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for IoT Applications in Terms of Security
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Abstract—This article describes the implementation of the
AES-GCM for IoT-oriented low-end 8/16/32-bit general-purpose
processors. Although various aspects of implementations of the
AES-GCM for high-end processors and hardware were examined
in detail, the low-end processors to a lesser extent. This article
estimates the speed and memory demand for various approaches
to ensuring resistance to attacks, such as timing analysis and sim-
ple power analysis by ensuring the constant algorithm execution
time. A particular attention is paid to the low-level multiplica-
tion implementation in GF (2128) for each architecture as a key
galois/counter mode operation, because low-end processors do not
have ready-made instructions for carry-less multiplication. For
each AVR/MSP430/ARM Cortex-M3 processor core, a constant
time implementation of carry-less multiplication is proposed,
the performance of which approaches the Not Constant Time
algorithm.

Index Terms—AES-GCM, authenticated encryption with asso-
ciated data (AEAD), carry-less multiplication, embedded systems,
GF(2128) multiplication, IoT, performance, side-channel attack,
simple power analysis, timing analysis.

I. INTRODUCTION

ACCORDING to the IoT concept, the IoT devices not only
need to be able to communicate by sending and receiving

information, but they are also expected to use a secure com-
munication method or protocol in a public network [1], [2].
Of course, various aspects of this interaction must be reli-
ably protected. This is especially important in the case of
critical infrastructure, which determines the life and health
of people. IoT devices can be perceived as interconnected
Embedded Systems, and their design usually includes micro-
controllers (MCUs). MCUs usually offer very limited com-
puting power, and they have relatively little ROM and
RAM memory. Therefore, the cryptographic algorithms imple-
mented on embedded systems must be efficient (use minimum
resources) and be resistant to a wide range of attacks including
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side-channel attacks. The main challenge of the implementa-
tion of cryptographic algorithms for embedded systems is the
fulfillment of seemingly conflicting requirements of the level
of security, performance, and price of the final device.

Almost all cryptographic algorithms have been designed to
be implemented in computer systems that use universal proces-
sors providing sufficient CPU power. Therefore, the software
implementation of encryption or hashing on 8/16/32-bit MCUs
is slow and energy-intensive and requires quite a lot of
memory. The search for new and adaptation of existing algo-
rithms on platforms with limited computing power is covered
by lightweight cryptography [3], [4]. Another approach to
solving the problem of the complexity of encryption algo-
rithms assumes the use of cryptographic accelerators to speed
up calculations hundreds of times [5]–[7].

IoT applications are operating using standard or custom
protocols, sending data in the form of packets. These pack-
ages can contain both: confidential information, which should
be protected from unauthorized reading, modification, and
falsification, as well as nonconfidential data. The nonconfi-
dential data include packet header (which may be tampered
or replaced), including addresses, port numbers, protocol ver-
sions, and other information needed to handle the packet.
The header must be authenticated while also it should remain
unencrypted so that network devices can read it.

Cryptographic primitives to comprehensively solve similar
issues are covered by the term authenticated encryption with
associated data (AEAD). In the AEAD algorithms, a part
of the message is encrypted and the other part remains
in the open form, but the entire packet is authenticated.
AEAD encryption—it is a mode of symmetric encryption of
data transmitted in the form of packets, which simultaneously
provides both: confidentiality and data authentication, using
a single software interface.

AEAD algorithms are more efficient and simpler than using
the separate algorithms for encryption and authentication, and
thus require fewer resources. It also allows to avoid crit-
ical errors when combining encryption and authentication,
which led to a series of practical attacks on protocols and
applications, including SSL/TLS [8].

A typical software interface implementing the AEAD
method provides the following functions.

1) Encryption:
Input: key, initial vector, plaintext, and optional header;
Output: ciphertext and authentication tag (Fig. 1).
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Fig. 1. Principle of operation of AEAD algorithms.

2) Decryption:
Input: key, initial vector, ciphertext, authentication tag,
and optional header;
Output: Plaintext or error if the calculated tag does not
match the specified one.

In IoT applications and protocols, security is cru-
cial [9], [10], which is why there is an objective need to use
AEAD algorithms.

