
QR codes: From a Survey of the State-of-the-Art to
Executable eQR codes for the Internet of Things

Stefano Scanzio, Senior Member, IEEE, Matteo Rosani, Mattia Scamuzzi,
and Gianluca Cena, Senior Member, IEEE

Abstract—QR codes are increasingly used in a plurality of sce-
narios, and research activities are being successfully carried out
to improve this technology and widen its contexts of applicability.
After an extensive survey of the state-of-the-art on the subject,
this work presents the new, promising possibility to embed a
programming language in a QR code.

This new kind of executable QR codes, we named eQR
codes, enable interaction with end users even in the absence
of an Internet connection, and provide a sort of IoT paradigm
where intelligence is embedded in the object tag in the form
of a program. Among all the possible languages that can be
embedded, this work focuses on a powerful but compact (in terms
of QR code storage occupation) dialect, termed QRtree, which is
aimed at implementing decision trees. The eQR code technology
makes a new class of applications possible, e.g., providing hints
for navigation or instructions for using rescue devices in places
with no network coverage like mountains and caves. Smart
interactive user manuals are enabled as well.

Besides defining the QRtree language and eQR code structure,
this paper describes all the steps needed to generate eQR codes
and to manage their execution in end-user devices. A simple
yet realistic example and the related code are also presented, to
practically show how this technology can be used to solve real-
world problems. For the example, the QRtree version of the code
takes 234B, less than one-half the size of an equivalent program
in Python bytecode (634B).

Index Terms—QR code, eQR code, executable QR code,
programmable QR code, decision trees, compilers

I. INTRODUCTION

THE technology behind the popular two-dimensional bar-
codes known as QR codes is now three decades old

[1]. Nevertheless, it is still experiencing an endless spring
due to the countless application contexts where it can be
profitably applied. Popular examples include marketing [2],
authentication [3], security [4], augmented reality [5], and
transportation [6], to cite a few. Similarly to radio-frequency
identification (RFID) [7], which constitutes one of the earliest
enabling technologies for the Internet of Things (IoT), QR
codes allow the quick identification of real-world objects,
permitting them to be directly mapped in the cyberspace and
“accessed” through the Internet. Typically, QR codes contain
data that can be interpreted by an application: either numeric
references, which have a similar function as linear barcodes
(e.g., identifying or characterizing a particular object), or

S. Scanzio and G. Cena are with the National Research Council of Italy
(CNR–IEIIT), Italy.
M. Rosani is with the National Research Council of Italy (CNR–IEIIT) and
with Politecnico di Torino, Italy.
M. Scamuzzi is with Politecnico di Torino, Italy.
Corresponding author: S. Scanzio, e-mail: stefano.scanzio@cnr.it

network references in the form, for instance, of a uniform
resource locator (URL) that directly points to remote network
resources. In the former case a network query is typically
needed to retrieve the information associated with the object
(unless it is stored in the device’s memory), while in the latter
accessing the relevant URL mandates that the device used for
reading the QR code (e.g., a smartphone) is connected to a
network (either the Internet or, at least, a local intranet).

Many research activities have been conducted in the past
decades on QR codes, and the first contribution of this work
is to provide a concise but comprehensive survey of the
state-of-the-art about the latest innovations in this sector. The
second, innovative contribution is to present a new type of QR
code, we named executable QR (eQR) code, which enables
interaction with the user by directly embedding a runnable
program. The ability to include algorithms that can be executed
locally is what differentiates eQR technology from traditional
QR codes. This idea was preliminarily proposed in [8], which,
to the best of our knowledge, is the only scientific work dealing
with such a possibility at the time of writing. Basically, all
devices that can be used for reading QR codes also work with
eQR codes. Besides a camera with adequate resolution, local
computation resources are needed to execute the embedded
program. However, since this code is small by necessity, most
existing smartphones likely meet these requirements.

Conventional QR codes already support interactivity. To
this aim, an URL must be encoded that points to a suitable
resource located on a web server—either an HTML page
that embeds client-side scripts or a server-side program to
be executed remotely. However, doing so requires a properly
working network connection. Although users nowadays expect
to be provided all-time with ubiquitous Internet connectivity,
this is unfortunately not always the case. Many places still
exist, even in modern towns, where decent connectivity is
often unavailable, e.g., basements, old buildings, and also very
crowded rooms. By exploiting eQR codes, the user retains
the ability to interact with “dumb” physical objects, but no
Internet connection is demanded as the algorithm is stored in
the payload of the QR code. This makes the eQR technology a
nice addition to the IoT paradigm, and enables a whole range
of functions that otherwise could not be implemented with
conventional QR codes. For short, it provides users a “quasi-
IoT experience” in the absence of Internet.

One of the main problems of directly encoding programs in
QR codes is their capacity. In fact, in the current version they
can store 2953 bytes at most. For this reason, the primary goal
of our work is to define a suitable representation of programs

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

(and the related translation process) to keep code footprint
as compact as possible. The first method to limit the size of
the generated QR code is to pose some constraints on the
programming languages that can be encoded within it.

The eQR code format and content are based on the QRscript
language, which permits to embed a variety of programming
sub-languages (termed dialects). To this purpose, a header is
included in QRscript to select the specific dialect encoded
within the eQR code.

Besides dialect selection, this work also presents a specific
language, we named QRtree, which has excellent character-
istics from the point of view of compactness. Although the
QRtree dialect only permits the implementation of decision
trees, it suits a large number of scenarios derived from
real needs. More specifically, this dialect permits defining
programs that, by interacting with the user through a series
of questions, select a specific leave of the tree that represents
the final advice. The root of the tree corresponds to the first
question, and subsequent questions permit navigating the tree
structure until a leaf is eventually reached.

To understand the real potential of eQR codes one must re-
member once again that, although we are living in a connected
world, stable Internet connectivity is not always available
everywhere and to everyone. If the QR code is located in a
place without Internet access, QRscript and, in particular, the
QRtree dialect could be a valuable enabler in many application
contexts. A first, concrete example, which will be employed
in the following to illustrate the benefits provided by our
technology, are mountain trails, where eQR codes can be
placed close to the forks and in some specific positions along
the route to enable hikers to understand which is the best path
to follow. The program included in the eQR code asks the
user a number of questions to guide her/him in performing the
most suitable choice based on aspects like her/his tiredness,
available time, and personal preferences.

