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FogFlow: Easy Programming of IoT Services Over
Cloud and Edges for Smart Cities

Bin Cheng, Gürkan Solmaz, Flavio Cirillo, Ernö Kovacs, Kazuyuki Terasawa, and Atsushi Kitazawa

Abstract—Smart city infrastructure is forming a large scale
Internet of Things (IoT) system with widely deployed IoT devices,
such as sensors and actuators that generate a huge volume of
data. Given this large scale and geo-distributed nature of such
IoT systems, fog computing has been considered as an afford-
able and sustainable computing paradigm to enable smart city
IoT services. However, it is still a major challenge for devel-
opers to program their services to leverage benefits of fog
computing. Developers have to figure out many details, such
as how to dynamically configure and manage data processing
tasks over cloud and edges and how to optimize task allocation
for minimal latency and bandwidth consumption. In addition,
most of the existing fog computing frameworks either lack ser-
vice programming models or define a programming model only
based on their own private data model and interfaces; there-
fore, as a smart city platform, they are quite limited in terms
of openness and interoperability. To tackle these problems, we
propose a standard-based approach to design and implement a
new fog computing-based framework, namely FogFlow, for IoT
smart city platforms. FogFlow’s programming model allows IoT
service developers to program elastic IoT services easily over
cloud and edges. Moreover, it supports standard interfaces to
share and reuse contextual data across services. To showcase
how smart city use cases can be realized with FogFlow, we
describe three use cases and implement an example application
for anomaly detection of energy consumption in smart cities. We
also analyze FogFlow’s performance based on microbenchmark-
ing results for message propagation latency, throughput, and
scalability.

Index Terms—Edge computing, Internet of Things (IoT),
parallel programming.

I. INTRODUCTION

NOWADAYS cities are becoming more and more digi-
talized and connected as numerous sensors have been

widely deployed for various purposes. For example, deploy-
ments in smart cities include CO2 sensors for measuring
air pollution, vibration sensors for monitoring bridges, and
cameras for watching out potential crimes. Those connected
devices form a large scale of Internet of Things (IoT) system
with geographically distributed endpoints, which generate a
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huge volume of data streams over time. Potentially, the gen-
erated data can help us increase the efficiency of our city
management in various domains, such as transportation, safety,
and environment (e.g., garbage management). However, to
utilize the data efficiently we need to have an elastic IoT
platform that allows developers to easily program various ser-
vices on top of a shared and geo-distributed smart city IoT
infrastructure.

In the past, most of the existing city IoT platforms are built
only based on cloud, such as CityPulse [1] and our previous
city data and analytics platform [2]. However, this is no longer
a sustainable and economical model for the next generation
of IoT smart city platforms, given that many city services
(e.g., car accident detection) require ultralow latency and fast
response time. Moreover, bandwidth and storage costs can be
substantially high if we send all sensor data, such as video
frames to the cloud. Recently there is a new trend to offload
more computation from the cloud and device layer to the mid-
dle layer components which are IoT gateways and edge/core
networks, called fog computing [3]. While fog computing
perfectly fits the geo-distributed nature of smart city infras-
tructure, it is still challenging for smart city IoT platforms
to adapt to this new computing paradigm. The heterogeneity,
openness, and geo-distribution of the new cloud-edge envi-
ronment raise much more complexity on the management of
data and processing tasks than the centralized cluster or cloud
environments. Therefore, we need a sufficient and flexible pro-
gramming model with open interfaces that allow developers
to implement various IoT services on top of the cloud-edge
environment without dealing such complexities.

The current state of art on fog computing, such as
Foglets [4], has been mainly focused on how to optimize task
deployment over distributed edges in terms of saving band-
width and reducing latency. However, there is not much work
that has been done to explore the programming model for fog
computing. The existing studies either just reuse the program-
ming models from existing frameworks (e.g., Apache Storm
and Spark) or come up with their own programming models
with nonstandardized interfaces. In this paper we argue that
both solutions are not suitable for smart city IoT platforms
to adopt fog computing in terms of openness, interoperability,
and programmability.

To tackle these problems, we take a standards-based
approach and propose a next generation service interface
(NGSI)-based programming model to enable easy program-
ming of IoT services over cloud and edges. In this paper
we introduce the overall architecture of our new fog
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Fig. 1. Detecting abnormal electricity usage in retail stores.

computing framework, namely FogFlow, and also report
its core technologies for supporting the proposed program-
ming model. Furthermore, we introduce some concrete appli-
cation example to showcase how IoT services can be
easily realized on top of our NGSI-based programming
model. The main contributions of this paper are highlighted
as follows.

• Standard-Based Programming Model for Fog Computing:
We extend dataflow programming model with declarative
hints based on the widely used standard NGSI, which
leads to two benefits for service developers: 1) fast and
easy development of fog computing applications, this is
because the proposed hints hide lots of task configura-
tion and deployment complexity from service developers
and 2) good openness and interoperablity for information
sharing and data source integration, this is because NGSI
is a standardized open data model and API and it has
been widely adopted by more than 30 cities all over the
world.

• Scalable Context Management: To overcome the limit
of centralized context management, we introduce a dis-
tributed context management approach and our mea-
surement results show that we can achieve much better
performance than existing solutions in terms of through-
put, response time, and scalability.

II. USE CASES AND REQUIREMENTS

In this section, we shortly describe three smart city use cases
which require programming of IoT services over cloud and
edge nodes.

A. Smart City Use Cases

Use Case 1 (Anomaly Detection of Energy Consumption):
The first use case study is for retail stores to detect abnor-
mal energy consumption in real-time. As illustrated in Fig. 1,
a retail company has a large number of shops distributed
in different locations. For each shop, a Raspberry Pi device
(edge node) is deployed to monitor the power consumption
from all PowerPanels in the shop. Once an abnormal power
usage is detected on the edge, the alarm mechanism in the

Fig. 2. Video surveillance in stadiums.

shop is triggered to inform the shop owner. Moreover, the
detected event is reported to the cloud for information aggre-
gation. The aggregated information is then presented to the
system operator via a dashboard service. In addition, the
system operator can dynamically update the rule for anomaly
detection.