II. ANALYSIS OF RECENT RESEARCH AND PUBLICATIONS

The AEAD algorithms are used in known protocols such
as TLS 1.2 and in its newer version TLS 1.3 for securing
data transmission in computer networks. The TLS 1.2 protocol
has been implemented in many libraries, including lightweight,
oriented toward embedded systems, and IoT devices, among
which the most well-known are WolfSSL, GUARD TLS Tiny,
mbed TLS, and CycloneSSL. However, the TLS protocol is
quite “heavy” for IoT, so as an alternative, the relatively
new noise protocol can be considered, which reduces the
complexity and computational power requirements of TLS.

Taking this into account, one of the algorithms most
commonly used today was selected for the research: AES-
GCM. This algorithm is supported by TLS 1.2, 1.3, and
noise protocols. Moreover, what is very important, it has been
standardized in NIST SP 800-38D and RFC5116 [11], [12].

The need for authenticated encryption algorithms con-
firmed the CAESAR 2013 competition (Competition
for Authenticated Encryption: Security, Applicability, and
Robustness) [13] to select algorithms intended to be more effi-
cient than AES-GCM and provide resistance to reuse/misuse
attacks. Six winners for various uses of ciphers were listed in
February 2019.

Since the approval of the AES-GCM standard in 2007, even
systems built upon high-performance general-purpose proces-
sors with a high clock frequency, large RAM, and cache capacity
and a powerful instruction set encounter a problem of insuf-
ficient performance for its implementation. The AES-GCM
algorithm includes two operations: 1) AES data encryption in
the counter mode and 2) Galois hash (GHASH) hashing based
on multiplication in the Galois field with modular reduction.

TABLE I
EVOLUTION OF CRYPTOGRAPHIC INSTRUCTIONS IN INTEL AND AMD

PROCESSORS GENERATIONS [17]

Fig. 2. Influence of the evolution of cryptographic instructions in the Intel
and AMD processors generations on AES-GCM performance [18].

The last operation is much slower than encryption.
Therefore, in 2010, AES-NI encryption instructions were
added to x86 processors (Table I), as well as a special
PCLMULQDQ (Carry-Less Multiplication) instruction for
multiplication within Galois Field GF(2128) [14], [15]. This,
after using various techniques, allowed to optimize calcu-
lations (especially modular reduction) [16] to significantly
increase the efficiency of AES-GCM (Fig. 2).

With the advent of NEON SIMD-instructions in
ARMv7 processors, Carry-Less Multiplication can be
accelerated using the VMULL.P8 command, which performs
simultaneous (at the same time) polynomial multiplication
of 8 × 8 bits for an 8-byte vector [19]. By combining this
instruction with other SIMD-instructions of the NEON unit,
a carry-less product calculation of 128 × 128 bits is built.

In the ARMv8 processors, four special SIMD instruc-
tions have been added to support AES-GCM, including
encryption, AES (AESE/AESD—AES single-round encryp-
tion/decryption, AESIMC—AES inverse mixed columns, and
AESMC—AES mixed columns), as well as 64 × 64 multipli-
cation PMULL in Galois field [20]. In [21], it has been shown
that their use increases the efficiency of AES-GCM by nine
times compared to ARMv7.

Even more noticeable is the lack of hardware support
for the implementation of AES-GCM in MCUs. Only some
8/16-bit MCU models are equipped with the AES-128 algorithm
cryptographic accelerators, for example, 8-bit AVR encrypts
one block for 375 cycles and 16-bit MSP430 for 167 cycles.
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TABLE II
PARAMETERS FOR THE SOFTWARE IMPLEMENTATION OF THE

AES 128-GCM ON MCUS

More often, the AES crypto-modules are found in 32-bit MCUs
with ARM Cortex-M core, which, depending on the type of
the crypto-module, perform block encryption between 12 and
168 cycles [7]. However, all MCUs lack any hardware support
for carrying out the carry-less multiplication necessary to cal-
culate GHASH (which is 2–4 times more complex than AES
encryption). In addition, GHASH enumeration must be per-
formed more often because it also applies to the attached packet
data that is not encrypted. That is why in this article special
attention was given to the optimization of GHASH calculation,
taking into account MCUs architectures and their command sets.

