
2386 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 4, AUGUST 2018

The Future Internet of Things: Secure,
Efficient, and Model-Based

Joshua E. Siegel , Member, IEEE, Sumeet Kumar , and Sanjay E. Sarma, Member, IEEE

Abstract—The Internet of Things’ (IoT’s) rapid growth is
constrained by resource use and fears about privacy and secu-
rity. A solution jointly addressing security, efficiency, privacy, and
scalability is needed to support continued expansion. We propose
a solution modeled on human use of context and cognition, lever-
aging cloud resources to facilitate IoT on constrained devices.
We present an architecture applying process knowledge to pro-
vide security through abstraction and privacy through remote
data fusion. We outline five architectural elements and consider
the key concepts of the “data proxy” and the “cognitive layer.”
The data proxy uses system models to digitally mirror objects
with minimal input data, while the cognitive layer applies these
models to monitor the system’s evolution and to simulate the
impact of commands prior to execution. The data proxy allows a
system’s sensors to be sampled to meet a specified quality of data
target with minimal resource use. The efficiency improvement
of this architecture is shown with an example vehicle track-
ing application. Finally, we consider future opportunities for
this architecture to reduce technical, economic, and sentiment
barriers to the adoption of the IoT.

Index Terms—Emerging technologies, Internet of Things (IoT),
networking architecture.

I. INTRODUCTION AND CONTENTS

THE INTERNET of Things (IoT) is a term describing a
system of connected people, devices, and services [1].

The IoT allows computer-interfaced sensors and actuators
to facilitate novel products and services by reducing costs,
improving efficiency, and enhancing the usability of existing
systems.

The benefits of connectivity are understood across indus-
tries, with connected cars and homes, smart factories, wearable
devices, and intelligent infrastructure signaling the widespread
adoption of the IoT. Few technical, economic, and social barri-
ers, like support costs [2] and concerns about data privacy and
system security, [3] limit this technology’s opportunity space.

Today, power and bandwidth consumption challenge IoT’s
growth. The desire for rich data and information sharing
dominates resource use, particularly challenging battery life
and network loading for distributed wireless devices [4], [5].
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A simultaneous proliferation of high-value connected devices
makes the IoT a desirable attack surface [2], [6] and
drives security-related resource requirements, demanding high-
powered computation—lest a platform become unfavorable for
mission-critical applications.

This paper builds upon the Siegel’s dissertation [7]
to demonstrate an approach leveraging scalable cloud
resources to address efficiency, privacy, and security for
next-generation IoT.

In Section II, we identify a need for IoT architecture improv-
ing system-wide efficiency and security, and discuss contem-
porary research. Then, we consider how people process, share,
and protect information in Section III. In Section IV, we
present a human-inspired model for data collection, synthe-
sis, distribution, and protection. We develop a parallel IoT
architecture utilizing process and measurement knowledge to
reduce the cost of sampling sensors and transmitting data.
This approach leverages system knowledge to provide security
through abstraction and data privacy through remote sensor
fusion.

We outline five enabling components of this architecture,
and present the key innovations of “data proxies” and “cogni-
tive layers” in detail. The data proxy is a model-based means
of digitally mirroring objects using minimal input data, while
the cognitive layer utilizes these same models to monitor
system evolution and to simulate the impact of commands.
Supporting the data proxy, we introduce the concept of the
“quality of data,” (QoD) a formalized quantitative metric used
for intelligent resource management capable of assuring a high
level of connected application performance. In Section V, this
architecture’s improvement on security and resource efficiency
are demonstrated through an example application calculat-
ing vehicle distance traveled with sparse input data. Finally,
Section VI concludes with a brief discussion and future work
identification.

II. PRIOR ART

If one considers IoT as a design vocabulary, it necessarily
must possess an alphabet of development considerations and
enabling technologies. IoT’s “ABC’s” consider privacy, secu-
rity, and resource efficiency, with a connected system’s “A’s”
(safeguarded actuators and protected attributable data) ensur-
ing a solid foundation for data storage, sharing, and use, and
the “B’s” and “C’s” referring to the resource constraints of bat-
tery, bandwidth, bytes, and computation. Understanding these
constituent letters allows developers to cultivate a vocabulary
helpful for building safe, effective, and useful IoT solutions.
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Creating a protected and efficient IoT architecture address-
ing these ABC’s is not a new goal. In the following sections,
we explore this alphabet and provide background informa-
tion on security and efficiency improvements for connected
systems. Additionally, contemporary connectivity architectures
are explored.

A. Privacy and Security

Ensuring the safety and security of data and connected
systems fulfills a critical need in a connected platform’s imple-
mentation. IoT connects many personal or high-value things,
which brings great opportunity and significant risks to pri-
vacy and security. These areas pose significant challenges to
the deployment of cloud and other connected systems, with
the privacy of sensitive user data a particular concern [8], [9].
In designing IoT platforms and services, addressing system
security and data privacy must come first—the A’s in our IoT
alphabet including actuators must be protected, while sen-
sitive attributable data must be also maintained adequately.
Without these assurances, a connected platform will have dif-
ficulty gaining traction and sustaining long-term growth due
to perception issues and the risk of data leakage.

Frequently, these privacy challenges revolve around data
ownership and sharing policies [2]. While some platforms
default to opt-out sharing, others have proposed relying upon
opt-in sharing [10] and data visualization tools [11] to ame-
liorate user fears of data abuse. Such policies and tools are
critical to improving user acceptance of IoT platforms and
will be integral to an improved architecture addressing today’s
common concerns.

Though leaks resulting from permissive sharing policies are
simple to solve, security vulnerabilities present more chal-
lenging threats. These vulnerabilities are especially critical to
address in light of the proliferation of interconnected devices
in sensitive locations with access to potentially harmful actu-
ation capabilities. There is a need for attack resilience, data
authentication, and access control to ameliorate these problems
and security approaches applied to conventional networks must
be improved before being applied to IoT [9].

