these data and delivered them to the dam
monitoring center. The authors used the Bitcoin framework
and the Proof-of-Work (PoW) consensus protocol to provide
data integrity, traceability of the sensor data in the wireless
sensor network. The authors simulated several scenarios to
demonstrate the time delays for secure sensor data.

Aggarwal et al. [56] proposed a communication model
based on the Ethereum blockchain for the Internet of Drones.
Ethereum blockchain provided authorization, data integrity,
and authentication for the data collected by the drones in the
system model via Proof of Stake (PoS). A single drone was
selected to be the forger node responsible for authenticating
and validating the blocks in the blockchain. The computation
cost for block creations was calculated as 384 b, of which
128 b represented the identity, and 256 b is the hash value.
The computation time for block creation and validation was
found to be 0.023 ms.

Barka et al. [57] developed a Bitcoin blockchain-based
sUAS for monitoring and surveillance of critical infrastruc-
tures. Blockchain provided security against three types of
breaches: 1) adversaries targeting software; 2) adversaries
targeting hardware; and 3) adversaries targeting communica-
tions. The authors provided a performance evaluation of the
proposed system using the NS-3 simulator over an area of
16 km2 with four ground control stations. The authors pro-
grammed the occurrence of ten events around five randomly
distributed critical infrastructure. Detection rates in the order
of 95% were observed in simulation with lower false alarm
rates as compared to classical approaches [62], [63]. The
authors concluded that the high detection ratios and reduced
overhead showed that a blockchain-based sUAS could pro-
vide accurate decisions which are crucial in monitoring critical
infrastructure.

Kang et al. [51] proposed a reputation-based data sharing
scheme for secure data sharing among vehicles to over-
come the security vulnerabilities of vehicular edge computing
servers. The scheme was based on a consortium blockchain
where the nodes were preselected in a public blockchain to
establish a shared and distributed database with smart contracts
used to enable data management automation between the vehi-
cles. Security analysis of the proposed scheme showed that the
security of the data storage and high-quality data sharing over
traditional reputation schemes.

Afanasev et al. [50] proposed an Ethereum blockchain-
based decentralized network to monitor, control, and log
workflow events for a cyber–physical production (CPP)
system. The machines in the proposed CPP system commu-
nicated by exchanging cryptocurrency tokens. An essential
feature in the system was that the cryptocurrency tokens

Fig. 3. Prior experimental studies with blockchain and robotics involve use
of robotic arms (top-left) [54], ground robots [65] (bottom-left), and single
sUAV with RFIDs (right) [66].

would be distributed between the machines well in advance,
according to the priority of services, thus creating a con-
sensus where Nothing-is-at-Stake automatically. The authors
proposed implementing their system for a PCB manufacturing
plant by determining the rules of operation.

In [58], the application of a multirobot path-planning algo-
rithm using the blockchain technology was investigated. A
probabilistic road map (PRM), path-planning algorithm, was
implemented alongside Hyperledger Fabric, an enterprise-
grade blockchain platform [64]. The average latency to commit
a transaction to the Hyperledger Fabric was 112.46 ms, thus
validating that a blockchain platform has the potential for
enabling secure and scalable distributed systems.

B. Experimental Studies

In contrast to the numerous simulation studies published in
the literature, only a handful of experimental studies involv-
ing blockchain technology for robotics applications have been
published thus far [54], [65], [66]. The key to these studies is
the integration of a blockchain software stack with a robotic
system, such as an industrial robotic manipulator arm, ground
robot platforms, and quadrotors.

Network latency is a crucial metric to be tracked in experi-
mental studies as it directly affects the data refresh rates of a
robotic system. Fig. 3 depicts the experimental platforms used
in representative experimental works.

Lopes et al. [54] proposed an experimental architecture
to control a UR3 robotic arm where the robotic events are
logged on the RobotChain blockchain and its movement con-
trolled with a smart contract program [53]. Logic programmed
in the smart contract sent instructions to a robotic arm to
pick and place objects based on data processing of images
obtained using an RGB camera by an external computer. The
arm speed in picking up the objects was measured to validate
that the proposed blockchain-based architecture was capable
of controlling the robotic arm in real-time.

Danilov et al. [65] provided experimental validation proce-
dures to identify flawed liability executions in order to suspend
payments to questionable service providers using blockchain
in a Duckietown environment [67]. The consensus protocol on
blockchain technologies provides a method to detect malfunc-
tioned agents in a network when agent behavior goes against
the behavior consensus defined by the members in the network.

1786 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

Fig. 4. Left: Hardware architecture for each node including the flight hardware and hardware running the Ethereum blockchain. Right: The DJI M100
quadrotor platform featured a Raspberry Pi 4 computer for controls and motion planning and a 915-MHz mesh radio for networking with other quadrotors.
The mesh network was used to communicate position, velocity, acceleration, and other relevant controls data.

The blockchain platform used in this work was Ethereum.
A prototype of the proposed system was implemented where
smart contracts validated the liability of the autonomous agents
and directed their movements.

Fernández-Caramés et al. [66] documented experiments
for an automated inventory management system using RFID,
a single sUAV, and Ethereum blockchain technology. The
authors evaluated two consensus protocols for the Ethereum
blockchain, Proof of Authority (PoA), and PoW. A quadrotor
sUAV was manually controlled to fly around the warehouse
and tag the inventory items using the RFID tags. The time
taken to identify the inventory items using a quadrotor and
store their identification value on the database was measured.
It was shown that the time taken to validate blocks averaged
at around 15 s for PoA while for PoW, the validation times
varied significantly from 5 to 70 s.

These experimental works have paved the way for more
sophisticated robotics studies involving blockchain technology.
At the same time, there still exists a gap in the literature about
the hardware and software architecture required to effectively
implement such robotics systems as well as the evaluation of
such systems in real-world field operations.

This article addresses the gap and expands on the above
body of work by focusing on the physical implementation
of popular blockchain technology—Ethereum—for multiple
quadrotor sUAVs operating outdoors.

III. SYSTEM ARCHITECTURE

This section elucidates the experimental platform developed
for the Ethereum-based secure exchange of image files.

A. Quadrotor Setup for Motion Planning

Three DJI Matrice M100 quadrotors, referred to as
Nodes 1–3, were used [68]. Each quadrotor setup hosted a

communication node in the Ethereum blockchain network.
Fig. 4 depicts the quadrotor hardware setup.

The quadrotors came equipped with a proprietary DJI M100
N1 flight controller with inertial sensors and GPS. The N1
flight computer was responsible for position control using
velocity and yaw-rate inputs. Each quadrotor provided a
real-time telemetry stream of accelerometer, gyroscope, mag-
netometer, and GPS data. The quadrotor position was defined
in a local frame using latitude, longitude, and height with
a predefined origin point. For motion planning and con-
trol, each quadrotor Node was equipped with a Raspberry
Pi 4 computer (Quad-core Cortex-A72 (ARM v8) 64-b SoC
@ 1.5 GHz, 4-GB LPDDR4-3200 SDRAM). Motion com-
mands and telemetry streams were communicated between the
Raspberry Pi and DJI Flight stack using a UART connection
using software function calls provided by the DJI’s onboard
C++ SDK. The flight processing Raspberry Pi 4 for Node
2 was equipped with a V2 camera module for image capture
with 8 Megapixel still image resolution.