As for the implementation of the AES algorithm, there are
well-known efficient computational techniques based on the
use of so-called T-tables [22]. These are four precomputed
T0–T3 look-up tables with a size of 1 kB (256 × 32 bits)
containing a 32-bit result of the SubBytes(), ShiftRows(), and
MixColumns() operations for a given byte of the state array.
Thus, AES encryption consists of finding the right value in
the table and adding modulo 2 to the round key.

At present, there are almost no publications on how to
efficiently implement AEAD ciphers for low-end MCU-based
embedded systems. Only articles [23], [24] present the results
of research on the impact of architecture and methods for
the optimization of calculations in the AES-GCM algorithm
(Table II).

The parameters given in Table II concern:
1) row 1—efficiency of encryption/decryption (in cycles

per byte–cpb);
2) row 2—size of the memory required to perform

calculations;
3) row 3—size of the encrypted and authenticated data.
In [23], it was shown that the use of the built-in accelerator

allowed to increase the AES-128 encryption rate by 2.2 times,
however, the estimation of the number of cycles did not
take into account the operation of generating key-dependent
variables. Data used in [24] were taken from the Cifra crypto-
graphic primitive library [25], created for embedded systems,
so its priorities include simplicity, moderate requirements for
code size and data size, and resistance to side-channel attacks,
which results in lowering speed.

III. PURPOSE OF THIS ARTICLE

This article aims to explore ways of effective software
implementation of the AES-GCM AEAD algorithm, often
used in IoT applications and to estimate and compare
the demand for resources for typical low-end 8/16/32-bit
processors, because this issue is not highlighted enough in
publications known to authors. This will give us a basis for

further comparison with the light finalists of the CAESAR
competition—Ascon and ACORN algorithms, to estimate the
progress achieved. In addition, the priority is to achieve
maximum AES-GCM performance, because according to the
CAESAR competition requirements, the winners must over-
take it.

Given that AES implementations are well developed for
low-end processors, the main emphasis is on efficient and
(at the same time) secure against timing analysis and sim-
ple power analysis low-level multiplication implementation in
GF (2128) for each architecture as a key GCM operation,
because low-end processors do not offer built-in carry-less
multiplication instructions.

IV. ANALYSIS OF THE 8/16/32-BIT MICROCONTROLLER

ARCHITECTURES IN TERMS OF AES-GCM OPERATIONS

Considering that there is no dominant platform in IoT, it
is important to estimate the implementation of the AES-GCM
algorithm on different market segments of embedded systems’
processors: low-end (8/16 bits) and high-end (32 bits). One
typical architecture from each 8-, 16-, and 32-bit MCU
architectures was selected for the study.

A. AVR Microcontrollers (8 Bits)

As an 8-bit platform, the AVR MCUs family was cho-
sen. This choice is a result of a rich instruction set designed
for maximum effectiveness of programs written in high-level
languages.

It is worth noting that among the features of the AVR core,
important in the context of cryptography, is Harvard memory
architecture with separate memory—8-bit data memory (using
SRAM) and 16-bit program memory (using Flash), which
increases efficiency. The entire family of AVR MCUs is based
on the typical RISC architecture. The register system holds
32 8-bit general-purpose registers directly connected to the
ALU, performing arithmetic, logic, and bit operations. The
instruction set is sufficiently developed and contains over
130 instructions, most of which are performed in one cycle,
thanks to the use of a two-level pipeline. The core contains
8 × 8 multiplication unit, executing the MUL instruction in
2 cycles [26].

AVR MCUs support simple, direct, and indirect address-
ing modes. The availability of predecrementing, post-
incrementation, and the offset modes in indirect addressing
enables efficient processing of data sets in the process of cryp-
tographic algorithm execution, generating a compact program
code. For access to data in Flash memory (S-box and look-up
table), indirect addressing is used. Access to the SRAM takes
place in two cycles, three cycles are required for Flash.

B. MSP430 Microcontrollers (16 Bits)

The MSP430 family gained popularity in the IoT technol-
ogy, especially in wireless sensor networks, due to very low
energy consumption.

