
1 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

SaRLog: Semantic-Aware Robust Log Anomaly 

Detection via BERT-Augmented Contrastive 

Learning 

 

Jilcha Lelisa Adeba, Deuk-Hun Kim, and Jin Kwak 
  

Abstract— Numerous deep learning-based methods have been 

developed to address the intricacies of anomaly detection tasks 

within system logs, presenting two significant challenges. First, 

balancing model complexity with the capacity to generate 

semantically meaningful representations for the downstream 

detection model, is a delicate task. Second, these methods 

generally depend on extensive labeled data for effective training. 

Despite efforts to address these challenges separately, a 

comprehensive solution that efficiently tackles both issues 

simultaneously are lacking. In response, we introduce SaRLog, a 

comprehensive solution designed to overcome the limitations of 

existing methods by leveraging the contextual semantic 

information extraction capability of bidirectional encoder 

representations from transformers (BERT) and the few-shot 

learning capability of the Siamese network. The Siamese 

network, featured with contractive loss, is implemented on top of 

a custom domain-specific fine-tuned BERT. Our comparative 

analysis validates SaRLog’s effectiveness against established 

baseline methods, demonstrating F1 score improvement of up to 

31.2% and 46.7% on BGL and Thunderbird datasets 

respectively. Moreover, additional experimental analysis aimed 

at evaluating the few-shot learning capability highlights the 

robustness and generalization efficiency of SaRLog. Thus, by 

overcoming dataset variability and improving model 

generalization, SaRLog advances log anomaly detection, thereby 

effectively handling complex log data challenges. 

 

Index Terms— Anomaly Detection, BERT, Contrastive Loss, IoT, 

Log Preprocessing, Pretrained Language Model, Siamese 

Network. 

 
This work was supported by the National Research Foundation of Korea 

(NRF) grant funded by the Korean government (MSIT) (No. 

2021R1A2C2011391) and was supported by the Institute of Information & 
communications Technology Planning & Evaluation (IITP) grant funded by 

the Korea government (MSIT) (No. 2021-0-01806, Development of security 

by design and security management technology in smart factory). 
(Corresponding author: Jin Kwak). 

Jilcha Lelisa Adeba is with ISAA Lab., Department of AI Convergence 

Network, Ajou University, Suwon 16499, South Korea (e-mail: 
jilchalelisa@ajou.ac.kr). 

Deuk-Hun Kim is with ISAA Lab., Institute for Computing and 

Informatics Research, Ajou University, Suwon 16499, South Korea (e-mail: 
dhkim.isaa@gmail.com). 

Jin Kwak is with Department of Cybersecurity, Ajou University, Suwon 

16499, South Korea (e-mail: security@ajou.ac.kr) 
 

 

Mentions of supplemental materials and animal/human rights statements 

can be included here. 

Color versions of one or more of the figures in this article are available 

online at http://ieeexplore.ieee.org 

I. INTRODUCTION 

ITHIN the contemporary landscape marked by the 

convergence of the Internet of Things (IoT) and 

cloud computing [1], log anomaly detection has 

emerged as pivotal for maintaining the integrity and security 

of complex, distributed systems [2]. With connected IoT 

devices projected to number 55.7 billion by 2025 potentially 

generating approximately 80 zettabytes of data [3], the 

efficient management, analysis, and interpretation of log data 

becomes critical to guarantee that interconnected systems 

operate reliably and securely. Automated log anomaly 

detection systems, particularly those powered by deep learning 

technologies, are essential tools, offering a swift and 

sophisticated means for identifying and addressing potential 

threats and anomalies within vast networks [4]. This 

technological synergy enhances the precision and speed at 

which anomalies are detected, significantly reducing the risk 

of system failures and cybersecurity threats.  

Log messages, often denoted as logs, are semi-structured 

records of events occurring within a system, application, or 

device [5], [6]. These records, generated to capture 

information about the system’s behavior, errors, warnings, and 

other relevant activities, are crucial for detecting security 

breaches, software errors, system faults, and performance 

issues [3]. At the core of the log message is an unstructured 

statement, formulated during the software development 

process, comprising constant and variable parameters [6]. The 

constant part discloses the event template, while the variable 

parts contain parameters that convey dynamic runtime 

information. 

A central aspect shared among existing log anomaly 

detection methodologies is log parsing [7], [8], [9], a 

technique that translates each log message into its specific 

static event template with associated variable parameters. This 

is followed by the construction of log sequences [8], [10], [11] 

and the transformation of these sequences into vector 

representations [11], [12], [13], which are subsequently fed 

into downstream anomaly detection models. Previous studies 

predominantly utilized static embedding techniques such as 

word2vec and FastText for constructing vector representations 

[8], [11], [14]. However, these methods often neglect the 

semantic information inherent in raw log messages, thus 

decreasing the detection system’s robustness. Recent studies 

indicate a shift toward using pretrained language models 

(PLMs) such as bidirectional encoder representations from 

transformers (BERT) and generative pretrained transformers 

W 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



2 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

(GPT) for generating representation vectors for the 

downstream detection task [11], [12], [13]. This shift 

highlights the importance of capturing semantic contextual 

information present in log data, a crucial element in improving 

the performance of log-based anomaly detection systems. 

Nonetheless, these off-the-shelf PLMs present certain 

limitations when applied to domain-specific tasks such as 

intrusion detection [15], [16]. The primary challenge stems 

from their limited understanding of specialized terminologies 

within the domain. Section III discusses this issue in the 

context of log anomaly detection. Moreover, the diverse 

distributional and structural characteristics of log data across 

different datasets (Section III), combined with the challenges 

of acquiring sufficient training data [17], emphasize the 

necessity for developing robust detection systems capable of 

reliably managing both environmental and data drift, thus 

ensuring their effectiveness across various contexts and 

datasets. In response, we introduce a contrastive learning-

based log anomaly detection method named SaRLog 

(semantic-aware robust log) anomaly detection, leveraging a 

domain-specific fine-tuned PLM and a custom Siamese 

network.  