Use Case 2 (Video Surveillance in Stadiums): The second
use case is for providing stadium security with video survel-
liance and real-time analytics. Fig. 2 illustrates this use case
based on three layers: 1) terminal gateway; 2) IoT gateway;
and 3) cloud. In the lower layer, terminal gateway devices are
deployed to process the video streams captured by cameras. In
the upper layer, each stadium has an IoT gateway to perform
further data processing. Terminal gateways and the IoT gate-
way are connected to the local area network of the stadium.
In the top layer, all IoT gateway devices are connected to the
cloud via the Internet. The following services are expected to
be enabled.

• Crowd Counting: Aggregation of the number of peo-
ple extracted from the captured video streams and the
total number of people at each area to show the stadium
crowdedness in real-time.

• Finding Lost Child: When a child gets lost in a stadium,
their parents ask the staff for help. Based on the pic-
ture provided by the parent, video analytics tasks are
launched dynamically on demand at the edge nodes to
identify the lost child in real-time. Once the child is
found, the staff is notified and a digital signage close to
the child is actuated in order to ensure the safety of the
child.

Use Case 3 (Smart City Magnifier): The last use case is an
application for visualization of smart cities which we named as
smart city magnifier (SCM). SCM provides a user interface for
displaying the results from environmental monitoring, critical
situations, such as safety alerts, as well as the view of city-
wide deployments. Fig. 3 illustrates SCM for environmental
monitoring. Environmental monitoring results include traffic,
air pollution, and crowd levels. Overall condition of the sit-
uations for each of them are shown with green, yellow, or
red lights (left). Furthermore, these levels are also displayed
with graphs (right). The dashboard includes the data analyt-
ics results from past measurements (historical data), current
(real-time) measurements, as well as future predictions based
on the current trends.
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Fig. 3. Illustration of SCM.

As shown in Fig. 3, the visualization tool can be set based
on three parameters: 1) space for specifying the geographic
scope (the map view); 2) time for the evaluation time window
or the forecasting horizon; and 3) abstraction for defining the
level of detail of the view. The level of detail varies based on
the analytics results.

For instance, for air pollution results, lower abstraction can
be CO2 levels, while higher abstraction can be overall air qual-
ity. Furthermore, abstraction depends on the geographic scope
such that it varies if the scope is a building, a street, or a
city.

B. High Level Requirements

Let us briefly discuss the main requirements of the three
use cases. The general requirements for such systems include
system interoperability and openness since different IoT
system components, such as things, edge nodes, middle-
wares (e.g., context broker), and developers need to connect
through interfaces. Considering the variety of “things” in
the IoT, this is a challenging task. Other than those there
exist certain performance requirements. The IoT services
for smart cities require certain data processing capabilities
including offline big data analytics through frameworks, such
as Apache MapReduce as well as real-time stream pro-
cessing through frameworks such Apache Spark. Therefore,
a major performance requirement is dynamic orchestra-
tion of the data processing tasks. Various data processing
tasks (e.g., video analytics and air quality measurements)
need to be performed on the shared cloud and edge
resources.

III. FOGFLOW: PROGRAMMING IOT SERVICES OVER

CLOUD AND EDGES BASED ON NGSI

To meet the openness and interoperability requirements
of IoT smart city platforms, we propose a standards-based
approach for designing and implementation of the FogFlow
programming model based on the two standards: 1) Dataflow
(de facto standard) and 2) NGSI (official standard).

Dataflow is a popular programming model to decom-
pose applications which are widely used by cloud service
developers for big data processing in cloud environments.

Google Cloud Dataflow and Amazon Data Pipeline are among
the data processing services that are built based on the
dataflow programming model. As a unified programming
model for both batch and stream processing, Dataflow is
still suitable for defining fog services; however, it is miss-
ing certain features or extensions to adapt to the challenges
introduced by fog computing. For example, from the underly-
ing infrastructure perspective, fog computing requires more
geo-distributed, dynamic, and heterogeneous infrastructure
than cloud computing. From the application perspective, fog
services usually require low latency and location aware-
ness. This is especially true for smart city applications.
Thus, we introduce declarative hints and extend the tradi-
tional dataflow programming model for enabling efficient fog
computing.

In the dataflow programming model, the data processing
logic for a service is usually decomposed as multiple oper-
ators. Operators form a directed acyclic graph (DAG) called
topology through the linked inputs and outputs among differ-
ent operators. Traditionally operators are defined as functions
with certain APIs, but this is no longer a suitable model to
define operators for fog computing due to its bad isolation and
limited flexibility and interoperability. Conversely, FogFlow
requires service developers to define operators as dockerized
applications based on NGSI [5] (details to be discussed in
Section III-A).

Let us introduce the overall system achitecture of FogFlow
first with some background information on the NGSI stan-
dard. We then present the detailed design of our NGSI-based
programming model and how such a programming model
is supported by scalable context management and dynamic
service orchestration in FogFlow.

A. Next Generation Service Interface

As an open standard interface from Europe, open mobile
alliance NGSI [6] is currently used in industry and academia
as well as in large scale research projects, such as FIWARE [7]
and Wise-IoT [8]. In 2015 an open and agile smart cities initia-
tive [9] has been signed by 31 cities from Finland, Denmark,
Belgium, Portugal, Italy, Spain, and Brazil, for adopting the
NGSI open standard in their smart city platforms. It is strate-
gically important to design our programming model based on
NGSI in order to achieve openness and interoperability in the
areas of IoT and smart cities.