The compact 16-bit RISC MSP430 core is built according
to Princeton architecture and contains 16 registers, of which
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TABLE III
BASIC PARAMETERS OF THE MCUS TESTED

TABLE IV
COMPLEXITY OF LOGICAL AND BIT OPERATIONS (>> AND <<

OPERATORS—LEFT AND RIGHT SHIFT, >>> AND <<<

OPERATORS—LEFT AND RIGHT ROTATION, . . . —CYCLIC SHIFT)

twelve (R4-R15) are general-purpose registers. Registers R0-
R3 perform special functions (Program Counter, Stack Pointer,
Status Register, and Constant Generator). The instruction set
is very simple and contains 27 original and 24 emulated
instructions that are optimized for the efficient use of high-
level programming languages. All commands are 16-bit and
can support both 8-bit and 16-bit operands. There is also
a 16x16 multiplication module. Seven addressing modes are
supported. The number of cycles to perform an instruction
depends on the command format and the addressing mode
and can range from 1 to 6 [27].

Due to the orthogonal architecture and registry operations
performed in one cycle, high efficiency and code density are
ensured. From the point of view of cryptography, an important
feature of the MSP430 processor is the direct exchange of
data between memory cells (omitting registers).

C. ARM Cortex-M3 Microcontrollers (32 Bits)

ARM cores dominate the 32-bit RISC MCU market and are
currently approaching 8-bit models for power consumption and
price, making them a serious competitor in their traditional
applications. Therefore, the research on the implementation
of the AES-GCM algorithm was carried out using the ARM
Cortex-M3 MCU. It is a 32-bit processor based on Harvard
architecture with a three-stage pipeline providing support for
the Thumb and Thumb-2 instruction set.

The Cortex-M3 core contains 16 registers R0–R15, of which
the R0–R12 registers are general-purpose registers. The ALU
has a 32-bit shift block that allows one of the operands to
be moved by a specific number of bits when the instruc-
tion is executed. A one-cycle 32 × 32 multiply unit is also
available [28].

Tables III and IV show the basic (in the con-
text of cryptographic calculations) properties of embedded
processors.

V. STRUCTURE OF THE AES-GCM
CRYPTOGRAPHIC ALGORITHM

The Galois/counter mode (GCM) is the most popular stan-
dard encryption scheme by NIST, which is used in a number
of TLS, Noise, IPSec, SSH, and other protocols. GCM popu-
larity is the result of a lack of patenting, as well as hardware
support for calculations in modern microprocessors and the
possibility of pipelining and parallel computing. GCM uses
128-bit CIPH block cipher, in which AES is often used
(CIPH = AES). In the following, under the abbreviation AES-
GCM will be understood variant AES-128 GCM, as it is the
most economical for IoT applications

Authenticated encryption function

GCM-AEK(IV, A, P) = (C, T) (1)

encrypts sensitive data and calculates the authentication tag
for both confidential data and added nonconfidential data. The
input data for AE encryption include: key K; plaintext P;
additional authenticated data (AAD) A; and initialization vec-
tor IV. The output data contain: ciphertext C and authentication
tag (Tag) T . The tag length can be 128/120/112/104/96 bits.
The authors chose the most popular version of the tag for the
research—128 bits.

Authenticated decryption function

GCM-ADK(IV, A, C, T) = (P or FAIL) (2)

decrypts confidential data if the verification of the authenti-
cation tag succeeded. The GCM-AD takes K, IV , A, C, and
T values as inputs, and returns Plaintext P (if the received
authentication tag T corresponds to the calculated T∗) or the
special error code FAIL otherwise.

The AES-GCM algorithm consists of two parts (Fig. 3).
1) AES encryption in AES counter mode (CTR).
2) GHASH authentication to calculate the authentica-

tion tag.

A. AES CTR

The algorithm uses AES in the counter mode, generating
a key stream at the output of the encryption function, and the
cryptogram itself results from the XOR operation of this stream
with individual blocks P1, P2, . . . , Pn of plaintext (Fig. 3).

To generate a key stream, Y0, Y1, Y2, . . . , Yn data blocks
(parameterized with the secret key K) are passed to the input
of the AES algorithm. The first block Y0 is formed as a result
of concatenation, i.e., chain coupling of bits of the initial
vector IV with the initial content of the counter

Y0 = CTR = IV‖0311. (3)

The next blocks are calculated in a similar way, but
each time the value of the counter is incremented by one
incremental function incr32 (Fig. 3).