The key contributions of this work lie in the innovative 

approach to addressing two critical challenges. First, the 

proposed model effectively balances the model’s overall 

complexity and efficient representation, combining contextual 

semantic representations’ capability of a domain-specific pre-

trained BERT-based language model with the few-shot 

learning capability of a Siamese architecture. Second, the use 

of contractive loss and a fine-tuned domain-specific 

representation model enhances adaptability to rare and subtle 

anomalies, thereby reducing dependence on extensive labeled 

datasets.  Furthermore, through rigorous experimental analysis 

on the BGL and Thunderbird datasets, SaRLog demonstrated 

superior performance compared to baseline methods, 

achieving remarkable F1-scores of 0.9880 and 0.9993, 

respectively. By addressing the challenges posed by dataset 

variability and enhancing model generalization, SaRLog 

contributes to the advancement of anomaly detection solutions 

capable of effectively navigating the complexities of diverse 

log data.  

The article is structured as follows: Section II reviews prior 

studies on common approaches in log anomaly detection, 

covering log parsing, representation, and detection. Section III 

addresses challenges in pretraining language models on log 

data and examines the potential advantages of domain specific 

PLMs. Section IV presents technical details of the proposed 

model, including preprocessing, context-aware semantic 

representation, and contrastive learning-based detection. 

Evaluation results and comparisons with baseline methods are 

discussed in Section V. Limitations and future research 

directions are outlined in Section VI. Finally, Section VII 

offers concluding remarks. 

II. RELATED WORKS 

Several existing log-based anomaly detection approaches 

rely on effective log parsing methods [18], [19], [20], [21] to 

extract structured event templates from raw log data [7], [8], 

[9]. IPLOM [18] utilizes hierarchical clustering alongside 

heuristic strategies, such as grouping by log length and word 

position, and employing word mapping relationships to 

enhance parsing accuracy. Similarly, SLCT [19] introduces a 

clustering algorithm that identifies frequent words in log 

content, facilitating parsing through frequency-based 

clustering. Drain [20] employs a method that leverages natural 

language processing (NLP) to filter out irrelevant variables 

and constructs parse trees based on the length of log messages, 

thus enabling structured log template parsing. Spell [21] 

presents a streaming-based parsing technique using the longest 

common subsequence, enabling the extraction of structured 

log templates and their parameters. However, these techniques 

often rely on predefined templates or patterns to parse logs, 

making them less adaptable when faced with diverse and 

evolving log data. Additionally, they may struggle with 

handling noisy or incomplete logs, which can lead to 

inaccurate parsing results. 

 Moreover, log anomaly detection necessitates the efficient 

representation of log messages, where either raw log messages 

or parsed log sequences are transformed into meaningful 

representation vectors. Various methods employing different 

neural network-based representation techniques, including 

static and contextual embeddings, have been proposed. 

Inspired by word2vec, static log representation methods such 

as logkey2vec [7] and Template2Vec [8] have been widely 

adopted. However, these methods do not fully exploit the rich 

contextual semantic information embedded within log 

messages. Consequently, recent studies [11], [12], [13] have 

emphasized the use of semantic and context-aware 

representation models such as GPT, BERT, and RoBERTa. 

Conversely, prior studies underscore the significance of 

capturing temporal dependencies within log messages for 

downstream detection tasks, given that anomalies are often 

discerned by analyzing sequences of log events [22]. Various 

techniques have been developed, including CNN-based [7], 

[9], [23], RNN-based [8], [23], [10], and attention-based [8], 

[11], [12], [13] approaches. DeepLog [10] utilizes LSTM to 

model temporal dependency for log entry-level online 

anomaly detection. LogAnomaly [8] proposes an attention-

based LSTM combined with template2vector. LogRobust [11] 

employs Bi-LSTM and attention mechanisms to extract 

bidirectional dependencies. Furthermore, PLELog [14] and 

LogAT [23] tackle log anomaly detection through semi-

supervised and transfer learning, respectively, aiming to 

alleviate the need for extensive manually labeled data. 

However, a key limitation of these studies is their reliance on 

static representation methods, which may compromise the 

capture of nuanced semantic information, particularly in 

complex log structures. 

Furthermore, NeuralLog [12] and LAnoBERT [13] aim to 

enhance robustness and generalizability in log anomaly 

detection utilizing the BERT-based representation approach. 

However, exploiting contextual semantic information 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



3 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

TABLE I 

DISTRIBUTION OF THE TOP 10 WORDS IN BGL AND THUNDERBIRD DATASETS 

Rank 
BGL normal samples BGL anomalous samples Thunderbird normal samples Thunderbird anomalous samples 

Vocabulary Proportion Vocabulary Proportion Vocabulary Proportion Vocabulary Proportion 

1 ras 0.1257     ras 0.1122     may  0.1374     opendemux  0.0990     

2 kernel  0.1189     fatal 0.1121     kernel  0.0517     may  0.0961     

3 info  0.1093     kernel  0.0990     user  0.0383     error 0.0593     

4 generating  0.0499     error  0.0700     mosal 0.0330     in 0.0518     

5 iar 0.0186     interrupt  0.0697     va 0.0234     pbsmom 0.0495     

6 dear  0.0182     data  0.0696     protctx 0.0229     connection 0.0495     

7 alignment 0.0171     tlb  0.0492     from 0.0228     refused  0.0495     

8 exceptions 0.0171     to  0.0215     cannot 0.0224     cannot  0.0495     

9 microseconds 0.0158     on  0.0213     mosalvirttophysex 0.0223     connect  0.0495     

10 error 0.0154 message 0.0208 retrieve 0.0223 to 0.0495   

 embedded in log messages often involves complex models 

such as transformers for downstream detection tasks [12], 

aiming to process the high-dimensional vector output of the 

representation model. Despite the advantages of improved 

semantic understanding, the risk of memorization is a 

significant concern when using complex models such as 

BERT and transformers in combination. Memorization refers 

to a model learning the specifics and noise in the training data 

to the extent that it adversely affects the model’s performance 

on new, unseen data, compromising its generalization ability 

[24]. Hence, in this study, we propose an innovative approach 

that efficiently addresses the aforementioned challenges.  