From the technical perspective, NGSI defines both the data
model and communication interface to exchange contextual
information between different applications via context brokers.
The NGSI data model characterizes all contextual information
as context entities, where each entity must have an ID and
a type. Entities also optionally have a set of attributes and
metadata related to domains and attributes. Typically metadata
includes the source of information, observation areas, and the
location of the IoT device. The NGSI communication interface
defines a lightweight and flexible mean to publish, query,
and subscribe to context entities. NGSI10 and NGSI9 are,
respectively, designed for managing the data values of context
entities and their availability (e.g., discovery of entities). As



CHENG et al.: FogFloW: EASY PROGRAMMING OF IoT SERVICES OVER CLOUD AND EDGES FOR SMART CITIES 699

Fig. 4. Typical NGSI-based interactions and system diagram.

opposed to the existing message brokers (e.g., MQTT), NGSI
not only defines a unified data model to express contextual
data (both raw sensor data and derived intermediate results)
but also provides missing features that are highly demanded by
geo-distributed fog computing. For instance, geoscope-based
resource discovery and subscription are needed by our service
orchestrator for dynamic configuration and management of the
data processing tasks.

Fig. 4 illustrates the usage of NGSI in different scenarios.
Typically an IoT Broker (e.g., Aeron [10] and Orion [11]) mid-
dleware is deployed between context provider(s) and context
consumer(s) to allow them to exchange NGSI-based context
entities. Meanwhile, an IoT Discovery component creates an
index for the availability of all registered context entities.
Providers register the availability of their context data via
NGSI9 to make them discoverable. To subscribe or query
any context entities via NGSI10, consumers must find out
which provider offers the requested context entities via NGSI9
request to IoT Discovery. In FogFlow, each data processing
task acts as a provider to publish its outputs, while it also acts
as a consumer to receive its input streams. However, for easy
programming of operators, the FogFlow framework dynami-
cally registers the generated outputs via NGSI9 and subscribes
the inputs via NGSI10 on behalf of data processing tasks. In
the end, developers only need to deal with NGSI10 update
and notify when they implement operators. More details can
be seen in Section III-C.

B. Architecture Overview

The system architecture of FogFlow is illustrated in Fig. 5.
The figure includes the FogFlow framework, geo-distributed
infrastructure resources, and FogFlow’s connection with the
users (system operator and service developers) and exter-
nal applications through its API and interfaces. Infrastructure
resources are vertically divided as cloud, edge nodes, and
devices. Computationally intensive tasks, such as big data ana-
lytics can be performed on the cloud servers, while some tasks,
such as stream processing can be effectively moved to the edge
nodes (e.g., IoT gateways or endpoint devices with computa-
tion capabilities). Devices may include both computation and
communication capabilities (e.g., tablet computer) or only one
of them (e.g., beacon nodes advertising Bluetooth signals).
The FogFlow framework operates on these geo-distributed,

hierarchical, and heterogeneous resources, with three logi-
cally separated divisions: 1) service management; 2) data
processing; and 3) context management.

The service management division includes task designer,
topology master (TM), and docker image repository, which
are typically deployed in the cloud. Task designer provides
the Web-based interfaces for the system operators to monitor
and manage all deployed IoT services and for the devel-
opers to design and submit their specific services. Docker
image repository manages the docker images of all docker-
ized operators submitted by the developers. TM is responsible
for service orchestration, meaning that it can translate a ser-
vice requirement and the processing topology into a concrete
task deployment plan that determines which task to place at
which worker.

The data processing division consists of a set of workers
(w1, w2, . . . , wm) to perform data processing tasks assigned by
TM. A worker is associated with a computation resource in the
cloud or on an edge node. Each worker can launch multiple
tasks based on the underlying docker engine and the opera-
tor images fetched from the remote docker image repository.
The number of supported tasks is limited by the computation
capability of the compute node. The internal communication
between TM and the workers is handled via a advanced mes-
sage queuing protocol-based message bus, such as RabbitMQ
to achieve high throughput and low latency.

The context management division includes a set of IoT
Brokers, a centralized IoT Discovery, and a Federated Broker.
These components establish the data flow across the tasks via
NGSI and also manage the system contextual data, such as
the availability information of the workers, topologies, tasks,
and generated data streams. IoT Discovery handles registration
of context entities and discovery of them. This component
is usually deployed in the cloud. IoT Brokers are respon-
sible for caching the latest view of all entity objects and
also serving context updates, queries, and subscriptions. In
terms of deployment, IoT Brokers are distributed on the dif-
ferent nodes in the cloud and on the edges. They are also
connected to the other two divisions (workers, task designer,
TM, and external applications) via NGSI. Federated Broker
is an extended IoT Broker used as a bridge to exchange con-
text information with all other Federated Brokers in different
domains. For instance, Federation Broker enables communi-
cation from one deployment in an European smart city (e.g.,
Domain A: Heidelberg) to another in a Japanese smart city
(e.g., Domain B: Tokyo). These deployments are considered
as two different domains. Within the same domain, all IoT
Brokers and Federated Broker are connected to the same IoT
Discovery.

C. NGSI-Based Programming Model

In FogFlow, an IoT service is represented by a service
topology which consists of multiple operators. Each operator
receives certain types of input streams, performs data process-
ing, and then publishes the generated results as output streams.
The FogFlow programming model defines the way of how to
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Fig. 5. System architecture of FogFlow.

Fig. 6. Example of task specification written in YAML.

specify a service topology using declarative hints and how to
implement operators based on NGSI.

1) Declarative Hints: Developers decompose an IoT
service into multiple operators and then define its ser-
vice topology as a DAG in JSON format to express
the data dependencies between different operators. This
is similar to the traditional dataflow programming model.
On the other hand, the FogFlow programming model
provides declarative hints for developers to guide ser-
vice orchestration without introducing much complexity.
Currently, it requires developers to specify two types of
hints in the service topology: 1) granularity and 2) stream
shuffling.

Granularity hint is associated with each operator in the ser-
vice topology and represented by the “groupBy” property, as
shown by a task specification example (written in YAML lan-
guage) in Fig. 6. The granularity hint is defined using the
name of one stream attributes. In FogFlow, every data stream
is represented as a unique NGSI context entity generated and
updated by either an endpoint device or a data processing
task. Different types of metadata are created by FogFlow on

the fly to describe the data stream. For instance, metadata
includes which device or task is producing the data stream, the
location of the producer, which IoT Broker is providing the
stream, and so on. Regarding the geo-distributed nature of
the underlying infrastructure, some common granularity hints
are geo-location related attributes, such as “section,” “district,”
“city,” or “ProducerId.” These granularity hints are later used
as an input by TM to decide the number of task instances
to be created and configured for each operator during system
runtime.