This problem of undersecured, overly sensitive connected
devices is due in part to IoT’s rapid growth. The rapid
rollout of connected technologies led many systems to
rely on “security through obscurity” due to short develop-
ment cycles [12], [13]. Strict cost targets led developers to
eschew authentication, encryption, and even message integrity
checks [14], as the computational overhead for cryptography
require processors with higher memory and speed require-
ments [12]. For these reasons, many products on the market
have little to no built-in protection, and the hardware may
not have sufficient computational overhead or update capabil-
ities to support future improvements while meeting real-time
performance requirements [15].

Consider three household IoT devices highlighting IoT’s
fragmented security: Philips Hue lightbulbs rely on a whitelist
of approved controllers and transmit data in plaintext; Belkin
WeMo outlets use plaintext SOAP communication without
authentication; and NEST smoke alarms use encrypted traffic

to communicate with a remote server, with changing OAuth2
tokens to ensure the integrity of the connection [14].

These devices demonstrate a range of system complexity
and security. Improving the less-protected devices is not a sim-
ple matter; the device designs themselves must be changed.
Intensive encryption may not be compatible with already-
deployed WeMo hardware, for example, leading Belkin to stop
developing for Apple’s HomeKit standard [16].

Recently, groups have made an effort to standardize commu-
nication protocols and data exchange to improve security [14].
Without legislation, unifying manufacturers and developers
will prove challenging. Further, standardization only addresses
future devices—a solution compatible with past and present
devices is preferable.

Considering the constraints of embedded devices,
researchers have proposed intermediate, network-level
solutions for “security as a service” allowing dynamic
communication rules in intermediate layers [14], [17]. Others
suggest creating crowd-sourced repositories for users to share
their device information to aid in identifying attack signatures
and creating abstracted device models for fault detection [18].
Multilayer Cloud security frameworks have also been sug-
gested as a means of implementing firewalling, access control,
identify management, and intrusion prevention [8].

These solutions improve upon business as usual, but have
their own challenges in service management, rule creation,
scalability, and incentivizing data sharing.

B. Resource Efficiency

Connected systems must optimize for a number of resource
inputs. In our IoT alphabet, the B’s and C’s refer to resource
efficiency in terms of battery, bandwidth, bytes, and compu-
tation. Battery refers to device or system power consumption;
improved energy efficiency allows systems to run longer
without service interruptions [9]. Bandwidth refers to data
transmitted or routed; reduced data needs limit network con-
gestion and reduce system operating costs. Bytes refers to the
amount of data required to be stored; limiting the amount of
data stored lowers costs and simplifies analysis and informa-
tion sharing by avoiding the trap of Big Data. Computation
describes the processing needed in constrained nodes; process-
ing can take time and consume power, assuming a device’s
processor is even capable of executing particular code. In
these ways, common design considerations from wireless sen-
sor networks [5] apply in contemporary IoT implementations,
as these use similarly constrained nodes for data collection
and actuation [4].

In implementing a system, these problems are often coupled,
for example, transmitting data frequently has a more substan-
tial impact on the battery life than sampling a sensor [2].

Addressing these needs, researchers have demonstrated
routing optimization, power minimization, and efficient com-
putation for wireless sensor networks and other connected
systems.

To optimize routing, self-organizing data dissemination
algorithms using data-centric storage to minimize search
energy and bandwidth expenditure [19].
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Fig. 1. Comparison of commonly used architectures for connected systems. (a) In direct connectivity, an application engages directly with a device or devices.
(b) With hub or gateway connectivity, devices and applications connect to a hub. This hub moderates the flow of information. (c) Cloud connectivity relies
on remote computation. Devices and applications connect to a network, and Cloud resources manage data storage and flows of information and commands.

Other approaches minimize the sampling rate on networks
with a finite bandwidth. Adlakha et al. [20] designed a sensing
system making use of a Kalman filter to account for missing
observations and identify the rate at which an event of interest
must be sampled to maintain a target estimate error covariance.

Hu et al. [21] used linear programming to predict
intermediate sensor data, minimizing energy requirements by
reducing the number of sensors and sampling rate required to
instrument a system.

Jain et al. [22] treated sensor management as a filtering
problem, using a device-run Kalman filter to meet error targets.
This minimizes bandwidth at the expense of computation a
constrained node.

Compressed sensing exploits a priori sparsity information to
reconstruct signals from sparse samples. Data are compressed
at an end node, transmitted, and reconstructed at a “fusion
centre,” trading bandwidth for computation [23].

Another approach to minimizing resource spend identifies
the most critical sensors to minimize worst-case errors [24].
By deploying only critical sensors, the energy or bandwidth
requirement for a network may be reduced.

These approaches tend to optimize single elements of a
larger system, and often compromise one challenge for another
(e.g., bandwidth for computation).

There have been some efforts to optimize for multiple
components in aggregate, e.g., energy cost and security.
Li et al. [25] developed a resource optimization architecture
for minimizing the energy cost in data centers while assur-
ing system security and meeting delay targets. This approach
considers the use of frameworks for adaptively timing compu-
tation to capitalize on utilizing resources that are the lowest
cost or alternately most available.

Similarly, an architecture may be created to optimize for
resource use in aggregate while targeting improved secu-
rity and privacy relative to business as usual, while meeting
broader data quality and delay targets.

An approach not relying on costly computation and
jointly addressing security, efficiency, and scalability is
needed.

C. Foundational Architectures

Connected systems employ one of several connectivity
architectures. Each has advantages and disadvantages ranging
from complexity to resilience to scalability. We discuss three
common approaches to connectivity: 1) direct; 2) hub; and
3) Cloud.

1) Direct Connectivity: In direct connectivity, an applica-
tion queries and controls a system’s sensors and actuators
directly. An example pairs a mobile phone to Bluetooth
environmental sensors and lightbulbs.

This topology, shown in Fig. 1(a), is efficient for a single
application used in conjunction with few devices. Temperature
information is sent only when it is needed and the lamps pro-
cess all incoming commands. However, this architecture scales
poorly. Each additional application adds data queries or sends
new command requests. If an application samples a device
at n Hz, and m copies of that application are running, the
devices are queried m × n times per second, consuming addi-
tional bandwidth and power despite these samples conveying
similar information. In the worst case, the network becomes
saturated.