III. SIGNIFICANCE OF DOMAIN SPECIFIC LANGUAGE MODEL IN 

LOG ANOMALY DETECTION 

Recent studies highlight the widespread adoption of BERT 

and its variants for generating contextual and semantically 

meaningful representations for log-based anomaly detection 

tasks [11], [12], [13]. BERT is a transformer encoder-based 

language model pretrained on a massive corpus of publicly 

available text data [25]. Given a sequence of input tokens 

{𝑥𝑖
𝑇}𝑖=1

𝑛 , the objective of BERT with masked language 

modeling is to maximize the probability of predicting the 

masked tokens 𝑥𝑖
𝑇 given the surrounding context  𝑥<𝑖

𝑇  and 𝑥>𝑖
𝑇 , 

as shown in (1).  

𝑃(𝑥) =  𝑎𝑟𝑔𝑀𝑎𝑥𝜃 ∏ 𝑃(𝑥𝑖|𝑥<𝑖, 𝑥>𝑖  ; 𝜃)
𝑛

𝑖=1
                            (1) 

where, 𝜃 is the model’s parameters and 𝑛 is sequence length. 

Furthermore, BERT employs a multi-head attention 

mechanism to enhance the training [25]. Given a sequence of 

input tokens 𝑥𝑇 = {𝑥1
𝑇 , 𝑥2

𝑇 , . . .  , 𝑥𝑛
𝑇}, where 𝑛 is the sequence 

length, the self-attention mechanism of BERT computes the 

attention scores between all pairs of tokens using multiple sets 

of Query (Q), Key (K), and Value (V) matrices, as shown in 

(2). The self-attention mechanism is subsequently applied ℎ 

times, where ℎ is the number of attention heads, with different 

learned projection matrices and the outputs of each attention 

head are concatenated and linearly transformed to obtain the 

final vector. This enables BERT to capture diverse contextual 

information, learn richer representations, mitigate overfitting, 

and achieve better generalization on downstream NLP tasks 

such as text classification [26], named entity recognition [27], 

and sentiment analysis [28]. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾. 𝑉) =  𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉                           (2) 

where 𝑄 is a query matrix with dimension (𝑛 𝑥 𝑑𝑄), 𝐾 is a key 

matrix with dimension ( 𝑛 𝑥 𝑑𝑘 ), 𝑉  is a value matrix with 

dimension ( 𝑛 𝑥 𝑑𝑣 ), and 𝑑  is the dimensionality of the 

corresponding vector. 

 

Although BERT and BERT-based PLMs have shown 

impressive capabilities in various NLP tasks, their application 

to log-based anomaly detection presents significant challenges 

[29]. Their primary limitation is that, being inherently generic, 

they may lack the domain-specific knowledge essential for 

understanding specialized terminology found in system logs 

[30]. The unique vocabulary, error codes, and contextually 

relevant terms typical of system logs may not be fully 

captured, leading to a suboptimal semantic representation of 

log entries. For instance, terms such as “thread,” “driver,” 

“kernel,” and “key” may hold different meanings in general 

English compared with their usage within log messages, 

illustrating the difficulty in achieving accurate word 

comprehension within the distinct linguistic context of system 

logs. 

Moreover, system log datasets are characterized by sparsity 

and comparatively short sentence lengths. Table I 

demonstrates the distribution of the top ten words in two 

publicly available datasets, BGL and Thunderbird, following 

the text cleaning process. The total counts of unique words in 

BGL for normal and anomaly samples are 769 and 209, 

respectively, whereas for the Thunderbird dataset, these counts 

are 3002 and 65. Despite this, the top ten most frequent words 

in the normal samples of the BGL and Thunderbird datasets 

account for 50.6% and 39.65% of the total occurrences in their 

corresponding class for each dataset, respectively. Similarly, 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

the top ten most frequent words in the anomalous sample of 

the BGL and Thunderbird datasets constitute 64.54% and 

60.32% of the overall anomalous samples of each dataset, 

respectively. Nonetheless, these datasets show minimal 

commonality in the most frequent terms, with “kernel” being 

the sole term to appear in the normal samples of both. 

The observed statistical information highlights the potential 

challenges associated with pretraining language models, such 

as BERT [25], on system log datasets. These challenges fall 

into two main categories. The first is that the limited context 

provided by small vocabulary size undermines the model’s 

ability to capture rich contextual information, potentially 

leading to suboptimal representation. The second challenge is 

the skewed vocabulary coverage caused by the dominance of a 

few frequent words, which may limit exposure to less 

common vocabulary during pretraining, adversely affecting 

the model’s ability to generalize to new words. To address this 

issue, either fine-tuning models on a large corpus of log 

datasets from diverse sources or utilizing pretrained models 

specifically adapted to relevant target domains, such as 

cybersecurity is necessary. Such approaches can enhance the 

model’s ability to grasp the nuances of language and 

terminology present in system logs, thereby improving 

performance and generalization across different log datasets. 

IV. PROPOSED METHOD (SARLOG) 

To enhance anomaly detection in system logs, we present 

SaRLog, a method that combines domain-specific PLMs for 

semantic and context-aware feature extraction with a Siamese 

network employing contrastive loss for effective similarity 

learning. This section provides an in-depth overview of 

SaRLog’s operation, covering preprocessing, representation, 

and detection procedures. Fig. 1 illustrates the overall 

architecture of the proposed approach. 

A. Preprocessing 

The preprocessing stage encompasses a text cleaning and 

tokenization phase. During the cleaning phase, raw log 

messages are sanitized and standardized by removing 

irrelevant features. The input text 𝑥  undergoes a series of 

operations 𝑥𝑐𝑙𝑒𝑎𝑛  =  𝐶𝑙𝑒𝑎𝑛𝑡𝑒𝑥𝑡(𝑥)  to improve its quality 

prior to tokenization. This converts all characters to lowercase, 

removing HTML tags, special characters, punctuation, and 

numerical values. For example, a raw log message, 

“APPREAD 1117885521 2005.06.04 R13-M1-N8-I:J18-U11 

2005-06-04-04.45.21.913685 R13-M1-N8-I:J18-U11 RAS 

APP FATAL ciod: failed to read message prefix on control 

stream (CioStream socket to 172.16.96.116:35646”, is 

transformed into “appread ras app fatal ciod failed to read 

message prefix on control stream ciostream socket to.” 

