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WIO-EKF: Extended Kalman Filtering-based Wi-Fi
and Inertial Odometry Fusion Method for Indoor

Localization
Pan Zhou#, Hao Wang#, Raffaele Gravina, Senior Member, IEEE, and Fangmin Sun*, Member, IEEE,

Abstract—Indoor location and navigation technologies are
crucial for healthcare, security and other location-based services.
Wi-Fi and inertial sensors have become mainstream indoor
localization technologies for wearable device platforms due to
simple deployment and low cost. This study proposes an extended
Kalman filtering (EKF)-based multimodal sensor fusion algo-
rithm for indoor localization, combining Wi-Fi fingerprint and
inertial measurement unit (IMU) data to provide accurate and
continuous pedestrian localization. The main contributions of this
work are threefold. Firstly, a Wi-Fi fingerprint data augmentation
method based on Access Point (AP) location sorting is proposed
and a regression network model with a convolutional denoising
autoencoder for WiFi-based indoor localization (CDAELoc) is
designed to improve the robustness. Secondly, a dual-branch deep
inertial odometry (DbDIO) network model for IMU-based indoor
localization is introduced, consisting of two branches with various
convolutional kernel sizes to extract features at different scales.
Finally, an EKF-based Wi-Fi and Inertial Odometry (WIO-EKF)
fusion localization system is presented, utilizing the predicted
results from the proposed CDAELoc and DbDIO models as the
system observations and mitigating the initial heading error of
DbDIO. The proposed models are applied to the UJIIndoorLoc,
RoNIN public datasets and self-collected dataset. Experimental
results prove that the proposed CDAELoc model outperforms
other Wi-Fi localization models, reducing the average positioning
error by 12.5%. The proposed DbDIO model achieves higher
accuracy and requires fewer model parameters than any other
deep inertial odometry model. Finally, the average positioning
error of WIO-EKF is lower than those of CDAELoc and DbDIO
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by 34% and 42%.
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I. INTRODUCTION

INDOOR localization and navigation technologies are vital
for many tasks, including emergency evacuation and rescue,

augmented reality, and patient healthcare [1]. However, GPS
signals are significantly attenuated in indoor environments,
posing challenges to precise positioning. Therefore, various
methods have been proposed to overcome this limitation
including Wi-Fi, IMU, infrared (IF) and ultrasound (U/S)
signals, Bluetooth, radio frequency identification (RFID), and
cameras [2]. Each technology has its advantages and draw-
backs in different application scenarios, and their development
depends on considerations regarding deployment costs, posi-
tioning accuracy, stability, and security aspects.

Among them, U/S and IF technologies require specific
signal reception devices not integrated into smartphones, hin-
dering their widespread implementation. While Bluetooth and
Near Field Communication (NFC) are available on most smart-
phones, they have limited ranges and require the deployment of
additional hardware devices. Finally, smartphone cameras have
low privacy security and high power consumption. Notably,
modern smartphones are equipped with sensors such as a
gyroscope, accelerometer, magnetometer, and Wi-Fi signal
receivers. Considering the prevalence of smartphones and the
extensive deployment of routers in public buildings, Wi-Fi and
IMU have undeniable inherent advantages.

Wi-Fi indoor localization methods are mainly classified
into geometric and fingerprinting methods. The former use
triangulation techniques based on the angle of arrival, time of
flight, or time of arrival to achieve positioning [3]. The latter
methods are more accurate than geometric ones. The common
fingerprint features include received signal strength (RSS) and
channel state information (CSI) [4]. Compared to RSS, CSI
is more stable and accurate, but it requires specific signal
acquisition software for retrieval, which limits its application.

IMU-based classic positioning algorithms include physical
methods (e.g., double integration [5]) and heuristic approaches
[6], such as zero-velocity updates [7], [8] and pedestrian dead
reckoning (PDR). The IMU currently equipped in smartphones
is miniaturized and low-cost, but it has larger measurement er-
rors, which can quickly amplify errors in physical algorithms.
Besides, in practice, most users carry their smartphones in
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unrestricted mode, which limits the applicability of heuristic
algorithms. With the development of deep learning, data-
driven deep inertial odometry (IO) has gained increasing
attention [9], [10]. Deep IO utilizes the powerful feature
extraction and data fitting capabilities of deep learning to
derive results from IMU signals directly, offering significant
advantages compared to classical algorithms.

In addition, the advantages and drawbacks of single indoor
localization technologies are apparent, while the fusion of mul-
timodal sensor data can largely compensate for their respective
limitations. Wi-Fi and IMU fusion localization can provide
continuous and more accurate positioning performance over
a longer period. Currently, most studies focus on PDR/Wi-Fi
fusion localization [11], but there is a lack of IO/Wi-Fi fusion
methods of EKF.

This work adopts a deep learning algorithm to combine
Wi-Fi fingerprinting localization with deep inertial odometry
(DIO) by fusing via the extended Kalman filtering (EKF)
to improve positioning performance and stability. The main
contributions of this paper can be summarized as follows:

1) We propose a Wi-Fi fingerprint data augmentation strat-
egy based on Access Point (AP) location sorting, effec-
tively improving Wi-Fi positioning accuracy in multi-building
scenarios and reducing data preprocessing complexity. The
proposed CDAELoc model has higher noise robustness than
traditional fingerprint-matching methods.