The use of low-cost constrained nodes causes insecurity
due to their inability to run credentialing services and timely
encryption. Should a malicious agent join the network, these
nodes are incapable of limiting access.

Though quick to develop and test, this approach is unsuit-
able for scalable deployment [26] or use in safety-critical
systems.

2) Hub Connectivity: With hub connectivity, shown in
Fig. 1(b), data requests and control commands pass through
a master node capable of translating and moderating the flow
of information. An example of this is a ZigBee-enabled home
lighting system, which uses a hub to bridge several ZigBee
lights to WiFi.

Gateway systems may have limited sampling intelli-
gence to perform local data aggregation and preprocessing,
[27] reducing redundant data collection and transmission.
A simple example of scaling considers an application
requesting at n Hz and one requesting at m Hz, with
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the gateway polling at the ceiling of these two request
rates.

Hubs may run basic Firewalls, encrypt communications,
and validate credentials, simplifying the blocking of malicious
agents.

While hub-based systems improve scalability over direct
architectures, there are still limitations. Resource constraints
mean hub architectures work best for small to medium
networks with known application payloads.

3) Cloud Connectivity: The cloud approach shown in
Fig. 1(c) effectively extends the hub model with infinitely scal-
able resources between end nodes and applications. A cloud
system mirrors one or several devices or systems, storing infor-
mation centrally for multiple use. These mirrors may combine
data from different sources, applying additional processing to
filter data, and aggregate results [10].

As with a hub, data, and control requests are abstracted from
physical devices.

Cloud connectivity is known for its scalability and extensi-
bility [28], multiple-use, and ability to abstract devices from
applications.

III. HUMAN INSPIRATION

Reviewing prior art shows several unaddressed needs.
For example, efficiency must be optimized at the most
constrained nodes, while security must allow real-time data
access and control. Today’s solutions are also application-
specific, whereas an architecture should support dynamic
scalability and extensibility.

In evaluating these needs, we present the view that humans
themselves present a good analogy for secure and efficient con-
nected architectures. We use context and cognition to gather,
share, and act upon data. We synthesize data from multiple
sources to provide enhanced information and we minimize
effort in acquiring and fusing data with estimation. We even
protect ourselves and our resources through abstraction.

Consider a scenario consisting of two people talking as
they wait at a train station. The person making requests for
information is the client “application,” and the individual col-
lecting, synthesizing, and moderating the flow of information
the “proxy.” Our proxy has access to a wristwatch and a train
schedule.

When an application asks the current time, the proxy con-
siders a number of factors prior to collecting information and
formulating a reply. The proxy notes who is asking, the his-
tory of previous interactions, and the application’s apparent
need for timely and accurate data. A typical request “what
time is it?” is met with a reply addressing average needs for
timeliness and precision, “it is about 10:30.”

In the following sections, we illustrate how humans apply
cognition to formulate context-appropriate replies.

A. Varied Request Priorities

Applications have varied request priorities. One applica-
tion may have little interest in information, so timeliness and
precision are noncritical. Estimates are acceptable and replies

may wait until the proxy has free time to process the request,
as is the case with a child nagging a parent.

Another application may be high priority and require a
precise and timely reply. The proxy must expend additional
effort to immediately and directly acquire precise data. An
example application is a train conductor who wants to avoid
delaying passengers. The proxy knows the conductor has a
critical need to know the time, and therefore chooses to get
a direct measurement from his or her watch. The additional
accuracy is conveyed directly, e.g., by saying “it is 10:30
exactly... now.”

B. Data Synthesis

Beyond acting as a valve for the flow of information,
proxies may synthesize data from multiple sources. In our
train station example, an application may make a request for
processed information such as “how long until the train to
Alewife arrives?” The proxy may reply using information from
multiple sources to formulate the appropriate response: “the
train schedule says the train arrives at 10:47 and it is 10:30.
You have 17 min.”

C. Multiple-Use of Replies

Multiple applications may need the same information, and
proxies allow reply sharing. In our example, a nearby passen-
ger, another potential application, overhears the proxy’s reply
to the first application and no longer needs to make a ded-
icated request. This saves resources and allows low-priority
applications to benefit from high-priority applications’ replies.

D. Malicious Request Blocking

Requests can become annoying. In the case of a nagging
child asking the time, the proxy may initially give coarse esti-
mates to save the effort of directly acquiring a measurement.
Eventually, the proxy may stop responding entirely. This limits
data access for malicious and annoying applications.

E. Resource Safeguarding

Proxies have access to valuable information. If an unsavory
application asks to access a data source (in this case, a watch),
the proxy applies judgment to moderate access to resources
(hiding the watch) and related data.

F. Command Simulation

Proxies simulate the future. In our example, consider an
application requesting that a proxy look after his bag for the
remainder of the day. The proxy considers first the source of
the request, then mentally simulates the result of executing
the command. If the command seems strange (a day is a long
time to watch a bag), it may be verified and the application
given a chance for correction. If the command is validated but
would conflict with another objective (watching the bag means
missing the train), the request may be denied.
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Fig. 2. This architecture builds upon the cloud connectivity approach, adding
elements to improve efficiency, privacy, and security.

G. System Supervision

The proxy may supervise his own system measurement
instruments and the behavior of their environment. Consider
the case of a proxy checking his watch an hour apart, and
seeing the time has not changed. The proxy knows the mea-
surement has failed (a dead watch battery) or the environment
is not behaving as expected (traveling at the speed of light).
In either case, the source of the fault may be learned from,
and if possible, remedied.

IV. SYSTEM EMBODIMENT

One sees that the human model can improve the security
and efficiency of data collection and distribution. We seek to
build this contextual cognition using scalable and extensible
Cloud infrastructure.