The cleaned text, 𝑥𝑐𝑙𝑒𝑎𝑛, is then subjected to tokenization, 

ensuring the input is devoid of noise and primed for the 

extraction of semantically rich representations. We utilize a 

custom tokenizer algorithm, as proposed in [15], which 

segments lengthy words into smaller tokens to better manage 

out-of-vocabulary (OOV) words. This tokenizer, based on the 

byte pair encoding (BPE) method [31], is tailored for handling 

OOV and domain-specific terms within the cybersecurity 

field. This adaptation is critical for efficient log-based 

anomaly detection due to potential vocabulary overlaps 

between system log messages and cybersecurity texts [22]. 

Terms related to network configurations, user authentication, 

and system events often indicate security incidents within 

system logs. 

Subsequently, special tokens for classification [CLS] and 

separation [SEP] will be added to the resulting sequence of 

tokens. The sequence is then adjusted to a uniform length of 

512 through padding or truncation, and an attention mask is 

created to identify the elements within the sequence that 

require attention. The final product of the preprocessing stage 

is a token sequence 𝑥𝑇 = {[𝐶𝐿𝑆], 𝑥1
𝑇 , 𝑥2

𝑇 , . . . , 𝑥 𝑛
𝑇 , [𝑆𝐸𝑃]} , 

where T denotes a token, and n represents the sequence length, 

fixed at 512. 

B. Context-Aware Semantic Representation 

This step involves mapping the sequence of input tokens to 

numerical vectors, with a deliberate emphasis on ensuring that 

these vectors accurately encapsulate the semantic and 

contextual nuances inherent in the respective tokens. As 

discussed in Section III, BERT models pretrained on general 

English text face challenges in accurately capturing the unique 

linguistic context of system logs [29], [30]. To address this, 

we employ SecureBERT [15], a domain-specific model that 

 

Fig. 1. Overall architecture of the proposed model. 

 

“APPREAD 1117885521 2005.06.04 R13-M1-N8-I:J18-U11 

2005-06-04-04.45.21.913685 R13-M1-N8-I:J18-U11 RAS 

APP FATAL ciod: failed to read message prefix on control 

stream (CioStream socket to 172.16.96.116:35646” 

“appread ras app fatal ciod failed to read message  

prefix on control stream ciostream socket to.” 

BERT body

(stack of 12 transformer encoder 

layers)

Input tokens

 Arithmetic mean of the resulting 

word embeddings

Cleaning operation

 

BPE based domain specific custom 

tokenizer [4]

e2 e3 ... en

Token embedding

e1

h1 h2 h3 ... hn

Last layer hidden representation.

CLS t1 t1 ... SEP

Multiplexer (x1 , x2, label)

fθ(x1) fθ(x2)

E(x1, θ) E(x2, θ) 

θ

Sim(E(x1), E(x1), label) 

Anomaly/

normal

Contrastive loss

x1 x2

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

has been fine-tuned on a substantial corpus of cybersecurity 

text. SecureBERT features 12 hidden layers, each with an 

output dimension of 768, 12 attention layers, and a feed-

forward network size of 2048, with an input size of 512. 

For a given sequence of input tokens {𝑥𝑖
𝑇}𝑖=1

𝑛 , the objective 

of the representation model is to produce a contextual and 

semantical embedding vector 𝑥𝑒 = {𝑥1
𝑒 , 𝑥2

𝑒, . . . , 𝑥 𝑛
𝑒 }  ∈  𝑅𝑑 , 

where 𝑒 represents embedding, 𝑛 is the sequence length, and 𝑑 

is the dimensionality of each embedding vector, set at 768. In 

our study, we specifically leveraged the word embeddings 

output by the last encoder layer to produce a comprehensive 

representation, 𝑥𝑟 ,  for a given log message. We adopted a 

straightforward aggregation method, specifically, calculating 

the arithmetic mean of the resulting word embeddings {𝑥𝑖
𝑒}𝑖=1

𝑛  

across all words in the log message, as shown in (3). This 

aggregation approach enables the distillation of semantic 

information from individual word embeddings into a unified 

representation for the entire log message, thereby enhancing 

the effectiveness of the subsequent anomaly detection task. 

𝑥𝑟 =
1

𝑛
∑ 𝑥𝑖

𝑒
𝑛

𝑖=1
                                                                            (3) 

where 𝑥𝑟 is the final representation vector, 𝑛 is the sequence 

length, and 𝑥𝑖
𝑒 is the word embedding for the 𝑖𝑡ℎ word in the 

log message. 

C. Contrastive Learning-based Detection 

Given a pair of input vectors 𝑥1
𝑟 and 𝑥2

𝑟, encapsulating rich 

semantic information captured by the representation model, 

and a Siamese network with a shared trainable parameter 𝜃, 

the training objective is to optimize 𝜃 such that the similarity 

metric  𝑆(𝑥1
𝑟 , 𝑥1

𝑟) identifies patterns indicative of the similarity 

or dissimilarity between the two vectors. The Siamese network 

consists of two identical fully connected neural networks. 

Each network had an input size of 768, corresponding to the 

embedding dimension of the representation model, and 

included two hidden layers of sizes 64 and 32 with ReLU 

activation functions, culminating in an output layer of size 1. 

For implementation, a single network was constructed and 

utilized sequentially for both pairs of input data. To avoid 

confusion, we refer to these as subnetworks 1 and 2, 

respectively. Each subnetwork is represented by the 

embedding function 𝑓𝜃(𝑥1
𝑟) =  𝐸(𝑥1

𝑟 , 𝜃) and  𝑓𝜃(𝑥2
𝑟) =

 𝐸(𝑥2
𝑟 , 𝜃) , where 𝐸  denotes embedding, and θ denotes the 

shared trainable parameter, Fig. 1. The similarity metric S 

computes the geometric relationship between numerical 

vectors derived from the embedding functions, as shown in 

(4). Furthermore, a multiplexer module, acting as a pooling 

layer, was designed that efficiently presents input pairs to the 

network, along with corresponding labels indicating their 

similarity or dissimilarity, as shown in Fig. 1. 