2) The proposed DbDIO model achieves the highest accu-
racy with the fewest parameters, making it more suitable for
deployment on memory-constrained embedded devices.

3) We present a fusion localization system based on EKF
that is robust to initial heading (yaw) errors of inertial odom-
etry. This system provides accurate positioning results in our
local dataset.

The rest of this paper is structured as follows: Section
II describes and discusses related work on indoor localiza-
tion. Section III introduces the proposed Wi-Fi fingerprinting
network model, DIO, and the design of the EKF fusion
system. Section IV describes the experiments and performance
evaluation on public and local datasets. Finally, Section V
draws concluding remarks and outlines future directions.

II. RELATE WORKS

Currently, indoor localization studies are classified into three
types: Wi-Fi fingerprint-based methods, data-driven inertial
odometry methods, and multi-sensor fusion methods. This
section provides a comprehensive review of relevant indoor
localization methods.

Wi-Fi fingerprint-based Indoor localization: Currently,
most Wi-Fi-based fingerprinting methods utilize RSS as the
fingerprint feature. The fingerprinting process typically in-
volves two stages: offline and online. In the offline stage,
a mapping between Wi-Fi fingerprints and corresponding
location coordinates is established to construct a fingerprinting
database. In the online stage, a fingerprint-matching algorithm
determines the user’s location. Researchers have proposed
various localization algorithms to estimate the user’s position.
The K-Nearest Neighbor (KNN) algorithm, known for its low

complexity and does not require explicit training, has been
widely used for fingerprint matching [4]. For example, Zeng
[12] employed the Spearman distance as the weight for the
weighted KNN algorithm. Compared to traditional localization
algorithms, they achieved a reduction of approximately 7% in
average positioning error (APE). However, the KNN algorithm
requires traversing the entire fingerprinting database, which
can lead to a longer execution time when dealing with large
datasets. Previous studies [13]–[15] addressed this issue by
utilizing k-means to partition the localization area, reducing
the computational load for the weighted KNN algorithm.

Furthermore, other machine learning methods, such as Ran-
dom Forest [16] and Gaussian process regression [17], have
also been applied to calculate positioning results. However,
due to the variability of Wi-Fi fingerprints, traditional machine
learning-based Wi-Fi fingerprinting localization algorithms
tend to experience a significant performance deterioration [18].
With the advancement of deep learning, many researchers
have applied deep learning techniques to Wi-Fi fingerprinting
localization. Some studies have used recurrent neural networks
(RNNs) to explore the potential temporal features of Wi-
Fi data to improve positioning accuracy. Sahar and Han
[19] adopted long short-term memory (LSTM) networks to
construct deep regression models, achieving higher positioning
accuracy than traditional KNN algorithms. Wang et al. [20]
proposed a spatial-temporal localization algorithm combining
residual networks with LSTM. Song et al. [21] also used
convolutional neural networks (CNN) for indoor localization
framework with Wi-Fi fingerprinting. However, data sparsity
and temporal fluctuations in Wi-Fi fingerprints deteriorate the
positioning performance of CNN. Other studies [3], [22] have
addressed this issue by computing the Pearson correlation
coefficient between each AP and reference point (RP) and
transforming Wi-Fi fingerprints into a two-dimensional image
format to mitigate the impact of data sparsity. Then, an
appropriate CNN network structure was built to extract useful
features from the two-dimensional data using convolutional
layers. However, preprocessing Wi-Fi fingerprint data into
two-dimensional images was found to be computationally in-
tensive and required further improvement. Additionally, some
studies have used autoencoders (AEs) [22]–[24] and denois-
ing autoencoders (DAEs) [25] to extract robust features and
improve positioning accuracy. Alitaleshi et al. [26] proposed
a novel model by combining an extreme learning machine
autoencoder (ELM-AE) with a two-dimensional CNN (EA-
CNN), which is based on Wi-Fi fingerprinting and deep
learning. The performance of system is evaluated on the
public datasets, demonstrating that EA-CNN outperforms con-
ventional CNN methods by significantly reducing average
positioning error. Zhao et al. [27] proposed a fingerprint-based
localization method for multi-floor indoor environments within
multi-building settings. which combines a gradient-boosting
neural network (GrowNet) with a LSTM network to effectively
capture the nonlinear relationships between RSS fingerprints
and spatial locations.

Data-driven inertial odometry (IO): In the field of iner-
tial positioning, more researchers are utilizing deep learning
to extract the mapping relationship between inertial signals
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and user positions, achieving more accurate and real-time
localization. Recent studies have demonstrated that data-driven
IO can achieve high-precision 2D path reconstruction us-
ing only smartphone IMU data. Chen et al. [28] employed
a LSTM network to regress distance and angular changes
within predefined time windows, achieving superior prediction
performance than traditional inertial navigation systems and
pedestrian dead reckoning (PDR). Herath et al. [29] provided
the largest publicly available dataset called RoNIN, exceeding
42.7 hours of data from 100 subjects. They applied the average
velocity 2D vector as the regression target and compared the
localization performance of LSTM, residual network (ResNet),
and temporal convolutional network (TCN). Among these
networks, ResNet achieved the best localization accuracy. Liu
et al. [30] presented a deep learning method for real-time IMU
calibration, which significantly improves inertial odometry
accuracy by learning sensor errors from high-precision data.
Deng et al. [31] proposed a data-driven inertial navigation
system that integrates a CNN-EKF for orientation and a
CNN-Transformer for translation, achieving superior accuracy
compared to existing methods. Wang et al. [32], [33] used
the research findings [18] to propose a random orientation
initialization method that reduces reliance on unreliable smart-
phone orientation estimation. They also optimized the model
prediction targets to include the average velocity scalar and
trigonometric function values. Their approach yielded the best
localization results on the RoNIN public dataset. Current
research focuses more on improving localization accuracy
while neglecting the size of the parameters in data-driven IO
network models.