Considering how humans handle data, we propose the
creation of data proxies based on statistical and physical
system models, allowing connected systems to meet prescribed
applications’ QoD requirements. Data proxies then digitally
duplicate physical systems from intelligently sampled inputs.
The proxy’s model and sampling rate selection are run by an
“application agent” in the Cloud, allowing constrained nodes
to conserve power and bandwidth resources.

Additionally, we present the concept of a cognitive layer
using the proxy’s model to respond to system behavior
changes and to evaluate the impact of commands. As mir-
roring abstracts digital from the physical systems, the use of
an intermediate “security layer” combines with the cognitive
layer to moderate connections, protecting the proxy’s reference
system from direct access.

The five new elements shown in Fig. 2 extending the cloud
architecture are as follows.

1) The QoD accompanies application data requests, spec-
ifying accuracy and timeliness targets. The QoD has
an associated element in replies, providing confidence
intervals.

Fig. 3. QoD is distilled into two axes: timeliness and accuracy.

2) The security layer moderates incoming data requests and
actuation attempts, allowing only approved connections
through to the private cloud.

3) The cognitive layer observes and anticipates system
behavior, applying context information to determine
when system behavior is anomalous or when a command
may lead to a fault.

4) The data proxy applies process and measurement knowl-
edge to estimate the system state from limited input
data.

5) The application agent uses prior simulation and learned
models to optimize input sampling rates based on acqui-
sition costs and aggregate QoD needs.

These elements mirror human cognition. This “new IoT”
optimizes sampling to meet QoD objectives while mini-
mizing resource use and related cost subject to constraints.
These constraints include physical constraints, like minimum
and maximum sensor sampling rates, as well as application
constraints, like minimum and maximum freshness and/or
error.

In an example scenario with m applications requesting sam-
ples at n Hz, this architecture’s intelligence would eliminate
unnecessary requests and sampling at n Hz. Using the proxy’s
system model in conjunction with the application agent, intelli-
gent sampling will save bandwidth and power while providing
security through abstraction.

A. Quality of Data

QoD is a quantitative metric used to provide an objective
for the scheduler and is included in data requests as well as
replies. A system’s QoD metrics may vary-based upon the type
of information uploaded to the Cloud and typical application
types, so we focus this section on an example embodiment.

To formulate this sample QoD, we examined elements
of quality of service, experience, and information (QoS,
QoE, QoI) and focused on those parameters both improving
application functionality and useful in informing scheduling.

Traditionally, QoS may consider service time, delay,
accuracy, load, priority, reliability, efficiency, and sensing
precision [29], [30]. QoE evaluates user experience based on
perception [9], while QoI looks at the value of the data itself.
From these metrics, we derive a canonical QoD that distills
into timeliness and accuracy requirements, with applications
across a spectrum as shown in Fig. 3.

Applications target a particular QoD, and the proxy replies
with data meeting or exceeding those targets as well as con-
fidence intervals. The inclusion of confidence data along with



SIEGEL et al.: FUTURE IoT: SECURE, EFFICIENT, AND MODEL-BASED 2391

the requested parameters aids applications in working with
imperfect estimates and measurements and may be considered
the computational equivalent of the human model’s use of the
words “approximately,” “precisely,” and similar. In the case
where it is not possible to reach QoD targets, the reply will
return the closest possible data and denote that the returned
information does not meet the requested objective. An example
where this might occur is when requesting information from
a sensor with a limited resolution or insufficient maximum
sampling rate.

Common QoD objectives and example rationales appear
below.

1) Instantaneous Accuracy: The allowable error between
the model and real system at a particular time. Maximum
error is useful in the case where a factory manager
must know the power used by a machine at a particular
moment that another might come online, while minimum
error is useful for tracking websites where locations
must be kept imprecise by design.

2) Periodic Accuracy: The allowable error between the
model and real system at regularly spaced intervals.
This is useful when generating “snapshot” reports to
determine energy trends throughout the day.

3) Average Accuracy: The allowable sum of errors between
the model and real system between two target times,
which is useful in supervising equipment over the long
term.

4) Maximum Latency/Freshness: The acceptable temporal
recency of direct sensor measurement. Maximum latency
aids in maintenance operations, e.g., for determining
when a machine is cool enough to touch. Minimum
latency is useful where obfuscated data are preferable,
as is the case with public-facing websites where “fresh”
data presents a security risk.

5) Threshold Detection: The acceptable delay between a
state being reached and notification being sent to the
server. Useful for temperature monitoring.

These metrics are not exhaustive and vary by an appli-
cation’s needs. For example, these may be extended by the
QoD parameters from Wu et al. [31], wherein data has mea-
surements contain information about accuracy, truthfulness,
completeness, and up-to-dateness, or might be an a composite
metric consisting of several of these objectives.

QoD is coupled closely to resource costs. In calculating
costs for IoT systems, we consider expenses and resource
use. Example costs include computation and the three “b’s”:
battery, bandwidth, and bytes (power consumption, data trans-
mission, and storage), with each element having fixed and
variable costs and possible geotemporal modifiers (location
or time dependent resource use). Some costs may be coupled,
like computation and power, or computation and bandwidth,
while others are independent.

In our architecture, we typically optimize costs while
attempting to meet a QoD target, or optimize QoD while
staying within a resource budget. We consider IoT as a simple
system with applications connected to a middleware querying
data from sensors. We assume that sensors collect data directly
measuring a process or event, and that optimizing the sampling

rate, accuracy, and latency of a single sensor has a direct corre-
spondence to optimizing the monitoring of a process or event.
Joint optimization of these sensors’ sampling rates in the con-
text of maximizing the QoD allows for significant resource
cost reductions while maintaining state estimate accuracy.

B. Security Layer

Contemporary approaches to security frequently offer solu-
tions to single problems, whereas layered approaches offer
enhanced threat resilience [8]. Therefore, we choose to imple-
ment privacy- and security-protecting elements in our architec-
ture at multiple points, using a combination of credentialing,
firewalling, and supervisory models. The first element in our
tiered approach is the security layer.