Each quadrotor was equipped with a 915-MHz transceiver
radio module used for half duplex, bidirectional mesh
networking between quadrotors for motion data telemetry
using RF links at 300 kb/s. A round-robin scheduling tech-
nique for sequential wireless communication was implemented
for the fair distribution of wireless bandwidth and fault toler-
ance. As part of this technique, only one quadrotor transmitted
its information at a time. This information payload contained
position and velocity data and was received by the remain-
ing quadrotors either through one-hop direct communication
or through indirect multihop relaying. The order in which the
quadrotors communicated in the round-robin was randomly
determined at the beginning of the mission.

The positioning of the quadrotor was defined in a frame
with a predefined GPS origin coordinate O consisting of
a latitude (radian), longitude (radian), and height from the

ABICHANDANI et al.: SECURE COMMUNICATION FOR MULTIQUADROTOR NETWORKS USING ETHEREUM BLOCKCHAIN 1787

Fig. 5. Left: Three Ethereum Nodes were setup using 1 NVIDIA Jetson TX2 and two Raspberry Pi 4 computers. The nodes ran an EVM and communicated
with each other using an 802.11 network setup using WiFi routers. Right: Ethereum computing hardware mounted on DJI Matrice 100. This picture depicts
the miner node mounted on the quadrotor.

ground (meters). A quadrotor’s motion during the experi-
ments was broken into three components: 1) take-off; 2) offset
alignment; and 3) waypoint following.

The first stage for each quadrotor was taking off to a height
of 1 m. The quadrotor would then move to the predefined
origin coordinate O and then to its defined offset position,
which included a height of 5 m for all experiments. Once all
three quadrotors were at their assigned offsets and communi-
cated with each other through the transceiver radio modules,
the waypoint following stage would begin in which all three
quadrotors would proceed to the assigned waypoint, while
maintaining their offsets. A set of custom spline genera-
tion functions, implemented in Python, were used to generate
minimum snap 7th-order splines passing through N pres-
elected waypoints [10]. A ground station computer hosted
a Web-based user interface for mission configuration, clock
synchronization, and mission upload.

B. Ethereum Hardware Setup

The Ethereum network was implemented using a sepa-
rate set of computers that were mounted on the quadrotors
and is depicted in Fig. 5. Keeping the blockchain computing
hardware separate from the flight control hardware ensured
modularity and avoided taxing any single computing system.

1) Miner Node: The transition of the Ethereum blockchain
state takes place when a block is deemed valid. The valid-
ity of a block is determined through the process of mining.
Node 1 was equipped with an NVIDIA Jetson TX2 com-
puter (Quad-Core ARM Cortex-A57, 256-core NVIDIA Pascal
GPU, 32-GB eMMC 5.1, 8 GB 128-b LPDDR4 Memory). The
Jetson computer was selected as a miner due to its appropriate
computational resources for validating and adding new blocks
to the Ethereum. As depicted in Fig. 5, the Jetson was mounted
on an Orbitty carrier board, and the assembly was mounted
in a black colored OrbittyBox [69]. The miner node was also
designated as the bootstrap node and was responsible for form-
ing the overlay network with the nodes. The remaining nodes
connected with each other over the TCP port of the bootstrap
node.

2) Other Ethereum Nodes: Node 2 was equipped with a
Raspberry Pi 4 computer (ARM Cortex-A72, 1.5 GHz, 4-GB
LPDDR4 Memory) and acted as a node in the Ethereum
network. A separate process on the flight processing Raspberry
Pi 4 used openCV for image capture. The captured images
were transferred to the corresponding Ethereum blockchain
node 2 Raspberry Pi 4 using a Python-based server–client
WebSocket connection. Nodes 3 was also equipped with a
Raspberry Pi 4 computer and acted as a node in the Ethereum
network.

3) Radio Hardware: The Ethereum network was estab-
lished with the help of 2.4-GHz WiFi routers. Given that the
Ethereum node hardware was hosted on a set of sUAVs, it was
prudent to evaluate options that provided network connectiv-
ity with respect to their mobility. Accordingly, three different
WiFi routers were evaluated. Each experiment used a specific
type of WiFi router. The routers were: a Verizon 4G LTE WiFi
mobile hotspot, an AC1750 wireless dual-band gigabit router
from TP-Link, and an EA9500 Max-Stream AC5400 MU-
MIMO Gigabit WiFi Router from Linksys [70]–[72]. Table I
provides the ranges and bandwidth of these WiFi routers.

The Verizon hotspot hardware provided a most mobile
option out of the three, as it could be mounted on the quadrotor
itself. However, the bandwidth provided was relatively lower
than the other two options. On the other hand, the Linksys
router provided the strongest WiFi connection outdoors due
to its long-range MIMO configuration.

C. Consensus Algorithm

Consensus algorithms provide blockchains with its char-
acteristic features of decentralization—trustless security,
immutability, privacy, and transparency. The PoW consensus
algorithm is widely used in Bitcoin and Ethereum [73]. Other
consensus algorithms include PoS [74], PoA [75], and practi-
cal Byzantine fault tolerance (PBFT) [76]. In our experiments,
we evaluate the effect of PoW or PoA algorithms on time
taken to transfer images through the Ethereum network. The
PoW algorithm is based on the SHA-256 cryptographic hash
function [77]. The PoA algorithm is implemented in Ethereum
through a protocol called Clique [75]. An issue with PoW is

1788 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

Fig. 6. Example Genesis file with Ethereum blockchain parameters.

TABLE I
NOMINAL RANGE AND BANDWIDTH FOR RADIOS USED

IN THE EXPERIMENTS

that it is impossible to control the mining frequency and con-
trol the block times. On the other hand, PoA block validation
times are consistent and do not vary significantly.

D. Ethereum Software Setup

A private blockchain was set up between the three nodes
(Nvidia Jetson and two Raspberry Pi computers) in the
network with individual read and write permissions given
to each node. Each node ran an Ethereum virtual machine
(EVM) [78]. The EVM is the Turing complete virtual machine
that processes and handles transactions being carried out in the
Ethereum blockchain. Since this was a private blockchain, the
identity of each Ethereum node was known and verifiable.

1) Geth Ethereum Client: The Geth Ethereum client was
used in our software development. Geth is written in the Go
language. There are two types of accounts in a blockchain:
1) externally owned accounts (EOAs) and 2) contract accounts
(smart contracts). Using the Geth console, an EOA account
was created for each of the Nodes 1–3. An Ethereum account
is defined by a pair of keys, private key, and a public key, and
each account is indexed by its address, which is derived from
the first 20 B of the SHA3 hashed public key [79].