Indoor localization via multimodal sensor fusion: Mul-
timodal sensor fusion is widely used to compensate for the
limitations of individual techniques and improve localiza-
tion accuracy [34]. Commonly used fusion methods include
Kalman filtering (KF) and particle filtering (PF). Alwin et
al. [35] proposed a smartphone camera and IMU fusion
localization system based on a linear KF, achieving an APE
of 0.069 m. Ning et al. [36] used a KF to fuse Bluetooth
and multiple IMU data, resulting in an APE of 0.8 m. Feng
et al. [37] presented an adaptive IMU/UWB fusion method
for indoor positioning that uses SVM to detect non-line-of-
sight (NLOS) and improves accuracy over traditional methods.
However, using cameras introduces such issues as high power
consumption and privacy concerns.

In contrast, wireless localization technologies like Bluetooth
require deploying numerous external devices in indoor envi-
ronments, and UWB systems can be costly and complex to
deploy. Therefore, the fusion of Wi-Fi and IMU has distinct
advantages. Carrera et al. [38] utilized a particle filter to fuse
Wi-Fi and IMU signals, achieving an APE of 1.01 m on
their collected dataset. Zou et al. [39] also used a PF to fuse
Wi-Fi and IMU signals. Still, they additionally incorporated
iBeacon data to correct the drift error of PDR in areas with
poor Wi-Fi signal coverage. Abdellatif et al. [40] utilized the
PF algorithm to integrate IMU data with RSSI, enhancing
the accuracy of indoor localization by leveraging PDR and
magnetic fingerprinting techniques, and achieving an enhanced
accuracy of 96.32% on their dataset. Nurpeiissov et al. [41]

developed an end-to-end sequence learning model based on
LSTM to fuse Wi-Fi and IMU signals, and their model
achieved an APE of 1.1 m on their self-built dataset. Herath
et al. [6] developed Fusion-DHL, employing Wi-Fi-based least
squares optimization and floor plan-based CNN networks to
align and optimize the motion paths generated by the inertial
odometer, respectively. Xu et al. [42] introduced SeqIPS, a
deep learning-based indoor positioning system that fuses Wi-
Fi and IMU data, uses a co-teaching network to handle noisy
labels and a GAN-based domain adaptation module for IMU
data labeling. SeqIPS achieved an average localization error
of 3.37 m.

In summary, fusing data from multiple sensors exhibits
higher localization accuracy compared to single sensor tech-
nologies. However, existing studies have mainly focused on
fusing PDR and Wi-Fi, and comprehensive solutions for fusing
deep inertial odometry and Wi-Fi are lacking. Due to the
susceptibility of PDR methods to missed and false detections
in the gait detection process, coupled with the unreliability
of stride length estimation, we propose the DbDIO model,
which significantly reduces the number of model parameters
while ensuring performance. Regarding fusion positioning
research, particle filtering has strong adaptability to nonlinear
systems and minimal error accumulation. However, it faces
challenges such as slow computation speed and difficulty in
particle selection. Conversely, the EKF algorithm is simple
and requires fewer computational resources. Therefore, this
paper adopts EKF as the fusion method and a reasonable state
equation, using Wi-Fi fingerprint localization results and deep
inertial odometry outputs as observation values for the fusion
system to estimate more accurate positioning results.

III. METHOD AND MATERIALS

A. Dataset

UJIIndoorLoc dataset [43]: It provides a standardized
dataset for various Wi-Fi positioning algorithms. The dataset
includes fingerprint data from three buildings, but no test
samples are available. This paper subdivides the training
samples into a training set and a validation set in an 8:2
ratio. All validation samples are used as the test set. The time
interval between data collection for the training and test sets is
ten days. According to [44], data from phone 17 and irrelevant
APs were excluded, resulting in a total of 465 APs used in
this study. This dataset is referred to as Dataset1 in this paper
and is used for training and validating the proposed CDAELoc
model.

RoNIN dataset: It is the largest inertial navigation dataset
to date, with a total collection duration exceeding 42.7 hours.
The dataset includes IMU data collected from smartphones
and true 3D motion data outputted by Tango, an augmented
reality computing platform. This allowed application develop-
ers to create user experiences that included indoor navigation,
physical space measurement and augmented reality in a virtual
world. Similar technologies include ARCore [45], ARKit [46],
and AREngine [47]. The experiment participants could carry
the smartphones naturally during daily activities. Due to safety
and privacy concerns, only approximately 50% of the data
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from RoNIN have been released. This dataset is referred to as
Dataset2 in this paper and is used for training and validating
the proposed DbDIO model.