The security layer validates incoming connections’ creden-
tials and protects an encapsulated Private Cloud nested inside
a Public Cloud from invalid data and actuation requests. This
layer moderates access to the data proxy and cognitive layer
described in the following sections, preventing an unauthorized
application from directly accessing these elements. This layer
is the IoT equivalent of a security guard at a private event—
just as a guard checks IDs and moderates access to an event,
the security layer uses an encrypted connection and Cloud
computational resources to check credentials before allowing
appropriate incoming connections and blocking malicious con-
nections. Similar to how a guard may call a supervisor to
check an out-of-state ID, the security layer seeks human-in-
the-loop validation before allowing or blocking a connection
of unknown provenance.

The security layer uses Cloud resources to allow for rapid
authentication, enhancing timeliness. It may rely on predefined
rules or machine learned rules, and may support conven-
tional security approaches such as certificate authentication,
credential revocation, or command and request validation.

C. Cognitive Layer

Providing a second layer of threat resistance beneath the
security layer, the cognitive layer provides firewalling and
supervisory elements to assess system performance and eval-
uate the impact of commands for undesirable effects.

This cognitive layer makes use of data proxy’s system mod-
els to observe the system’s evolution and to test incoming
commands. This layer embodies Isaac Asimov’s third law, for
the system to protect itself, and consists of both a cognitive
Firewall, for simulating the impact of a command to ensure
it is safe prior to execution, and the cognitive supervisor, to
monitor the system’s evolution over time in the absence of
commands. These are visualized in Fig. 4(a). Both cognitive
elements are checked against known, machine-learned, and
human-in-the-loop limits to raise alarms or prevent actuation
when anomalous behavior is detected.

The cognitive Firewall acts on incoming commands, evalu-
ating the impact of a command prior to execution by forward-
simulating the system’s future state and raising alarms when
the potential evolution endangers the system. Two possible
system evolutions are shown in Fig. 4(b).
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(a)

(b) (c)

Fig. 4. Cognitive layer ensures a system is behaving as expected and that commands do not bring about harm. The data proxy’s model is used to apply
context information for monitoring faults and validating incoming commands prior to execution. (a) Cognitive layer consists of a Firewall and a supervisor.
The supervisor monitors the system; the Firewall checks commands for validity and safety prior to execution. (b) This simplified example shows how the
cognitive Firewall uses a system model to evaluate the impact of a request against control limits, rejecting invalid commands. (c) Cognitive supervisor monitors
the system against known and learned limits, and raises an alarm when the system approaches an undesirable state.

This Firewall uses the system model to filter out inputs with
potential for negative consequence based on rules, machine
learning, or human-in-the-loop validation. For example, a cog-
nitive Firewall may be used to simulate the impact of a
command received over the Internet by a robotic arm’s data
proxy to check for collisions and other undesirable effects
prior to acting upon the command.

This is similar to how people think ahead before taking
actions; if a passenger in a taxi asks the driver to accelerate
through a red light, the driver resists because of the risk of an
accident or ticket. Similarly, the Firewall applies context and
cognition to detect and avoid probably undesirable scenarios.

While the Firewall tests commands in the Cloud before
relaying these to a physical system, the cognitive supervisor
examines the system in the absence of commands and monitors
the system’s true versus anticipated evolution, raising alarms
when the behavior is not as expected or exceeds control limits.
This may be used to identify potential faults in the physical
system, the system model, or the measurement equipment at
an early stage, and is similar to statistical process control. An
example “process out of control” is shown in Fig. 4(c).

The supervisor may be used to identify faults in a machine
or process. For example, a mill which expects to require a par-
ticular amount of power during a machining operation might
identify that the power to cut a material is out-of-line with
learned or modeled expectations. Such a fault could indicate
a failure in the proxy’s model, a failure in the system’s sen-
sors, or a fault in the system itself, such as using material
that does not meet specifications. With a cognitive super-
visor, faults may be detected and responded to early, e.g.,
by contacting the material supplier to replace the machine’s
feedstock before any widgets leave the factory or fail in
the field.

This is similar to how people learn to understand cause and
effect. If a person’s house is 20 ◦C and they set the thermo-
stat to 22 ◦C, they expect the house to be 22 ◦C within two
hours. If the temperature is below 22 ◦C, the person knows that
either the heater is broken, the sensor is wrong, their model
is wrong (the temperature outside is far colder than expected),
or perhaps a window was left open.

D. Data Proxies

Data Proxies are the “brain” of our approach to cognitive
IoT. Proxies are Cloud-run digital duplicates, using observers,
estimators or probabilistic modeling tools to digitally mirror
a physical system or process. These models take sparse data
inputs (as determined by the application agent in response to
targeting a particular QoD) and create a rich digital repre-
sentation of an object or system in the Cloud. These replicas
provide an estimate of system states and their evolution based
on intermittently measured inputs and outputs synthesized by
a context-aware system model.

The canonical proxy uses the digital duplicate to take an
imperfect, periodically sampled view of a system’s state, fill-
ing in gaps based on trusted models for anticipated system
behavior. Applications communicate with the data proxy and
it is related elements rather than the physical device or
system it mirrors—the use of an intermediate proxy allows the
isolation of devices from requestors, while data in-fill (interpo-
lation, estimation, or another means of gap filling) reduces the
requisite sampling rate and resource requirements to maintain
high-quality data.

In IoT, applications often involve monitoring a process
(machining in a factory) or an event (overheat detection).
Control theory’s observers and estimators, Kalman filters,
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probabilistic graph models, and neutral networks may be
applied to model key system characteristics. Often, such
modeling require historical data and machine learning tech-
niques to train and calibrate an appropriate system model.

While the proxy is central within this architecture, the
proxy’s implementation may change based on its integration
with data sources and other resources, as well as based on
the proxy’s coupling with applications. For example, if an IoT
system supports a particular always-on application the proxy
may be designed with biases to ensure that this application
is always addressed as efficiently as possible. Alternatively,
the proxy may be designed for generalized application pay-
loads. Altering the proxy’s construction allows for it to remain
central within the architecture while still closely moderating
its performance for different input resources, end users, or
applications.