The IV initialization vector can be any length, but 96-bit
length is recommended (also assumed in this article), due to
simplicity and compatibility, otherwise the GHASHH ({}, IV)
function is performed. Considering that AES CTR is a stream
cipher, the requirement of IV uniqueness as well as the secret
key K is essential for security.
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Fig. 3. Structure of the GCM-AEK algorithm (IV, A, P) = (C, T).

B. GHASH

The GHASH algorithm compresses the attached AAD data
and ciphertext in one block, which is then encrypted to cal-
culate an authentication tag. To form the HMAC function,
in GF(2128), GHASH uses the modulo calculation of an
irreducible polynomial

g = x128 + x7 + x2 + x1 + 1. (4)

The data to be authenticated (AAD and ciphertext) are
hashed with 128-bit blocks using the mult function. This func-
tion multiplies the 128-bit data block D by the 128-bit hash
H by the modulo g.

The mult function includes two steps:
1) Polynomial Carry-Less Multiplication:

Z = D ⊗ H, (128 bits ⊗ 128 bits → 256 bits). (5)

2) Reduction:

{Z} mod
(

x128 + x7 + x2 + x1 + 1
)
, (256 bits → 128 bits).

(6)

The last AAD block and the last block of ciphertext are
padded by zeroes to 16 bytes, if necessary.

The H hash keying subkey is generated by encrypting the
128-bit AES zero block using the K key

H = AESK

(
0128

)
. (7)

The result calculated by the GHASH function is added mod-
ulo 2 to the Y0 block cipher, which gives the value of the
authentication tag

T = GHASHH(A, C, len(A)64‖len(C)64) ⊕ AESK(Y0). (8)

VI. RESEARCH METHODOLOGY

For each selected AVR MCU family (8 bits), MSP430
(16 bits), ARM Cortex-M3 (32 bits), and AEAD algorithms
were implemented in C language using the embedded work-
bench for AVR (v7.10.5), IAR embedded workbench for
MSP430 (v7.11.2) and IAR Embedded Workbench for ARM
(v8.22.1) integrated development environments, respectively.
The number of cycles and the size of the code have also been
calculated in these environments.

In this article, the maximum speed was generally considered
the priority, which is why the compilation was carried out with
the optimization level -O hs (High, favoring speed).

The parameters that were measured as follows:
1) encryption/decryption speed expressed in cycles per

byte (cpb);
2) amount of permanent memory (ROM), which consists

of the size of the program code and tables placed in the
flash memory;

3) operational memory (RAM) represented by tables in the
SRAM and the desired stack size.

VII. IMPLEMENTATION FEATURES OF THE AES
ENCRYPTION ALGORITHM

For all types of MCUs, AES-implementation, based on
the T-table, was used to secure the highest performance at
a reasonable cost of memory. This requires 4 T0-T3 tables
with a size of 1 KB (256 × 32 bits), where each 1024-byte
lookup table stores the results of the operations SubBytes(),
ShiftRows(), and MixColumns().
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Due to the fact that in the case of 8-bit AVR MCUs, where
memory reads are made bytes, the size of the tables and their
number can be optimized. For this purpose, a feature is used
that each 32-bit value in the table consists of two identical
bytes, which are a linear combination of two other bytes. For
example, T0[0] = 0xc66363a5, where 0x63 = 0xc6⊗0xa5. In
this way, you only need to store two different bytes instead of
four and calculate the required bytes in the encryption process,
which reduces the table size to 512 bytes and reduces the
number of cycles. In addition, T0−T3 tables elements with
converged indexes contain equal bytes, but in a different order
(T0, [0] = 0xc66363a5, T1[0] = 0xa5c66363, etc.). This is
also taken into account during the software byte reading, so
only one table T0 has to be stored. Thus, the size of the T
table in the case of AVR-MCU is 512 bytes.

For 16- and 32-bit processors, reading 32-bit values pro-
vides better performance than byte operations, which is why
a traditional approach based on four 1024-byte tables is used.

VIII. IMPLEMENTATION FEATURES OF THE GCM
AUTHENTICATION ALGORITHM

In terms of performance, the most critical GCM operation
is the carry-less multiplication of two 128-bit operands in
a GHASH operation, because the embedded processors do not
support the multiplication instruction in Galois Field GF(2128).