Local dataset: We collected real-world Wi-Fi and IMU
signals on the SIAT campus. The entire data collection process
was subdivided into two phases. Phase 1: only Wi-Fi signals
were collected and used to train the proposed CDAELoc
network model. A laser rangefinder provided the coordinates
of RPs. A total of 190 RPs were selected, and the data
were collected for approximately 25-30 s at each RP with
a sampling frequency of 1 Hz. Phase 2: Wi-Fi and IMU
signals were synchronously collected and used to validate the
performance of the proposed CDAELoc and DbDIO models
in real-world scenarios. The ground truth data were obtained
from AREngine. This dataset was referred to as Dataset3 and
used to evaluate the positioning performance of the proposed
WIO-EKF. The dataset acquisition location and reference
points coordinate distribution is shown in Fig. 1.

Fig. 1. Local dataset acquisition location and reference points coordinate
distribution.

B. WiFi-Based Indoor Location

Firstly, we need to process the fingerprint data in the dataset
so that the model can converge and achieve better positioning
accuracy. The data processing flowchart is shown in Fig. 2. It
mainly includes data augmentation and normalization.

Data

Label

WiFi 
Fingerprint

Position 
coordinate

AP Sort

Data
Normalization

Add 
Noise

Data
Normalization

Sample

Reshape

Data Augmentation Data Normalization

Fig. 2. Data processing flowchart.

1) Wi-Fi Fingerprint Data Augmentation:
AP Sort: The data sparsity problem of Wi-Fi fingerprint

data will affect the model’s performance. We want to use
the AP sorting method to do data augmentation on Wi-Fi
fingerprint data to form a globally sparse but locally dense
data form. Assuming that the RP coordinates are known, we
identify all RPs with RSS exceeding -110 dBm for APi (i.e.,
the i-th AP) and then calculate the average coordinates of
RPs as the approximate coordinates for APi. Next, we sort

the APs based on their coordinates in a specific direction,
transforming the original Wi-Fi fingerprints into data with
spatial information about APs.

Reshape: To utilize 2D convolution for fingerprint data
processing, the dimensions of the data are changed from
1×m to 3×n, where m represents the number of APs. The
UJIIndoorLoc dataset covers three buildings on the Jaume I
University campus in Spain. After obtaining the location of
each AP, it was observed that the number of APs in buildings
1, 2, and 3 is as follows: 173, 146 and 146. In order to keep the
number of APs unchanged after the input Wi-Fi fingerprints
undergo dimension reduction in the encoder and upsampling in
the decoder, we supplement each building’s APs to 176, filling
the added data with -110 dBm. Subsequently, the dimensions
are transformed into 3×176.

Add noise: To enhance the model noise resistance and
robustness, this study introduces noise to the original Wi-
Fi fingerprint data, including masking and Gaussian noises.
Masking noise randomly sets a portion of the input data to -
110 dBm, simulating signal variations caused by human body
obstruction. Gaussian noise, on the other hand, is a type of
noise that follows a normal distribution and is used to simulate
small-scale signal fluctuations over time. This study first adds
Gaussian noise with a mean of 0 and a standard deviation of
3 to the data where the RSS values are not -110 dBm. Then,
masking noise is applied to randomly set 30% of the data in
each fingerprint to -110 dBm.

2) Wi-Fi Fingerprint Data Normalization:
Data normalization is performed on the fingerprint data to

ensure that the RSS values, which typically range from -110
to 0 dBm, are within a suitable range for model convergence.

RSSi = 1− RSSi

RSSmin
(1)

where RSSmin represents the minimum RSS value, which
in this paper is -110 dBm . After normalization, the distribution
of Wi-Fi fingerprint data becomes more uniform and no longer
exhibits bias, and the variance is relatively small [48], thereby
accelerating network training.

Additionally, the position coordinates also need to be nor-
malized.

Posj =
Posj

Maxpos −Minpos
(2)

where Maxpos and Minpos are the maximum and min-
imum position coordinates in the fingerprinting database,
respectively.

3) The proposed CDAELoc network:
The parameter settings of the proposed model, including the

CDAE and regression module, are listed in Table I.
The CDAE module utilizes Wi-Fi fingerprint data with

artificially added Gaussian noise and masking noises to recon-
struct the original Wi-Fi fingerprints. This process helps extract
robust features from noisy Wi-Fi fingerprints. The regression
module takes the feature maps extracted by the encoder as
input data, and the labels are the position coordinates from the
fingerprinting database. The objective is to predict the user’s
location. Each max-pooling layer and the last convolutional
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TABLE I
STRUCTURE AND PARAMETERS OF CDAELOC

Layer
Type

Filter
Count

Filter
Size

Stride
Value

Output
Size

CDAE: Encoder

Conv 32 2×2 1 3×176×32
MaxPool / 1×2 / 3×88×32

Conv 16 2×2 1 3×88×16

CDAE: Decoder

UpSample / 1×2 / 3×176×16
Conv 1 2×2 1 3×176×1

Regression module

Conv 32 2×3 1 3×88×32
MaxPool / 1×2 / 3×44×32

Conv 32 2×3 1 3×44×32
MaxPool / 1×2 / 3×22×32

Conv 24 3×1 1 1×19×24
Flatten / / / 456
MLP / / / 2

layer are followed by a batch normalization (BN) layer and a
rectified linear unit (ReLU) layer. The multilayer perceptron
(MLP) consists of six fully connected layers, with hidden
neuron numbers of 128, 256, 128, 64, 32, and 2. Except for
the last layer, each fully connected layer is followed by a BN
layer. The experimental parameter settings are shown in Table
II. the activation function of the full connection layer adopts
tanh.

