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Abstract—The burgeoning field of the Industrial Internet of 

Things (IIoT) necessitates advanced fault diagnosis methods 
capable of navigating the dual challenges of high predictive 
accuracy and the constraints of edge computing environments. 
Our study introduces Wave-ConvNeXt, a novel fault diagnosis 
model that seamlessly integrates the state-of-the-art ConvNeXt 
architecture with Wavelet Transform. This innovative model 
stands out for its lightweight design yet delivers exceptional 
accuracy in fault diagnosis. In Wave-ConvNeXt, we re-engineer 
the ConvNeXt model for IIoT applications by adopting one-
dimensional convolution, tailored for processing high-frequency, 
non-periodic inputs. This adaptation is complemented by 
replacing the traditional “patchify” layer with a Wavelet 
transform layer, which simplifies input signals into sub-signals, 
thereby easing learning complexities and diminishing the 
dependence on elaborate deep architectures. Further enhancing 
this model, we incorporate a squeeze-and-excitation module, 
enriching its ability to prioritize channel-wise feature relevance, 
akin to self-attention mechanisms. This integration is rigorously 
validated through an ablation study. Wave-ConvNeXt epitomizes 
a holistic approach, enabling an end-to-end optimization of 
feature learning and fault classification. Our empirical analysis 
on two real-world IIoT datasets demonstrates Wave-ConvNeXt’s 
superiority over existing models. It not only elevates prediction 
accuracy but also significantly curtails computational complexity. 
Additionally, our exploration into the impact of various mother 
wavelets reveals the effectiveness of using wavelet basis functions 
with smaller support, bolstering diagnostic precision. The source 
code of Wave-ConvNeXt is available at 
https://github.com/leviszhang/waveConvNeXt. 
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I. INTRODUCTION 

S the landscape of the fourth Industrial Revolution 
evolves, the Industrial Internet of Things (IIoT) 
emerges as a pivotal player, capturing the attention of 

researchers and industry practitioners alike [1]. IIoT 
transcends mere device connectivity, ushering in a new era of 
industrial applications characterized by sophisticated sensing, 
analysis, reasoning, and control mechanisms [2]. Within this 
spectrum, fault diagnosis emerges as a critical component, 
pivotal in identifying and characterizing potential faults in 
industrial apparatus [3]. Its significance extends beyond 
technical aspects, playing a crucial role in ensuring smooth 
operations and efficient maintenance, thereby upholding the 
productivity and reliability of industrial ecosystems [4]. 

In the realm of IIoT, the rapid identification and accurate 
diagnosis of faults are paramount [5]. Traditional methods 
have leaned on cloud-based computing for this task, but this 
approach often suffers from high network bandwidth demands 
and latency issues [6]. An alternative, more decentralized 
approach is edge computing, which, despite its benefits in 
reducing latency and enhancing data security, grapples with 
challenges such as limited resources and scalability [7]. These 
challenges necessitate a reimagining of fault diagnosis 
methods, particularly to suit the nuances of edge computing 
environments. 

The advent of deep learning models has marked a 
significant milestone in the evolution of fault diagnosis 
methodologies, thanks to their robust representational 
capabilities [8]. However, the computational intensity and 
memory demands of these models pose a substantial challenge, 
especially in resource-constrained edge computing scenarios 
[9]. Addressing this challenge has led researchers to explore 
avenues like model compression, architectural optimization, 
and data reduction [10]. Each of these strategies aims to 
balance the trade-off between model complexity and 
performance, with a keen focus on adapting to the unique 
demands of IIoT environments. 

The model compression process begins with the initial 
training of a typically complex model, purposefully designed 
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to capture intricate patterns and information. This 
sophisticated model serves as the foundation for subsequent 
stages, where the compressed model is meticulously crafted 
using an array of techniques. These techniques, including 
knowledge distillation [11], network pruning [12], 
quantization [13], and low-rank factorization [14] are 
strategically employed to systematically reduce the size and 
computational demands of the model. The artful application of 
these methods ensures that the compressed model maintains a 
delicate balance, preserving its overall performance even as it 
undergoes a process of size and computational optimization. 

Architectural optimization involves two main methods: 
lightweight model design through heuristics [15] and Neural 
Architecture Search (NAS) for automated discovery of 
optimal architectures [16]. Lightweight models aim to reduce 
computational complexity and memory requirements while 
preserving performance, utilizing techniques like depthwise 
separable convolution, channel shuffling, squeeze-and-
excitation modules, and compound scaling [17]. 
Corresponding to these techniques, architectures like 
MobileNet, ShuffleNet, SqueezeNet, and EfficientNet, 
initially introduced in computer vision, have found 
applications in fault diagnosis in resource-constrained 
environments [18]–[21]. NAS, on the other hand, automates 
the exploration of a vast architecture search space to identify 
the most suitable design for a given task [22]. Numerous 
studies in the literature apply NAS to fault diagnosis tasks  
[23]–[25]. 

Unlike model compression and architectural optimization, 
data reduction simplifies raw data for downstream fault 
diagnosis models [26]. Traditional methods rely on feature 
engineering to extract distinctive features, compressing them 
for resource-limited environments [27]. However, this can be 
laborious and suboptimal [28], prompting the use of deep 
neural networks for automated feature learning. Despite their 
effectiveness, deep learning involves substantial computations 
[29]. To address this, researchers use preprocessing techniques 
like Fourier Transform [30], Wavelet Transform [31], and 
Empirical Mode Decomposition (EMD) [32] to alleviate the 
learning difficulty. It’s crucial to note that preprocessing 
doesn’t always reduce input size; sometimes, transforming 
complex data into a larger, easier-to-learn domain serves edge-
computing fault diagnosis. 

In fault diagnosis, accuracy often overshadows 
computational and storage efficiency in edge computing. The 
evolution of data-driven approaches, notably deep learning, 
e.g., Deep Belief Networks (DBN), Long Short-Term Memory 
(LSTM) networks, and Convolutional Neural Networks 
(CNN), prioritizes accuracy [33]. Studies commonly build 
complex neural networks that overfit, using regularization 
techniques like dropout, weight decay, and early stopping for 
generalization [34], [35]. However, this leads to redundancy, 
increasing unsuitable computational and storage demands for 
edge deployment [36]. Meticulous design limits scalability to 
varied complexities [37]. The analysis above uncovers the 

primary motivation of this study: crafting a lightweight, 
precise, and scalable fault diagnosis approach for IIoT. 

In this context, we introduce Wave-ConvNeXt, a novel 
approach that synergizes the advanced capabilities of Wavelet 
Transform with the architectural innovations of the ConvNeXt 
model [38], [39]. This model is designed to be inherently 
lightweight, catering to the resource limitations of edge 
computing, while not compromising on diagnostic accuracy. 
Wave-ConvNeXt redefines the ConvNeXt architecture by 
incorporating one-dimensional convolutions, making it apt for 
handling high-frequency, non-periodic inputs typical in IIoT 
scenarios. The integration of a squeeze-and-excitation module 
further refines the model’s focus on relevant features, 
enhancing its diagnostic precision. Additionally, the use of 
Wavelet Transform as a preprocessing step simplifies input 
signal complexities, paving the way for streamlined and 
efficient learning processes.  