In order to implement GHASH, several approaches that dif-
fer in both speed and security can be used. For the implemen-
tation of software cryptographic algorithms, it is important to
provide some level of protection against side-channel attacks.
In case of GHASH, the basic level of protection implies resis-
tance to timing attacks as well as to simple attacks on energy
consumption (simple power analysis), which is achievable by
the lack of such loops, operations, and conditional branches in
the program code, whose execution time depends on the value
secret data. Such implementations are performed in a constant
time [constant-time (CT)] regardless of input data, but at the
expense of lowering the performance. The CT requirement
is almost a mandatory parameter for cryptographic libraries,
however, this option can be disabled if necessary. This will
result in increasing efficiency, but at the same time, it will
reduce the level of security, mainly because of the NCT of
the GHASH operation.

In order to meet the conflicting requirements of maintain-
ing both: safety and efficiency, the authors proposed their own
solution, ensuring a quick carry-less multiplication at a con-
stant time, therefore it is marked CTP (CT & Performance).
Therefore, this article presents the results of research covering
three different ways of implementing carry-less multiplication:

1) GHASH-NCT—fast but vulnerable to time attacks;
2) GHASH-CT—safe, but slower;
3) GHASH-CTP—safe and efficient.
In the case of GHASH-NCT, the direct method of Shift-

XOR multiplication or the so-called Schoolbook method was
used [29]. In this method, for every multiplication c = a ⊗
b, every bit b is extracted, and if it is equal to 1, the XOR

operation is performed over the content of accumulator’s c
and the value of the operand a shifted by i bits (a << i).

Fig. 4. Algorithm for calculating the value of Z = D ⊗ H mod g, where D,
H, and Z ∈ GF(2128), R = 0xe1.

The main advantage of this method is its simplicity and the
possibility of reducing the modulo of the polynomial g at the
time of multiplication. As can be seen in lines 3 and 4 of
the algorithm (Fig. 4), the multiplication time depends on the
value of Hi bits of one of the operands.

In order to keep the Shift-XOR algorithm’ execution time
fixed, the authors propose to replace conditional operators
dependent on steps three and six with unconditional opera-
tions using masks. This variant of the GHASH-CT algorithm
is more efficient in terms of execution time. The following
fragment shows the basic idea of achieving a fixed execu-
tion time based on masks depending on the value of the least
significant bit

NCT CT
if (a & 0x01) mask = 0x00 − (a & 0x01)

{b = b c; } b = b (c & mask).

Typical libraries that implement software multiplication take
advantage of the fact that one of the multipliers of the hash
function H has a constant value, which allows to build different
(in size) look-up tables, depending on the desired speed [27].
The basic idea of these algorithms is to divide factor D with an
NCT into parts s (usually 8 or 4 bits) and use them as indexes
of tables with precalculated partial products s ⊗ H. The look-
up tables and hashing key H are generated initially (during
the offline stage). In the stage, the calculation of D ⊗ H is
replaced by searching in tables and executing the XOR logical
operation of the read elements for forming the result.

The fastest variant of this method is to use 64 kilobytes to
store 16 tables Ti (for each byte D), where each table contains
256 elements Ti[j] (all possible values of byte D). 128-bit
values Ti[j] are calculated as follows:

Ti[j] =
(

Hash Key ⊗
(

j << 28i
))

mod g

for j = 0, 1, . . . , 255 and i = 0, 1, . . . , 15. (9)

Multiplication in this variant requires 16 readings of 128-bit
values from tables and 16 128-bit XOR operations.

It is possible to use smaller tables (8 kB or 4 kB), but
this causes a significant reduction in the effectiveness of this
method, as the number of operations of address calculations
and memory readings increases.

In this article, a table-based approach was not considered,
taking into account several issues.
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Fig. 5. Process of performing the 8 × 8 CTP-multiplication operation.

Fig. 6. Process of performing the 16×16 CTP-multiplication operation.

1) The implementation of this method requires a large
amount of RAM because the tables are calculated
dynamically during the execution of the cryptographic
algorithm. However, the demand for 64 KB of RAM is
critical for embedded processors, especially, 8/16 bits.

2) Calculating the tables takes a lot of time, and extends
the response time after replacing the key.