TABLE II
WI-FI FINGERPRINT LOCALIZATION EXPERIMENT PARAMETER SETTINGS

Hyperparameters CDAE Regression module

batch size 30 100
activation ReLU ReLU tanh

optimizer Adam Adam
learning rate (lr) 0.001 0.001

epochs 30 200
loss MSE MAE

C. IMU-Based Indoor Location

1) The proposed DbDIO network:
We drew inspiration from existing studies [33], [49], [50]

and proposed a dual-branch deep inertial odometry (DbDIO)
model. The overall architecture of the constructed network
model is shown in Fig. 3.

The model takes normalized IMU data as input and predicts
the average velocity within each time window as the label.
The model consists of two branches, each composed of a
1D convolutional layer, a CBAM attention module [51], a
BiLSTM, and a temporal attention (TA) module [33]. The
convolutional kernel sizes differ between the two branches,
allowing them to capture features of different scales. The

Cat

Conv BN ReLU Pooling CBAM BiLSTM TA MLP

Vx

Vy

OutputNormalized IMU 
measurement

Fig. 3. The framework of the DbDIO model.

number of convolutional kernels is set to 64, and the stride
is set to 2. The maximum pooling layer has a stride of 2. The
CBAM attention module is used to refine the input features.
Then, a BiLSTM is applied to each branch to extract long-
term temporal features. The BiLSTM has two layers, with
64 hidden neurons in each layer, and a dropout rate of 0.4
to mitigate overfitting. The TA module calculates the weights
for each time step by multiplying the feature vector of the
last time step with the transpose of the entire feature map and
applying the softmax function. The weights are then multiplied
by the feature map and accumulated along the temporal axis.
After concatenating the outputs of the two branches, three fully
connected layers are used as the regression module, with 512,
512, and 2 hidden neuron numbers. A ReLU layer follows each
fully connected layer except for the last layer, and a dropout
rate of 0.5 is set. In addition, MSE is employed as the loss
function to train the proposed DbDIO model. In addition, the
epoch is set to 256, and the learning rate is set to 0.001.

2) IMU data preprocessing:
The IMU data processing proposed by DIO [32] was

adopted in this paper. Specifically, the inertial signals are first
rotated to the navigation coordinate system of the reference
data collection device. Then, the normalized IMU data from
the last and current time windows are extracted as the input
for the model. The 2D average speed vector within the current
time window is calculated as the label for the model. In this
paper, time window is 200 (i.e. 1 s). Furthermore, the data
augmentation method proposed by Wang et al [20] is also
employed during model training. It involves adding random
horizontal and gravity-aligned rotations to the IMU data, and
applying the same horizontal rotations to the label values.
Wand et al. [20] have demonstrated that predicting the velocity
magnitude and the trigonometric values outperforms predicting
the 2D average speed vector alone. However, this approach
uses two separate, fully connected modules to predict velocity
magnitude and trigonometric values, leading to an increased
number of model parameters. In contrast, this paper focuses on
predicting the 2D average speed vector; thus, the model only
consists of a single fully connected module. Moreover, the
number of hidden neurons in each layer of the BiLSTM is set
to 64, significantly reducing the number of model parameters.
The dual-branch framework of the DbDIO model enhances its
performance.
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D. Wi-Fi-IO Fusion localization using EKF
We use the CDAELoc network model to estimate global

coordinates and the DbDIO network model to estimate relative
motion paths. The fusion system incorporates an EKF to fuse
the positioning results from both models. The DbDIO model
provides accurate relative motion paths, but the initial heading
of this path is unknown. This paper uses the first data from
a mobile phone’s built-in rotation vector sensor to perform a
simple correction. However, the rotation vector sensor may be
influenced by magnetic materials or may have inherent design
flaws, resulting in an offset angle ψ between the measurement
and the real heading. In this paper, we select the pedestrian’s
coordinates x, y, and the angle ψ as the system state vector:

X =
[
x y ψ

]
(3)

The observation vector is defined as Eq. (4):

Z =
[
xwifi ywifi simu timu

]T
(4)

where xwifi and ywifi represent the coordinates output by
the CDAELoc model. simu and timu are the 2D displacement
values obtained by accumulating the outputs of the DbDIO
model. The system state equation is as Eq. (5):

Xk =

xkyk
ψk


=

xk−1 + simu
k ∗ cosψk−1 − timu

k ∗ sinψk−1

yk−1 + simu
k ∗ sinψk−1 + timu

k ∗ cosψk−1

ψk−1

+Wk−1

(5)

where Wk−1 is the process noise. The Jacobian matrix can
be represented as Eq. (6):

A =

1 0 −simu
k ∗ sinψk−1 − timu

k ∗ cosψk−1

0 1 simu
k ∗ cosψk−1 − timu

k ∗ sinψk−1

0 0 1

 (6)

The observation matrix can be derived as Eq. (7):

H =


1 0 0
0 1 0
0 0 0
0 0 0

 (7)

After the linearization of the system, the state equation and
observation equation can be represented by Eq. (8) and Eq.
(9), respectively.