Our extensive empirical analysis on two real-world IIoT 
datasets positions Wave-ConvNeXt as a superior alternative to 
existing models, delivering heightened prediction accuracy 
with markedly reduced computational demands. We also delve 
into the effects of different mother wavelets, uncovering the 
advantages of using wavelet basis functions with smaller 
support for enhancing diagnostic accuracy. This exploration 
not only validates the efficacy of Wave-ConvNeXt but also 
enriches our understanding of the impact of wavelet selection 
on fault diagnosis performance. 

Numerous studies have already explored the application of 
ConvNeXt for fault diagnosis.  However, many involve 
transforming raw data into images to align with the expected 
input format of the ConvNeXt model. For instance, vibration 
signals were converted into images using techniques such as 
Symmetrized Dot Pattern [40], Gramian Angular Difference 
Field [41], Synchro-squeezed Wavelet Transform [42], and 
Continuous Wavelet Transform [43]. Although effective, these 
techniques may lead to information loss and introduce human 
subjectivity during the transformation process [44].  

To the best of our knowledge, this is the first endeavor in 
the literature to build an end-to-end fault diagnosis model by 
utilizing the ConvNeXt model with vibration data. Envisioned 
as an end-to-end solution, Wave-ConvNeXt represents a 
significant stride forward in fault diagnosis for IIoT. The 
primary contributions of this research are threefold: (1) we 
propose an end-to-end, accurate, lightweight fault diagnosis 
approach using the ConvNeXt model; (2) the effectiveness 
and efficiency of the proposed approach are validated on two 
real-world IIoT datasets; (3) the effectiveness of the Squeeze-
and-Excitation module and the preference for selecting mother 
wavelets with smaller support are confirmed through rigorous 
ablation studies. 

From a pragmatic perspective, the proposed model’s 
contribution extends to various critical aspects: (1) operational 
efficiency: it optimizes maintenance operations, resulting in 
more effective resource utilization and cost reduction; (2) 
adaptability and scalability: lightweight models facilitate 
seamless deployment across diverse IIoT devices and 
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networks, enhancing adaptability and scalability; (3) enhanced 
safety: accurate fault diagnosis anticipates hazardous 
conditions, preventing accidents and fostering a safer working 
environment; (4) data management: efficient processing and 
analysis of vast IIoT data yield valuable insights without 
overwhelming network or storage systems; (5) future 
readiness: with industries progressing towards automation, 
precise fault diagnosis becomes pivotal for predictive 
maintenance and automated decision-making systems. In 
essence, the proposed model serves as a foundational element 
of the Industrial Large Knowledge Model (ILKM) framework, 
empowering superior decision-making in smart manufacturing 
contexts [45]. 

The remainder of this paper is structured as follows: Section 
II lays the theoretical groundwork; Section III details the 
Wave-ConvNeXt approach and its architectural design; 
Section IV introduces the IIoT datasets used for validation; 
Section V discusses the results and implications of our model 
validation; and Section VI offers concluding remarks. 

II. THEORETICAL PRELIMINARIES 

In this section, we delve into the foundational theories 
underpinning our research, laying out the essential concepts 
and models that form the basis of our approach to fault 
diagnosis in the Industrial Internet of Things (IIoT). Section 
II-A elaborates on how the Wavelet Transform facilitates 
detailed analysis of signals at various scales, emphasizing its 
capacity for time-frequency localization and its critical role in 
the effective identification of signal irregularities. Section II-B 
delineates how ConvNeXt, a modernized convolutional neural 
network architecture, integrates elements from the 
Transformer architecture and refines conventional CNN 
designs. 

We commence by presenting the problem statement and 
notations. For a given set of real-valued training samples, 
denoted as 𝑿 ∈ ℝ , where 𝑚, 𝑐, and 𝑙  represent the 
set's cardinality, the number of channels, and the length of 
each sample, respectively. Correspondingly, let 𝒚 ∈ ℂ  be 
a 𝑚- dimensional vector with categorical elements, 
representing the labels of the training set. Our objective is to 
construct a model that learns a mapping function capable of 
accurately associating training data with their respective labels, 
denoted as 𝑓: 𝑿 → 𝒚 . While a moderately complex 
model might overfit the training data, achieving a perfect 
projection from 𝑿 to 𝒚 , it may suffer from poor 
generalization to unseen samples. To address this, we 
introduce a validation set 〈𝑿 , 𝒚 〉 for model selection. The 
ultimate objective is to enhance the model's generalization 
capability for testing samples 𝑿 , typically assessed through 
prediction accuracy derived from predicted labels 𝒚  and the 
true labels 𝒚 . 

A. Wavelet Transform and Multi-resolution Analysis 

The Wavelet Transform is a pivotal mathematical 
technique in signal processing, particularly beneficial in the 
domain of the Industrial Internet of Things (IIoT) [46], [47]. 

Its ability to dissect signals into various scales using wavelet 
functions grants invaluable insights into the signal's temporal 
characteristics and frequency content. Unlike traditional 
methods like the Fourier Transform, which offers only 
frequency domain representation, the Wavelet Transform 
excels in time-frequency localization. This unique 
characteristic allows for the simultaneous identification of 
both time and frequency information within a signal, making it 
an ideal tool for pinpointing specific time and frequency 
regions where faults or abnormalities manifest. 

At the heart of the Wavelet Transform lies the 
decomposition of a signal into two components: the 
approximation coefficients representing low-frequency parts, 
and the detail coefficients indicative of high-frequency 
components. This decomposition is achieved through the 
convolution of the signal with a mother wavelet function, 
𝜓 , 𝑡 , defined as: 

 𝜓 , 𝑡
√

𝜓 ,     𝑎, 𝜏 ∈ ℝ; 𝑎 0 (1) 

where 𝑎 is the scale parameter linked to frequency, and 𝜏 is 
the translation parameter associated with time. These wavelet 
functions are compactly supported, possessing specific 
properties that facilitate effective time-frequency localization.  

In continuous Wavelet Transform (CWT), the wavelet 
coefficients are obtained by convolving the mother wavelet 
function with the signal 𝑥 𝑡 : 

𝑊 𝑎, 𝜏
√

𝑥 𝑡 𝜓∗ 𝑑𝑡,     𝑎, 𝜏 ∈ ℝ; 𝑎 0     (2) 

where 𝜓∗  denotes the complex conjugate of 𝜓 . While 
CWT offers high resolution, it also comes with high 
computational complexity. To mitigate this, the Discrete 
Wavelet Transform (DWT) discretizes the scale and 
translation parameters, typically using dyadic discretization 
( 𝑎 2  and 𝜏 𝑘2 , 𝑗, 𝑘 ∈ ℤ ), thus reducing redundancy. 
The DWT is represented as: 

𝑊 𝑗, 𝑘 𝑥 𝑡 𝜓∗ 𝑑𝑡 ,     𝑗, 𝑘 ∈ ℤ       (3) 

Through DWT, the energy distribution of the signal across 
different frequency bands is captured, allowing for signal 
reconstruction using the derived coefficients. 