𝑆(𝑥1
𝑟 , 𝑥2

𝑟) = 𝑠𝑖𝑚(𝑓𝜃(𝑥1
𝑟), 𝑓𝜃(𝑥2

𝑟))                                               (4) 

A contrastive loss function, as formulated in (5), was 

employed to refine the training objective, optimizing the 

model to reduce the distance between embeddings of similar 

inputs while increasing the distance between embeddings of 

dissimilar inputs. Throughout the training process, the 

parameter 𝜃  is updated concurrently for both subnetworks, 

ensuring the acquisition of discriminative features. These 

features enable the network to generate efficient embeddings 

for both inputs. The Euclidean distance 𝑑  between the two 

embeddings is calculated, and the contrastive loss is then 

determined based on a margin parameter m and the Euclidean 

distance 𝑑 , as expressed in (5). The margin parameter m 

establishes a threshold delineating the proximity or disparity 

required between the embeddings of similar and dissimilar 

samples.  

𝐿(𝑦, 𝑑) = (1 − 𝑦) ∗  
1

2
∗  𝑑2 + 𝑦 ∗

1

2
∗ 𝑚𝑎𝑥(0, 𝑚 − 𝑑)2       (5) 

where 𝑦  is the binary label, 1 for similar inputs with 0 for 

dissimilar inputs, and 𝑑 is the Euclidian distance between the 

embeddings of 𝑥1and 𝑥2. 

The right-hand side of (5) is designed to minimize the 

distance between embeddings of similar pairs, imposing 

penalties for larger distances, thus fostering proximity. 

Conversely, the left side of the equation motivates the 

embeddings of dissimilar pairs to maintain a separation of at 

least 𝑚. If the distance d exceeds m, further adjustment for 

that pair is unnecessary, as the loss becomes zero. During the 

training phase, the objective is to reduce the aggregate 

contrastive loss across all input pairs within the training 

dataset, as expressed in (6). In the testing phase, each sample 

from the test dataset is compared with a reference data point 

from the normal samples. A sample is anomalous if the 

distance between the two pairs surpasses the predefined 

margin parameter m; otherwise, it is deemed normal. 

𝐽 =  
1

𝑁
∑ 𝐿(𝑦𝑖  , 𝑑𝑖)

𝑁

𝑖=1
                                                                  (6) 

where 𝑁 is the total number of pairs in the training dataset, 

with 𝑦𝑖  and 𝑑𝑖  respectively corresponding to the binary label 

and the distance for the 𝑖𝑡ℎ pair. 

V. EXPERIMENTAL ANALYSIS 

The experimental analysis, performed on the BGL and 

Thunderbird datasets, showcases the superior performance of 

the proposed approach (SaRLog) compared to baseline 

methods. This section provides an in-depth assessment of the 

model’s performance across several dimensions, including the 

efficacy of the representation model, the model’s performance 

in few-shot learning scenarios, and its comparative 

performance against baseline models. 

A. Experimental Setting 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



6 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 
TABLE III 

PERFORMANCE OF SALOG AGAINST BASELINE METHODS 

 

Baseline Methods 

BGL Thunderbird 

Precision Recall F1-score Precision Recall F1-score 

LogAnomaly [8] 0.972 0.944 0.963 0.611 0.780 0.684 

LogRobust [11] 0.625 0.967 0.753 0.616 0.781 0.681 

NeuralLog [12] 0.985 0.985 0.985 0.933 1.000 0.964 

PLELog [14] 0.965 0.999 0.982 0.821 0.952 0.881 

SaRLog (ours) 0.994 0.982 0.988 1.000 0.999 0.999 

 

TABLE IV 

PERFORMANCE OF SARLOG WHEN USING DIFFERENT 

EMBEDDING ARCHITECTURE 

Embedding 

Architecture 

Dataset Precision Recall F1-score 

Word2vec  BGL 0.842 0.977 0.885 

Thunderbird 0.801 0.960 0.873 

GPT-2  BGL 0.985 0.910 0.946 

Thunderbird 0.992 0.952 0.971 

BERT  BGL 0.955 0.970 0.963 

Thunderbird 0.993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.999 0.995 

RoBERTa  BGL 0.965 0.981 0.973 

Thunderbird 1.000 0.999 0.999 

SecureBERT  BGL 0.994 0.982 0.988 

Thunderbird 1.000 0.999 0.999 

 

TABLE II 

STATISTICAL INFORMATION OF THE DATASETS 

Datasets Log 

event

s 

Training data Testing data 

Total Alert Total Alert 

BGL 
1,847 55,401 25,066 13,851 6,309 

Thunderbird 2,880 400,000 193,840 100,000 3,460 

 

The experimental analysis utilized Visual Studio Code 

alongside the PyTorch framework for machine learning tasks 

and Python 3.11 for coding and experimentation. The 

experiments were conducted on a high-performance 

workstation equipped with a 64-bit Ubuntu 22.04.3 LTS OS, 

powered by an Intel Xeon®  Gold 5122 CPU @ 3.60GHz with 

8 cores, 128GB of RAM, and an NVIDIA Quadro P5000 

GPU. The training phase spanned 10 epochs, incorporating a 

20% dropout rate, using the Adam optimizer with a learning 

rate of 0.01, and binary cross-entropy with logits 

(BCEWithLogitsLoss) served as the loss function. The task of 

log anomaly detection was approached as a binary 

classification problem, with the model’s performance being 

assessed via precision, recall, and the F1-score. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃  + 𝐹𝑃 
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃 

𝑇𝑃 + 𝐹𝑁 
, 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =

 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
)  , where TP = true positive, FP = false 

Positive and FN = false negative. These measures provide a 

quantifiable evaluation of the proposed model’s effectiveness 

and facilitate a fair comparison with baseline methods. 

B. Datasets 

The proposed model’s performance and its comparison with 

prior approaches were evaluated using two publicly available 

datasets: BGL and Thunderbird [6]. This section introduces 

these datasets and relevant statistical information, contributing 

to an understanding of their scope and the context of the 

experimental analysis. Additionally, Table II presents detailed 

statistical data pertaining to the portions of the dataset utilized 

for training and testing. 

The BGL dataset originates from a supercomputing system 

and comprises 4,747,963 log messages that were collected by 

the Lawrence Livermore National Laboratory (LLNL) [6]. 