E. Application Agent

The application agent is a Cloud-run query manager
responsible for aggregating QoD requirements and optimiz-
ing resource use for specific data proxy models. The agent
forward-simulates a sample data set to minimize the cost of
sampling while ensuring timeliness and accuracy targets are
met.

All application requests share a QoD with the applica-
tion agent. The application agent aggregates each QoD and
simulates the system using downsampled historic data, com-
paring the downsampled QoD to a fully sampled baseline.
This allows the agent to determine optimal sampling schemes
meeting the combined QoD. The agent then sets the sensors’
sampling rates to value identified by simulation to mini-
mize resource expenditure. As applications join and leave the
system, the sampling rate is dynamically recalculated to ensure
scalability and efficiency. This process is automatic, and may
occur based on a schedule (e.g., at regular intervals), using
machine learning to identify and anticipate changing QoD
requirements, event-based reconfiguration, or other automated,
and semi-automated techniques.

V. EXAMPLE APPLICATION OF DATA PROXY

Usage-based insurance (UBI) is considered by many to be
an equitable solution to insuring infrequent drivers [32]. In
this model, drivers pay for insurance based on a number of
factors including distance traveled. A similar application is
vehicle miles traveled (VMT) taxation, which charges drivers
for their use of public roadways [33]. For these applications,
it is necessary to precisely know the distance traveled by a
vehicle.

A mobile phone is an excellent candidate for distance mea-
surement. Many drivers already own a mobile phone, and these
devices possess sensors like GPS and accelerometers, as well
as the ability to wirelessly interface with vehicle on-board
diagnostics (OBD). These sensors provide the information nec-
essary to enable UBI and VMT, but this use case presents a
challenge: sensors consume power, and mobile devices are
battery-constrained. Additionally, distance estimates are often

derived from location, and users may not wish to share this
sensitive information.

Data proxies allow us to apply a vehicle dynamics model
to efficiently estimate trajectory and distance traveled, while
the use of data abstraction and sensor fusion allows drivers to
maintain the privacy of their location data.

We formulate the problem by considering costs and objec-
tives: we aim to minimize the power cost of acquiring GPS,
OBD, and accelerometer data while meeting a target accuracy
provided by insurance companies or the government.

A. Proxy Model

The first step in developing a proxy is to select a system
model. The accuracy and inputs to this model determine the
performance of the data proxy.

For illustration purposes, we apply the vehicle motion model
from Kumar et al. (2013) [32]. The car is modeled as a
unicycle with the constraint that it moves along a trajec-
tory with no slip. A Kalman filter is applied to estimate
the location and the distance traveled by the vehicle (called
system states here). These estimates are performed at a base-
line frequency while the model allows GPS and OBD speed
measurements to be incorporated at varying frequencies in
the estimation model. Additionally, a scaling and bias correc-
tion are applied to accelerometer measurements for improved
estimation accuracy.

To collect data, a vehicle was driven in a loop while record-
ing information at the reference 10 Hz from a GPS device, an
accelerometer, and an OBD interface.

We identified an optimal reference trajectory using fully
sampled data run through our tuned Kalman filter. We then
iterated filtering using differing downsampling rates for OBD
and GPS and calculated the costs and QoDs for each run, as
described in the following sections.

B. Costs

In our case, we consider only the per-sample energy cost of
acquiring sensor data from GPS and OBD. GPS is the most
costly sensor, while OBD is less expensive but still signifi-
cant (we assume use of a WiFi OBD interface). Accelerometer
acquisition is near-negligible, so we always sample this sen-
sor at the maximum rate. This simplifies the model, as the
accelerometer will be an input rather than a variable.

Our cost function with a per-sample cost becomes the linear
combination

ctotal = λGPS ∗ nGPS + λOBD ∗ nOBD (1)

where nGPS and nOBD are the numbers of GPS and OBD
samples, while their respective λ’s are per-sample costs. In
the base case we assume, λGPS = 10 μW/sample and
λOBD = 3.3 μW/sample.

C. Objectives and Constraints

Our objective is to minimize power use while accurately
measuring the trajectory and the distance a vehicle travels.
Further, we wish to maintain tamper-resistance (security) and
driver privacy through the use of aggregate statistics.
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(a) (b) (c)

Fig. 5. Cost as a percentage of full sampling plotted against error and QoD for the UBI example system. (a) Cost versus normalized RMSE, MAE, and
average threshold cross detection delay. (b) Cost versus aggregate QoD; λGPS = 10 μW/sample and λOBD = 3.3 μW/sample. Lowest cost for error target in
green; lowest error for target cost in red. (c) Cost versus aggregate QoD; λGPS = 3.3 μW/sample and λOBD = 10 μW/sample; lowest error for target cost
in red.

We define our quantitative QoD metric as a measure of error
in process monitoring and event detection. In this example,
we combine two measures of position estimation error with a
distance threshold crossing delay metric

QoD = m1(100 − RMSEposition)

+ m2(100 − MAEposition)

+ m3(100 − tDelay). (2)

RMSEposition and MAEposition are the root mean squared
error and the mean average error of the trajectory estimates
with respect to the reference trajectory calculated using all
sensor data at 10 Hz. tDelay is the average, absolute value of
the delay in detecting a series of threshold crossing events (in
this case, when the distance traveled crosses d = n ∗ 500 m
and n ∈ {1, 2, 3, 4, 5}). Sampling configurations resulting in
undefined threshold cross delays are discarded.

m1, m2, and m3 are tuning parameters chosen to normalize
each error type by its maximum value from a sample set while
providing equal weighting.

This QoD behaves intuitively; tuning constraints m1 +m2 +
m3 = 1 make the zero-error case result in QoD = 100 with
lower numbers representing increased error relative to the ref-
erence trajectory. Note that a QoD may be negative when
errors are significant.

We are constrained by the maximum 10 Hz sampling
rates of the sensors. Minimum sampling period of GPS is
constrained to 100 s, and OBD is constrained to 50 s.