 
Fig. 1. Illustration of three-level multi-resolution analysis 

Multi-resolution analysis (MRA) provides a structured 
framework for effectively implementing wavelet analysis 
algorithms. MRA systematically decomposes signals into 
various resolution levels or frequency bands through 
consecutive low-pass (H0) and high-pass (G0) filtering 
operations on the discrete time-domain signal (represented as 
𝑥 𝑛 , where 𝑛 is an integer), as shown in Fig. 1. Each level of 
transformation yields detailed information 𝑑 𝑛  via the high 
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pass filter and coarse approximations 𝑎 𝑛  via the low pass 
filter. For instance, the first level of decomposition can be 
expressed as: 

𝑎 𝑘 ∑ 𝑥 𝑛 ∙ 𝐻 2𝑘 𝑛
𝑑 𝑘 ∑ 𝑥 𝑛 ∙ 𝐺 2𝑘 𝑛

   (4) 

It is important to highlight that MRA stands as a versatile 
framework designed for the representation and analysis of 
signals across multiple resolutions. This method intricately 
breaks down a signal into components of diverse scales or 
resolutions. One notable implementation of MRA is DWT, 
which employs wavelets to perform the decomposition and 
reconstruction of signals at various resolutions. Consequently, 
DWT emerges as a practical application situated within the 
expansive realm of multi-resolution analysis. 

Each MRA level corresponds to a distinct resolution or 
frequency band, progressively capturing more refined 
frequency information. This capacity to detect faults from 
subtle changes to larger disturbances enhances fault isolation 
and analysis in signals. Notably, when conditions for aliasing-
free and amplitude distortion elimination are met, MRA 
guarantees perfect signal reconstruction. From a machine 
learning perspective, the wavelet coefficients extracted 
through MRA encapsulate critical signal characteristics like 
transient behavior, frequency content, and energy distribution. 
By selectively analyzing these coefficients, we can extract 
meaningful, fault-related features for subsequent analysis and 
classification in IIoT fault diagnosis. 

B. A Transformer-Inspired CNN Model: ConvNeXt  

The ConvNeXt model, introduced in the paper “A 
ConvNet for the 2020s” by Liu et al. [38], represents a 
groundbreaking evolution in CNN architectures, primarily 
designed for computer vision tasks. Distinguished by its state-
of-the-art performance across various benchmark datasets, 
ConvNeXt is a testament to the progressive strides in CNN 
development. Drawing inspiration from the acclaimed 
Transformer architecture renowned in Natural Language 
Processing (NLP), ConvNeXt aims to rejuvenate the 
conventional CNN structures, particularly the Residual 
Network, by integrating design strategies characteristic of 
vision transformers. The model’s evolution from a standard 
ResNet architecture is marked by five significant innovations: 

1). Macro Design Adjustments: Stemming from the VGG 
architecture’s concept of dividing the network into blocks, 
ConvNeXt further refines this idea. By modifying the block 
ratio in ResNet-50 to 1:1:3:1, akin to the stage compute ratio 
in Swin Transformer, it enhances performance. For larger 
models, the ratio becomes 1:1:9:1. The model adopts a 
“patchify” strategy at its stem layer, using a 4 4, stride of 4 
convolutional layer, which is non-overlapping to minimize 
redundancy and computational load. 

2). ResNeXt-ify: In pursuit of efficiency, ConvNeXt 
incorporates depthwise separable convolution, a technique 
embraced by lightweight models like MobileNet and 
EfficientNet. This approach, which divides standard 
convolution into depthwise and point-wise convolutions, is 

balanced with an expanded network width, akin to the group 
convolution strategy in ResNeXt. 

3). Inverted Bottleneck Integration: Borrowing from 
MobileNet-V2 and advanced ConvNet architectures, 
ConvNeXt adopts the inverted bottleneck design — a layout 
with a larger middle dimension flanked by smaller dimensions, 
believed to minimize information loss. The model also 
repositions the depthwise convolution layer to precede its 
layer, mirroring the Transformer architecture’s multi-head 
self-attention block preceding multi-layer perceptron layers. 

4). Adoption of Large Kernel Sizes: Challenging the norm 
of stacking layers with small (typically 3 3) kernel sizes, 
ConvNeXt opts for larger kernel sizes in its depthwise 
convolution operations, finding that a 7 7 kernel size 
optimizes accuracy without significantly impacting the 
network’s computational load. 

5). Micro Design Refinements: Inspired by design choices 
in Transformers, ConvNeXt replaces the traditional Rectified 
Linear Unit (ReLU) activation function with the smoother 
Gaussian Error Linear Unit (GELU). It also reduces the use of 
activation and normalization layers, replacing Batch 
Normalization (BN) with Layer Normalization (LN), and 
incorporates a spatial downsampling layer between stages. 

By amalgamating these design elements, ConvNeXt 
surpasses its ResNet predecessor, achieving superior 
performance. Notably, while it doesn’t explicitly incorporate 
attention-based modules, its use of depthwise convolution 
parallels the weight sum operation found in self-attention 
mechanisms. The model’s simplicity and incorporation of 
lightweight design techniques make it a suitable candidate for 
developing accurate and computationally efficient fault 
diagnosis methods, particularly in the context of IIoT. 

III. THE PROPOSED WAVE-CONVNEXT FAULT DIAGNOSIS 

APPROACH 

In this section, we unfold the intricate details of our Wave-
ConvNeXt model, a novel approach tailored for fault 
diagnosis within the Industrial Internet of Things (IIoT). 
Section III-A presents the modifications we implemented to 
adapt the ConvNeXt model for effective processing of 
sequential data. Section III-B delves into our novel approach 
of replacing the traditional “patchify” layer with a wavelet 
stem layer. Section III-C explores the integration of a channel-
wise attention mechanism, i.e., the Squeeze-and-Excitation 
module. Section III-D provides the structure of the Wave-
ConvNeXt model, highlighting the synergy between its 
various components. 

A. Adaptation of the ConvNeXt Model for Sequential Input 
Processing 

In its original form, the ConvNeXt model is tailored for 
image classification tasks, handling three-dimensional data 
inputs (channel, height, and width), as depicted in the left part 
of Fig. 2. This configuration, while effective for visual data, 
poses challenges when repurposed for fault diagnosis in 
industrial settings, particularly when dealing with sequential 
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data such as vibration signals. Previous applications of 
ConvNeXt to fault diagnosis have necessitated the 
transformation of raw inputs to fit the model’s format. 
However, this additional data conversion step can lead to 
information loss and introduce human subjectivity, potentially 
impairing the model’s performance. 

 
Fig. 2. Adaptation of the ConvNeXt model for sequential 
input processing 

To overcome these limitations and harness the full 
potential of ConvNeXt in an industrial context, we have re-
engineered the model to directly accommodate the sequential 
nature of common industrial data, particularly vibration 
signals. This adaptation primarily involves substituting the 
two-dimensional convolutions of the original network with 
one-dimensional counterparts. For a one-dimensional (single 
channel) real-valued vibration signal 𝒙  of length 𝑙 , i.e., 
𝑥 1 , 𝑥 2 , … , 𝑥 𝑙 , and a kernel 𝒌 ∈ ℝ𝒑, the 𝑖-th element of 

the output generated by a 1D convolution operation between 𝒙 
and 𝒌 can be loosely defined as: 

𝒙⨂𝒌 𝑖 𝒙 𝑖 𝑗 ∙ 𝒌 𝑗  (5) 

where 𝑗 is a dummy variable, and ⨂ denotes the convolution 
operation. Intuitively, it represents a sliding dot product 
between the input signal and the kernel, commonly known as 
cross-correlation in Digital Signal Processing (DSP). It should 
be noted that this process differs from typical DSP 
convolution, which requires the kernel to be indexed in 
reverse order. In addition, the elements in the kernel are 
trainable parameters. 