Each message within this dataset has been manually classified 

as either normal or anomalous, with 348,460 identified as 

anomalous. Similarly, the Thunderbird dataset [6] includes a 

total of 44,841,030 entries, consisting of 41,592,791 alerts and 

3,248,239 non-alerts. This dataset was sourced from the 

Thunderbird supercomputer system at the Sandia National 

Laboratories (SNL). The detailed presentation of these 

datasets provides researchers with a foundation for 

understanding the experimental setup and the basis for a fair 

comparison with existing methods. 

C. Comparative Analysis: Proposed Model Versus Baseline 

Methods 

We conducted a comparative analysis to evaluate the 

performance of SaRLog against established baseline methods, 

with the objective of determining its performance in 

accomplishing the target task. The proposed model exhibited 

remarkable achievement across both datasets, achieving an 

F1-score of 0.988 on BGL and 0.999 on Thunderbird. These 

outcomes signify substantial enhancements over the baseline 

methods, marking improvements of up to 31.2% and 46.7% 

respectively, as shown in Table III.  

Although NeuralLog [12] achieves a performance level 

comparable to SaRLog with an F1-score of 0.985 on the BGL 

dataset, it marginally lags on the Thunderbird dataset, with an 

F1-score of 0.964, which is 3.5% lower. LogAnomaly [8] and 

LogRobust [11] exhibit considerable fluctuations in 

performance between the two datasets. Specifically, 

LogAnomaly’s F1-score shows a sharp decline of 28.9% when 

transitioning from BGL to Thunderbird, whereas LogRobust’s 

F1-score maintains relative stability, witnessing only a 9.6% 

reduction, albeit starting from a lower performance 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



7 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 
            (a) 

 
    (b) 

Fig. 3. PCA illustration of the representation vector. BERT 

hidden layer (a) and output layer of Siamese network (b). 

 

-12.5

-12.0

-11.5

-11.0

-10.5

-10.0

-1 0 1 2 3
1st Principal

2
n

d
 P

ri
n

ci
p

al

-200 -100 0 100 200

1st Principal

2
n

d
 P

ri
n

ci
p

al

-30

-20

0

10

20

30

-10

40

 

Fig. 4. Few-shot performance of SaRLog. Trained on the BGL 

dataset and tested on the Thunderbird dataset (orange). 

Trained on Thunderbird and tested on BGL (blue) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

acc pre rec f1

TB-BGL BGL-TB
benchmark. Furthermore, PLELog [14] lags behind SARLog 

on both datasets. SARLog shows a 0.6% F1-score 

improvement over PLELog for the BGL dataset and a 13.4% 

improvement for the Thunderbird dataset. These numerical 

differences highlight the proposed method’s robustness and 

dependability in anomaly detection tasks across diverse 

datasets. 

D. Performance of the Detection Head 

In our exploration of different architectures for anomaly 

detection, we observed a remarkable difference in training loss 

convergence rates between the Siamese network and a 

multilayer fully connected network, both configured with an 

equivalent level of model complexity regarding trainable 

parameters. Specifically, the Siamese network attained 

convergence within the initial four epochs, as depicted in Fig. 

2 (b), whereas the fully connected network required at least 

150 epochs to reach a similar state of convergence, as shown 

in Fig. 2 (a). This result validates the expected decrease in 

computational complexity and training time associated with 

utilizing similarity-based learning approaches. 

E. Performance of the Representation Model 

BERT, renowned for its capacity to grasp contextualized 

representations and nuanced features, affords a profound 

comprehension of the input data (Section III). Nonetheless, its 

generated embeddings may not always exhibit the distinct 

separability requisite for anomaly detection in specific 

contexts. This characteristic of BERT embeddings can be 

attributed to the model’s sophisticated architecture and its 

method of learning contextualized representations, which 

could lead to overlapping embedding spaces, as illustrated in 

Fig. 3 (a). In contrast, the custom Siamese network, 

specifically tailored to discern similarity relationships, 

produces a more discernible embedding structure when 

applied in conjunction with BERT’s output, as demonstrated 

in Fig. 3(b). Consequently, this approach simplifies the 

classification process through the application of 

straightforward distance metrics, such as cosine or Euclidean 

distance.  

Additionally, empirical analyses were conducted to examine 

the impact of different representation architectures on the 

effectiveness of the downstream detection task. Table IV 

presents the outcomes of model performance employing 

different representation architectures. The findings highlight 

the promising performance of domain-specific PLMs, 

underscoring their efficacy in enhancing the accuracy and 

efficiency in anomaly detection tasks. 

 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 
      (a) 

 
    (b) 

Fig. 2. Loss curve trajectory. When using a fully connected 

neural network-based head and trained for 250 epochs (a). 

When using Siamese network head and trained only for 10 

epochs (b). 

 

7

6

5

4

3

2

1

0

Ep
o

ch
 lo

ss

Number of epochs

0 50 100 150 200 250

Number of epochs

4

3

2

1

0

0 2 4 6 8

Ep
o

ch
 lo

ss

 
(a) 

 

(b) 

Fig.5. Zero-shot performance of SaRLog. Trained on the 

Thunderbird dataset and tested on the BGL dataset (a) and 

Trained on BGL and tested on Thunderbird (b). 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

acc pre rec f1

SecureBERT BERT

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

acc pre rec f1

SecureBERT BERTAmong the examined embedding architectures, Word2vec 

demonstrated the lowest performance, yielding an F1-score of 

0.885 on BGL and 0.873 on Thunderbird. This outcome 

suggests its comparatively limited effectiveness compared 

with more advanced models. GPT-2 exhibits a noteworthy 

improvement in performance, particularly on the Thunderbird 

dataset, achieving an F1-score of 0.971. BERT delivered 

strong results on BGL, attaining an F1-score of 0.963. 

Conversely, RoBERTa and SecureBERT emerge as standout 

performers, particularly on the Thunderbird dataset, where 

they both achieved nearly perfect F1-score of 0.999. This 

indicates that these embeddings offer a more nuanced 

representation, substantially enhancing the model’s capacity 

for generalization and accurate predictions across diverse 

datasets. On the BGL dataset, RoBERTa and SecureBERT 

also exhibit robust performance, with F1-scores of 0.973 and 

0.988, respectively, further affirming their superiority within 

the proposed architecture. Overall, SecureBERT consistently 

outperforms other architectures on both datasets, positioning it 

as a potentially effective embedding architecture among those 

considered in the evaluation. 