Stream Shuffling hint is associated with each type of input
stream for an operator in the service topology, represented
by the “shuffling” property. TM uses this hint as additional
information to decide how to assign matched input streams
to task instances. Based on the granularity hint, multiple task
instances could be instantiated from the same operator, but
they can be configured with different set of input streams.
For each operator, the type of its input streams determines
which type of streams should be selected to configure its task
instances, but its shuffling property can further decide how
the selected streams should be assigned to the task instances
as their inputs. The value of the shuffling property can be
either “broadcast” or “unicast.” The broadcast value means
the selected input streams should be repeatedly assigned to
every task instance of this operator, while the unicast value
means each of the selected input streams should be assigned
to a specific task instance only once.

Fig. 7 shows a concrete example of how these two types
of hints are used by TM to create and configure data process-
ing tasks for service orchestration. The left side illustrates a
service topology with two simple operators, A and B, which
is designed for use case 1 in Section II-A. The right side
illustrates the execution plan generated by TM. Operator B
is named as “AnomalyDetector” and its detailed specification
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Fig. 7. Left: service topology example with declarative hints and right:
execution plan generated by TM.

Fig. 8. Interactions of the task instance with FogFlow.

is listed in Fig. 6. The goal of operator B is to detect the
abnormal usage of electricity for each shop based on a given
rule. Based on this requirement, the granularity of operator
B is defined by “shopID,” meaning that TM needs to cre-
ate a dedicated AnomalyDetector task instance for each shop.
Operator B has two types of input streams: 1) the anomaly
detection rule and 2) the measurement from power panel.
Assume that three power panel devices are from three different
shops S1, S2, and S3. In this case three task instances (TB0,
TB1, and TB2) must be created because its operator granular-
ity is based on shopID. Also, each task instance is assigned
with the stream from a specific power panel but they all share
the same detection rule as another input. This is because
the shuffling property of the rule input stream is broadcast
while the shuffling property of the PowerPanel devices is
unicast.

2) NGSI-Based Operators: Developers need to implement
each operator in a service topology as a dockerized appli-
cation. As illustrated in Fig. 8, once a worker instantiates a
dockerized operator application (a task instance running in a
docker container), the task instance interacts with the FogFlow
framework via the following steps.

First, before starting its internal processing logic, the
task instance receives a JSON-based configuration from the
worker through environment variables. The initial configura-
tion includes which IoT Broker the task instance should talk
to and also the metadata of its input and output streams. Later
on, if there is any configuration change, those changes can be
sent to the task instance via a listening port (input port). In
FogFlow, the important stream metadata required by the task
instance include: 1) the entity type and entity ID of the asso-
ciated stream that can be used by the task instance to know
which entity to subscribe as inputs and which entity to update

as outputs and 2) the way of how the stream data is provided
from the producer to consumers, which can be PUSH-based
or PULL-based.

More specifically, PUSH-based means that the stream entity
will be updated by its context producer actively and context
consumers can receive the updates from IoT Broker via sub-
scriptions, while PULL-based means that the stream entity
only represents the information of the context producer and
the actual stream data must be pulled by the task instance
from a service URL, which is part of the stream entity. For
example, a temperature sensor that actively sends temperature
observations periodically can be represented as a PUSH-based
stream entity; a webcam that sends captured images or video
streams on request can be represented as a PULL-based stream
entity.

Second, after the task instance is launched and configured, it
will start to get its input streams and process the received data.
If the stream is PUSH-based, the task instance can receive all
input stream data as NGSI10 notify via the input port without
sending any subscritpion, because the worker issues NGSI10
subscriptions to the IoT Broker on behalf of the task; if the
stream is PULL-based, e.g., video streams from an IP camera,
the task instance needs to fetch the input stream data from a
provided URL in the stream metadata.

Lastly, once some results are generated from the received
stream data, the task instance publishes or announces them
as output streams. If the output stream is PUSH-based, the
task instance sends the generated outputs to the IoT Broker
as NGSI10 update under the specified entity type and ID;
if the output stream is PULL-based, the worker can regis-
ter the output stream on behalf of the task. With this design
we allow the worker to handle more management complex-
ity in order to dynamically configure and establish the data
flows cross different task instances. Therefore, we can try to
reduce the complexity of the implementation of dockerized
operators and reduce the required effort from developers; on
the other hand, we can provide enough flexibility for vari-
ous application use cases and also comply with the NGSI
standard.

D. Scalable Context Management

The context management system is designed to provide
a global view for all system components and running task
instances to query, subscribe, and update context entities via
the unified NGSI. Our NGSI-based context management has
the following additional features. These features are different
from the ones provided by traditional pub-sub message bro-
kers, such as MQTT-based Mosquitto or Apache Kafka, but
they play an important role to support FogFlow’s NGSI-based
programming model.

• It provides separate interfaces to manage both context
data (via NGSI10) and context availability (via NGSI9).
This feature enables flexible and efficient data manage-
ment with standardized open APIs.

• It supports not only ID-based and topic-based query and
subscription but also geoscope-based query and subscrip-
tion. This feature enables FogFlow to efficiently manage



702 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 2, APRIL 2018

all geo-distributed resources, such as workers, tasks, and
generated streams.

• It allows a third-party to issue subscriptions on behalf
of the subscribers. This feature provides the chance to
achieve the minimized complexity within the operators
and the maximized flexibility of the operators.

Context availability represents the outline of context data.
Usually context availability changes less frequently than con-
text data over time. For example, the following availability
information is used to register context entities: 1) context type;
2) attribute list; and 3) domain metadata (e.g., provider infor-
mation). The FogFlow programming model benefits from these
separated interfaces because of two reasons. First, FogFlow
can automatically manage context availability information on
behalf of tasks so that we reduce the complexity of opera-
tor implementation for developers. Second, context availability
and context data updates are forwarded to task instances via
separate channels; therefore, we do not have to feed the
unchanged context availability information to the tasks repeat-
edly. This can significantly reduce the bandwidth consumption
of cross-task communication.