The rationale behind this adaptation is grounded in the 
proven efficacy of one-dimensional convolutions in extracting 
salient features from vibrational data, a success that can be 
attributed to similar underlying inductive biases shared with 
vision-based applications. For instance, vibrational signals, 
like images, exhibit translation-invariant properties. 
Furthermore, these signals display a receptive field pattern 
akin to that of images, where local receptive fields are adept at 
discerning high-frequency features and global receptive fields 
at capturing low-frequency characteristics. 

This tailored approach, converting ConvNeXt into what we 
refer to as 1D-ConvNeXt, not only obviates the need for data 
conversion but also paves the way for an end-to-end, 
diagnostic-focused model. Such a model can optimize the 
feature learning process more effectively, aligning closely 
with the unique demands of fault diagnosis in industrial IoT 
settings. 

B. Incorporating a Wavelet Stem Layer 

The innovative concept of a “wavelet stem layer” stems 
from adapting and evolving the “patchify” stem layer used in 
vision transformers. In these transformers, the “patchify” layer 
segments the input image into distinct patches or local regions, 
which are then flattened into vector representations. These 
vectors serve as input tokens for the Transformer’s subsequent 
layers, allowing the self-attention mechanism to discern 
relationships between different image patches. However, this 
approach, initially designed for image data, is not inherently 
aligned with the inductive bias of fault diagnosis in vibrational 
signals. 

In the original ConvNeXt model, a “patchify” stem layer, 
comprising a 4 4 size with a stride of 4 convolutional layer, 
effectively downsamples the input by 16 times. This 
downsampling serves dual purposes: computational efficiency 
and addressing the redundancy typically found in natural 
images. For one-dimensional vibrational data, a similar 
approach would result in a fourfold reduction in input size. 
However, this could potentially lead to the omission of crucial 
low-frequency fault characteristics due to the principles of the 
Nyquist Sampling Theorem, potentially causing Type II errors, 
as these features often span longer in the temporal dimension. 
Type II error in statistics, also known as a false negative, 
occurs when a hypothesis test fails to reject a null hypothesis 
that is actually false [48]. In other words, it happens when the 
test incorrectly indicates that there is no fault when there 
actually is one. This error can lead to a failure to take 
necessary action or make a correct decision based on the IIoT 
measurements. 

To address this challenge, we propose substituting the 
“patchify” stem layer with a wavelet stem layer. This layer 
employs one-dimensional discrete wavelet transform to 
iteratively decompose raw vibrational inputs into multiple sub-
signals, see Fig. 1 for a visual illustration. Unlike traditional 
wavelet transforms that decompose only the detail coefficients, 
our approach, akin to wavelet packet decomposition, also 
decomposes the approximation coefficients. Consequently, for 
an 𝑛-level decomposition, we obtain 2  sets of coefficients. 
These coefficients are concatenated along the channel 
dimension for subsequent feature extraction and fault 
classification tasks.  

Notably, the wavelet transform is reversible, ensuring that 
our wavelet stem layer preserves all information from the 
input. In other words, this decomposition process enables 
perfect reconstruction of the input signal without any 
information loss. The rate of input length reduction depends 
on the chosen level of decomposition, a parameter influenced 
by both signal length and hardware throughput. A higher level 
of decomposition offers greater computational savings, while 
a lower level increases computational demand. Yet, an 
excessively high level of decomposition can impede the 
learning of temporal dependencies within the signal using the 
ConvNeXt block, thus affecting the effectiveness of our 
Wave-ConvNeXt model. Adhering to the principle of 
quadruple reduction in the original “patchify” layer, we apply 
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two levels of decomposition, resulting in an output comprising 
four channels per input channel, with its length quartered.  

The wavelet stem layer functions as a preprocessing step, 
devoid of learnable parameters. However, it necessitates 
careful design choices, such as the selection of decomposition 
levels and mother wavelet types. As discussed earlier, this 
layer simplifies raw data, easing the learning process for 
downstream fault diagnosis tasks. Moreover, it contributes to 
reducing the model’s complexity and dependence on 
computational resources, aligning with our goal of creating an 
efficient and effective diagnostic tool for IIoT applications. 

C. Channel-wise Attention in the Wave-ConvNeXt model 

The ConvNeXt model, as discussed in Section II-B, 
compensates for the potential capacity loss inherent in 
depthwise convolution by broadening its network width. 
However, this increase in width can make the coordination 
and information exchange between channels more complex. In 
any feature map, not every channel contributes equally to the 
final representation —  some channels carry more 

discriminative information, while others might be less 
informative or even introduce noise. To address this, we 
propose the integration of a channel-wise attention module 
following each depthwise convolution layer within our model. 

 
Fig. 3. Channel-wise Attention: the one-dimensional Squeeze-
and-Excitation module 

Channel-wise attention mechanisms typically employ a 
gating mechanism that dynamically assigns attention weights 
to each channel [49], [50]. This approach allows the model to 
prioritize the most informative channels and diminish the 
influence of less relevant ones, thereby enhancing its 
discriminative capability and robustness. The attention 
weights are computed by analysing channel-wise statistics, 
such as the mean and standard deviation, or through learned 
transformations of the feature maps. These weights are then 
applied to modulate the feature maps, either amplifying or 
attenuating the channel activations before they proceed to 
subsequent layers. 

We have chosen to implement the Squeeze-and-Excitation 
module for channel-wise attention, as illustrated in Fig. 3. 
Here, a feature map 𝑿 of size 𝐶 𝐿 (number of channels by 
length) undergoes a squeezing process through a 1D Global 
Average Pooling (GAP) operation, reducing it to a vector 𝒛 of 
length 𝐶, i.e., 

𝒛
1
𝐿

𝑿 ,     𝑖 ∈ 1,2, . . . , 𝐶  (6) 

where 𝒛  is the value in the 𝑖 -th squeezed channel. This 
squeezed vector 𝒛 is then passed through two fully connected 
layers: the first employs a ReLU activation function, while the 
second uses a hard sigmoid activation to compute attention 
weights vector 𝒔: 

𝒔 σ 𝑾𝟐 ∙ ReLU 𝑾𝟏 ∙ 𝒛  (7) 
where  𝑾  and 𝑾  are weight matrices of the two fully 
connected layers, and σhard ∙  is the hard sigmoid function, 
as defined below: 

σ 𝑥
0                   if 𝑥 3

1                if 𝑥 3
𝑥/6 1/2    otherwise

 (8) 

The choice of hard sigmoid activation is made to 
streamline computations. The resulting 𝐶 -dimensional 
excitation weights 𝒔  are subsequently multiplied with the 
original inputs to yield a reweighted feature map.  

SE 𝑿 𝑠 ⋅ 𝑿 , 𝑖 ∈ 1,2, . . . , 𝐶  (9) 
GAP proves advantageous in computing channel-wise 

weights as it conducts temporal information reduction by 
averaging each feature map across all temporal locations. This 
yields a singular value per channel, effectively summarizing 
temporal information. Additionally, it introduces a form of 
translation invariance, rendering the model less sensitive to the 
precise feature location. This characteristic is pivotal in 
scenarios where the position of a point in a time series is less 
crucial than its mere presence. The averaged value for each 
channel essentially signifies the importance or activation 
strength of that channel across the entire temporal domain. 
This consolidated information enables the emphasis or 
suppression of specific channels, enabling the network to 
concentrate on the most informative channels during the 
learning process. In our Wave-ConvNeXt model, this channel-
wise attention mechanism is a critical component, 
incorporated after every depthwise convolution layer to 
enhance the model’s focus and efficacy. 