E. Few-Shot Learning Performance of SaRLog 

This section discusses the few-shot performance of the 

model in two distinct scenarios. The evaluation entails training 

the model on one dataset and subsequently conducting testing 

on an entirely new dataset, following retraining the model 

with only a few examples from the new dataset. Fig. 4 shows 

the performance outcomes, where “TB-BGL” denotes training 

on Thunderbird and testing on BGL, while “BGL-TB” 

signifies the reverse scenario. 

In the first scenario, where the model initially undergoes 

training on the BGL dataset, followed by retraining on a 

subset of examples from the Thunderbird-training dataset, and 

ultimately testing on the Thunderbird-testing dataset, it 

achieves an F1 score of 0.871. Conversely, in the second 

scenario, where the model is exclusively trained and tested on 

the Thunderbird dataset, followed by retraining with a subset 

of examples from the BGL dataset and testing on the BGL-test 

dataset, it achieves a slightly higher F1-score of 0.933. These 

results highlight the model’s capacity to generalize and 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



9 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

perform effectively with a limited number of examples from a 

different domain, highlighting its adaptability in few-shot 

learning scenarios. 

VI. DISCUSSION 

The proposed model, SaRLog, demonstrates superior 

performance when compared with baseline methods in both 

full-training and few-shot learning scenarios. However, when 

subjected to the zero-shot learning setting, where the model is 

trained on one dataset and tested on an entirely different one, a 

significant drop in performance is observed, as illustrated in 

Fig. 5. This decline can be attributed to structural and 

distributional variations among log datasets (discussed in 

Section III), which introduce ambiguity during the 

representation phase. Notably, the decrease in F1-score from 

0.988 to 0.184 when trained on BGL and tested on 

Thunderbird (Fig. 5b), and vice versa from 0.999 to 0.134 

(Fig. 5a), highlights the substantial impact of environment 

drift on model performance. However, the incorporation of 

domain-specific PLMs such as SecureBERT yields a slight 

improvement in performance in both cases, emphasizing the 

advantages of leveraging domain-specific representations.  

To address these challenges fully, future research should 

prioritize customizing the tokenization process to 

accommodate domain-specific vocabulary and exploring 

subtle features that may be common across datasets. 

Additionally, robust domain adaptation methods should be 

explored to enhance the model’s capacity to generalize to 

unseen data distributions. These endeavors will contribute to 

the development of more resilient anomaly detection models 

capable of effectively handling variations in environment and 

dataset characteristics. 

VII. CONCLUSIONS 

This study addresses significant challenges in anomaly 

detection within system logs, with a particular emphasis on 

striking the delicate balance between model complexity and 

semantic representation efficacy, while reducing the reliance 

on extensive labeled data. Despite individual efforts to tackle 

these challenges, a comprehensive solution has remained 

elusive. The proposed method, SaRLog, bridges this gap by 

leveraging the semantic information extraction capabilities of 

BERT and the few-shot learning ability of a Siamese network.  

Through rigorous experimental analysis conducted on the 

BGL and Thunderbird datasets, SaRLog established its 

superiority when compared with state-of-the-art methods. It 

achieved remarkable F1-scores of 0.9880 and 0.9993, 

respectively, on these datasets. The few-shot learning 

capability of SaRLog highlights its adaptability and 

robustness, positioning it as a promising approach for anomaly 

detection in dynamic and evolving environments. Future 

research endeavors will be directed toward devising strategies 

to mitigate the impact of structural and distributional 

variations in log datasets and exploring robust domain 

adaptation methods to enhance model generalization, 

particularly in the zero-shot learning paradigm. These 

endeavors will contribute to the advancement of anomaly 

detection solutions that effectively address the challenges 

posed by diverse and dynamic characteristics of log data. 

 

REFERENCES 

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, 
“Middleware for Internet of Things: A survey,” IEEE Internet of 

Things J., vol. 3, no. 1, pp. 70–95, Feb. 2016. 

[2] A. A. Cook, G. Mısırlı, and Z. Fan, “Anomaly detection for IoT time-
series data: A survey,” IEEE Internet Things J., vol. 7, no. 7, pp. 6481–

6494, Jul. 2020. 

[3] J. Lou, Q. Fu, S. Yang, Y Xu and J. Li, “Mining invariants from 
console logs for system problem detection,” ATC'10: Proc. of the 

USENIX Annual Technical Conference, 2010. 

[4] J. Hojlo, “Future of Industry Ecosystems: Shared Data and Insights,” 
International Data Corporation, Needham, Massachusetts, United 

States, Jan. 2021. [Online]. Available: 

https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-
shared-data-and-insights. 

[5] A. Oliner and J. Stearley, “What supercomputers say: A study of five 

system logs,” Proc. 37th Annu. IEEE/IFIP Int. Conf. Dependable Syst. 
Netw. (DSN), pp. 575–584, 2007. 

[6] S. He, J. Zhu, P. He and M. R. Lyu, “Loghub: A large collection of 

system log datasets towards automated log analytics,” 
arXiv:2008.06448, 2020. 

[7] S. Lu, X. Wei, Y. Li and L. Wang, “Detecting anomaly in big data 

system logs using convolutional neural network,” Proc. IEEE 16th Int. 
Conf. Dependable Auton. Secur. Comput. 16th Int. Conf. Pervasive 

Intell. Comput. 4th Int. Conf. Big Data Intell. Computing and Cyber 

Science and Technology Congress, pp. 159–165, Aug. 2018. 
[8] W. Meng et al., “LogAnomaly: Unsupervised detection of sequential 

and quantitative anomalies in unstructured logs,” Proc. 28th Int. Joint 

Conf. Artif. Intell. (IJCAI), vol. 7, pp. 4739–4745, 2019. 
[9] Z. Wang, J. Tian, H. Fang, L. Chen and J. Qin, “LightLog: A 

lightweight temporal convolutional network for log anomaly detection 

on the edge,” Comput. Netw., vol. 203, Feb. 2022. 
[10] M. Du, F. Li, G. Zheng and V. Srikumar, “DeepLog: Anomaly 

detection and diagnosis from system logs through deep learning,” 

Proc. ACM SIGSAC Conf. Comput. Commun. Secur., pp. 1285–1298, 
2017. 