D. QoD Optimization Results

We demonstrated the data proxy’s utility in maximizing data
richness and reducing resource use in the context of our IoT
architecture by optimizing the QoD for a target cost and opti-
mizing the cost for a target QoD. Further, we showed that the
optimal sampling arrangement varies with sensor costs and
QoD type.

The QoD varies based on weighting factors and constituent
inputs. The normalized error elements RMSE, MAE, and tdelay
are plotted against cost in Fig. 5(a).

These errors follow a 1/x profile, with the minimal clus-
tering indicating low error variability for a given cost.

Fig. 6. Reference trajectory (black) and downsampled estimate (red) show
minimal positional error. This sampling scheme offers QoD = 95.5 with a
92.9% reduction in cost relative to the QoD = 100 reference case.

Striation would suggest stronger dependence on certain sam-
ples. Changing the weight of each error in the QoD will change
the shape and therefore the optimal sampling arrangement.

Next, we studied the impact of cost on QoD. A base
case with high cost GPS and inexpensive OBD is plotted in
Fig. 5(b).

Visually, one sees that some sampling schemes are not
feasible due to high cost or poor QoD. Noteworthy is the
steep increase in costs for QoD >= 95, illustrating that slight
compromises in QoD can lead to significant cost savings.

The knee in this curve indicates that our reference trajectory
is significantly oversampled—once the estimate is reasonably
accurate, additional data offers diminishing returns. Therefore,
the horizontal portion of the plot offers improved return on
sampling. The use of simulation-based optimization ensures
that the optimal cost/benefit relationship is identified, even
without a-priori knowledge.

In UBI and VMT, using simulated data to determine the
optimal return on sampling could dramatically increase bat-
tery life with minimal loss in state estimate accuracy. For
example, in the high-cost GPS case, accepting a QoD of 95.5
instead of 100 allows the resource expenditure to be reduced
by 92.9% relative to full sampling. A comparison of the ref-
erence trajectory and this less-expensive scheme appears in
Fig. 6.
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Fig. 7. Ten best QoDs meeting ctotal < 500 μW are shown for the case
where λOBD = 3λGPS and 3λOBD = λGPS. Note that when GPS is relatively
less expensive, it is sampled more frequently dramatically increasing the QoD.

We then simulated a different model with low cost GPS and
high cost OBD. Cost is plotted against aggregate QoD for this
solution in Fig. 5(c).

Note that as the costs of each sensors change, so does
the clustering of the cost/QoD plots. These differences can
be significant; for example, the highest possible QoD for
ctotal < 500 μW is QoD ≈ 45 in the low-cost OBD case,
whereas in the high-cost OBD scenario the QoD ≈ 86.
In the latter case, the optimal sampling shifts to include
more GPS results as acquiring these data are relatively less
expensive.

To further illustrate this point, consider Fig. 7, which shows
the ten best QoD’s meeting the constraint ctotal <= 500 μW
for both cost models.

From this, we see that increasing the cost of OBD relative
to GPS shifts the possibility space to include additional GPS
samples, raising QoD. We also see that for a cost target, a
range of QoDs are possible and that the highest-cost solution
is not necessarily the most accurate because we are querying
a process estimate rather than an individual sensor.

The best-possible QoD for a given cost depends heavily on
the sampling rate of each sensor. To highlight this, we create
a contour plot indicating the QoD for differing values of λGPS
and λOBD with a maximum allowable cost ctotal = 1000 μW.

Fig. 8 shows constant-OBD-cost curves relating QoD
and GPS sampling cost. As expected, decreasing GPS cost
increases QoD by making direct GPS sampling more feasible.
We see a similar trend when examining OBD costs, where
low-cost sampling leads to increased QoD. The decision to
sample a particular sensor occur at inflection points, leading
the contours to appear like step functions. Note that the curves
for low-cost sampling totally envelop the high-cost sampling
curves, which shows that the optimization works as intended.

This section demonstrates that the QoD and cost opti-
mization models work as anticipated, and proves the value
in using forward-simulation to choose the sampling schema
maximizing QoD for a fixed target cost, or vise-versa.

Other data proxies generate similar cost versus error
plots [7]. Transforming these error to a QoD of the form
presented here therefore results in a similar shape function
for QoD, indicating that an optimality should exist for most
model-based abstractions underlying a physical process.

Fig. 8. OBD isocost contour lines plotted against QoD and GPS sampling
cost demonstrate how varied costs and cost ratios can impact a proxy’s QoD.

E. Multiapplication Optimization

The previous example considered how a quantitative QoD
metric and an estimator-backed data proxy minimize the need
for direct sensor sampling while meeting the performance
requirements of a single application. Often, several applica-
tions with different performance requirements may require
access to the same piece of information. One application may
require low-latency reporting; another may perform best with
tight state estimate error bounds. A third may work well with
coarse, occasional data.

A key benefit of cloud connectivity is that a device or
service can upload data once and multiple applications may
benefit. The data proxy architecture scales similarly, and
though the three connected applications above have different
QoD targets, information still need only be uploaded once.

When multiple applications with different QoDs request
direct or estimated data, the application agent switches to an
active scheduling role. Rather than optimizing for the QoD
from Section V-C, the agent determines the optimal aggregate
set of constraints designed to meet the most stringent appli-
cations’ QoD requirement. Through the use of historic data
and simulation, the application agent evaluates the impact of
different downsampling approaches and determines the most
efficient querying schema capable of meeting the applica-
tions’ performance requirements. The agent is able to use
scalable Cloud resources to dynamically simulate and adjust
sensor sampling rates as applications join or leave the plat-
form, ensuring optimal resource use no matter the application
payload.

This dynamic optimization allows a range of applications
across industries to benefit. For example, such a system
could leverage connectivity to democratize healthcare between
constrained hospitals and hospitals where resources are
freer [34], by utilizing cognitive models at network extremes
to allow for low-latency, high-reliability control. Similarly,
the reduction in resource requirements would allow sensing
and connectivity to migrate into very low-power wearable
devices, reducing the cost and complexity of contemporary
health-aware clothing [35].