2) Truffle Development Environment: The Truffle develop-
ment environment was used to develop, verify, and deploy
our smart contracts. Truffle is a command-line interpreter

(CLI) tool with a built-in compiler for smart contracts, auto-
matic contract testing, scriptable, extensible deployment, and
migrations framework [80]. The Truffle environment provided
methods to interact with the deployed smart contracts. An
automation script written in Javascript called instances of the
functions in the smart contract. Each node featured its automa-
tion script to interact with the smart contract. This approach
was adopted to maintain the secure communication protocol
and ensure that each node calls only the functions in the smart
contract meant for it. The smart contract was coded in Solidity,
which is an object-oriented programming language [81]. After
compiling the smart contract code, it is translated to bytecode,
which is executable in the EVM.

E. Ethereum Smart Contract

1) Genesis Block: The first block in the Ethereum
blockchain is called the Genesis block. The Genesis block con-
tains parameters that define the blockchain. The Genesis file
used in our experiments was written in JSON and is depicted
in Fig. 6. The blockchain parameters initialized in the genesis
file include the following.

1) Difficulty: This parameter is a measure of the
computational complexity of mining a block to find
the hash value. It determines the speed of mining
of the blockchain network and can be used to calculate
the deviation from the expected block time [82].

2) Gas Limit: The maximum amount of gas that the
sender is willing to spend for a particular transaction.
Gas is a unit used to measure the effort required for
a particular computation in an EVM. Gas price is the
value the transaction sender is willing to pay per gas
unit and is measured in GWei. Ether is the token used
to pay for gas.

3) Alloc: The alloc parameter is only used in the case of
a private blockchain. This parameter is used to allocate
funds (Ether) to the respective accounts in the network.
The allocated fund balance should be significantly
higher than the gas limit such that the accounts do not
run out of gas when executing transactions. The allo-
cated funds do not have any value outside of the private
blockchain.

ABICHANDANI et al.: SECURE COMMUNICATION FOR MULTIQUADROTOR NETWORKS USING ETHEREUM BLOCKCHAIN 1789

Fig. 7. Ethereum software setup used in our experiments. The smart contracts featured secure functions to ensure images can only be sent and received by
predetermined nodes. In this case, the image transfer across the entire network happened from Node 2 to Node 1, from Node 1 to Node 3, and finally from
Node 3 back to Node 2.

Nodes with the same Genesis file are connected to the same
private blockchain network to maintain proper synchronization
of the blocks. For these experiments, four genesis files were
created with increasing orders of difficulty.

The block difficulty values were set to the following values.
1) Difficulty 1: 0x1.
2) Difficulty 2: 0x10000.
3) Difficulty 3: 0x100000.
4) Difficulty 4: 0x1000000.
The alloc and gasLimit parameters of the genesis file

were left unchanged. Each run of the experiment was con-
ducted using one of the genesis files copied in each of the
nodes. Once the nodes were connected to the same private
network and synced together, Node 1 then deployed the smart
contracts to the private Ethereum blockchain.

In a private blockchain, it is up to the devel-
oper/administrator of the system to decide the gas price for
each unit Wei. A private Ethereum network is not part of
the public blockchain, so the gas prices are not affected by
the publicly traded value of Ether. In the system documented
here, the gas price was set to 0 when setting up the Geth
environment, which means that the nodes were able to post
transactions while the miner received 0 as payment [83].

Additionally, in a private network, it is assumed that the par-
ticipant node identities are known, and therefore, the Ethereum
addresses are added to an access control list at the beginning
of the smart contract code. The nodes in the private Ethereum
network access the read and write functions of the smart con-
tract based on their Ethereum address definition in this access
control list. The smart contract generates warning events in
the case that an unlisted Ethereum address made an attempt to
interact with the smart contract. A similar approach to provid-
ing trust management between the nodes in the network using
an access control list to ensure trust between the nodes in the
network can be found in [84]. A limitation in the approach,
however, is the inability to dynamically update the access
control list due to the permanent nature of the smart contract.

2) Smart Contract Functions: The smart contracts used
in our experiments were written in Solidity Version 0.6.7.
The contracts allowed for the secure transmission of images
between different nodes in a manner that ensured that only the
intended recipient received a specific image.

Fig. 7 depicts the smart contract and decentralized stor-
age functionalities that were encapsulated in Get() and
Set()functions. The decentralized storage was implemented
using interplanetary file system (IPFS). The Get() functions
were used to read an image hash, while the Set() func-
tions were used to store the image hash on the blockchain
network. The Truffle scripts compiled and deployed the smart
contract into the blockchain environment. Interactions with the
smart contract on the Ethereum took place through transactions
verified by the miner.

Fig. 7 depicts the flow of data through the Ethereum
network. Information about each node’s user account was
stored in the smart contract. A node could only access func-
tions designated to it depending on its node number in the
network.

Node 2 was the first node to receive a new image cap-
tured by the camera. This image was stored in a local folder
on Node 2 and would be uploaded to the IPFS using a
bash script. Once an image was uploaded to the IPFS setup,
an image hash would be generated. Node 2 would use the
Node_2_Set()function to store the IPFS hash in the smart
contract. Node 1 can then use the Node_1_Get() functions
to read the IPFS hash stored in the smart contract. This pro-
cess was repeated for all three nodes. The hash obtained could
then be used to access the image on the IPFS server. Important
debugging messages were printed to the console for the devel-
opers and users to track the transfer of the image hash from
one node to another.

A JavaScript program was used to automate the task of
interacting with the smart contract using the Truffle environ-
ment. The JavaScript on each Node was executed when the
bash script to upload images to the IPFS was executed. The

1790 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

Fig. 8. Data flow in our experiments involved image capture and encryption, IPFS image upload, transfer of the image hash over the Ethereum blockchain
followed by decryption of the image.

smart contract code developed for the system can be found on
the RADLab Github repository [47].

F. File Storage

A limitation of blockchain technology is that it is computa-
tionally expensive to store data on it [77], [85]. The IPFS,
a peer-to-peer distributed file-sharing system, was used for
storing the images [86]. IPFS by itself provides a tamper-
proof method of storing and sharing data between nodes
in a network. However, it does not provide any method to
timestamp when the data is added to the network, which is
vital information when performing missions using multirobot
swarms. Another limitation of IPFS is that anyone with a copy
of the root content identifier (CID) has access to the data,
which is problematic when sharing sensitive files between
sUAVs.

By integrating Ethereum blockchain with IPFS along with a
layer of encryption to the data, it is possible to build a secure
information sharing system that overcomes these drawbacks.
Fig. 8 depicts the detailed steps of the data flow involving
encryption, IPFS, and Ethereum. After an image is captured,
the node applies asymmetric encryption protocol OpenPGP,
which allows encrypting a file with a public key that can be
decrypted by only those members of the private blockchain
that hold the decryption key [87]. After encrypting the image
file, it is added to the IPFS, which generates a CID hash, which
is stored on the blockchain via the smart contract. On the
receiver end, the smart contract ensures that the quadrotor node
requesting the CID hash is part of the private blockchain. This
is ensured by verifying the private key of the EOA requesting
the data. After verification, the hash obtained is used to access
the data from the IPFS node via a local HTTP gateway. The
data downloaded from the IPFS is the encrypted image file.
All members of the private blockchain hold the decryption
key, which is used to decrypt the downloaded image.