A second example, which has to do with guided diagnostics
and maintenance, are boats: if a failure (e.g., broken engine) is
experienced in a place with no network coverage (e.g., in the
middle of the sea), running the program embedded in an eQR
code (attached, e.g., to the engine itself) could help solving
the problem, either directly (through explicit instructions)
or indirectly (by providing references to the pages in the
instruction manual where a solution can be found). Generally
speaking, any book can be made “smart” by including an
eQR code at its beginning, near to the index. Doing so allows
readers to interact with the book using their smartphone, e.g.,
to quickly jump to the desired page/section. Not relying on the
Internet, in this case, ensures complete privacy when looking
for specific topics.

Besides entertainment and education, eQR codes can be
targeted to more serious (and potentially critical) applications,
e.g., to help people to operate medical instrumentation and
rescue devices like defibrillators in emergency conditions,
even in contexts where there is (temporarily) no network
connection. Petrochemical plants, installations in desert areas,
high mountains, forests, and many other similar scenarios can
take advantage of the eQR code technology.

The organization of the paper has the following structure:

QR code

Version 5

(37x37)

with text

QR code with URL
QR code with URL and other

information

QR code Version 1

(21x21) with text

QR code

Version 10

(57x57)

with text

Finder pattern

Alignment pattern

Fig. 1. Examples of different types of QR codes.

Section II describes the existing QR code technology and
analyzes the state-of-the-art; Section III introduces the new
eQR code technology and the QRscript programming language
it embeds; Section IV explains the QRtree dialect, while a real
example of the steps needed to generate an eQR code and to
execute it is shown in Section V; finally, Section VI draws
some final remarks.

II. QR CODES

Conventional QR codes, also known as quick response
codes, are a two-dimensional barcode technology invented
quite a long time ago (in 1994) by the Denso Wave Automotive
company to track vehicles during manufacturing. The most
recent version of the standard dates back to 2015 [9]. QR codes
improve over previous-generation one-dimensional barcodes
by increasing recognition speed and storage capacity.

A. Technology

The main idea behind QR codes is to encode information on
a printable support, customarily in the form of a grid of black
and white square dots (see, e.g., Fig. 1), which can be easily
read by the camera of widespread commercial devices like
smartphones and tablets. The information contained in the QR
code is then extracted from the acquired image and converted
into a binary representation. As depicted in the figure, specific
finder patterns and alignment patterns are included that the
reading device software exploits to identify the orientation and
the position of the QR code within the captured image.

This approach can be used to encode various types of infor-
mation like text, URLs, Wi-Fi network information, etc., by
storing four types of data: numeric, alphanumeric, binary, and
kanji. The latter is intended for encoding Japanese symbols.
The maximum amount of information that can be stored in the
QR code is related to the selected data type. For eQR codes,
numeric or binary codings were chosen to store the compiled
QRscript program as a sequence of bits. In the case of numeric
coding, the sequence of bits is interpreted as a base-10 number.

A concept of version is defined for QR codes to specify their
size, in the range from 1 (21×21 matrix) up to 40 (177×177

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

matrix). For every version, four correction levels are possible:
L (low), M (medium), Q (quartile), and H (high). They can be
used to increase the overall robustness at the expense of the
storage capacity. Version 40, with a low error correction level,
is the combination that maximizes the storage capacity, that
in this configuration is equal to 2953 bytes for binary coding
and 7089 digits for numeric coding. By setting the appropriate
version and compression level, a compromise between storage
capacity and correction capability can be reached, depending
on the characteristics of the application. Fig. 1 shows some
examples of QR codes, including version 1, version 5, version
10, and other less usual formats. Refer to Fig. 1 of [8] for an
example of a QR code using version 40.

B. State-of-the-Art

For the analysis of the state-of-the-art, all the journal papers
that contain the string “QR code” or “QR codes” in the title
and that were published in the past 5 years (between 2019 and
April 2023) by the main publishers, including IEEE, Elsevier,
Springer, Wiley, and MDPI, were analyzed, for a total of 115
papers. Then, we selected a subset including some of the most
representative works, divided in turn between those focused on
application contexts (26 papers) and those related to research
trends (30 papers). Within each category, the main areas of
interest/topics were identified.

1) Application contexts: QR code technology has been
successfully applied in a variety of application contexts, in-
cluding anti-counterfeiting, augmented reality, automatic con-
figuration, fast reading, identification, localization, mainte-
nance, medical, payment, recycling, safety, security, teaching,
traceability, and tourism. This wide range of applications
demonstrates that, nowadays, QR code usage embraces many
different fields, making this technology increasingly pervasive
both in daily use and in specialized contexts.

Selected works are summarized in Table I where, for every
application context, the related papers are listed. For each
paper, a brief description is also provided.

2) Research trends: Besides applications, intense research
activity is currently ongoing aimed at improving the QR code
technology. Table II reports a selection of research trends
organized by the main topics. Starting from the end of the
table, security is the topic with the largest number of contri-
butions. Its main purpose is to make this technology more
secure, for instance by embedding additional and possibly
hidden information within the QR code. Research identified
with the topic printing type is related to the use of special
inks or to the printing of QR codes on unusual surfaces.
The insertion of multiple information in the same QR code
and techniques to increase capacity are the two sides of the
same coin, and they are aimed to increase the amount of
information that can be packed in a conventional QR code. The
proposal and experimentation of new techniques to improve
recognition quality is the typical research activity that aims to
enhance the usability of this technology. Anti-counterfeiting
and improve other technologies are other specific research
activities pertaining to QR codes. Instead, improve beauty
is a relevant research topic aimed at embedding QR codes

if cond1:

out(1)

else:

if cond2:

out(2)

else:

out(3)

010001

011101

…

eQRbytecode eQR code

Virtual machine

(end device)

Generation

Execution

Intermediate

representation

(1) if cond1 (3)

(2) if cond2 (5)

(3) print 1

(4) exit

(5) ...

Scan me

1: description related to

out(1)

2:

3:

Poster

picture related

to out(2)

picture related

to out(3)

010001

011101

…

(1) if cond1 (3)

(2) if cond2 (5)

(3) print 1

(4) exit

(5) ...

eQRbytecode

Intermediate

representation

Fig. 2. Generation and execution chain for eQR codes.

in other pictures in order to make them more beautiful and
hence more suitable to be adopted, for example, for advertising
purposes. The work about eQR codes presented here, as well
as in [8], belongs to the category of the new research trends.
They have been categorized under the programmability topic
because they are aimed at defining the best ways to make QR
codes executable.