In FogFlow, whenever a service topology is triggered, a
large number of geo-distributed task instances are created, con-
figured, and instantiated on the fly in a very short time. This
introduces two challenges to the context management system:
1) it must be fast enough to discover available resources in
a specified scope and 2) it must provide high throughput to
forward context data from one task to another. In addition, we
assume that data processing tasks can only be instantiated from
a service topology within a single FogFlow-enabled smart city
IoT platform. However, they should also be able to share and
reuse context data from other smart city IoT platforms as long
as these platforms are compatible with NGSI. In terms of ter-
minology, each smart city IoT platform is represented by a
domain and the FogFlow framework can be duplicated to real-
ize other smart city platforms for different domains. Different
domains can be different cities or business domains, such as
transportation and e-health in the same city.

Currently, the Orion Context Broker developed by
Telefonica [11] is the most popular message broker supporting
NGSI; however, it is not scalable due to the lack of distributed
solutions and federation support. To achieve a scalable context
management system, we apply the following two approaches.

Scaling Light-Weight IoT Broker Up With Shared IoT
Discovery: As illustrated in Fig. 5, within each smart city
platform domain a large number of IoT Brokers work together
in parallel with a shared IoT Discovery. The centralized IoT
Discovery provides a global view of context availability of
context data and provides NGSI9 interfaces for registration,
discovery, and subscription of context availability. Each IoT
Broker manages a portion of the context data and registers
data to the shared IoT Discovery. However, all IoT Brokers
can equally provide any requested context entity via NGSI10
since they can find out which IoT Broker provides the entity
through the shared IoT Discovery and then fetch the entity
from that remote IoT Broker.

Connecting Different Domains via Federated Broker:
In each domain there is one Federated Broker responsible

for announcing what the current domain provides and fetch-
ing any context data from the other domains via NGSI10.
Within the domain, Federated Broker informs IoT Discovery
that it can provide any context data out of the current domain.
Federated Broker needs to coordinate with the other Federated
Brokers in different domains. The coordination can be done
using different approaches, such as table-based, tree-based,
or mesh-based. In the table-based approach, all Federated
Brokers can know which Federated Broker is responsible for
which domain via a shared and consistent table that is main-
tained and updated by a bootstrap service. In the tree-based
(hierarchical) approach, a hierarchical relationship between
different domains is configured manually or maintained auto-
matically by a root node. In the mesh-based approach, each
Federated Broker maintains a routing table based on its partial
and local view and relies on a next hop from the routing table
to locate its targeted domain. In practice, which approach to
take is up to the actual scale of domains. Due to a limited
number of domains in our current setup, FogFlow takes the
table-based approach and looks up the Federated Broker for a
target domain directly from the shared table.

E. Dynamic Service Orchestration

Once developers submit a specified service topology and
the implemented operator docker images, the service data pro-
cessing logic can be triggered on demand by a high level
processing requirement. The processing requirement is sent
(as NGSI10 update) to the submitted service topology entity.
It is issued either by the system operator via task designer or
by a subscriber via an external application. The following three
inputs are necessary for TM to carry out service orchestration.

• Expected Output: It Represents the output stream type
expected by external subscribers. Based on this input
parameter, TM decides which part of service topology
should be triggered. This allows FogFlow to launch only
part of the data processing logic defined in the service
topology.

• Scope: It is a defined geoscope for the area, where input
streams should be selected. This allows FogFlow to carry
out the selected data processing logic for the selected
area, such as a specific city or a polygon area.

• Scheduler: It Decides which type of scheduling method
should be chosen by TM for task assignment. Different
task assignment methods lead to different service level
agreements because they aim for different optimization
objectives. For instance, we provide two methods in
FogFlow: one for optimizing the latency of producing
output results and the other for optimizing the internal
data traffic across tasks and workers.

For a given processing requirement, TM performs the fol-
lowing steps (illustrated in Fig. 9) to dynamically orchestrate
tasks over cloud and edges.

• Topology Lookup: Iterating over the requested service
topology to find out the processing tree in order to pro-
duce the expected output. This extracted processing tree
represents the requested processing topology which is
further used for task generation.
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Fig. 9. Major steps of service orchestration.

• Task Generation: First querying IoT Discovery to dis-
cover all available input streams and then deriving an
execution plan based on this discovery and the declarative
hints in the service topology. The execution plan includes
all generated tasks that are properly configured with right
input and output streams and also the parameters for the
workers to instantiate the tasks.

• Task Deployment: Performing the specified scheduling
method to assign the generated tasks to geo-distributed
workers according to their available computation capa-
bilities. The derived assignment result represents the
deployment plan. To carry out the deployment plan, TM
sends each task to the task’s assigned worker and then
monitors the status of the task. Each worker receives
its assigned tasks and then instantiates them in docker
containers. Meanwhile, worker communicates with the
nearby IoT Broker to assist the launched task instances
for establishing their input and output streams.

Since the focus of this paper is on the NGSI-based program-
ming model and its supporting system framework, we skip
the algorithms for task generation and task assignment. More
details can be found in our previous GeeLytics platform [12]
study.

F. Virtual Sensor

In FogFlow we dynamically composite multiple data pro-
cessing tasks to form the data processing flow of each IoT
service based on the standardized NGSI data model and ser-
vice interface. However, to interact with sensors and actuators,
we still need to deal with the diversity of various IoT devices.
For example, some devices might not be able to talk with
the FogFlow system via NGSI due to their limited upload
bandwidth; some existing devices might only support other
protocols, such as MQTT or COAP; or some devices need to
be turned into a sleep mode from time to time in order to save
their battery lifetime. To handle these issues, we introduce vir-
tual device to unify the communication between FogFlow and
IoT devices.