IV. EXPERIMENTAL RESULTS

The experiments focus on studying the effects of image size,
consensus algorithm type, and blockchain difficulty values on
the time τimage taken to transfer images across the multi-sUAV
network successfully. In the following, we document image

transfer flight tests that were conducted for 3 min each. The
quadrotor 2 captures images using its camera and transfers
it to the Ethereum Node 2 that is physically mounted on it.
The smart contracts are then deployed to transfer these images
across the entire network (Node 2 to Node 1, Node 1 to
Node 3, and finally from Node 3 back to Node 2). τimage
is the total time taken for this image transfer across the entire
Ethereum network.

As mentioned in Section III-B3, three wireless network
routers were used to create three different sets of experiments.
For all image transfer experiments, two consensus algorithms
were tested—Ethash (PoW) and Clique (PoA).

Figs. 9 and 10 depict the results of our experiments. In each
of these graphs, τimage is averaged across multiple runs of the
experiments and expressed in seconds.

A. Effect of Varying Image Size on τImage

The images from the Node 2 quadrotor camera were resam-
pled to different sizes (100, 500, 750, 1000, 2000, and 3000
kB) before being transferred over the Ethereum network. The
images were sent in increasing order of their resampled sizes.
Fig. 9 depicts the τimage values in seconds averaged across
all experimental runs and difficulty values for the resampled
images for the three different router types. As observed in
Fig. 9(a), (c), and (e), the average τimage varied between 1.66
and 3.01 s when PoA was used for consensus. In contrast, the
average τimage values varied significantly between 5.69 and
28.57 s when PoW was used for consensus as depicted in
Fig. 9(b), (d), and (f).

B. Effect of Varying Block Difficulty on τImage

Fig. 10 depicts the average τimage values in seconds as
a function of difficulty values for the three different router
types. As mentioned in Section III-E, four different difficulty
levels were used in our experiments. The τimage is averaged
across all experimental runs and image sizes for the resampled
images. As observed in Fig. 10(a), (c), and (e), the average
τimage varied between 1.89 and 2.87 s when PoA was used
for consensus. In contrast when PoW was used for consensus,
the average τimage values varied significantly between 2.8 and
142.92 s as depicted in Fig. 10(b), (d), and (f).

ABICHANDANI et al.: SECURE COMMUNICATION FOR MULTIQUADROTOR NETWORKS USING ETHEREUM BLOCKCHAIN 1791

Fig. 9. Average τimage in seconds for PoA and PoW tests for different image sizes for three different network routers. (a) PoA—Linksys Router. (b) PoW—
Linksys Router. (c) PoA—TP-Link Router. (d) PoW—TP-Link Router. (e) PoA—Verizon Hotspot. (f) PoW—Verizon Hotspot.

C. Effects of WiFi Communications Disruption

In case an Ethereum node mounted on a quadrotor loses
WiFi communication with its neighboring nodes, it is impor-
tant that communication between the remaining nodes con-
tinues uninterrupted. This section documents the observed
behavior of the Ethereum network in the face of such
WiFi communication disruption. The flight mission aspect of
the experiments was performed using a hardware-in-the-loop
(HWIL) setup. The HWIL approach provided the ability to
conduct safe and controlled experiments as per the guidelines
of the U.S Federal Aviation Administration (FAA) [88]. All
HWIL experiments were performed using the DJI Assistant
2 software. The software provided a real-time emulation of
the DJI M100 rigid body dynamics to provide telemetry out-
puts and velocity and yaw rate inputs into the N1 flight
controller.

The three quadrotors were commanded to fly to an altitude
of 20 m above the ground and maintain a triangular formation.
The secure communication commenced once the quadrotors
reached the desired altitude of the quadrotors. After a period
of 1 min, one of the nodes was commanded to break the flight
formation and fly out of range of the remaining nodes. When
a time period of 30-s elapsed, the quadrotor was commanded
to fly back in range of the other nodes.

The following two scenarios were tested.

1) Miner Node Disruption: In the first scenario, the miner
node (Node 1) was commanded to break flight formation
and go out of WiFi range. Node 1 was also the bootstrap
node. The transactions posted by the remaining nodes could
not be validated by the miner. As such, no new blocks were
added to the blockchain. The communication links between
the nodes were disrupted, and the file transfer between the

1792 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

Fig. 10. Average τimage in seconds for PoA and PoW tests for different difficulty levels for three different network routers. (a) PoA—Linksys Router.
(b) PoW—Linksys Router. (c) PoA—TP-Link Router. (d) PoW—TP-Link Router. (e) PoA—Verizon Hotspot. (f) PoW—Verizon Hotspot.

nodes terminated. On Node 1, the Geth console and the Truffle
program terminated, thereby disrupting the entire blockchain
network between the nodes.

2) Nonminer Node Disruption: In the second scenario, a
nonminer node (Node 3) was commanded to break formation
and go out of WiFi range. The rest of the nodes remain unaf-
fected and continued to interact with the smart contract. Due
to the round-robin arrangement, Node 1 and Node 2 continued
to exchange information over the blockchain. When Node 3
came back in range of the blockchain network, it was able to
rejoin the Ethereum network. This is due to the fact that the
Ethereum nodes connect with each other over the TCP port of
the bootstrap node. Thus, when Node 3 was within the WiFi
network range, it was able to rejoin the Ethereum network by
connecting to the TCP port of Node 1.

D. Flight Duration With and Without Ethereum Payload
The flight time of multirotor sUAVs is critical for tasks, such

as surveillance, transportation, and search and rescue. As such,
it is vital that the flight times of blockchain-enabled multirotor
sUAVs are not significantly hampered due to the increased
payload. Outdoor flight tests were conducted to observe the
difference in flight times of the multirotor sUAV with and
without the Ethereum payload. A total of five outdoor flights
were conducted where the DJI M100 quadrotor was flown to
an altitude of 20 m and commanded to hover until the battery
ran down to 20% charge. The quadrotors were equipped with
the TB48D battery that has a capacity of 5700 mAh [89].
It was found that without the Ethereum payload, the average
hovering flight time was approximately 21 min and 27 s. The
nonminer node payload with the Raspberry Pi and associated

ABICHANDANI et al.: SECURE COMMUNICATION FOR MULTIQUADROTOR NETWORKS USING ETHEREUM BLOCKCHAIN 1793

battery weighed 147.41 g with an average flight time of 19 min
and 48 s. The miner node payload with the NVIDIA Jetson
and associated battery weighed 997 g with an average flight
time of 12 min and 23 s.

V. DISCUSSION AND FUTURE WORK

Several observations are made from the experiments.
1) For PoA, the difficulty level does not have any sig-

nificant impact on the average τimage. However, as
expected, the average τimage increases significantly with
an increase in the difficulty levels for PoW.