F. System Supervision

Connected systems possess several possible failure modes.
In passive (data-only) systems, sensors can fail, connections
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can drop, or a proxy’s model might be proven inaccurate
or incomplete. In active systems, the possibility exists for
malicious incoming commands.

In the data proxy architecture, the cognitive layer protects
the system against threats that manage to breach the secu-
rity layer. The cognitive layer applies knowledge of the data
proxy’s model to identify and respond to a fault condition or
to send notification to a secondary system or reviewer.

In our UBI example, sensors such as GPS could fail,
the proxy model could break down when used outside the
designed parameters (e.g., to monitor a helicopter’s travel
instead of a wheeled vehicle), or a user could generate false
information to “spoof” the distance traveled. In each case, a
cognitive supervisor applies system and process knowledge to
determine that the real system’s behavior is divergent from the
simulated system or that the relationship between inputs and
states (e.g., the accelerometer’s reading and the next position)
are incongruous. Further, rule-based or learned limits may be
implemented to identify specific faults, for example, if a vehi-
cle accelerates unreasonably fast, that sensor’s readings might
be flagged as spurious and discarded. A similar approach could
utilize a cognitive model tailored for a different set of applica-
tions, e.g., a supervisor optimized for healthcare supervision,
similar to that suggested by Chen et al. [34].

In an application with sensitive actuators or with the poten-
tial for causing damage or injury, such as is the case with
remote vehicle control, this same model-based or rule-based
failure identification could be used to limit the impact of mali-
cious commands. For example, an autonomous vehicle may
allow remote cellular throttle modulation. In this vehicle, all
incoming commands would be simulated using the proxy’s
model and tested against known and learned limits as part of
a cognitive Firewall. If a malicious command requests 100%
throttle for 10 s, this Firewall would use the proxy’s model to
simulate the impact of the request and block it from reaching
the vehicle upon identifying a nonzero likelihood of injury,
damage, or discomfort.

VI. CONCLUSION

We identified opportunities to improve the IoT, proposing
the creation of a new architecture with QoD targets, security
and cognitive layers, mathematical-model-based data prox-
ies, and an application agent to optimizing sampling costs or
minimizing error subject to constraints.

Building upon the human model of applying context and
cognition to data management, our architecture abstracts phys-
ical from digital systems to improve security and efficiency. It
applies context information to supervise systems and to pro-
tect them against malicious commands, fuses data to provide
difficult to obtain measurements, and uses estimation to min-
imize sampling cost. Together with clear ownership policies
and data sharing visualizations [10], [11], this architecture’s
use of abstraction and creation of “black boxed” aggregate
data addresses privacy concerns.

Using the practical application of UBI, we demonstrated
that proxy models which are well calibrated to an underlying
physical process may allow us to reduce the energy necessary

to represent that process in the cloud. We demonstrated that
querying information does not require one-to-one sampling
of the sensors instrumenting that process, and showed that
it is possible to substantially minimize costs without signifi-
cantly increasing measurement error. This level of abstraction
and sensor fusion improves security by eliminating applica-
tions’ direct access to physical systems and preventing the
long-term storage of sensitive data. Further, this same tech-
nique may be used to minimize data transmitted, conserving
costly bandwidth. This approach to cloud mirroring ultimately
reduces technical, economic, and consumer sentiment barriers
to the deployment of connective technologies. Ultimately, with
the reduced bandwidth costs, computational requirements, and
improved security facilitated by a context-aware, cognitive
architecture for the IoT, networking will become tenable on
more devices in more places, helping to achieve the idealized
vision of a fully connected world.

Some challenges remain to be addressed. Model selec-
tion, for example, will remain an active domain of research,
with a focus on characterizing and controlling for noise and
model evolution. Other challenges relate more to system
implementation—actuation latency and data accuracy may suf-
fer due to the reduced sampling rate of data proxies, so
research is needed to quantify the impact of these delays and
accuracy losses. Relatedly, current data representations must
be extended so that applications may account for the varied
accuracy of information received in response to a request. A
probabilistic extension to the data proxy may facilitate this
accuracy reporting and ensure that returned data are sufficient
to ensure a high degree of application performance.

By developing an architecture allowing more devices in
more places to join the IoT, we will ultimately support the
next generation of products and services improving industry,
transportation, healthcare, and quality of life. The data proxy’s
efficiency improvements will allow even the smallest, most
resource-constrained device to join the ranks of “Big Data”
systems, while this architecture’s security improvements will
enable new modalities for actuation never before possible.

A. Future Work

Future work will examine how best to define QoDs for
various application types, how best to build and adapt data
proxy models for a system in realtime, and how to quantify a
proxy’s performance statistically. Additional work will focus
on implementing a functional cognitive Firewall to protect
smart homes and connected cars, while the cognitive super-
visor will be used to enable “cognitive prognostics” capable
of identifying system faults early, reporting these automati-
cally and providing rich information to aid in their repair. The
use of this low-cost architecture will lead to the deployment of
connected devices in more places, creating richer data mirrors
and supporting enhanced pervasive sensing prognostic oppor-
tunities by reducing the amount of data needed to identify
a fault. This architecture will also be adapted to work at the
local network level, for example to apply an in-car cogni-
tive Firewall and to reduce loading on constrained networks
such the vehicle’s controller area network linking a vehicle’s
electronic control units.
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We further aim to extend this paper from mirroring phys-
ical processes using sparse input data to include algorithmic
processes dedicated to software monitoring, fault detection,
and automated error correction in high-criticality systems
that are not instrumented today. These systems include smart
factories, infrastructure, and collaborative vehicle navigation
systems. The cognitive elements of this architecture have the
potential to transform how and what we connect to the Internet,
affording greater opportunities and lower risks than conven-
tional systems. This highly efficient and secure connectivity
has the potential to transform all products with connected data
in the design, manufacturing, and use phases.
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