Fig. 10 illustrates this concept. Any physical device that
already supports NGSI can be integrated to the FogFlow
system directly by interacting with a nearby IoT Broker. On
the other hand, a physical device that does not support NGSI

Fig. 10. Example to illustrate the concept of virtual devices.

must be integrated into the FogFlow system as a virtual device
via a device adapter. As shown in Fig. 10, the device adapter
is a proxy that is triggered and initialized from a device profile
in order to mediate the communication between the device and
the FogFlow system. The proxy is a task instance instantiated
from a specific mediation operator, which handles the detailed
mediation procedure for different types of devices. For conver-
sion between different interfaces, different mediation operators
must be developed.

By adding a device profile, we can trigger an adapter task
to integrate a non-NGSI device into the FogFlow system. The
device profile provides which operator should be used and the
necessary configuration information to interact with the device.
In the end, the physical device is presented as an NGSI con-
text entity via its device adapter. All FogFlow services just
need to interact with the NGSI context entity associated with
the physical device, such as sending context updates or sub-
scribing to some attribute changes. Using this virtual device
approach, we handle the availability and reliability issues of
IoT devices within the device adapters.

IV. USE CASE VALIDATION

In this section, we discuss our implementation of an exam-
ple application which realizes the first use case (described in
Section II-A): anomaly detection of energy consumption in
retail stores. The service topology (illustrated in Fig. 11) is
defined to meet the requirements of the use case. Two data
processing operators are defined as follows.

• Anomaly Detector: This operator is to detect anomaly
events based on the collected data from power panels
in a retail store. It has two types of inputs: 1) detection
rules which are provided and updated by the operator and
2) sensor data From power panel. The detection rules
input stream type is associated with broadcast, meaning
that the rules are needed by all task instances of this oper-
ator. The granularity of this operator is based on shopID,
meaning that a dedicated task instance will be created
and configured for each shop.

• Counter: This operator is to count the total number of
anomaly events for all shops in each city. Therefore, its
task granularity is by city. Its input stream type is the
output stream type of the previous operator (Anomaly
Detector).
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Fig. 11. Illustration of how intermediate results are shared at various levels
of granularity across application topologies.

There are two types of result consumers: 1) a dashboard
service in the cloud, which subscribes to the final aggregation
results generated by the counter operator for the global scope
and 2) the alarm in each shop, which subscribes to the anomaly
events generated by the Anomaly Detector task on the local
edge node in the retail store.

The second and third use cases can be realized in a similar
way by defining a processing topology based on their specific
requirements.

V. PERFORMANCE EVALUATION

This section includes our experimental evaluation of
NGSI-based context management systems of the FogFlow
framework. Our analyses include the efficiency of context
availability discoveries and context transfers in the smart city
scale. Moreover, we analyze the scalability of FogFlow using
multiple IoT Brokers. Our metrics are throughput (number of
messages per second) and response time/message propagation
latency. The results show the performance of the IoT Brokers
(our FogFlow-Broker and Orion-Broker) as well as the IoT
Discoveries (our FogFlow-Discovery and Orion-Discovery).

The query for discovery and update requests are generated
using Apache JMeter performance testing tool. We analyze
three types of queries for context discovery: 1) ID-based;
2) topic-based; and 3) geoscope-based. In ID-based queries,
a match (discovery) occurs when the queried entity ID is
already registered as available. In topic-based (pattern-based)
queries, a match happens when there is a registered entity ID
of the similar pattern defined by a regex (e.g., searching pattern
“Room.*” for the registered entity ID “Room12”). Geoscope-
based queries match when the entity is registered with the
location that is inside the defined geographical area (defined
by latitude/longitude and radius values). IoT Brokers mainly
forward updates from the context producers to the context con-
sumers. We analyze the throughput and propagation latency of
updates under various cases.

Considering the shared discovery in the FogFlow architec-
ture, we conduct laboratory experiments for IoT Discovery
using single server instance, which has 12 CPUs, 128 GB

Fig. 12. FogFlow-Discovery and Orion-Discovery throughputs for a matched
ID- and topic-based query among 10 000 entities.

Fig. 13. Orion-Discovery response times for ID- and topic-based queries.

memory, and 256 GB disk storage. For IoT Brokers, we
conduct experiments on AWS cloud using multiple server
instances for context updates. Since IoT Brokers in FogFlow
can be widely deployed on edge nodes, such as IoT Gateways,
we use only micro instances in our tests, where each micro
instance has 1 CPU and 1 GB memory. We consider various
number of threads (clients) in a smart city (1, 10, 100, 200
entities) accessing the context management system at the same
time. The threads may represent devices, such as sensor nodes
in a smart city or applications accessing the system.

Let us first start with the ID- and topic-based query
performance for discovery. Fig. 12 shows the average through-
put of query for FogFlow-Discovery and Orion-Discovery. The
query always returns 1 match out of 10 000 registered entities.
For 1 client, Orion-Discovery has throughput of less than 50
discoveries per second, while FogFlow-Discovery serves more
than 100 discoveries. With the increased number of threads,
throughput of FogFlow-Discovery significantly increases to
more than 1900 in ID-based and more than 1400 for topic-
based queries. On the other hand, when the number of threads
increase, Orion-Discovery has even worse performance, show-
ing that using Orion-Discovery can cause a bottleneck in
certain scenarios, where multiple IoT Brokers query at the
same time.

The average response times of Orion-Discovery are shown
Fig. 13. We observe that Orion-Discovery returns fast
responses in the case of one thread and ten threads. However,
the response times dramatically increase in the case of 100 or
200 threads. In the case of 200 threads in topic-based queries,
the average response time is more than 10 s. On the other
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Fig. 14. FogFlow-Discovery response times for ID- and topic-based queries.

Fig. 15. FogFlow-Discovery and Orion-Discovery throughputs in geoscope-
based queries.

hand, as can be seen in Fig. 14, the response times of
FogFlow-Discovery are shorter in all cases. Moreover, for
more than 100 threads, FogFlow-Discovery still provides high
performance with an average response time around 100 ms
per query. Overall, considering a smart city with multiple
IoT Brokers querying for ID- and topic-based discoveries,
we find FogFlow-Discovery clearly a more reliable compo-
nent to handle such loads. While Orion-Discovery provides
the same functionalities, its performance is not sufficient for
such scenarios.