D. Architectural Design of the Wave-ConvNeXt Model 

The Wave-ConvNeXt model is the culmination of 
integrating various innovative components, as discussed in 
previous sections, into a cohesive architectural design. Fig. 4 
presents a detailed view of this architecture, revealing a multi-
stage design where each stage comprises multiple Wave-
ConvNeXt blocks. Following the design tradition outlined in 
Section II-B, the ratio of these blocks is set to 1:1:9:1. This 
ratio can be adjusted to suit the complexity of the specific 
diagnostic task at hand. For illustrative purposes, we 
demonstrate the dimensional changes of a sample input of size 
1 5000, progressing through the model to an output of size 
1 6. 

At its core, each Wave-ConvNeXt block consists of 
several key elements: a depthwise convolution, a squeeze-and-
excitation layer, two pointwise convolutions, and a skip 
connection. An additional layer scale operation, which is 
optional, is used to reweight its input. Additionally, the model 
incorporates a drop path layer — a regularization technique 

that randomly zeroes out some inputs. The rate of drop path is 
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adjustable and inversely proportional to the complexity of the 
model — a higher rate leads to greater regularization. Another 

critical component is the downsampling layer, which not only 
reduces the size of its input but also doubles the number of 
feature maps. This layer is strategically placed at the 
beginning of the last three stages of the model. 

 
Fig. 4. Architectural design of the Wave-ConvNeXt model, 
where 𝑘, 𝑠, 𝑎𝑛𝑑 𝑝 denote the parameters for kernel size, stride, 
and padding, respectively. 

Each of these components plays a vital role in enhancing 
the model’s performance. The depthwise convolution and 
squeeze-and-excitation layers focus on extracting and 
emphasizing informative features from the input. The 
pointwise convolutions and skip connections aid in preserving 
the integrity of the signal throughout the network, while the 
layer scale and drop path layers contribute to the model’s 
adaptability and robustness. The downsampling layer ensures 
that the model remains computationally efficient, even as it 
processes complex data. Our Wave-ConvNeXt model 
represents a significant advancement in fault diagnosis for 
IIoT, combining efficiency with accuracy. The model’s code 
is openly accessible for the community, available on GitHub 
at: https://github.com/leviszhang/waveConvNeXt. 

IV. EXPERIMENTAL SETUP AND DATA DESCRIPTION 

This section presents a comprehensive overview of the 
experimental framework and data characteristics central to 
validating the efficacy of the Wave-ConvNeXt model in fault 
diagnosis within the Industrial Internet of Things (IIoT). 
Section IV-A delves into the first case study involving a wind 
turbine gearbox. This section describes the experimental setup, 
the simulated fault conditions, and the methodology for data 
collection and processing, providing a nuanced understanding 
of the complexities involved in diagnosing gearbox faults. 
Section IV-B demonstrates the second case study, focusing on 
a dual-bearing dataset from an Automatic Washing Equipment. 

This section outlines the experimental procedures used to 
simulate various fault conditions, the data acquisition process, 
and the challenges faced in signal analysis for accurate fault 
diagnosis.  

A. Case I: Wind Turbine Gearbox Dataset Analysis 

In this section, we present our first case study, a detailed 
analysis of a gearbox dataset from a wind turbine test bed. 
This dataset simulates various fault conditions within a wind 
turbine gearbox, offering a rich source of data for evaluating 
our Wave-ConvNeXt model. As illustrated in Fig. 5, the test 
bed comprises a RiChuan Vertical-Axis wind power generator 
(RCVA-3000), with a 7.5kW axial-flow fan and a frequency 
converter to simulate different wind speeds. This setup allows 
for the replication of diverse operational conditions by varying 
wind speeds (20 Hz to 50 Hz) and applying three distinct 
levels of working load (low, medium, and high) on the wind 
turbine’s rotor. Any stochastic vibration or speed perturbation 
on the input shaft can be transmitted through the gearbox to 
the output shaft, resulting in different fault characteristics of 
the gearbox. 

 
Fig. 5.  Experimental setup of the wind turbine test bed 

Our experimental setup utilizes a one-stage planetary 
gearbox with a specific configuration of gears (one carrier, 
one sun gear, one ring gear, and three planet gears). We 
induce two types of faults – broken tooth and cracked tooth 
root – into these gears, generating six unique health status 
classes for the gearbox, including a normal state (C0-C5). Fig. 
6 illustrates the five faulty states, corresponding to the first 
five classes in TABLE I. 

We conduct independent trials for each of these six classes 
at three different working load levels, i.e., 18 trials in total. In 
each trial, we collect acceleration signals over 20 seconds. 
During this timeframe, the axial-flow fan undergoes the 
following speed regulation processes: 1) it operates at 20 Hz 
for 2 seconds; 2) it gradually ramps up to 50 Hz over 6 
seconds; 3) it maintains a steady 50 Hz for 4 seconds; 4) it 
gradually ramps down to 20 Hz over 6 seconds; 5) it operates 
at 20 Hz for 2 seconds. Consequently, each trial generates an 
acceleration signal of length 2,000,000 (20 seconds at a 
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sampling frequency of 100 kHz). A concise summary of these 
working conditions is presented in TABLE I. 

The acceleration signals from the 18 trials are sliced using 
the moving window method for data augmentation. The 
window length and step size are set to 5000 and 4000, 
respectively. This method not only generates an adequate 
number of training samples but also makes sure that each 
sample is associated with a certain speed mode. With these 
settings, the data augmentation technique produces 499 signal 
segmentations of length 5000 for each signal. The experiments 
are repeated four times: twice for training, once for validation, 
and once for testing. This results in 17,964 (218499) 
training samples, 8,982 (18499) validation samples, and 
8,982 (18499) testing samples.  

 
Fig. 6. The planetary gearbox is injected with five faulty states, 
which are: (a) ring gear with a broken tooth; (b) ring gear with 
a cracked tooth root; (c) sun gear with a broken tooth; (d) 
planet gear with a cracked tooth root; and (e) planet gear with 
a broken tooth. These states correspond to the first five classes 
of health status in TABLE I, i.e., C0-C4, respectively 

TABLE I 
PLANETARY GEARBOX HEALTH STATUS CLASSES AND 

WORKING CONDITIONS 
 

Class Fault 

location 

Fault type Working Condition 

C0 Ring gear Broken tooth Load: High/ Medium/ 

Low. 

Speed regulation 

(axial-flow fan):  

1) low speed for 2s;  

2) acceleration for 6s;  

3) high speed for 4s;  

4) deceleration for 4s; 

5) low speed for 2s. 