[11] X. Zhang et al., “Robust log-based anomaly detection on unstable log 

data,” Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. 
Foundations Softw. Eng., pp. 807–817, 2019. 

[12] V.-H. Le and H. Zhang, “Log-based anomaly detection without log 

parsing,” Proc. IEEE/ACM 36th Int. Conf. Automated Softw. Eng., pp. 
492–504, 2021. 

[13] Y. Lee, J. Kim and P. Kang, “LanoBERT: System log anomaly 
detection based on BERT masked language model,” arXiv:2111.09564, 

2021. 

[14] L. Yang et al., “Semi-supervised log-based anomaly detection via 
probabilistic label estimation,” in Proc. IEEE/ACM 43rd Int. Conf. 

Softw. Eng. Companion Proc. (ICSE-Companion). IEEE, 2021, pp. 

230–231. 
[15] E. Aghaei, X. Niu, W. Shadid and E. Al-Shaer, “SecureBERT: A 

domain-specific language model for cybersecurity,” Intl. Conf. on 

Security and Privacy in Communication Systems, pp. 39–56, 2022. 
[16] P. Ranade, A. Piplai, A. Joshi and T. Finin, “CyBERT: Contextualized 

Embeddings for the Cybersecurity Domain,” 2021 IEEE Int. Conf. Big 

Data (Big Data), pp. 3334–3342, December 2021. 

[17] L. Yan, C. Luo, and R. Shao, “Discrete log anomaly detection: a novel 

time-aware graph-based link prediction approach,” Inf. Sci. 647 (2023): 

119576. 
[18] A. Makanju, A. N. Zincir-Heywood and E. E. Milios, “Clustering 

event logs using iterative partitioning,” Proc. 15th ACM SIGKDD Int. 

Conf. Knowl. Discovery Data Mining, pp. 1255–1264, 2009. 
[19] R. Vaarandi, “A data clustering algorithm for mining patterns from 

Event Logs,” Proc. IEEE Workshop IP Operations and Management, 

pp. 119-126, 2003. 
[20] P. He, J. Zhu, Z. Zheng and M. R. Lyu, “Drain: An online log parsing 

approach with fixed depth tree,” Proc. IEEE Int. Conf. Web Services 

(ICWS), pp. 33–40, 2017. 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



10 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 
[21] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” 

Proc. IEEE 16th Int. Conf. Data Mining, pp. 859–864, 2016. 
[22] M. Landauer, F. Skopik, M. Wurzenberger and A. Rauber, “System log 

clustering approaches for cyber security applications: A survey,” 

Comput. Security, vol. 92, May 2020. 
[23] Y. Xie and K. Yang, “Domain adaptive log anomaly prediction for 

hadoop system,” IEEE Internet Things J., vol. 9, no. 20, pp. 20778–

20787, 15 Oct.15, 2022. 
[24] K. Tirumala, A. Markosyan, L. Zettlemoyer and A. Aghajanyan, 

“Memorization without overfitting: Analyzing the training dynamics of 

large language models,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 
38274–38290, 2022. 

[25] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-

training of deep bidirectional transformers for language 
understanding,” Proc. Conf. North Amer. Chapter Assoc. Comput. 

Linguistics, pp. 4171–4186, 2019. 

[26] S. González-Carvajal and E. C. Garrido-Merchán, “Comparing bert 
against traditional machine learning text classification,” 

arXiv:2005.13012.  2020. 

[27] C. Liang et al., “BOND: BERT-assisted open-domain named entity 
recognition with distant supervision,” Proc. 26th ACM SIGKDD Int. 

Conf. Knowl. Disc. Data Min., pp. 1054–1064, 2020. 

[28] H. Xu, B. Liu, L. Shu and P. S. Yu, “Bert post-training for review 
reading comprehension and aspect-based sentiment analysis,” 

arXiv:1904.02232, 2019. 

[29] C. Almodovar, F. Sabrina, S. Karimi, and S. Azad, “Can language 
models help in system security? investigating log anomaly detection 

using BERT,” in Proc. The 20th Annual Workshop of the Australasian 

Language Technology Association, Adelaide, Australia: Australasian 
Language Technology Association, Dec. 2022, pp. 139–147. 

[30] S. Chen and H. Liao, “BERT-log: Anomaly detection for system logs 

based on pre-trained language model,” Appl. Artif. Intell., vol. 36, no. 
1, pp. e2145642-1–e2145642-23, Dec. 2022. 

[31] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. 

Shinohara, et al., “Byte pair encoding: A text compression scheme that 
accelerates pattern matching. Technical report,” Technical Report DOI-

TR-161 Department of Informatics Kyushu University, 1999. 

 
 

 

 

Jilcha Lelisa Adeba received his B.S. 

degree in Electrical and Computer 

Engineering from Arbaminch University, 

Ethiopia in 2015. He has been working as 

a cybersecurity researcher and supervisor 

at Information Network Security 

Administration (INSA), Ethiopia, from 

2015 to 2021.  He is currently pursuing 

the M.Sc/PhD program in AI Convergence Network at Ajou 

University, South Korea. His research interests include deep 

learning, large language models, intrusion detection, cloud 

security, convergence security.  

 

 

K. Deuk-Hun received his B.S degree in 

information security at Soonchunhyang 

University in August 2013, with a 

master’s degree in information security at 

Soonchunhyang University in August 

2015 and with a doctor degree in 

computer engineering at Ajou University 

in August 2021. He is currently pursuing 

a post-Doc program in the institute for Computing and 

Informatics Research, Ajou University. And He is interested 

in application service security, cloud computing security, 

cryptography protocol.  

 

J. Kwak received his B.S., M.S., and 

Ph.D. degrees in Computer Science and 

Engineering from Sungkyunkwan 

University, Seoul, Korea, in 2000, 2003, 

and 2006, respectively. He was Deputy 

Director of the Ministry of Information 

and Communication, Korea. Also, he was 

a Professor of the Department of 

Information Security Engineering, Soonchunhyang University, 

Korea. He is currently a Professor of the Department of Cyber 

Security, Ajou University, Korea. His current research 

interests include cryptographic protocols, cloud security, 

SOAR, and applied security services.  

 

 
 

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3386183

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