Let us now discuss the geoscope-based query performances
of the discovery components. We compare the response times
for different numbers of matched entities in Fig. 16 among
10 000 registered entities using 200 threads. For 0-match case,
where IoT Brokers query for an entity which is located out-
side of any registered areas, Orion-Discovery has significantly
better performance compared to FogFlow-Discovery. Same
performance difference exists for 1-match case. On the other
hand, this performance gap diminishes with the increased num-
ber of matches, where the volume of transferred data increases.
FogFlow-Discovery produces slightly higher throughput for
more than 100 matches, as can be seen in Fig. 15. Furthermore,
both components provide a reliable service for queries up
to 1000 matches. Fig. 16 shows the response times of the
geoscope-based queries. Both discovery components achieve
short response times in most cases. Only exception is seen in
the case of 1000 matches, which produces a certain load in
the network. In that case, Orion-Discovery performs slightly
better (≈800 ms) than FogFlow-Discovery (≈1000 ms).

Fig. 16. FogFlow-Discovery and Orion-Discovery response times in
geoscope-based queries.

Fig. 17. FogFlow-Broker and Orion-Broker throughput of updates between
publishers and subscribers.

Orion-Discovery is a built-in feature of Orion Context
Broker while in FogFlow-Discovery is a stand-alone com-
ponent separated from FogFlow-Brokers. With this design,
FogFlow is able to scale up brokers to handle data trans-
fer between different tasks in parallel. We now look at
the performance of FogFlow-Brokers. Fig. 17 shows the
throughput of one FogFlow-Broker as the number of sub-
scribers increases. When there is no subscriber, FogFlow-
Broker’s throughput reaches 6500 updates per second while
Orion-Broker can only achieve 2200 updates per second.
We observe that FogFlow-Broker performs much better than
Orion-Broker in terms of update throughput. This is mainly
because FogFlow-Broker keeps the latest updates and all sub-
scriptions in memory while Orion-Broker has to save them into
the database (MongoDB). Furthermore, we find that the update
throughput decreases as the number of subscribers increases
as FogFlow-Broker becomes busy with forwarding received
updates to all subscribers.

We also test the propagation latency of updates from
publishers to subscribers when FogFlow-Brokers are not over-
loaded. To calculate the latency, we run a program to simulate
both the publisher and the subscriber on the same cloud
instance. The latency is defined as the time difference between
when a update message is sent out by the publisher and
when the update is received by the subscriber. Table I lists
the propagation latency of updates in three different situa-
tions: 1) both the publisher and the subscriber contact with
the same broker; 2) they communicate with two different bro-
kers located at the same data center; and 3) they communicate
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TABLE I
PROPAGATION LATENCY OF UPDATE

Fig. 18. Aggregated throughput of updates for different number of parallel
brokers.

with two different brokers located at two different data
centers.

The results shows that the propagation latency via the same
broker is very low (less than 1 ms on average). On the other
hand, if the data flow between publishers and subscribers is
established via two different brokers, the propagation latency
increases. In this case the latency depends on, where these
two brokers are located. If they are located at the same data
center, the propagation latency can still be less than 50 ms on
average; however, it becomes unpredictable since we do not
know whether our cloud instances are at the same rack. If the
two brokers are located at different data centers, the average
propagation latency significantly increases (≈500 ms). This
result indicates that we need to carefully select and configure
a proper broker for each running task in order to minimize
data propagation latency for any time critical services.

We do further experiments for the scalability of FogFlow-
Brokers when they work on different topics in parallel, but
still share the same discovery component. As can be seen in
Fig. 18, the aggregated throughput of updates increases lin-
early with the increased number of brokers. Note that the
number of brokers increase two times for each result. This
result shows that FogFlow-Brokers can scale up very well
without overloading the shared discovery component. This is
due to the fact that the coordination with FogFlow-Discovery
is only needed for subscriptions and initial updates to decide
which stream should be provided to which subscribers. After
that, the workload triggered by frequent value updates can be
easily handled by brokers in parallel. Hence, by separating
broker and discovery components, FogFlow is able to achieve
scalability of forwarding context data between publishers and
subscribers.

VI. RELATED WORK

There have been many studies related to the IoT smart
city platforms. However, most of the efforts focus only on
the cloud environment. For example, as an open software

platform, FIWARE is helping service providers to quickly
and cost-effectively build their cloud-based applications and
services by providing various open-source generic enablers
(GEs). Nevertheless, none of the GEs offered by FIWARE
enable flexible fog computing. In the FIWARE community,
Orion Context Broker has been extensively used to enable
the interoperability between different GEs, whereas Orion pro-
vides centralized context management. This is not a scalable
solution considering large scale scenarios; in particular, when
we consider exchanging real-time context information at edges
or across various domains.

Most of the existing programming models focus on sup-
porting batch and real-time data processing efficiently in a
cluster or cloud environment. For instance, MapReduce has
become the de facto standard for batch data processing in
Apache Hadoop framework. Apache Spark is a distributed
batch processing framework, while it also supports stream pro-
cessing based on micro-batching. Other frameworks involve
Apache Storm which supports event-based stream process-
ing and Apache Flink which enables both batch and stream
processing with its unified APIs. Recently, due to the require-
ment of having a unified programming model for both batch
processing and stream processing, the generic dataflow pro-
gramming model is mostly preferred over MapReduce to
support cloud-based data processing in many new frame-
works, such as Apache Beam, MillWheel, and Google Cloud
Dataflow. All of these frameworks are only tailored to the
cloud environment and they are unsuitable for fog comput-
ing due to their limited considerations on the heterogeneity,
geo-distribution, openness, and interoperability requirements
of future fog computing infrastructures.