C1 Ring gear Cracked tooth root (width: 

0.5 mm, depth: 0.3mm) 

C2 Sun gear Broken tooth 

C3 Planet gear Cracked tooth root (width: 

0.5 mm, depth: 0.3mm) 

C4 Planet gear Broken tooth 

C5 
N/A 

(normal) 
N/A (normal) 

To ensure uniformity across the dataset, we apply z-score 
normalization to the acceleration signals. A selection of these 
normalized signals, depicted in Fig. 7, shows no obvious 
visual distinction between the different fault states, 
underscoring the complexity and subtlety of the fault 
characteristics in the dataset. Further investigation into their 
frequency spectrums does not provide any additional insights 
either. This complexity is further compounded by the non-

stationary conditions of the test bed, posing additional 
challenges in accurately annotating the testing samples. This 
case study provides a comprehensive and challenging dataset 
for validating the effectiveness of the Wave-ConvNeXt model 
in fault diagnosis, particularly in the complex and dynamic 
environment of a wind turbine gearbox. 

 
Fig. 7. Randomly selected samples from the testing set of 
Case I, showcasing the six health status classes under different 
working loads 

B. Case II: Automatic Washing Equipment’s Dual-bearing 
Dataset Analysis 

Our second case study delves into a real-world dual-
bearing dataset, open-sourced by the NGIT Laboratory of 
Beijing Jiaotong University, China [51], [52]. The dataset 
focuses on a dual-bearing component from an Automatic 
Washing Equipment (AWE), as depicted in Fig. 8, used for 
cleaning high-speed trains. The dual-bearing, connecting a 
vertical rotating shaft supporting the brush set, is subject to 
horizontal load and rotational force, making it susceptible to 
eccentricity issues. The purpose of this experiment is to 
diagnose to what extent the eccentricity level is in the dual-
bearing component. 

 
Fig. 8. (a) Overview of the Automatic Washing Equipment 
(AWE). (b) Normal condition setup. (c) Setup illustrating the 
C3 class with added chips [51], [52] 
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Fig. 9. Sample signals from the testing set, showing the dual-
bearing component’s different eccentricity levels 

In this study, the eccentricity level of the dual-bearing 
component is experimentally varied to simulate different fault 
conditions. These variations were discretized into six distinct 
states, including the normal condition, by adding varying 
numbers of gaskets to the fastening screws of the upper 
bearing, as shown in Fig. 8 (b) and (c). The maximum number 
and size of the gaskets were carefully chosen to prevent 
significant equipment damage. These six states of health 
conditions for the dual bearings are summarized in TABLE II. 
Two single-axis accelerometers were placed on the upper and 
lower bearings to record vibration signals at a sampling 
frequency of 4 kHz. 

TABLE II 
HEALTH STATUS CLASSES OF THE DUAL-BEARINGS IN THE 

AWE EXPERIMENT 
 

Class Fault location Fault type 
C0 N/A (normal) N/A (normal) 
C1 

Fastening screws that attach the 
upper bearing to its supporting arm 

1 chip added 
C2 2 chips added 
C3 3 chips added 
C4 4 chips added 
C5 5 chips added 

For each of the six classes, seven independent 
experimental trials were conducted, each lasting 10 minutes. 
This generated a collection of 6760040002 (classes, 
trials, sampling time in seconds, sampling frequency, and 
number of channels, respectively) digital numbers, which were 
then divided into training, validation, and testing sets. Fig. 9 
showcases time-domain vibration signals from these trials, 
illustrating the complexity of signal segmentation and the 
challenge in signal differentiation based on the Nyquist 
Sampling Theorem. Hence, the length of each signal segment 

was maintained at 4000. With these settings, the training set, 
validation set, and testing set are of size 1440024000, 
720024000, and 360024000, respectively. Consistent 
with the first case study, we standardized all samples using the 
z-score normalization method. 

While previous studies often utilized various sensor data, 
this study focuses solely on two-channel vibration signals to 
maintain consistency for comparison. The experimentally 
curated dataset provides a nuanced spectrum of concentricity 
deviations, offering a challenging yet informative platform for 
evaluating our model’s performance. From Fig. 9, certain 
class characteristics are visible in their frequency spectrums, 
yet discerning each class remains challenging. This study also 
considers the fusion of two channels of vibration signals, 
which could provide additional insights for the diagnostic task. 

V. RESULTS AND DISCUSSION 

This section offers a thorough analysis and discussion of 
the results obtained from the deployment of the Wave-
ConvNeXt model across our two case studies. Section V-A 
delves into the strategies and technical choices made during 
the training process of the Wave-ConvNeXt model. Section V-
B presents a comparative analysis of the Wave-ConvNeXt 
model against other state-of-the-art deep learning models, 
highlighting its superior accuracy and computational 
efficiency. In Section V-C, we explore the features learned by 
the model and investigate specific instances of 
misclassification to understand the model’s capabilities and 
limitations better. Section V-D provides an analysis of the 
individual components of the Wave-ConvNeXt model, 
particularly focusing on the squeeze-and-excitation module 
and the choice of mother wavelets, and their respective 
contributions to the model’s performance. 

A. Model Training and Validation for Wave-ConvNeXt 

Training a deep neural network, particularly for complex 
high-frequency non-periodic signal data like ours, presents 
distinct challenges. To navigate these, we adopted several key 
strategies and techniques from the deep learning community. 
For efficient and effective model training, we employed 
Automatic Mixed Precision (AMP) and learning rate 
annealing. AMP combines single and half-precision 
representations to expedite training while minimizing memory 
requirements, all without sacrificing the accuracy typically 
achieved with single precision. Learning rate annealing, 
facilitated by the “ReduceLROnPlateau” scheduler, 
dynamically adjusts the learning rate to mitigate issues such as 
instability and overshooting, ensuring optimal learning rate 
throughout the training process. 

Further, we made strategic engineering choices regarding 
the training parameters, including the number of epochs, batch 
size, initial learning rate, loss function, optimizer type, and 
drop path rate (detailed in TABLE III). These choices 
significantly impact the training process, influencing 
convergence speed, stability, and constringency. A trial-and-
error approach helped fine-tune these parameters, particularly 
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focusing on minimizing average loss on the validation set. 
Regularization techniques such as label smoothing, weight 
decay, and drop path were implemented to prevent overfitting, 
with their coefficients tuned using a grid search method. All 
model development and training were conducted using the 
Pytorch framework. 

TABLE III 
ENGINEERING CHOICES IN MODEL TRAINING 

 
Name Case I Case II 

Number of epochs 200 30 
Batch size 1200 500 

Initial learning rate 0.01 0.001 

Loss function 
Cross entropy loss with a 
label smoothing of 0.2 

Cross entropy loss with a 
label smoothing of 0.2 

Optimizer 
“AdamW” with a weight 
decay of 0.001 

“AdamW” with a weight 
decay of 0.001 

Drop path rate 0.2 0.2 

The learning curves of our Wave-ConvNeXt model and the 
vanilla 1D-ConvNeXt model on the wind turbine gearbox 
dataset are depicted in Fig. 10. Both models exhibit a plateau 
in later training stages, yet our Wave-ConvNeXt model 
converges faster, around the 140th epoch. This accelerated 
convergence is likely due to the wavelet stem layer, which 
simplifies raw signals into sub-signals, aiding in quicker and 
more effective learning. Notably, while both models achieve 
training accuracies higher than 99%, indicating ample 
representation capabilities, our model demonstrates a smaller 
generalization gap. This indicates superior accuracy in 
predicting unseen data. This pattern of learning curve and 
performance is similarly observed in the automatic washing 
equipment dataset. 