2) At Difficulty 4, it was observed that the time taken to
validate the transaction increased significantly for PoW.
The time to validate transactions could not keep up
with the rate at which images were being uploaded to
the IPFS. Only 50% images were transmitted across the
network when the TP-Link router was used. 33% of
the images were successfully transferred when the
Linksys router was used, and 66% images were suc-
cessfully transferred when the Verizon mobile hotspot
was used.

3) Overall, it was observed that PoA provided a lower aver-
age τimage compared to PoW. This behavior is in line
with the fact that PoA does not rely on the mining
process to verify transactions. On the other hand, PoW
relies on the nodes using their computational resources
to solve the mining problem to validate transactions in
a block, often taking up significant time. As such, PoA
can validate transactions quicker than PoW as time goes
on and proves to be the faster option for data transfer
in multirobot systems.

4) WiFi Disruptions: When an Ethereum node experiences
WiFi issues or disruptions, it is important that the
remaining nodes continue the data transfer without get-
ting affected. A miner node losing WiFi connection
can be catastrophic to the network, as is observed by
our experiments. Having more than one miner node in
the network can add redundancy and provide protection
against such failures. On the other hand, a nonminer
node has the ability to drop out and rejoin the Ethereum
network. All the logic that is required to ensure uninter-
rupted communication in the case of a nonminer node
dropping out and rejoining can be coded in the smart
contract.

5) Security Analysis: The security of smart contracts can be
evaluated along the dimensions of data confidentiality,
integrity, and nonrepudiation [90], [91].

a) Confidentiality: Given the fact that this was a
private Ethereum network, the Ethereum account
addresses of the participating quadrotor nodes
were known beforehand and were added to the
smart contract code. Thus, only nodes whose
address matched those defined in the smart con-
tract could access the get() and set() functions
of the smart contract. This mechanism provided
confidentiality for secure information exchange.
The tradeoff here was the inability to add more

quadrotor nodes dynamically to the network.
Almadhoun et al. [90] provided a novel proce-
dure to automate the task of authenticating nodes
requesting to join the network. Such automation
approaches will be explored in future iterations of
this work.

b) Data Integrity: Each image was encrypted using
an asymmetric encryption scheme OpenPGP, and
then uploaded to the IPFS. When uploading the
encrypted data to the IPFS, the second layer of
encryption is added by passing the data through
an SHA-256 algorithm and encoding it to base 58.
Cryptographic hashes possess important character-
istics, such as being deterministic, uncorrelated,
unique, and one-way. The hash generated when
uploading the encrypted image to the IPFS was
then shared among the nodes using Ethereum trans-
actions. The images exchanged over the network
were protected by this double layer of encryption,
ensuring that the data was not tampered with.

c) Nonrepudiation: Transactions on the Ethereum
blockchain are signed with a digital signature using
the private key of the account issuing the trans-
action. The use of this approach provides three
security advantages: i) a method to validate the
Ethereum accounts in the network; ii) a signature
that is unique to the account such that it cannot be
forged; and iii) a guarantee of terms of service that
ensures that the transaction data cannot be modi-
fied. As soon as the miner validated a transaction,
it was recorded with its unique timestamp. Hence,
nodes could not deny their actions as the actions
were recorded in the tamper-proof logs.

6) Extension to Other Blockchain Technologies: In future
work, the smart contract presented in this work will
be implemented using other blockchain technologies
to compare and contrast the performance of multiple
blockchain platforms for multi-sUAV communications.
The smart contract developed in this work can be
extended to other blockchain technologies, such as
Hyperledger and Rootstock blockchain for Bitcoin or
RSK RBTC [92], [93]. Hyperledger Fabric provides
permissioned blockchain and features the necessary
framework to allow Ethereum smart contracts to run on
its blockchain [93]. The smart contract presented here
can be extended by creating an EVM wrapper around
the Hyperledger burrow to run the smart contract byte-
code written in Solidity. A key component included
in Hyperledger fabric is the JSON RPC API Fab3 to
mimic the web3.js library used by Ethereum DApps—
this simplifies the extension process from Ethereum to
Hyperledger. Similarly, RSK RBTC provides a frame-
work to extend Ethereum smart contracts [92]. The RVM
(RSK Virtual Machine) is compatible with EVM at the
op-code level. This compatibility allows Ethereum smart
contracts to run easily on the RSK-RBTC. RVM is also
compatible with the tools used to deploy and inter-
act with EVM smart contracts. Detailed instructions to

1794 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

use Ethereum smart contracts on the RSK-RBTC can
be found in [94]. Teams developing other blockchain
technologies and frameworks, such as EOS are working
toward creating functionality to extend Ethereum smart
contracts to their platforms [95].

7) Integration With Multi-sUAV Motion Planning
Algorithms: Integrating a blockchain-enabled multi-
sUAV system with a decentralized motion planner is
a natural extension to this work. A receding horizon,
mixed-integer nonlinear programming (RH-MINLP)-
based motion planner that allows multiple sUAVs to
navigate toward multiple waypoints while securely
transferring data over the blockchain will be the next
objective of this study [10].

VI. CONCLUSION

This article documented the hardware and software setup,
and experimental results for an Ethereum-based secure
information exchange system mounted aboard multiple
quadrotors sUAVs. The hardware architecture leveraged a low-
cost NVIDIA GPU for mining during flight and Raspberry
Pis as nonminer Ethereum nodes for data collection and stor-
age. The software architecture leveraged Ethereum’s ability to
program smart contracts for secure, confidential, and tamper-
proof data access, and a decentralized file system IPFS for data
storage. The system was mounted on three DJI M100 quadro-
tors, and flight tests were performed to collect and securely
share images across this 3-quadrotor network. The imple-
mentation of a private Ethereum network provided security
features, such as confidentiality, data integrity, and nonrepu-
diation. The combined use of Ethereum blockchain and IPFS
provided a distributed data storage system while avoiding a
single point of database failure for the network. Experimental
results focused on studying the average time taken to trans-
fer an image across the network as a function of image size
and consensus algorithm (PoA versus PoW) and the Ethereum
difficulty level. The experiments also evaluated the resilience
of the Ethereum network in the face of WiFi communication
disruptions. Finally, the increased sUAV energy consumption
due to additional Ethereum hardware payload as inferred by
battery life and flight time was documented. The use of the
PoA consensus algorithm provided faster image transfer com-
pared to PoW. The image transfer times, ability to continue
data transfer in the face of communication disruption and
reasonable multi-sUAV flight times point to the feasibility
of a blockchain-enabled communication system for multiple
sUAVs.

REFERENCES

[1] C. Pamela, G. Alastair, L. Meredith, and R. Melanie. (2017).
Commercial Drones Are Here: The Future of Unmanned Aerial
Systems. Accessed: Oct. 24, 2019. [Online]. Available: https://www.
mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/
commercial-drones-are-here-the-future-of-unmanned-aerial-systems

[2] L. Richard. (2018). Drone Industry Just Beginning to Take Off.
Accessed: Jan. 26. 2020. [Online]. Available: https://www.forbes.com/
sites/richardlevick/2018/05/15/drone-industry-just-beginning-to-take-
off/#7323272472bc

[3] G. S. Research. (2020). Drones: Reporting for Work. Accessed:
Oct. 24, 2019. [Online]. Available: https://www.goldmansachs.com/
insights/technology-driving-innovation/drones/

[4] (2019). Unmanned Aircraft Systems: Forecast. Accessed: Jan. 24,
2020. [Online]. Available: https://www.faa.gov/data_research/aviation/
aerospace_forecasts/media/unmanned_aircraft_systems.pdf

[5] S. Hasan, “Urban air mobility (UAM) market study,” NASA,
Washington, DC, USA, Rep. 52, 2019.