In 2015 Cisco formed the OpenFog Consortium [13]
together with partners from industry and academia, trying
to accelerate the adoption of open fog computing in various
domains. OpenFog Consortium emphasize the importance of
openness and interoperability of fog computing infrastructure
in their blueprint architecture document, while they do not
provide any concrete proposal to achieve these two goals. The
existing studies on fog computing mainly focus on optimiza-
tion of resource and task allocations. For instance, Foglets [4]
and MCEP [14] support live task migrations with their own
APIs in a cloud-edge environment for location-aware appli-
cations. Mobilefog [15] provides a programming model for
fog computing applications based on its own APIs. FogHorn
is a commercial edge computing infrastructure with the focus
on complex event processing at edge devices. Different from
those existing fog computing frameworks, FogFlow is not
designed to invent a completely new programming model
for fog computing with private APIs. FogFlow, on the other
hand, extends cloud-based dataflow programming model with
standard-based APIs and make it suitable for the cloud-edge
environment. In this way, our programming model can be
quickly adopted by cloud service providers to build their fog
computing services without much learning effort.

VII. CONCLUSION

In this paper, we propose the FogFlow framework which
provides a standards-based programming model for IoT
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services for smart cities that run over cloud and edges. The
FogFlow framework enables easy programming of elastic
IoT services and it supports standard interfaces for con-
textual data transfers across services. We showcase three
use cases and implement an example application for smart
cities. Furthermore, we analyze the performance of context
management using NGSI interfaces to see feasibility of our
standard-based approach in the smart city scale.

As a future work, we plan to develop algorithms that
supports mobility-aware optimization for edge computing.
Moreover, we intend to improve FogFlow to provide fault
tolerance in extreme conditions, such as natural disasters.
Lastly, for external integration with IoT systems, we plan to
develop a semantic mediation gateway which converts con-
text information on the fly from various information models
to NGSI.

REFERENCES

[1] (2017). CityPulse. [Online]. Available: http://www.ict-citypulse.eu
[2] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, “Building a big

data platform for smart cities: Experience and lessons from Santander,”
in Proc. IEEE Big Data Congr., New York, NY, USA, Jun. 2015,
pp. 592–599.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., Helsinki, Finland, 2012, pp. 13–16.

[4] E. Saurez, K. Hong, D. Lillethun, U. Ramachandran, and B. Ottenwälder,
“Incremental deployment and migration of geo-distributed situation
awareness applications in the fog,” in Proc. 10th ACM Int. Conf. Distrib.
Event Based Syst., Irvine, CA, USA, 2016, pp. 258–269.

[5] (2017). NGSI 9/10 Information Model. [Online]. Available: http://
www.openmobilealliance.org/release/NGSI/

[6] M. Bauer et al., “The context API in the OMA next generation service
interface,” in Proc. 14th Int. Conf. Intell. Next Gener. Netw., Berlin,
Germany, Oct. 2010, pp. 1–5.

[7] (2017). Fiware. [Online]. Available: https://www.fiware.org/
[8] (2017). Wise-IoT. [Online]. Available: http://wise-iot.eu/en/home/
[9] (2017). Open & Agile Smart Cities. [Online]. Available:

http://www.oascities.org/open-agile-smart-cities/
[10] (2017). Aeron Broker. [Online]. Available:

https://github.com/Aeronbroker/Aeron
[11] (2017). Orion Broker. [Online]. Available:

https://fiware-orion.readthedocs.io/
[12] B. Cheng, A. Papageorgiou, and M. Bauer, “Geelytics: Enabling on-

demand edge analytics over scoped data sources,” in Proc. IEEE Int.
Congr. Big Data, Jun. 2016, pp. 101–108.

[13] (2017). OpenFog Consortium. [Online]. Available:
https://www.openfogconsortium.org/

[14] B. Ottenwälder et al., “MCEP: A mobility-aware complex event pro-
cessing system,” ACM Trans. Internet Technol., vol. 14, no. 1, pp. 1–24,
Aug. 2014.

[15] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and
B. Koldehofe, “Mobile fog: A programming model for large-scale appli-
cations on the Internet of Things,” in Proc. 2nd ACM SIGCOMM
Workshop Mobile Cloud Comput. (MCC), Hong Kong, 2013, pp. 15–20.

Bin Cheng is a Senior Researcher with NEC
Laboratories Europe, Heidelberg, Germany. His cur-
rent research interests include edge computing, big
data analytics, and serverless computing for Internet
of Things.

Gürkan Solmaz is a Research Scientist with
NEC Laboratories Europe, Heidelberg, Germany.
His current research interests include Internet of
Things, human mobility, wireless ad hoc and sensor
networks, and smart cities.

Flavio Cirillo is a Research Scientist with the
Cloud Services and Smart Things Group, NEC
Laboratories Europe, Heidelberg, Germany. His cur-
rent research interests include Internet of Things
analytics and platforms, especially scalability and
federation aspects and semantics enablement.

Ernö Kovacs is a Senior Manager for the
Cloud Services and Smart Things Group, NEC
Laboratories Europe, Heidelberg, Germany. His
group works on cloud computing, Internet of
Things (IoT) data analytics, edge computing, and
context aware services. He is currently contribut-
ing to the FIWARE, FIESTA-IoT, and AUTOPILOT
projects.

Kazuyuki Terasawa is a Chief Engineer with
the NEC Corporation, Tokyo, Japan. He is lead-
ing a team to provide smart city solutions in
Japan. His current research interests include feder-
ated data management and data sharing platforms
across multiple business domains.

Atsushi Kitazawa is a Chief Engineer with NEC
Solution Innovators, Ltd., Tokyo, Japan, where he
is leading a division in charge of big data and
extending its reach to Internet of Things and edge
computing.

http://www.ict-citypulse.eu
http://www.openmobilealliance.org/release/NGSI/
http://www.openmobilealliance.org/release/NGSI/
https://www.fiware.org/
http://wise-iot.eu/en/home/
http://www.oascities.org/open-agile-smart-cities/
https://github.com/Aeronbroker/Aeron
https://fiware-orion.readthedocs.io/
https://www.openfogconsortium.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