Xk =

1 0 −simu
k ∗ sinψk−1 − timu

k ∗ cosψk−1

0 1 simu
k ∗ cosψk−1 − timu

k ∗ sinψk−1

0 0 1

xk−1

yk−1

ψk−1


+Wk−1

(8)

Zk =


1 0 0
0 1 0
0 0 0
0 0 0


xkyk
ψk

+ Vk (9)

The covariance matrices Q and R corresponding to the
process noise Wk−1 and observation noise Vk, respectively,
are expressed by Eq. (10) and Eq. (11) to derive Vk:

Q =

0.01 0 0
0 0.01 0

0 0
(

45
360

)2
 (10)

R =


σ2
x 0 0 0
0 σ2

y 0 0
0 0 σ2

s 0
0 0 0 σ2

t

 (11)

where σ2
x and σ2

y are the variances of Wi-Fi positioning,
and σ2

s and σ2
t are the variances of relative displacement in

the inertial positioning module. The initial value of the state
covariance matrix P is not critical and will converge to the
true state after iterations. In this paper, it is set as Eq. (12):

P =

1 0 0
0 1 0
0 0 1

 (12)

IV. EXPERIMENTAL RESULTS

A. Evaluation metrics

This paper uses APE to evaluate the performance of the
proposed CDAELoc mode. PE refers to the position error,
derived as the Euclidean distance between the estimated and
real positions. A smaller APE indicates better positioning
accuracy.

Two standard metrics proposed by [52], namely the Ab-
solute Trajectory Error (ATE) and Relative Trajectory Error
(RTE), are used to quantitatively evaluate the performance of
the DbDIO model. ATE is defined as the RMSE between the
entire estimated path and the ground truth path. RTE is defined
as the RMSE within fixed time intervals, with each interval
set to 1 s (200 samples).

The cumulative distribution function (CDF) of the posi-
tioning error is used to evaluate the performance of the
proposed WIO-EKF. The CDF curve has the positioning error
on the x-axis and the cumulative probability values on the
y-axis. A steeper rise in the CDF curve indicates smaller
positioning errors for most samples. We also use APE, min
PE (Min PE), and max PE (Max PE).

B. Experimental Results of the CDAELoc model

1) Different Model Structures and Data Types:
To validate the effectiveness of the proposed regression

network model based on CDAE and the sorting-based data
augmentation method, this study conducted experiments using
sorted and unsorted fingerprint data on three different model
structures: (1) noise+CDAE+CNN: adding noise to the training
data and using CDAE, (2) noise+CNN: only adding noise to
the training data, and (3) CNN: normal CNN network. The
experiments were conducted on Dataset1 and Dataset3; the
results are shown in Table III.

Two following main findings were observed. Firstly, the
proposed model structure achieved the smallest APE overall,
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reducing APE by approximately 19 and 5% on Dataset1
and Dataset3, respectively. Adding noise to the training data
simulated the characteristics of Wi-Fi signals, and using CDAE
enabled the learning of more robust features, reducing the fluc-
tuation of Wi-Fi signals and the impact of random occlusions
caused by human bodies. Secondly, after sorting AP, the APE
values dropped by approximately 27% on Dataset1. However,
the performance improvement was smaller on Dataset3, which
may be attributed to Dataset3 only covering one building,
while Dataset1 covered three buildings. Sorting the APs ef-
fectively differentiated the Wi-Fi fingerprint between different
buildings.

TABLE III
PERFORMANCE EVALUATION OF DIFFERENT FRAMEWORK AND DATA

PREPROCESSING TYPES

Dataset Method Unsorted Sorted

Dataset1
CNN 8.23 7.72

Noise+CNN 15.36 7.92
Noise+CDAE+CNN 7.95 7.37

Dataset3
CNN 4.25 4.30

Noise+CNN 3.93 3.94
Noise+CDAE+CNN 3.98 3.83

2) Different masking noise parameters:
As the operation time of AP devices increases, some devices

may malfunction or be replaced with other AP devices, result-
ing in a growing disparity between the historical data in the
fingerprinting database and the data collected in the online
phase. To simulate this process, this study added masking
noise with different masking levels to the test data. The
masking level ranged from 0 to 0.5 with a step size of 0.05.
The comparative methods used in the study were k-nearest
neighbors (KNN), decision trees (DT), and random forests
(RF). Fig. 4 shows the experimental results. The results proved
that the proposed CDAELoc method performed best among
all masking levels. When the parameter was set to zero, the
APEs on Dataset1 for CDAELoc, KNN, DT, and RF were
7.37, 10.05, 12.07, and 9.48 m, respectively. On Dataset3,
the APEs were 3.83, 4.99, 5.78, and 4.68 m, respectively.
As the parameter value increased, all algorithms exhibited
a general trend of decreasing performance. However, the
proposed CDAELoc model exhibited the least performance
degradation. Among the other three methods, KNN performed
the best, reducing the errors on Dataset1 and Dataset3 by
10.94 and 2.3 m, respectively, when the parameter was set
to 0.3. In contrast, the proposed algorithm reduced the errors
by 3.72 and 0.88 m on Dataset1 and Dataset3, respectively.
The experimental results proved that the proposed CDAELoc
model exhibited robust noise resistance. Even with faulty or
replaced APs in the fingerprinting database, the algorithm
could still provide high positioning accuracy.

3) Comparison with other algorithms on Dataset1:
Table IV shows the evaluation of the positioning accuracy

of various algorithms.
The listed algorithms utilized CNNs or autoencoders to

construct their models. Among the compared algorithms,

(a)

(b)

Fig. 4. CDF curves of different algorithms.