 
Fig. 10. Learning curve of (a) the vanilla 1D-ConvNeXt 
model, and (b) the Wave-ConvNeXt model on the wind 
turbine gearbox dataset 

B. Model Comparison and Evaluation on Testing Sets 

In our effort to validate the effectiveness and efficiency of 
the proposed Wave-ConvNeXt model, we compared it against 
several state-of-the-art deep learning models, including Bi-
LSTM, 1D-CNN, and variants incorporating Empirical Mode 
Decomposition (EMD) as a preprocessing step [32], [53]. 
TABLE IV presents a comparative analysis of these models in 
terms of prediction accuracy on the wind turbine dataset’s 
testing set, along with the number of trainable parameters and 
total multiply-add operations for a standard input sample of 
size 115000.  

Our Wave-ConvNeXt model achieved the highest 
prediction accuracy at 98.64%, outperforming the other 
models, including the vanilla 1D-ConvNeXt. An interesting 
observation from the results is the beneficial impact of 
preprocessing layers, like EMD and wavelet transform, in 
boosting diagnostic accuracy. Moreover, the ConvNeXt-based 
models, particularly our Wave-ConvNeXt, demonstrated 
significantly fewer trainable parameters and multiply-add 
operations than their counterparts. This reduction in 
computational complexity makes them more suitable for edge-
computing solutions and reflects the efficiency gains from 
depthwise separable convolutions and group convolutions 
used in these models. The addition of Squeeze-and-Excitation 
blocks in the Wave-ConvNeXt model slightly increases the 
number of trainable parameters compared to the 1D-
ConvNeXt model. However, this increase is negligible when 
considering the significant improvement in testing accuracy. 

We also conducted a thorough comparison between our 
model and a cutting-edge model designed for long-term time 
series forecasting tasks known as PatchTST [54]. This chosen 
model, PatchTST, exhibits similarities with our approach 
through its utilization of channel-independent patching 
operations and explicit incorporation of transformer 
backbones. To tailor the model to our specific case study, we 
adjusted both the input (set to 5000) and prediction sequence 
lengths (set to 6). The original paper introducing PatchTST 
proposes two model variants, PatchTST-64 and PatchTST-42, 
differing in the number of patches (64 and 42, respectively). 
The authors achieve this variation by selecting appropriate 
patch lengths and stride values. In our comparative study, we 
similarly redesigned these parameters to achieve the desired 
number of patches. Specifically, PatchTST-64 was configured 
with a patch length of 156 and a stride of 78, while PatchTST-
42 adopted a patch length of 236 and a stride of 118. Notably, 
the dimension of the fully connected layer was reduced to 64 
to accommodate the decreased output dimension. 

TABLE IV 
COMPARISON OF MODELS ON THE TESTING SET OF THE WIND 

TURBINE DATASET  
 
Model Testing set 

accuracy  
Number of trainable 

parameters 
Total Mult-

adds (M)  
Bi-LSTM 94.01% 

970182 8.75 
EMD-Bi-LSTM 94.6% 
1D-CNN 94.2% 

145742 2.94 
EMD-1DCNN 96.93% 
PatchTST-64 74.63% 2547334 2.51 
PatchTST-42 75.28% 2509446 2.49 
1D-ConvNeXt 95.2% 32018 0.83 

Wave-ConvNeXt 98.64% 35382 0.83 

During the training of the PatchTST model, notable 
success was achieved in terms of high training accuracy, 
indicative of the model's substantial representational capacity. 
However, despite employing diverse regularization techniques, 
a significant generalization gap persisted, resulting in notably 
low accuracy on the testing set. TABLE IV presents the best 
testing accuracies for both variants, showcasing a substantial 
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shortfall compared to alternative models, despite their low 
complexity in terms of the total Mult-adds. This observation 
underscores the challenge of handling high-frequency non-
periodic signals, emphasizing a preference for signal 
processing methods like wavelet transforms over direct 
segmentation for preprocessing purposes. 

Fig. 11 showcases the confusion matrices for the six 
models when tested on the wind turbine gearbox dataset. The 
testing set has an equal number of samples for each target 
class, which are 1497 (three levels of working load times 499 
signal segmentation). The true positives, represented by the 
darker diagonal elements, indicate the model’s accuracy in 
correctly classifying samples into their respective classes. The 
off-diagonal elements reveal the classification errors, with 
higher values indicating more misclassifications. 

 
Fig. 11. Confusion matrices for different models on the wind 
turbine gearbox dataset’s testing set 

To extend our evaluation, we compared the Wave-
ConvNeXt model with several traditional lightweight models 
in the second case study involving the automatic washing 
equipment dataset. These models, adapted for vibrational 
inputs through one-dimensional convolutions, include 
SqueezeNet, ShuffleNet, MobileNet V3, EfficientNet V2, and 
1D-ConvNeXt. As seen in TABLE V, while all models exhibit 
high testing accuracy, they differ significantly in efficiency 
metrics such as the number of trainable parameters, total 
multiply-add operations, and inference time. Note the 
inference time was measured using a single instance of size 
1×2×4000. These results, derived from an average of 300 
independent runs on a specific hardware setup (Intel Core i7-
9750H CPU and an Nvidia RTX-3000 GPU), highlight the 
superior balance of accuracy and efficiency offered by our 
model.  

We compared our model with the 1D-ConvNeXt model, 
which, despite having fewer trainable parameters, surpasses 
our model in total Mult-adds operations. The efficiency gain is 
attributed to replacing the patchify stem layer with the wavelet 
stem layer, leading to significant computational savings that 
offset the additional cost of the Squeeze-and-Excitation layer. 
Unlike the prior single-channel input case study, the 1D-
ConvNeXt model's patchify stem layer necessitates increased 
computation for the two-channel input in the subsequent case 
study. Notably, the 1D-ConvNeXt model exhibits a shorter 

inference time on CPU compared to GPU, suggesting that the 
CPU's efficiency outperforms the GPU in handling data I/O. 

TABLE V 
COMPARISON OF LIGHTWEIGHT MODELS ON THE 

AUTOMATIC WASHING EQUIPMENT DATASET 
 
Model Testing 

set 
accuracy  

Number of 
trainable 

parameters 

Total 
Mult-adds 

(M)  

Inference time 
on GPU/CPU 

(ms) 
SqueezeNet 100% 362278 340.2 7.21/36.75 
ShuffleNet 99.97% 341246 50.33 13.47/26.99 
MobileNet V3 99.97% 1477041 67.16 11.3/36.36 
EfficientNet V2 100% 19445470 2600 40.47/264.03 
1D-ConvNeXt 100% 32598 0.79 11.94/11.3 
Wave-ConvNeXt 100% 36062 0.75 10.86/11.35 

C. Analysing the Learned Features and Misclassifications 

To gain insight into what our deep learning models have 
learned, we analyzed the activations from the second-to-last 
layer of the trained models. We used t-distributed Stochastic 
Neighbor Embedding (t-SNE) to map these activations into a 
two-dimensional space. This technique is effective in 
preserving the intricate structures of high-dimensional data. 
Fig. 12 illustrates the two-dimensional embeddings of the 
testing set as evaluated by the six models, with different colors 
and markers representing the health status classes of the wind 
turbine gearbox. A clear separation of the classes in this space 
indicates a model’s ability to distinguish between them. The 
subplots in Fig. 12  reveal a progressive separation from (a) to 
(f), aligning with the testing set evaluation results and 
suggesting that our proposed model learns more discriminative 
features for fault diagnosis. 