III. QRSCRIPT AND EQR CODES

An eQR code is a QR code that embeds a specific program-
ming language denoted QRscript.

A. Generation and execution chain

Fig. 2 highlights the steps involved in the generation of an
eQR code (on the top) and its subsequent execution on the
end-user device (on the bottom).

The steps of the generation chain are typically performed
by the developer of the application (a company, an association,
an individual, etc.) and lead to the creation of the eQR
code, which can be printed, painted, displayed, or visualized
in some way to the end user. The first step of this chain
(arrow 1) is the translation from a high-level representation
(e.g., programming language or graphical representation) to
an intermediate representation. Although a small illustrative
example is provided in Section V, this translation step is out
of the scope of this work, because complete control on the
selection of the high-level representation must be provided to
the user, to the point that the program could be written using
the intermediate language representation directly. In other
words, a potentially large number of high-level representations
can be mapped to the same intermediate code. In the second
generation step, which is represented by arrow 2 , the inter-
mediate representation is mapped to a binary representation,
which was named eQRbytecode. Inserting the eQRbytecode
inside an eQR code (represented by arrow 3) is quite trivial,
since suitable libraries are publicly available that can be used
for generating conventional QR codes.

In the inverse direction, denoted the execution chain, an
eQR code that is visualized in some way to the end user

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE I
MAIN APPLICATION CONTEXT WHERE QR CODES ARE EXPLOITED.

Topic Ref. Description
Anti-counterfeiting [10] Implement and improve the quality of an anti-counterfeiting system through the use of QR codes
Augmented reality [11] QR codes for the personalization of objects displayed by virtual reality
Automatic config. [12] QR codes used to auto-configure Industrial Internet of Things sensor networks
Fast reading [13] Mobile application that allows reading densely placed QR codes
Identification [14] QR codes and robotic arms to automatically manage books in a library
Localization [15] QR codes used to improve the localization of mobile robots

[16] Use of QR codes placed in specific points to track the position of a person
[17] Use and placement of QR codes to enable navigation in indoor environments

Maintainance [18] QR codes are used to perform predictive maintenance and self-calibration of a robotic arm
Healthcare [19] Embedding of an ECG signal within a QR code

[20] Use of QR codes for authenticating medical images in a blockchain framework context
Payment [21] Improving security when QR codes are used for payment

[22] How the use of QR codes for mobile payments is perceived by users
[23] Use of QR codes to manage E-Wallets

Recycling [24] Use of QR codes to manage radioactive waste
[25] Combined use of QR codes and blockchains to build a recycling platform

Safety [26] Management of construction safety through QR codes
Security [27] Embed a secret within the QR code

[28] Manage encryption and decryption through watermarking in medical applications
[29] A comprehensive study about QR code applications from the point of view of security and privacy

Teaching [30] Integration of QR codes in teaching material and in classrooms to improve the quality of education
[31] Integrate QR codes and text to improve the learning of English as a foreign language

Traceability [32] Use of blockchains, explainable artificial intelligence, and QR codes for food traceability
[33] A review on the possibility of embedding information on manufactured parts
[34] Use of traceability to track vegetable supply chain

Tourism [35] QR codes for exploring mount Etna (volcano)

(e.g., printed on posters or stickers, possibly with additional
information) is translated to a binary representation (arrow
4). The application executing on the end-user device (e.g.,
a smartphone) has to recognize and extract the eQR/QR
code contained in a digital image (e.g., acquired using the
camera of the smartphone), perform the related error correction
algorithms, and obtain the sequence of bytes representing the
eQRbytecode. Again, many libraries are currently available to
perform this step. The eQRbytecode is then translated into
an intermediate representation (arrow 5) and, finally, the
intermediate representation is executed by an application (a
sort of virtual machine) running in the end-user device (arrow
6). While running the encoded program, this virtual machine
interacts with the end user through an input/output interface
(e.g., the touch screen of the smartphone). This part of the
translation chain is not analyzed in detail in this work, because
the implementation of the user interface and the characteristics
of the virtual machine strongly depend on the needs of both
end users and the application developer.

The QRscript programming language specification only
concerns the translation processes from the intermediate rep-
resentation to eQRbytecode (arrow 2) and vice-versa (arrow
5).

B. QRscript and eQR codes specification

The QRscript header is the first part of the eQRbytecode,
and specifies how to interpret the following part of the eQR

Continuation

1 0 0 1 0 0 0 1 1 0 0 0 0

Security

0 0 0 0 0 0 0 1

Dialect

eQR code 2 of 4 no security DTD Version 1

0 0 0 1 0 1 1 0

eQRbytecode

0

URL

no URL

0 0 0 0 1

Padding

Fig. 3. QRscript header.

code (Fig. 3). It is composed of five elements: padding,
continuation, security, URL, and dialect. The QRscript header
is directly followed by the dialect code, which represents the
encoded program. A detailed description is available in the
specification document [65].

1) Dialect: Starting from the end, the dialect element spec-
ifies the programming language (i.e., the dialect) embedded in
the eQR code. The ability to support more than one dialect per-
mits to more effectively face the scarce storage capacity of QR
codes. Specific dialects can be defined that provide different
trade-offs between compactness and expressive power, which
suit different application contexts. It is worth pointing out that
any increase in the computational complexity for decoding
and executing the program embedded in the eQR code due to
the specific type of dialect (and the related instruction set)
is, from our perspective, irrelevant. In fact, the small size
of the code that can be stored in an eQR code makes the
effort for dealing with it always negligible compared to the
computational power of the target device (e.g., a smartphone).
At the time of writing, the only dialect we defined is the
QRtree dialect, which is aimed at implementing a decision

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE II
MAIN RESEARCH TRENDS ABOUT QR CODES (REFERENCE [**] REPRESENTS THIS PAPER).