3) From points 1 and 2 it follows that for IoT applications
that have several keys and these keys are often changed,
this approach is impractical or even impossible.

In this article, for GHASH-CT, depending on the architec-
ture and width of the processor data bus, three approaches
are used that provide multiplication of 8 × 8, 16 × 16, and
32 × 32. Next, based on these operations, the result of mul-
tiplication 128 × 128 → 256 is created hierarchically using
the Karatsuba algorithm, which allows to reduce the number
of multiplications in each level of the hierarchy from four to
three

The essence of new techniques for efficiently performing
a constant time CTP multiplication operation in the Galois
field is presented below.

A. AVR

To implement the basic function

c = a ⊗ b(8 × 8 → 16) (10)

the embedded hardware two-cycle multiplication unit (i.e.,
the MUL command) was used. The basic idea is to divide
multipliers into smaller parts so that during the multiplication

operation, carry bits would not affect other result bits. For this
purpose, first we perform CT operand multiplications and the
two least significant bits b1b0

c = ((0x00 − (b & 0x01)) & a) ∧ (a ∗ (b & 0x02)). (11)

The expression 0x00 − (b&0x01) generates the value-mask
0x00, if b0 = 0, and 0xff, if b0 = 1. What results in

c = a ∧ (a ∗ 2b1), if b0 = 1

and c = a ∗ 2b1, if b0 = 0. (12)

Bits b1b0 will still not affect the result and will be masked
during the subsequent calculations.

Then, four multiplications are performed, each of which
has a maximum number of elements equal to 3, and the gap
between them is 1 bit, which guarantees no distortion caused
by carry (Fig. 5). The arithmetic sum of elements in the carry-
excluding column is equal to their sum modulo 2, and carry
never affects adjacent nonzero elements. Using the appropriate
masks, proper bits are selected and combined into the final
result.

As shown by the experiments, the presented method is faster
than Shift-XOR and provides 8×8 multiplication in 41 cycles.

B. MSP430

Although these MCUs have a 16 × 16 → 32 multiplication
unit, it does not belong to the processor core and it works
as a peripheral module. Accordingly, to access the input and
output data and to control the operating mode, there are special
registers that must be configured from the main program. This
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Fig. 7. Process of performing the 32 × 32 CTP-multiplication operation.

TABLE V
PARAMETERS OF THE AES-GCM ALGORITHM ON AN 8-bit AVR MCU (LENGTH OF ATTACHED AAD DATA = 16 bytes)

requires a significant number of clock cycles and makes it
unprofitable to use this unit for multiplication.

Therefore, in this article, the previously presented method
was used to perform CTP multiplication. In particular, the
value of ai is bit-scanned using the word (mask & 0x01) =
0b0 · · · 00ai. The word 0x00 − (mask&0x01) takes the val-
ues 0x0000 or 0xffff, serving as the mask for the multiplier
b. The resulting partial product overlaps the result with the
corresponding offset. High-level C code is translated by the
compiler into compact deterministic assembler instructions, as
shown in Fig. 6.

The 16×16 multiplication takes 180 cycles.

C. ARM Cortex-M3

The Cortex-M3 core is equipped with a 32×32 → 64 one-
cycle multiplication unit; nevertheless, the Shift-XOR method
proves its effectiveness due to the ability to combine the shift
of one of the operands (by a certain number of bits) and
XOR operations in one instruction. Although the C language
Shift-XOR method contains conditional operators (therefore
the computation time is variable), but the machine code gen-
erated by the compiler is a constant time code. This is
achieved by using the IT (IF-THEN) compiler command,
which allows conditional execution of a small code fragment
(up to 4 instructions). At the same time, there is no drop in pro-
ductivity due to the pipeline stall, because the order in which
the code is run does not change. Depending on the condi-
tion, instructions following IT are performed or not (they do
not change the state of registers and flags), but in both cases,
they pass through the pipeline. This ensures a fixed execution
time of the code. Fig. 7 shows the C code and its mapping to
assembler, showing the lack of conditional transitions.

The 32 × 32 multiplication takes 140 cycles.
The GCM algorithm adopted the big-endian format for the

order of bits in bytes. This requires, during the GHASH oper-
ation, to reverse the order of bits in bytes. In the case of
AVR- and MSP430-MCU, inversion is performed using an
array method (256 × 8-bit array), and for ARM an intrinsic
function is used to generate an RBIT instruction that performs
a bit reverse in a 32-bit register.