Tang’s algorithm [15] achieved the best positioning accuracy
among the autoencoder-based methods, with an APE of 8.42
m. CHISEL [13] achieved the best positioning accuracy among
the CNN-based methods with an average error of 8.80 m. In
contrast, the proposed algorithm in this study achieved an APE
of 7.37 m, reducing the errors by 12.5% and 16.2% compared
to those of Tang et al. [15] and CHISEL of Wang et al. [13],
respectively. The experimental results demonstrate that the
proposed CDAELoc algorithm outperforms other algorithms
regarding positioning accuracy. Additionally, the proposed
algorithm only requires a simple reordering of fingerprint data
without complex data preprocessing. Moreover, the structure
of the proposed CDAELoc model is simple, effectively im-
proving the response speed of the algorithm.

C. Experimental Results of the DbDIO Model

1) Different branch numbers:
The proposed DbDIO model consists of two branches,

each with a different convolution kernel size, allowing for
the extraction of short-term features at different temporal
scales. Table V presents the performance comparison between
the single-branch and dual-branch network models. The table
shows that the dual-branch network structure performs better
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TABLE IV
COMPARISON WITH OTHER STUDIES ON DATASET1

Year Studies Model APE (m)

2017 Scalable DNN [23] SAE 9.29
2019 CNNLoc [21] CNN 11.78
2021 CHISEL [22] AE+CNN 8.80
2021 CCpos [25] CDAE+CNN 12.4
2022 Tang et al. [24] SAE+LSTM 8.42
2023 Alitaleshi et al. [26] EA+CNN 8.34
2023 Zhao et al. [27] GrowNet+ LSTM 8.49

CDAELoc (This work) CDAE+CNN 7.37

overall, especially in the ATE metric, where the dual-branch
structure shows an average reduction of 11.35%.

TABLE V
PERFORMANCE EVALUATION OF DIFFERENT NUMBERS OF BRANCHES

Metric Number of branches Dataset2 Dataset3

ATE (m)
Single 7.33 5.8
Dual 6.67 4.97

RTE (m)
Single 4.95 3.61
Dual 4.81 4.03

2) Comparison with other algorithms on Dataset3:
This study compared the proposed DbDIO model with other

deep learning algorithms on Dataset2, and the comparison
results are presented in Table VI. PDR and PDR (Tango) are
both PDR methods. Still, they differ in terms of the source of
input data. PDR utilizes data from a handheld mobile phone,
while PDR (Tango) utilizes data from a Tango mobile phone.
Both methods have a step length set to 0.67 m, while the
direction estimation data and gait detection data are sourced
from the mobile phone’s game rotation vector sensor and step
counter sensor, respectively. Compared to PDR, PDR (Tango)
demonstrates superior performance. This is because the Tango
phone is tightly bound to the user’s body, allowing the rotation
vector information outputted by the phone to approximate the
user’s posture changes. In contrast, a handheld phone can
be freely swung during data collection, resulting in signifi-
cant deviations in direction information from the user’s true
heading. Incorrect heading data leads to a significant decrease
in algorithm performance. The PDR (Tango) algorithm also
requires the device to remain relatively fixed to the user’s
body, while the proposed algorithm, ResNet, and DIO utilize
IMU data from handheld devices. The user has more freedom
to move the phone, resulting in fewer constraints and higher
performance. Among these five methods, the proposed DbDIO
algorithm achieved the best performance in almost all results,
particularly on unseen data. Compared to the best-performing
DIO algorithm among the other methods, the proposed DbDIO
algorithm achieved a reduction of 4.52 and 4.15% in ATE and
RTE metrics, respectively.

Table VII presents a complexity comparison between the
proposed model and two other models.

TABLE VI
PERFORMANCE COMPARISON WITH OTHER ALGORITHMS ON DATASET2

Metric Method Seen Unseen Mixed

ATE (m)

PDR 32.15 31.5 31.82
PDR (Tango) 11.86 9.56 10.71

R-RseNet 5.27 8.94 7.14
DIO 5.1 8.19 6.67

DbDIO (This work) 5.54 7.81 6.67

RTE (m)

PDR 26.21 25.18 25.69
PDR (Tango) 9.14 7.03 8.09

R-RseNet 4.22 6.68 5.47
DIO 3.68 6.03 4.87

DbDIO (This work) 3.84 5.78 4.81

TABLE VII
COMPARISON OF MODEL COMPLEXITY

Method Parameters Model size FLOPs

R-ResNet 4,634,882 17.76MB 38.25 M
DIO 6,143,747 23.52MB 73.6 M

DbDIO (This work) 732,192 2.81MB 34.87 M

In the table, FLOPs refer to the number of floating-point
operations, where a smaller value indicates a lower computa-
tional load for the model. The table shows that the proposed
model has the smallest number of parameters, model size, and
FLOPs. Compared to the DIO model, the proposed model
reduces the number of parameters by 88% and has a model
size of only 2.81. This indicates that the model can be easily
deployed on memory-constrained embedded devices or mobile
devices.

D. WiFi-IO Fusion localization using EKF

1) Performance comparison between fusion systems and
single techniques:

Fig. 5 shows the cumulative distribution function curves
of positioning errors for the CDAELoc, DbDIO and WIO-
EKF systems on Dataset3. As seen in Fig. 5, the probability
of positioning errors of a single positioning technology was
below 25% within 2 m, below 60% within 4 m, and over
30% for distances exceeding 5 m. In contrast, the WIO-EKF
system achieved the following probabilities of positioning
errors: about 40% within 2 m, below 85% within 4 m, and
6% for positioning over 5 m. These results indicate that
the proposed WIO-EKF system exhibits higher positioning
accuracy than the other two single techniques and achieves
the best performance in terms of positioning accuracy.