Topic Ref. Description
Programmability [**] Embedding a program in a QR code to make it executable
Anti-counterfeiting [36] Placing hidden information within the QR code to prevent its copy/falsification

[37] Use of visual features combined with QR codes to guarantee the authenticity of a product
Improving beauty [38] Generation of artistic QR codes, which are embedded in a picture

[39] Embedding a QR code within a micrography image
[40] Embedding a QR code within a picture
[41] Inserting a QR code in a picture by using deep learning technology

Improving other technologies [42] Integrating QR codes and RFID technologies to decrease the complexity of RFID circuitry
Improving recognition [43] Using an adaptive method based on binarization to improve recognition quality

[44] Improving recognition quality when QR codes are placed in an uneven surface
[45] Reducing the size of information in a QR code to improve recognition performance
[46] A deblurring method is used to improve acquisition quality of QR codes
[47] Improving recognition quality of QR code by fastly restoring out-of-focus blurred images
[48] Removing perspective by identifying the vertex of a QR code
[49] Improve the performance in recognizing multiple QR codes in a picture

Increasing capacity [50] Increasing the capacity of a QR code by means of lossless compression
[51] Using colored QR codes to improve the storage capacity
[52] Improving the encoding efficiency of Chinese characters based on the use frequency

Multiple information [53] Embedding three layers of information within one QR code
[54] Embedding two layers of information within one QR code
[55] Placing a QR code inside another QR code and reading both with different angles

Printing type [56] QR codes printed with ink sensitive to pH for quality monitoring of food freshness
[57] QR code is printed on a sand core surface for traceability
[58] Printing the QR code by caving it on the surface of an object

Security [59] Embedding a secret within the QR code by using colors
[60] Embedding a secret within the QR code
[61] Embedding a secret within the QR code for authentication
[62] Using QR codes and singular value decomposition to encrypt images
[63] Embedding privacy information by using two layers in the QR code
[64] Protection for potential adversarial learning attacks using QR codes

tree inside the eQR code. In this work, it is described and
analyzed starting from Section IV.

The dialect selector is encoded on (at least) 4 bits, followed
by (at least) other 4 bits that specify its version. Both are coded
using the exponential encoding (EC), which permits to encode
integer quantities on a number of bits that grows exponentially.
For instance, the current version (1) of the QRtree dialect
is encoded as 0000 0001. This representation technique is
used in many other parts of the QRtree dialect.

2) Exponential encoding: The simple idea behind EC con-
sists in doubling the number of bits used to encode an unsigned
integer every time the initially allocated space (i.e., 4 bits for
the QRtree dialect) is not enough to store it. For integer values
between 0 and 14, the number of bits of the representation
is 4 (e.g., 510 = 0101EC). Values between 15 and 29 are
encoded on 8 bits, where the first 4 bits are set to 1111 (e.g.,
1810 = 11110011EC). Values between 30 and 284 are encoded
on 16 bits, where the first 8 bits are set equal to 11111111
(e.g., 12310 = 1111111101011101EC), and so on.

This representation guarantees both compactness and ex-
tensibility: 1) the number of bits used to encode any value
is directly related to the value itself; 2) in theory, there is no
upper limit on the values that can be encoded.

3) URL: In those situations when the end-user device has
Internet access, the ability to exploit an URL to run a remote
application in the place of the QRscript might be a more
appropriate solution. Clearly, remote applications have almost
no constraints about program size, and are likely to provide
(much) better user interaction. Moreover, since they run on a
remote web server, they could include a range of information
types, like videos, sounds, and images, that can be hardly
integrated within an eQR code for space reasons. This explains
why we foresaw the option to include an URL within an eQR
code. In particular, the URL bit identifies the presence of the
URL. If the bit is 1, the subsequent bits encode the URL using
UTF-8 encoding [66]. The character end-of-text (EXT) is used
as the string terminator.

At the application level, it is possible to configure a specific
behavior once the selected URL has been requested, which
refers back to the execution of the eQR code, allowing the
possibility of deactivating the URL even after its generation.

4) Security: Properly managing security is of utmost impor-
tance for eQR codes, mainly to ensure their authenticity and
integrity. The execution of a fake eQR code with malicious
code may cause serious damages, possibly leading users to
perform potentially dangerous actions. For certain kinds of

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

applications, where the information included in the eQR code
should be only accessible by selected end users (e.g., privacy-
protected data), encryption could be optionally enabled.

The security element in the QRscript header exploits the
exponential coding with an initial size equal to 4 bits, which
represents the security profile used for the specific eQR
code. The security profile indicates: which type of security
is enabled; the parts of the eQR code that are involved;
the specific algorithm (e.g., RSA); and the length of the
digital signature that is possibly included within the eQR
code. Security is disabled when the security profile is set to
0000. The application developer is in charge of defining a
mapping between the values the security element can assume
and security policies. This mapping is not defined in the
specification document, and consequently it may differ for
different applications.

5) Continuation: To overcome the size limit of QR codes,
QRscript supports the concatenation of more than one eQR
code. To this extent, the continuation element of the QR
script header has been defined, which permits to identify the
different sub-eQR codes to be merged, and in particular their
overall number and order. After some basic operations for
reconstructing a new header and concatenating the dialect
codes, a new (concatenated) eQRbytecode is generated that
can be directly executed by the end-user device. This makes it
easy to double and even triplicate the maximum allowed size
of eQR programs. In some contexts the application could be
split over different eQR codes, placed in different locations and
containing different pieces of program, which in their entirety
enable the resolution of a joint decision problem.

6) Padding: The first bit of the eQRbytecode header iden-
tifies the presence of padding, which is needed only for QR
codes with binary encoding in the case the length of the
eQRbytecode is not an exact multiple of 8 bits. Differently
from communication protocols, padding is added at the be-
ginning of the eQR code (and not at its end), since it must
be completely independent of the dialect that is embedded
within the eQR code. In particular, 1 means no additional
padding, whereas 01, 001, 0001 mean 1, 2, and 3 additional
padding bits, respectively, and so on (the maximum size of
the padding element is 8 bits). In the case of numeric coding,
the eQRbytecode is expressed as a decimal number and the
presence of padding does not affect conversion because leading
0s are not significant.

IV. QRTREE DIALECT

QRtree is a dialect specifically aimed at coding a decision
tree within an eQR code. A decision tree is a structure
composed of three kinds of nodes, namely decision, end, and
chance nodes. Chance nodes are not considered in QRtree,
because they represent probabilistic decisions, which are not
relevant for the application contexts to which this dialect
applies. Decision nodes are the vertex of the tree, and represent
the conditions that allow the user to choose among the different
branches of the tree, based on its answers. End nodes are the
leaves of the tree, which provide responses to the user. A
simple example of a decision tree is shown in Fig. 4.a.