[6] H. A. Almurib, P. T. Nathan, and T. N. Kumar, “Control and path plan-
ning of quadrotor aerial vehicles for search and rescue,” in Proc. IEEE
SICE Annu. Conf., 2011, pp. 700–705.

[7] M. A. Ma’sum et al., “Simulation of intelligent unmanned aerial vehicle
UAV for military surveillance,” in Proc. IEEE Int. Conf. Adv. Comput.
Sci. Inf. Syst. (ICACSIS), 2013, pp. 161–166.

[8] P. Y. Haas, C. Balistreri, P. Pontelandolfo, G. Triscone, H. Pekoz, and
A. Pignatiello, “Development of an unmanned aerial vehicle UAV for air
quality measurement in urban areas,” in Proc. 32nd AIAA Appl. Aerodyn.
Conf., 2014, p. 2272.

[9] R. G. Valenti, Y. Jian, K. Ni, and J. Xiao, “An autonomous flyer photog-
rapher,” in Proc. IEEE Int. Conf. Cyber Technol. Autom. Control Intell.
Syst. (CYBER), Jun. 2016, pp. 273–278.

[10] P. Abichandani, K. Levin, and D. Bucci, “Decentralized formation coor-
dination of multiple quadcopters under communication constraints,” in
Proc. Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 3326–3332.

[11] I. de Boisblanc et al., “Designing a hexacopter for the collection of
atmospheric flow data,” in Proc. Syst. Inf. Eng. Design Symp. (SIEDS),
Apr. 2014, pp. 147–152.

[12] R. T. Palomaki, N. T. Rose, M. van den Bossche, T. J. Sherman,
and S. F. De Wekker, “Wind estimation in the lower atmosphere
using multirotor aircraft,” J. Atmosp. Ocean. Technol., vol. 34, no. 5,
pp. 1183–1191, 2017.

[13] C. A. Wolf et al., “Wind data collection techniques on a multi-rotor
platform,” in Proc. Syst. Inf. Eng. Design Symp. (SIEDS), Apr. 2017,
pp. 32–37.

[14] G. W. Donnell, J. A. Feight, N. Lannan, and J. D. Jacob, “Wind charac-
terization using onboard IMU of SUAS,” in Proc. Atmosp. Flight Mech.
Conf., 2018, p. 2986.

[15] T. Shimura, M. Inoue, H. Tsujimoto, K. Sasaki, and M. Iguchi,
“Estimation of wind vector profile using a hexarotor unmanned
aerial vehicle and its application to meteorological observation up to
1000m above surface,” J. Atmosp. Ocean. Technol., vol. 35, no. 8,
pp. 1621–1631, 2018.

[16] S. Prudden, A. Fisher, M. Marino, A. Mohamed, S. Watkins,
and G. Wild, “Measuring wind with small unmanned aircraft
systems,” J. Wind Eng. Ind. Aerodyn., vol. 176, pp. 197–210,
May 2018.

[17] S. Waslander and C. Wang, “Wind disturbance estimation and rejection
for quadrotor position control,” in Proc. AIAA Infotech Aerosp. Conf.,
2009, p. 1983.

[18] M. Marino, A. Fisher, R. Clothier, S. Watkins, S. Prudden, and
C. S. Leung, “An evaluation of multi-rotor unmanned aircraft as fly-
ing wind sensors,” Int. J. Micro Air Veh., vol. 7, no. 3, pp. 285–299,
2015.

[19] J. Kelly and A. Williams. Forty Big Banks Test Blockchain-Based
Bond Trading System. Accessed: Oct. 24, 2019. [Online]. Available:
https://www.reuters.com/article/banking-blockchain-bonds/forty-big-
banks-test-blockchain-based-bond-trading-system-idUSL8N16A30H

[20] I. Kar. Estonian Citizens Will Soon Have the World’s Most Hack-Proof
Health-Care Records. Accessed: Oct. 24, 2019. [Online]. Available:
https://qz.com/628889/this-eastern-european-country-is-moving-its-
health-records-to-the-blockchain/

[21] W. Suberg. Factom’s Latest Partnership Takes on U.S. Healthcare.
Accessed: Oct. 24, 2019. [Online]. Available: https://cointelegraph.com/
news/factoms-latest-partnership-takes-on-us-healthcare

[22] S. Lacey. The Energy Blockchain: How Bitcoin Could Be a Catalyst for
the Distributed Grid. [Online]. Available: https://www.greentechmedia.
com/articles/read/the-energy-blockchain-could-bitcoin-be-a-catalyst-for-
the-distributed-grid

[23] D. Oparah. Ways That the Blockchain Will Change the Real Estate
Market. [Online]. Available: https://techcrunch.com/2016/02/06/3-ways-
that-blockchain-will-change-the-real-estate-market/

[24] A. Mizrahi. (2015). A Blockchain-Based Property Ownership
Recording System. Accessed: Jul. 7, 2020. [Online]. Available:
https://www.paperdue.com/essay/blockchain-based-property-ownership-
recording-2166424

ABICHANDANI et al.: SECURE COMMUNICATION FOR MULTIQUADROTOR NETWORKS USING ETHEREUM BLOCKCHAIN 1795

[25] J. Wan, J. Li, M. Imran, and D. Li, “A blockchain-based solution for
enhancing security and privacy in smart factory,” IEEE Trans. Ind.
Informat., vol. 15, no. 6, pp. 3652–3660, Jun. 2019.

[26] H. M. Kim and M. Laskowski, “Toward an ontology-driven blockchain
design for supply-chain provenance,” Intell. Syst. Account. Finance
Manag., vol. 25, no. 1, pp. 18–27, 2018.

[27] S. He, W. Ren, T. Zhu, and K.-K. R. Choo, “BoSMoS: A blockchain-
based status monitoring system for defending against unauthorized
software updating in industrial Internet of Things,” IEEE Internet Things
J., vol. 7, no. 2, pp. 948–959, Feb. 2020.

[28] K. Liu, W. Chen, Z. Zheng, Z. Li, and W. Liang, “A novel debt-credit
mechanism for blockchain-based data-trading in Internet of Vehicles,”
IEEE Internet Things J., vol. 6, no. 5, pp. 9098–9111, Oct. 2019.

[29] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung, “Blockchain-
based decentralized trust management in vehicular networks,” IEEE
Internet Things J., vol. 6, no. 2, pp. 1495–1505, Apr. 2019.