Table VIII presents the statistical summary of the aver-
age, minimum, and maximum positioning errors of the three
localization techniques. Since both the DbDIO model and
the WIO-EKF system have their initial coordinates set to
the real pedestrian coordinates, the Min PE metric is not
calculated. The WIO-EKF system exhibits an APE of 2.53
m, outperforming the CDAELoc and DbDIO models by about
34% and 42%, respectively. The WIO-EKF also significantly
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Fig. 5. CDF curves of different algorithms.

TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS

Method APE (m) Min PE (m) Max PE (m)

CDAELoc (Wi-Fi) 3.83 0.09 15.01
DbDIO (IMU) 4.39 - 14.98

WIO-EKF (fusion) 2.53 - 7.48

reduces Max PE. The Max PE for DbDIO is 14.98m,
which can be attributed to the accumulation of errors during
path calculation by inertial odometry and significant offset in
initial heading estimation using the rotation vector sensor.

Fig. 6 shows the computed localization results for a data
sequence in different algorithms. The Wi-Fi fingerprint local-
ization results are somewhat scattered and discontinuous, but
they are generally distributed around the actual trajectory; the
trajectory calculated by the inertial odometry module is very
similar in shape to the real trajectory, indicating that the deep
inertial odometry network model proposed in this paper has
high performance. However, due to the large error between
the initial heading output by the rotation vector sensor and
the real heading, the entire trajectory deviates significantly
from the real trajectory, with an average positioning error of
about 8.8 m; from the Fig 6, it can be seen that the EKF
fusion localization results have a high degree of overlap with
the real trajectory, with an average positioning error of about
1.6 m, which is an 81.8% improvement compared to the
inertial odometry, indicating that the EKF fusion system can
effectively reduce the impact of the initial heading error on
positioning performance.

2) The impact of the initial heading error of odometry:

To study the robustness of the WIO-EKF system to initial
heading errors, this paper used different offset values to the
initial heading of the DbDIO. The offset values ranged from
-180 to 180 degrees, with a step size of 10 degrees. The
counterclockwise direction was considered positive. Fig. 7
shows the experimental results: as the offset value increased,
the APE of DbDIO initially dropped and then grew. The best

Fig. 6. Comparison of trajectories of different algorithms in a specific sample.

positioning performance was achieved at an offset value of
about 0 degrees, and the positioning error exhibited significant
variation. However, the CDAELoc value did not affect the
offset model and consistently maintained a stable positioning
error. The WIO-EKF system provided the best positioning
for offset values ranging from -150 to 150 degrees. Overall,
its positioning error was smaller than that of the CDAELoc
model. However, when the offset angle exceeded 150 degrees
or was less than -150 degrees, the WIO-EKF positioning
performance was inferior to that of CDAELoc. This was
primarily due to the time required for the WIO-EKF system
to adjust, resulting in a performance loss in the early stages
of localization.

Fig. 8 shows a path comparison of one sequence with
clockwise heading angle offsets of -120°, 60°, 0°, 60°, 120°,
and 180°. It can be observed that the six paths calculated by
the WIO-EKF system exhibited slight differences only at the
beginning, while the later paths were essentially consistent.

Fig. 7. Performance evaluation of different initial yaw angle offsets of the
DbDIO network.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Path comparison of one sequence with different offsets of the initial heading angle: (a) 0°; (b) -60° (c) -120°; (d) 60°; (e) 120°; (f) 180°.

V. CONCLUSION

In the context of Wi-Fi-based localization, this study pro-
posed a Wi-Fi fingerprint data augmentation method, which
augmented the original Wi-Fi fingerprints by incorporating
coarse AP spatial information, thereby enriching the spatial
characteristics of the data. Compared to conventional machine
learning methods, the proposed CDAELoc network model can
provide reliable localization results even when some APs fail
or are replaced. In IMU-based localization, this paper proposed
DbDIO model, utilizing two branches with different convolu-
tion kernel sizes to extract features of varying temporal scales.
Each branch comprised a convolutional layer and a BiLSTM
layer to capture short-term and long-term temporal features.
The DbDIO network outperformed those of other available
studies with a BiLSTM layer to capture short-term and long-
term temporal features, providing a parameter reduction of
up to 88%. This study proposed a Wi-Fi fingerprinting and
deep inertial odometry fusion algorithm based on EKF for
multimodal sensor fusion localization. The proposed WIO-
EKF system utilized the predictions of CDAELoc and DbDIO
as the system’s observations. Experimental results proved
that the fusion algorithm achieved a lower APE than Wi-Fi
fingerprinting and inertial odometry alone, with 34% and 42%
improvements, respectively. Moreover, the WIO-EKF system
exhibited robustness to initial heading errors of the inertial
odometry, implying a certain level of independence from
magnetometers, which was not achievable by conventional
PDR/Wi-Fi fusion localization.

Compared to other models, the proposed one significantly
reduced the parameter count by an order of magnitude. How-

ever, as the reduction in FLOPs was slight, running DbDIO
on resource-constrained smart devices still poses a challenge.
Future work will apply lighter data-driven inertial odometry
models to three-dimensional multimodal sensor fusion and
real-time indoor positioning systems.
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