Q1 Q2

Q3

Q4

R1.B

C Decision node

End node

R3.Bout1

out2

out3

out4

out5

out6

out7

a) General example

b) Concrete example (Mountain trail)

Q1

Q2

Q3

Q4

Ref. 1

Ref. 4

Ref. 2

Ref. 3

Ref. 4Q1: Are you tired?

Q2: Do you prefer a lake or a pine forest?

Q3: Do you feel like walking for an hour?

Q4: How long do you want to walk (minutes)?

Fig. 4. Two examples of decision trees: a) general example showing their
structure; b) specific and concrete example regarding mountain trails (it will
be expanded and discussed in detail in Section V).

It is worth pointing out that, even if the QRtree was
conceived to efficiently embed a decision tree in an eQR
code, other (different) languages could be also encoded using
the intermediate representation defined by the QRtree dialect.
However, due to the absence of variables and backward jumps,
most high-level programming languages cannot be represented
through QRtree. In other words, the intermediate language
of QRtree is not Turing-complete. We remark again that the
QRtree dialect and the corresponding specification document
[67] define only the conversion rules between intermediate
language and eQRbytecode, which in the context of this dialect
is named eQRtreebytecode.

The example that will be illustrated in Section V, sketched
in Fig.4.b, considers an eQR code aimed to guide hikers
on a mountain trail. The high-level programming language
reported in Fig. 6 can be easily translated into the intermediate
representation of Fig. 7. Details about the QRtree dialect
in such intermediate representation and its translation to the
eQRbytecode of Fig. 8, as well as the reverse process, are
thoroughly explained in the four subsections below.

A. QRtree structure

The part of an eQR code that contains the QRtree dialect
is divided into two sections: QRtree header and QRtree
body (or code). The first section is optional, and permits to
(re)configure the encoding rules of the instructions included
in the subsequent code section.

The QRtree dialect does not permit the definition of vari-
ables. There is only one implicit variable, which is named
v_input, that is defined at the beginning of the execution and
refers to the value acquired by the end user by the most recent
input instruction. In the case of decision trees, the content

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of this variable is needed to select the branches of the tree
that lead to a final output represented by an end node. In
particular, v_input can be compared with constants (i.e.,
literals), which consist in strings, integers, and real values.

B. Data types

The main data type of the QRtree dialect is the string, as it
is used in both input and output instructions. Strings are quite
space-consuming, and hence much attention was devoted to
encoding efficiency in dialect definition. In particular, the first
two bits of a string identify the type of the string: ASCII-
7 (00), UTF-8 (01), and DICT (10). The ASCII-7 [68]
encoding relies on 7-bit characters, hence it only supports
English-like alphabets. This limitation is overcome by the
UTF-8 [66] encoding, which is a variable-length encoding (8
to 32 bits are needed for every character) where the final length
depends on the dimension of the used character set.

The DICT type refers to predefined strings that are identified
through numeric references in output instructions (instead of
the whole string). Three types of dictionaries are defined,
identified by the bits that follow in the string, namely global
(00), specific (01), and local (1). As highlighted in the speci-
fication document [67], if not all the three types of dictionaries
are used, more compact representations are possible. Global
dictionaries are generic dictionaries that contain frequently
used words that suit a multitude of applications (e.g., “yes”,
“no”, “maybe”, etc.). Instead, specific dictionaries are typical
of a given application context (e.g., “instruction manuals for
boats”, “mountains”, “caves”, etc.), and specific commands in
the QRtree header can be used to activate them. Finally, local
dictionaries are stored in the QRtree header itself. Typically,
they can be used for strings repeated many times in the
eQR code, which are stored only once in the QRtree header.
Detection of such strings can be performed automatically
during translation, by analyzing the occurrence of the strings
within the eQR code and generating the corresponding local
dictionary accordingly. The reference to a specific string within
a dictionary is encoded as an unsigned integer using the
exponential encoding described in Subsection III-B2.

Signed integer literals are encoded using the two’s comple-
ment [69] on either 16 bits (INT16 type) or 32 bits (INT32
type). Instead, real literals can use either the half-precision (16
bits, FP16 type) [70] or the conventional single precision (32
bits, FP32 type) floating-point representations.

C. QRtree header

The QRtree header is optional, and its presence is indicated
by setting the first bit of the eQRtreebytecode to 1. It consists
of a list of 6 different types of commands, each one encoded on
3 bits with the exponential encoding. A specific HEADER_END
command is defined as the terminator of the list.

More in detail, INT_TYPE and FLOAT_TYPE commands
are used to select a specific representation for integers (INT16
or INT32) and reals (FP16 or FP32) values. This saves
space, since specifying the representation of every single
number is no longer required. The command DICT_TYPES
is used to activate global and/or specific dictionaries, whereas

DICT_SPEC_TYPE permits to select which specific dictio-
naries (one or more) are active among those defined by the
application developer, specified using the JSON format [67].
Finally, the DICT_LOCAL command permits to embed the
local dictionary within the eQR code by using the specific
syntax defined in [67].

D. Code

The code section follows the QRtree header, and contains
the list of instructions that make up the program.

1) Intermediate representation: From the point of view of
the intermediate representation, the seven instructions defined
by the QRtree dialect are reported in Table III. An example
of intermediate representation, which refers to the application
example described in Section V, can be found in Fig. 7.
It uses a three-address code, in which every instruction is
identified/labeled with an integer in increasing order.

All the four input/output instructions (input, inputs,
print, and printex) display information for the user on
the screen, either a <string> (defined in Subsection IV-B)
or a <reference>. The binary value <type> is used to
distinguish between the two cases.

The option to output a reference (an exponentially encoded
unsigned integer that points to an external source, e.g., a
printed description) is a valuable feature of the QRtree dialect.
One of the benefits of eQR codes, and QR codes in general,
is that they can be printed on a physical support with some
extra information next to them, like text or images. On the one
hand, this can help users to understand how to use the eQR
code and what is its purpose. On the other hand, references
permit to move some parts of the program (e.g., long strings)
outside the eQR code, leading to a consistent saving in terms
of space. For example, strings related to explanatory text
(descriptions/instructions) can be printed on the same sheet
as the eQR code instead of being embedded within it. In this
case, the program can simply output an indication to the user,
inviting her/him to look at a certain reference. Besides strings,
references can point to other kinds of information that cannot
be easily embedded within the eQR code, like pictures and
maps.