[30] K. Gai, Y. Wu, L. Zhu, L. Xu, and Y. Zhang, “Permissioned
blockchain and edge computing empowered privacy-preserving smart
grid networks,” IEEE Internet Things J., vol. 6, no. 5, pp. 7992–8004,
Oct. 2019.

[31] S. Mondal, K. P. Wijewardena, S. Karuppuswami, N. Kriti, D. Kumar,
and P. Chahal, “Blockchain inspired RFID-based information architec-
ture for food supply chain,” IEEE Internet Things J., vol. 6, no. 3,
pp. 5803–5813, Jun. 2019.

[32] M. Shen, X. Tang, L. Zhu, X. Du, and M. Guizani, “Privacy-
preserving support vector machine training over blockchain-based
encrypted iot data in smart cities,” IEEE Internet Things J., vol. 6, no. 5,
pp. 7702–7712, Oct. 2019.

[33] C. Lin, D. He, N. Kumar, X. Huang, P. Vijaykumar, and K.-K. R. Choo,
“Homechain: A blockchain-based secure mutual authentication system
for smart homes,” IEEE Internet Things J., vol. 7, no. 2, pp. 818–829,
Feb. 2020.

[34] J. Xu et al., “Healthchain: A blockchain-based privacy preserving
scheme for large-scale health data,” IEEE Internet Things J., vol. 6,
no. 5, pp. 8770–8781, Jun. 2019.

[35] J. Luo, Q. Chen, F. R. Yu, and L. Tang, “Blockchain-enabled software-
defined industrial Internet of Things with deep reinforcement learning,”
IEEE Internet Things J., vol. 7, no. 6, pp. 5466–5480, Jun. 2020.

[36] K. Salah, M. H. U. Rehman, N. Nizamuddin, and A. Al-Fuqaha,
“Blockchain for AI: Review and open research challenges,” IEEE
Access, vol. 7, pp. 10127–10149, 2019.

[37] H. R. Hasan and K. Salah, “Combating deepfake videos using
blockchain and smart contracts,” IEEE Access, vol. 7, pp. 41596–41606,
2019.

[38] A. Chaer, K. Salah, C. Lima, P. P. Ray, and T. Sheltami, “Blockchain for
5G: Opportunities and challenges,” in Proc. IEEE Globecom Workshops
(GC Wkshps), 2019, pp. 1–6.

[39] A. Suliman, Z. Husain, M. Abououf, M. Alblooshi, and K. Salah,
“Monetization of IoT data using smart contracts,” IET Netw., vol. 8,
no. 1, pp. 32–37, 2018.

[40] M. A. Khan and K. Salah, “IoT security: Review, blockchain solu-
tions, and open challenges,” Future Gener. Comput. Syst., vol. 82,
pp. 395–411, May 2018.

[41] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[42] N. Noguchi, J. Will, J. Reid, and Q. Zhang, “Development of a master-
slave robot system for farm operations,” Comput. Electron. Agricult.,
vol. 44, no. 1, pp. 1–19, 2004.

[43] M. Le Goc, L. H. Kim, A. Parsaei, J.-D. Fekete, P. Dragicevic, and
S. Follmer, “Zooids: Building blocks for swarm user interfaces,” in
Proc. ACM 29th Annu. Symp. User Interface Softw. Technol., 2016,
pp. 97–109.

[44] L. A. Grieco et al., “IoT-aided robotics applications: Technological
implications, target domains and open issues,” Comput. Commun.,
vol. 54, pp. 32–47, Dec. 2014.

[45] V. Lippiello, B. Siciliano, and L. Villani, “Position-based visual serv-
ing in industrial multi-robot cells using a hybrid camera configuration,”
IEEE Trans. Robot., vol. 23, no. 1, pp. 73–86, Feb. 2007.

[46] E. C. Ferrer, “The blockchain: A new framework for robotic swarm
systems,” in Proc. Future Technol. Conf., 2018, pp. 1037–1058.

[47] L. Deepan. Smart Contract Code. [Online]. Available:
https://github.com/radlab-sketch/Ethereum

[48] A. Kapitonov, S. Lonshakov, A. Krupenkin, and I. Berman,
“Blockchain-based protocol of autonomous business activity for multi-
agent systems consisting of UAVs,” in Proc. Workshop Res. Educ.
Develop. Unmanned Aerial Syst. (RED-UAS), Oct. 2017, pp. 84–89.

[49] V. Strobel, E. C. Ferrer, and M. Dorigo, “Managing Byzantine robots via
blockchain technology in a swarm robotics collective decision making
scenario,” in Proc. 17th Int. Conf. Auton. Agents Multiagent Syst., 2018,
pp. 541–549.

[50] M. Y. Afanasev, Y. V. Fedosov, A. A. Krylova, and S. A. Shorokhov,
“An application of blockchain and smart contracts for machine-to-
machine communications in cyber-physical production systems,” in
Proc. IEEE Ind. Cyber Phys. Syst. (ICPS), May 2018, pp. 13–19.

[51] J. Kang et al., “Blockchain for secure and efficient data sharing in vehic-
ular edge computing and networks,” IEEE Internet Things J., vol. 6,
no. 3, pp. 4660–4670, Jun. 2019.

[52] D. Calvaresi, A. Dubovitskaya, J. P. Calbimonte, K. Taveter, and
M. Schumacher, “Multi-agent systems and blockchain: Results from a
systematic literature review,” in Proc. Int. Conf. Practical Appl. Agents
Multiagent Syst., 2018, pp. 110–126.

[53] M. Fernandes and L. A. Alexandre, “Robotchain: Using Tezos tech-
nology for robot event management,” Ledger, vol. 4, no. 1, p. 5,
2019.

[54] V. Lopes, L. A. Alexandre, and N. Pereira, “Controlling robots using
artificial intelligence and a consortium blockchain,” 2019. [Online].
Available: arXiv:1903.00660.

[55] S. B. H. Youssef, S. Rekhis, and N. Boudriga, “A blockchain based
secure IoT solution for the dam surveillance,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), 2019, pp. 1–6.

[56] S. Aggarwal, M. Shojafar, N. Kumar, and M. Conti, “A new secure
data dissemination model in Internet of Drones,” in Proc. IEEE Int.
Conf. Commun. (ICC), 2019, pp. 1–6.

[57] E. Barka, C. A. Kerrache, H. Benkraouda, K. Shuaib, F. Ahmad,
and F. Kurugollu, “Towards a trusted unmanned aerial system using
blockchain for the protection of critical infrastructure,” Trans. Emerg.
Telecommun. Technol., Jul. 2019, Art. no. e3706. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3706

[58] A. Mokhtar, N. Murphy, and J. Bruton, “Blockchain-based multi-robot
path planning,” in Proc. IEEE 5th World Forum Internet Things (WF-
IoT), 2019, pp. 584–589.

[59] Aira. Accessed: Dec. 5, 2020. [Online]. Available: https://aira.life/
[60] C. Pinciroli et al., “ARGoS: A modular, parallel, multi-engine simulator

for multi-robot systems,” Swarm Intell., vol. 6, no. 4, pp. 271–295, 2012.
[61] G. Valentini, D. Brambilla, H. Hamann, and M. Dorigo, “Collective

perception of environmental features in a robot swarm,” in Proc. Int.
Conf. Swarm Intell., 2016, pp. 65–76.