 
Fig. 12. Two-dimensional embeddings of the penultimate 
layer activations for different models on the wind turbine 
gearbox dataset 

Despite the Wave-ConvNeXt model’s superior accuracy, 
as shown in TABLE IV and Fig. 11, it still encountered 122 
misclassifications. To understand these errors, we conducted 
an in-depth analysis. We randomly selected a misclassified 
sample (index 3763) from class “C2” that was incorrectly 
labeled as “C0” under a high-speed and medium-load 
condition. For comparison, we also chose two other samples 
under similar conditions: one correctly classified as “C2” 
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(index 3704) and another correctly labeled as “C0” (index 
706). 

 
Fig. 13. Hilbert spectrum and marginal spectrum analysis of 
three testing samples (indices 3763, 3704, and 706) 

Considering the nonstationary nature of the wind turbine 
gearbox dataset, we applied Hilbert spectral analysis to 
examine the time-frequency domain of these signals. Fig. 13 
displays the Hilbert and marginal spectrums of the selected 
samples. A Hilbert spectrum represents the amplitude and 
frequency components of a signal over time, while a marginal 
spectrum, derived by integrating the Hilbert spectrum over 
time, shows the total energy distribution across frequency 
components. Intriguingly, the marginal spectrums of samples 
3763 and 706 share similarities in energy scale and patterns, 
differing from sample 3704. Notably, sample 3763 exhibits 
characteristics of both 3704 and 706 in the low-frequency 
band as shown in their Hilbert spectrums. This observation 
leads us to speculate that the misclassification could be 
attributed to the Heisenberg uncertainty principle, which limits 
the simultaneous compactness of continuous-time signals in 
both time and frequency domains. This principle presents a 
fundamental challenge in fault diagnosis using time-varying 
signals and warrants further investigation. 

D. Ablation Study of the Wave-ConvNeXt Model 

We now delve into an ablation study to discern the impact 
of various components on the performance of our Wave-
ConvNeXt model. First, we examine the role of the squeeze-
and-excitation module. We randomly selected six testing 
samples from the AWE dataset, each representing a distinct 
health status, and analyzed the activations from the squeeze-
and-excitation module of a trained Wave-ConvNeXt model. 
Specifically, we focused on the re-weighting activations of 32 
channels in stage 4 of the model, as illustrated in Fig. 14. The 
varying shades in the figure indicate the weightage of each 
channel, with darker colors representing higher weights. A 
significant observation from Fig. 14 is the prevalence of zero 
weights for certain classes, particularly “C0” and “C2”, 
indicating the effective suppression of less critical channels by 
the channel-wise self-attention mechanism. When the squeeze-
and-excitation module was removed from the model, the 
testing accuracy slightly decreased from 100% to 99.94%, 
underscoring its critical role in the model’s performance. 

 
Fig. 14. Channel-wise attention weights in stage 4 for six 
distinct health statuses from the AWE dataset 

Next, we explored the influence of different types of 
mother wavelets on our model’s performance, using the wind 
turbine gearbox dataset as a case study. We compared the 
model’s effectiveness with various mother wavelets from 
seven distinct families: Haar, Daubechies, Symlets, Coiflets, 
Biorthogonal, Reverse Biorthogonal, and Discrete Meyer, 
particularly focusing on wavelets with smaller support to 
capture high-frequency features effectively. The selected 
wavelets were “haar”, “db2”, “sym2”, “bior1.3”, “rbio1.3”, 
“coif1”, and “dmey”. The testing accuracies for these wavelets 
were 98.64%, 97.09%, 97.26%, 93.32%, 96.35%, 92.71%, and 
90.98%, respectively, as shown in Fig. 15. 

 
Fig. 15. Testing set accuracy comparison for various mother 
wavelets in the wind turbine gearbox’s dataset 

The choice of mother wavelet significantly influenced the 
model’s accuracy, with higher accuracy observed for wavelets 
with smaller support. This finding corroborates our initial 
hypothesis favoring such wavelets, suggesting that wavelets 
with larger support might overly preprocess low-frequency 
signals, hindering the learning of these features via layer-by-
layer abstraction in the Wave-ConvNeXt backbone. 
Interestingly, despite variations in testing accuracy, all mother 
wavelets achieved high training set accuracies, surpassing 
98%, indicating the robust representational capacity of our 
model. However, the generalization gap observed in some 
wavelets with lower testing accuracies suggests a potential 
need for further hyperparameter tuning. 
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VI. CONCLUSION 

This research presents Wave-ConvNeXt, an efficient and 
precise approach to fault diagnosis in the rapidly evolving 
domain of the Industrial Internet of Things (IIoT). Addressing 
two primary challenges in IIoT fault diagnosis — the need for 

timely and accurate detection and the constraints of edge 
computing environments — we successfully harness and adapt 

deep learning models to meet these demands. Wave-
ConvNeXt, a synergy of Wavelet Transform and ConvNeXt, 
exemplifies a lightweight yet scalable solution, effectively 
balancing the computational and memory limitations of edge-
computing devices. 

The innovative architecture of Wave-ConvNeXt integrates 
the ConvNeXt model, a contemporary convolutional neural 
network (CNN) that merges convolutional operations with 
attention mechanisms, and tailors it to process high-frequency, 
non-periodic inputs. This is achieved by replacing traditional 
two-dimensional convolutions with one-dimensional 
convolutions. The inclusion of the squeeze-and-excitation 
module further refines the model, sharpening its focus on the 
most informative features. Additionally, the utilization of 
Wavelet Transform as a preprocessing step simplifies input 
signals into more manageable sub-signals, thereby reducing 
the dependence on complex deep learning architectures. 

Our extensive experiments with two real-world IIoT datasets 
have demonstrated the effectiveness and efficiency of the 
Wave-ConvNeXt approach. By employing an end-to-end 
architecture, our approach minimizes information loss and 
curtails human subjectivity in the feature learning process. The 
results from these experiments, including model training and 
validation, comparative analyses with state-of-the-art models, 
and an in-depth ablation study, affirm the superior accuracy 
and computational efficiency of Wave-ConvNeXt.  

The two case studies primarily focus on categorizing 
established faults acquired through fault injection experiments. 
Conducting such destructive experiments is typically 
expensive and may not be viable in certain contexts. Besides, 
simulating all potential compound faults is impractical due to 
the issue of combinatorial explosion. In real-world scenarios, 
detecting the onset of unknown faults, referred to as fault 
detection, can be even more crucial than fault diagnosis. When 
faulty data are available, fault detection transforms into a 
binary classification task. Our Wave-ConvNeXt model excels 
in addressing such challenges, but adapting it to situations 
lacking faulty data requires further investigation. We posit that 
integrating the concept of One-class classification with the 
architecture of the Wave-ConvNeXt model is a promising 
avenue for tackling such issues. 

In conclusion, Wave-ConvNeXt stands as a promising 
solution for fault diagnosis in IIoT, adeptly navigating the 
challenges of resource-constrained environments. It 
epitomizes the potential of combining advanced deep learning 
techniques with Wavelet Transform and architectural 
optimizations. This research not only offers a robust and 
scalable approach for fault diagnosis but also paves the way 
for future advancements in IIoT fault diagnosis methodologies. 
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