Another interesting point concerns input. In the typical case
of direct input (instruction inputs), the answer is fed directly
by the user through a textual interface. For indirect input
(instruction input), the answer is obtained, for instance, by
means of decision buttons that, for the execution step (arrow 6
of Fig. 2), are automatically derived from the if instructions
of the intermediate representation. Indirect input permits to
design more user-friendly user interfaces for the applications
executed on end-user devices.

The goto instruction is related to unconditional jumps,
while if and ifc instructions refer to conditional jumps. In
particular, the if instruction compares the last string provided
by the user, stored in v_input, with its <string> argu-
ment. If they match, a jump is performed to the corresponding
label. Similarly, the ifc instruction performs a comparison
between v_input and its operand <op>, using relational
operator <rel_op>, chosen among == for equality, != for

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE III
INSTRUCTIONS DEFINED FOR THE INTERMEDIATE REPRESENTATION OF THE QRTREE DIALECT.

Instruction Syntax and description

input input <type> (<string>|<reference>)
Print a <string> or a <reference> on the screen, followed by a indirect input. Entered value stored in v_input.

inputs inputs <type> (<string>|<reference>)
Print a <string> or a <reference> on the screen, followed by a direct input. Entered value stored in v_input.

print print <type> (<string>|<reference>)
Print a <string> or a <reference> on the screen.

printex printex <type> (<string>|<reference>)
Print a <string> or a <reference> on the screen. After that, the execution is terminated.

goto goto (x)
Jump to the instruction identified with the label (x).

if if <string> (x)
Jump to the instruction identified with the label (x), if the last entered value v_input is equal to <string>.

ifc ifc <rel_op> <op> (x)
Jump to the instruction identified with the label (x), if the comparison v_input <rel_op> <op> is true.
Available <rel_op> are == (equal), != (not equal), <=, >=, <, and >.

ifc instruction

1 1 0
b0 b1 b2

code type

<INT16|INT32

|FP16|FP32>
b6

relative jump

bx+1
bx+2

bx+3
bx+4

bx

b3 b4 b5

rel_op

0 0 0
b3 b4 b5

== 0 0 1
b3 b4 b5

!= 0 1 0
b3 b4 b5

<=

0 1 1
b3 b4 b5

>= 1 0 0
b3 b4 b5

< 1 0 1
b3 b4 b5

>

b7

0 0
b6 b7

INT16 0 0
b6 b7

INT32 0 0
b6 b7

FP16 0 0
b6 b7

FP32

Fig. 5. Conversion rules from intermediate representation to eQRtreebytecode
of the ifc instruction.

inequality, <=, >=, <, and > for order. Again, if the result
of the comparison is true, a jump to the label is performed.
The operand is one of the numeric datatypes defined in
Subsection IV-B, namely, INT16, INT32, FP16, or FP32.
The virtual machine running in the end-user application is in
charge of performing the required data type conversions of
v_input to the type of the operand.

Since the QRtree dialect does not support loops, only
forward jumps have been defined, i.e., those which point to
instructions that follow the current one.

2) eQRtreebytecode: A set of rules is defined for converting
instructions from the intermediate representation to the binary
eQRtreebytecode and vice-versa. The first three bits identify
the instruction. Pattern 111 was left unused to deal with
possible extensions of the instruction set. Every instruction has
its own conversion rules, which are specific to its behavior and
the operands involved in its execution.

As a first, simple example, the goto instruction is identified
by the bit pattern 100, which is followed by a relative jump
specified by the number of instructions to skip, coded using
the exponential encoding. Thus, the eQRtreebytecode fragment
100 0000 means to jump to the next instruction.

The most complex instruction is ifc, whose conversion

rules are reported in Fig. 5. In detail, the initial 110 pattern
identifies the ifc instruction, the next three bits identify the
relational operator to be used (rel_op), followed by two bits
that identify the type of the operand, either INT16, INT32,
FP16, or FP32 (depending on the settings in the QRtree
header, more compact notations are possible for type). The
type field defines how to interpret the following bits, which
encode the literal, and what type of automatic conversion
must be applied to v_input. Finally, exactly as in the goto
instruction, we find the relative jump to be performed when
the result of the comparison is true.

Details about the translation rules of the other instructions
are reported in the QRtree dialect specification document [67].

V. APPLICATION EXAMPLE

As a concrete, simple example of the QRtree dialect, an
eQR code is illustrated below that, once suitably placed on
a mountain trail, helps hikers to choose a specific destination
among several alternatives, according to their capabilities and
preferences.

A simple compilation chain named QRtree [71], which
relies on python and implements all the mandatory
features listed in the QRtree specification document
[67], was developed and released under the GPL-3.0
license. All the steps of the example described in this
section can be reproduced by executing the file named
ex01-IEEE_IoT-J_mountain_routes.txt, which is
located in the examples directory of the QRtree software.
In the same directory another application example is included,
named ex02-IEEE_IoT-J_defibrillator.txt,
which is aimed to guide the user in correctly operating a
defibrillator. The availability of easy-to-use technology like
eQR codes could make the difference in case of emergency.