[62] E. Barka, C. A. Kerrache, N. Lagraa, A. Lakas, C. T. Calafate, and
J.-C. Cano, “UNION: A trust model distinguishing intentional and unin-
tentional misbehavior in inter-UAV communication,” J. Adv. Transp.,
vol. 2018, Apr. 2018, Art. no. 7475357.

[63] C. A. Kerrache, E. Barka, N. Lagraa, and A. Lakas, “Reputation-aware
energy-efficient solution for FANET monitoring,” in Proc. 10th IFIP
Wireless Mobile Netw. Conf. (WMNC), 2017, pp. 1–6.

[64] Hyperledger Fabric Documentaion. Accessed: Oct. 24, 2019. [Online].
Available: https://wiki.hyperledger.org/display/fabric/Hyperledger+
Fabric

[65] K. Danilov, R. Rezin, I. Afanasyev, and A. Kolotov, “Towards
blockchain-based Robonomics: Autonomous agents behavior valida-
tion,” in Proc. IEEE Int. Conf. Intell. Syst. (IS), 2018, pp. 222–227.

[66] T. M. FernÁndez-Caramés, O. Blanco-Novoa, I. Froiz-Míguez, and
P. Fraga-Lamas, “Towards an autonomous industry 4.0 warehouse: A
UAV and blockchain-based system for inventory and traceability appli-
cations in big data-driven supply chain management,” Sensors, vol. 19,
no. 10, p. 2394, 2019.

[67] L. Paull et al., “Duckietown: An open, inexpensive and flexible platform
for autonomy education and research,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2017, pp. 1497–1504.

[68] DJI Matrice M100: Quadcopter for Developers. Accessed: Oct. 10,
2019. [Online]. Available: https://www.dji.com/matrice100

[69] Orbitty carrier for NVIDIA Jetson TX2. Accessed: May 12, 2020.
[Online]. Available: http://connecttech.com/product/orbitty-carrier-for-
nvidia-jetson-tx2-tx1/

[70] Linksys EA9500 Max-Stream—AC5400 MU-MIMO Gigabit
WiFi Router. Accessed: May 12, 2020. [Online]. Available:
https://www.linksys.com/us/p/P − EA9500/

[71] AC1750 Wireless Dual Band Gigabit Router. Accessed: May 12, 2020.
[Online]. Available: https://www.tp-link.com/us/home-networking/wifi-
router/archer-c7/

[72] Franklin Wireless Corp Ellipsis. Accessed: May 12, 2020. [Online].
Available: https://www.verizon.com/internet-devices/verizon-ellipsis-
jetpack-mhs900l/

1796 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 3, FEBRUARY 1, 2021

[73] Understanding Blockchain Fundamentals. Accessed: May 12, 2020.
[Online]. Available: https://medium.com/loom-network/understanding-
blockchain-fundamentals-part-2-proof-of-work-proof-of-stake-
b6ae907c7edb

[74] Proof of Stake. Accessed: May 12, 2020. [Online]. Available:
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ

[75] Proof of Authority Chains. Accessed: May 12, 2020. [Online]. Available:
https://openethereum.github.io/wiki/Proof-of-Authority-Chains

[76] Implementing PBFT in blockchain. Accessed: May 12, 2020.
[Online]. Available: https://medium.com/coinmonks/implementing-pbft-
in-blockchain-12368c6c9548

[77] G. Wood. (2014). Ethereum Yellow Paper. Accessed: Oct. 24, 2019.
[Online]. Available: https://github. com/ethereum/yellowpaper

[78] Ethereum Virtual Machine. Accessed: May 12, 2020. [Online].
Available: https://github.com/ethereum/wiki/wiki/Ethereum-Virtual-
Machine-(EVM)-Awesome-List

[79] Ethereum Homestead Documentation. Accessed: Jul. 7, 2020. [Online].
Available: https://ethdocs.org/

[80] Truffle Documentation. Accessed: Jul. 23, 2020. [Online]. Available:
https://www.trufflesuite.com/

[81] Solidity v0.6.11 Documentation. Accessed: Jul. 23, 2020. [Online].
Available: https://solidity.readthedocs.io/

[82] Ethereum Difficulty Bomb Explained. Accessed: May 12, 2020.
[Online]. Available: https://www.mangoresearch.co/ethereum-difficulty-
bomb-explained/

[83] Free Gas Networks. [Online]. Available: https://besu.hyperledger.org/en/
stable/HowTo/Configure/FreeGas

[84] S. Malik, V. Dedeoglu, S. S. Kanhere, and R. Jurdak, “TrustChain: Trust
management in blockchain and IoT supported supply chains,” in Proc.
IEEE Int. Conf. Blockchain (Blockchain), 2019, pp. 184–193.

[85] P. Albert. (2018). Storing on Ethereum. Analyzing the Costs. Accessed:
Oct. 10, 2019. [Online]. Available: https://medium.com/coinmonks/
storing-on-ethereum-analyzing-the-costs-922d41d6b316

[86] P. Labs. (2018). IPFS Documentation. Accessed: Oct. 24, 2019.
[Online]. Available: https://docs.ipfs.io/

[87] OpenPGP. Accessed: May 12, 2020. [Online]. Available:
https://www.openpgp.org/

[88] Educational Users. Accessed: Jul. 7, 2020. [Online]. Available:
https://www.faa.gov/uas/educational_users/

[89] Matrice 100 TB48D Battery. Accessed: Jul. 7, 2020. [Online]. Available:
https://store.dji.com/product/matrice-100-tb48d-battery

[90] R. Almadhoun, M. Kadadha, M. Alhemeiri, M. Alshehhi, and K. Salah,
“A user authentication scheme of IoT devices using blockchain-enabled
fog nodes,” in Proc. IEEE/ACS 15th Int. Conf. Comput. Syst. Appl.
(AICCSA), 2018, pp. 1–8.

[91] H. R. Hasan and K. Salah, “Proof of delivery of digital assets using
blockchain and smart contracts,” IEEE Access, vol. 6, pp. 65439–65448,
2018.

[92] RSK Documentation. Accessed: Jul. 7, 2020. [Online]. Available:
https://developers.rsk.co/rsk/

[93] Using Hyperledger Fabric to Set Up Ethereum Smart Contracts.
Accessed: Jul. 7, 2020. [Online]. Available: https://www.devteam.space/
blog/how-to-deploy-smart-contract-on-ethereum/

[94] RSK Documentation: Geth. Accessed: Jul. 7, 2020. [Online]. Available:
https://developers.rsk.co/tutorials/ethereum-devs/geth-attach-local-node/

[95] M. Dalton. EOS Pursuing Compatibility With Ethereum Smart Contracts.
Accessed: Jul. 7, 2020. [Online]. Available: https://cryptobriefing.com/
eos-pursuing-compatibility-ethereum-smart-contract-code/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