In order to implement the modular reduction, the method
described in [14] was used.

IX. PERFORMANCE EVALUATION AND

COMPARISON OF RESULTS

Measured parameters after the implementation of the AES-
GCM algorithm on different types of MCUs are summarized
in Tables V–VII.

The results of the research show some trends depending on
the size of the message and the width of the MCU data bus.

The application of the CTP methods of multiplication in the
AES-GCM algorithm, proposed by the authors, ensuring the
maintenance of the assumed level of security, allowed to avoid
significant efficiency losses compared to the NCT approach.

1) On an 8-bit AVR MCU, for small packet lengths (from
8 to 256 bytes), the encryption/decryption speed in the
CTP mode gets closer to the NCT mode, and for longer
lengths (from 512 to 2048 bytes) is even higher than
in NCT. This requires an increase (about 12%) of the
required ROM and an almost 1.4-fold increase in RAM.

2) On a 16-bit MSP430 MCU, for a packet length of
8 bytes, the encryption/decryption rate in the CTP mode
is close to 20% lower than in the NCT mode, but as the
packet length increases, the difference in speed gradu-
ally decreases. Implementation of the method requires
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TABLE VI
PARAMETERS OF THE AES-GCM ALGORITHM ON A 16-bit MSP430 MCU (LENGTH OF ATTACHED AAD DATA = 16 bytes)

TABLE VII
PARAMETERS OF THE AES-GCM ALGORITHM ON THE 32-bit ARM CORTEX-M3 MCU (LENGTH OF ATTACHED AAD DATA = 16 bytes)

TABLE VIII
COMPARISON OF THE OBTAINED RESULTS, WITH THE LIGHTWEIGHT FINALISTS OF THE CAESAR COMPETITION

(LENGTH OF ATTACHED AAD DATA = 16 bytes)

increasing the amount of ROM only by 4%, and RAM
by 50%.

3) On the 32-bit ARM Cortex-M3 MCU, the encryp-
tion/decryption speeds in the CTP and NCT modes
are comparable, but the size of the required memory
decreases slightly—for ROM by 6% and for RAM by
4%. The decrease can be explained by the fact that
the IT instruction allows a concise description of the
low-level 32 × 32 multiplication, so to get the prod-
uct using the Karatsuba algorithm, only one high-level
64 × 64 multiplication function call need to be used.

To evaluate the progress made, it is very interesting to com-
pare the results obtained by the authors with the lightweight
CAESAR finalists. Table VIII presents the comparison of
the results of implementation of the best algorithms of the
CEASAR competition (i.e., Ascon and ACORN).

For comparison with the results obtained in this article,
the values presented in [30] and [31] were recalculated from
the number of cycles clk (needed to encrypt messages of
a given length m), into the number of cycles per byte cpb,

in a following way: cpb = clk/m. Also from all implementa-
tions presented in [30], we focused on the fastest one for each
type of processor. The unmasked ACORN and Ascon imple-
mentations parameters were approximated in accordance with
the result graphs presented in [31].

It can be seen that our implementation of AES-GCM
CTP significantly wins in performance for small messages.
As message size increases, AES-GCM CTP overtakes
Ascon and loses to ACORN a bit. However, ACORN and
Ascon generally require significantly less memory, especially
ACORN. Therefore, for low-end processors compared to the
optimized versions of AES-GCM, the ACORN and Ascon
algorithms are actually light in terms of resources and to
a lesser extent in terms of speed. However, according to the
authors, there is certainly significant room to optimize the
speed of ACORN and Ascon, for this class of processors.

X. SUMMARY

This article presented implementations of the AES-GCM
authentication encryption algorithm, which were promising
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for IoT protocols/standards, using typical 8/16/32-bit MCUs.
The main goal of the proposed methods was to achieve the
maximum speed, as well as to ensure a constant time of the
algorithm implementation during encryption and decryption as
the basic factor in the protection against side-channel attacks.
The presented results allow making a conscious choice of the
proper authentication cipher based on the traffic analysis and
available processor resources for a specific IoT application.
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