A. eQR code Generation

The idea behind this example is to guide a hiker in the selec-
tion of the destination that best fits her/his current conditions
and wishes, by asking a series of specific questions. In the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

input "Are you tired?"
if "yes":
input "Do you prefer a lake or a pine forest?"
if "lake":
print "Pay attention to the cross with the busy road"
print 1 # Reference to lake indications
exit

else if "forest":
input "Do you feel like walking for an hour?"
if "yes":
print 4 # Ref. to Madonna della Neve hut (1595 meters)
print "You will find the forest on the way"
exit

else:
print 2 # Reference to pine forest indications
exit

else if "no":
inputs "How long do you want to walk (minutes)?"
ifc > 120:
print 3 # Reference to Rivetti hut (2150 meters)
exit

else:
print 4 # Ref. to Madonna della Neve hut (1595 meters)
exit

Fig. 6. Example of a high-level programming language that describes the
decision tree for helping mountain hikers.

generation chain sketched in Fig. 2, the application designer
develops a decision tree, using a high-level programming
language, that asks the hiker a number of questions and then
provides the related advice. With reference to Fig. 6, the first
question: “Are you tired?” permits to check the level of fatigue
of the hiker. In the case the user is tired (“yes” response),
the program proposes two alternatives within a short walking
distance, “lake” or “forest”. The first option leads to reference
“1”, while in the case the answer is “forest” the program
stored in the eQR code further investigates if the user is
possibly willing to walk for one more hour (by means of
the question “Do you feel like walking for an hour?”). The
related indications, for the “yes” and “no” (better, not “yes”)
answers, are provided as references “4” and “2”, respectively..
Conversely, if the user is still lively (i.e., the answer to the first
question is “no”), the program asks: “How long do you want
to walk (minutes)?”, which requests her/him to enter a number
expressed in minutes. This leads to recommending the “Al-
fredo Rivetti hut” (reference “3”) if the answer is greater than
120 (two hours), or the “Madonna della Neve hut” otherwise.
Starting from this description, the intermediate representation
reported in Fig. 7 can be automatically obtained by using the
rules reported in Section IV and in the specification documents
[65], [67].

The result of the conversion from the intermediate repre-
sentation (in terms of the corresponding eQRbytecode binary
representation) and the generated eQR code is reported in
Fig. 8. As can be seen, the QRscript header starts with the
padding 01, while continuation is disabled (the next bit is
set to 0). Also security is disabled (0000), as well as the
URL (0). The dialect is “QRtree” (0000), and its version
is 1 (0001). The length of the eQRbytecode for this simple
decision tree is 1872 bits (234 bytes), which corresponds to
just 7.9% of the maximum capacity of a QR code. Most of
the space is occupied by strings. It is worth observing that real
applications are typically more complex, which likely means
that they need to exploit a larger portion of the available space
of the QR code.

(0) input "Are you tired?"
(1) if "yes" (4)
(2) if "no" (18)
(3) goto (22)
(4) input "Do you prefer a lake or a pine forest?"
(5) if "lake" (8)
(6) if "forest" (11)
(7) goto (17)
(8) print "Pay attention to the cross with the busy road"
(9) printex 1
(10) goto (17)
(11) input "Do you feel like walking for an hour?"
(12) if "yes" (15)
(13) printex 2
(14) goto (17)
(15) print 4
(16) printex "You will find the forest on the way"
(17) goto (22)
(18) inputs "How long do you want to walk (minutes)?"
(19) ifc > 120 (21)
(20) printex 4
(21) printex 3

Fig. 7. A possible intermediate representation obtained from the high-level
programming language of the example.

0100000000000001

000000100000111100101100101010000011110011101111111010101000

001110100110100111100101100101110010001111110000011101000111

100111001011110011000001100101010001101110110111100000111111

000010011110011000000100010011011110100000111100111011111110

101010000011100001110010110010111001101100101111001001000001

100001010000011011001100001110101111001010100000110111111100

100100000110000101000001110000110100111011101100101010000011

001101101111111001011001011110011111010001111110000011101000

110110011000011101011110010100000110010101000110011011011111

110010110010111100111110100000001101001001001010000101000011

000011111001010000011000011110100111010011001011101110111010

011010011101111110111001000001110100110111101000001110100110

100011001010100000110001111100101101111111001111100110100000

111011111010011110100110100001000001110100110100011001010100

000110001011101011110011111100101000001110010110111111000011

100100000001101110001100011000000010001001101111010000011110

011101111111010101000001100110110010111001011101100010000011

011001101001110101111001010100000111011111000011101100110101

111010011101110110011101000001100110110111111100100100000110

000111011100100000110100011011111110101111001001111110000011

101000111100111001011110011000001100100111001010000100101010

001100010110011101111111010101000001110111110100111011001101

100010000011001101101001110111011001000100000111010011010001

100101010000011001101101111111001011001011110011111010001000

001101111110111001000001110100110100011001010100000111011111

000011111001000001110001000010001001000110111111101110100000

110110011011111101110110011101000001100100110111101000001111

001110111111101010100000111011111000011101110111010001000001

110100110111101000001110111110000111011001101011010000001010

001101101110100111011101110101111010011001011110011010100101

11111000001111010100000000000111100000010111010001110011

QRscript header section

eQRbytecode eQR code

e
Q

R
tre

e
b

y
te

co
d

e
/ C

o
d

e
 se

ctio
n

Fig. 8. The eQRbytecode obtained from the intermediate representation and
the corresponding eQR code.

B. eQR code Execution

The execution chain permits to run the program embedded
in an eQR code. The eQR code to be executed is typically
embedded in a poster (other kinds of support are also possible)
together with additional information, including pictures, tex-
tual descriptions, and maps. For example, the poster depicted
in Fig. 10 includes a map that shows hikers where the various
reachable places are located. The program considered in the
current example outputs one of four possible references. For
every reference, the poster includes a picture that visually
shows the destination and some text that provides additional
information. The poster could be placed, in the form of an
indication sign, near a crossroad that permits to reach the four
destinations.

Let us assume that there is no Internet coverage. When the
end user (a hiker, in the example) scans the eQR code with
the camera of her/his (unconnected) smartphone, a suitable app
(pre-installed in the device) transforms the content of the eQR
code into the binary eQRbytecode representation, which can be
directly translated into the intermediate representation. Starting
from it, execution is possible by means of, e.g., a suitable

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Scan eQR code Reference 1

Madonna della

Neve hut

Reference 2

Reference 3 Reference 4
Alfredo Rivetti

hut

Piedicavallo

(Biella)

Lake (Lago

Della Vecchia)

Pine forest

Map

Lake: Lago della vecchia is a lake of

glacial origins located near

Piedicavallo (Biella), which is in the

Prealps. The route is quite difficult !!

Pine forest: it is a really old pine

forest, with a great view of the city

below, and a beautiful picnic area.

Alfredo Rivetti hut: It is located

about 3-hour walk from

Piedicavallo (Biella) at 2150 m.

You can stay overnight if open.

Madonna della Neve hut: It is

located about 1-hour walk from

Piedicavallo (Biella) at 1595 m.

You can eat a delicious polenta.

You are

here

Fig. 9. Sample eQR code printed on a sheet of paper along with additional
information (map, images, text). The poster can be used as indication sign.

Fig. 10. Instance of execution of the QRscript (QRtree dialect) embedded in
the sample eQR code on a smartphone (virtual machine).

virtual machine. In our proof-of-concept, eQR execution relies
on a JavaScript application that can be run on any browser.
Although this implementation is clearly not optimized (we are
not pursuing a fully-engineered commercial product at this
time), it can be tested on both mobile platforms (Android and
iOS) and conventional devices (Windows, Linux, and macOS).

The screenshot in Fig. 10 refers to a specific execution
instance of the eQR code. The application initially asks the
hiker if she/he is tired. Following the negative answer (“no”),
the application asks how many minutes she/he intends to keep
walking. Since the response is 180, which is greater than 120,
the application outputs a message that invites to take a look at
reference 3, which corresponds to the “Alfredo Rivetti hut”.

Although extremely simple, the above example shows all
the steps involved in both the generation and the execution
chain that apply to a concrete scenario concerning tourism,
including a sample user interaction. Similarly to QR codes,
which were conceived for industrial applications but can now
be found everywhere in our lives, the possibilities offered
by eQR codes are likely uncountable. Contexts in the real
world that can benefit from this technology include methods
to help people to easily find solutions to their problems (or

simply the information they are looking for) when an Internet
connection is lacking, and even to improve their safety by
providing unambiguous guided instructions when needed.

C. Comparison

Since the room available in QR codes is scarce, the most
interesting metric for assessing solutions like ours is code size.
To the best of our knowledge, there are at the moment no
competing solutions conceived for similar purposes. For this
reason, we compared the size of the eQR code for the above
example (see Fig. 8) with a semantically equivalent program
(i.e., which does exactly the same things: the same sequence of
questions are asked to the user and, for the same answers, the
same advice is provided) written in Python. For the latter, the
size of the source code is 537B (i.e., occupation is 18.2%),
while the related bytecode takes 634B (21.5%). It is worth
pointing out that, when the size of data is small (as in our
case), generic compression techniques like ZIP and RAR are
ineffective. Conversely, QRtree usage managed to shrink code
size to 234B (7.9%), which is noticeably less than alternatives
and permits packing more complex algorithms inside an eQR
code. It should be noted that, the lower the overall size of the
strings, the higher the relative space saving achieved by eQR
codes compared to other encodings.

VI. CONCLUSIONS

As highlighted by the analysis we performed on the state-
of-the-art about QR codes, reported at the beginning of this
work, the past years witnessed a promising trend concerning
the research activities on this technology. The ability to embed
an executable program (denoted QRscript) inside them, and a
formal and agreed definition of eQR codes, are an essential
step that further enhances QR codes and brings them new
life. QRscript was conceived bearing extensibility in mind,
and permits embedding a variety of dialects. In this work, the
QRtree dialect is defined that specifically permits to encode
decision trees. Its usability and potential have been illustrated
through a real-life application example.

eQR codes close a significant gap regarding the ability to
embed algorithms in a QR code, in such a way to enable
interactive behavior, which somehow resembles the Internet
of Things, also when Internet is unavailable and both the
system (object) and its user (human being) are offline. For
this reason we believe that they have the potential to know
a wide diffusion in the coming years. Future work includes,
possibly, the standardization of the specification documents
about eQR codes referred to in this work and the definition of
new dialects, including a general-purpose language that fully
supports structured algorithms.

ACKNOWLEDGMENT

Stefano Scanzio is grateful to Prof. Silvano Rivoira for all
the years they spent teaching together the course of Formal
Languages and Compilers at the Politecnico di Torino, and
for all he learned from him on this subject. This work derives
in part from that knowledge.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

REFERENCES

[1] S. Tiwari, “An Introduction to QR Code Technology,” in International
Conference on Information Technology (ICIT 2016), 2016, pp. 39–44.

[2] C. Teuta, S. P. Payal, A. Ramesh, and T. Sakaguchi, “QR Code: A
New Opportunity for Effective Mobile Marketing,” Journal of Mobile
Technologies, Knowledge and Society, vol. 2013, p. ID748267, 2013.

[3] C. Chen, “QR Code Authentication with Embedded Message Authenti-
cation Code,” Mobile Networks and Applications, vol. 22, pp. 383–394,
2017. [Online]. Available: https://doi.org/10.1007/s11036-016-0772-y

[4] K. Saranya, R. Reminaa, and S. Subhitsha, “Modern applications of QR-
Code for security,” in IEEE International Conference on Engineering
and Technology (ICETECH 2016), 2016, pp. 173–177.

[5] T.-W. Kan, C.-H. Teng, and W.-S. Chou, “Applying QR Code
in Augmented Reality Applications,” in Proceedings of the 8th
International Conference on Virtual Reality Continuum and Its
Applications in Industry, ser. VRCAI ’09. New York, NY, USA:
Association for Computing Machinery, 2009, pp. 253–257. [Online].
Available: https://doi.org/10.1145/1670252.1670305

[6] S. L. Fong, D. Wui Yung Chin, R. A. Abbas, A. Jamal, and F. Y. H.
Ahmed, “Smart City Bus Application With QR Code: A Review,” in
IEEE International Conference on Automatic Control and Intelligent
Systems (I2CACIS 2019), 2019, pp. 34–39.

[7] Z. Meng, Z. Wu, and J. Gray, “Rfid-based object-centric data manage-
ment framework for smart manufacturing applications,” IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 2706–2716, 2019.

[8] S. Scanzio, G. Cena, and A. Valenzano, “QRscript: Embedding a Pro-
gramming Language in QR codes to support Decision and Management,”
in 2022 IEEE 27th International Conference on Emerging Technologies
and Factory Automation (ETFA), 2022, pp. 1–8.

[9] ISO Central Secretary, “Information technology — Automatic
identification and data capture techniques — QR Code bar
code symbology specification,” International Organization for
Standardization, Geneva, CH, Standard ISO/IEC 18004:2015, 2015.
[Online]. Available: https://www.iso.org/standard/62021.html

[10] Y. Yan, Z. Zou, H. Xie, Y. Gao, and L. Zheng, “An IoT-Based Anti-
Counterfeiting System Using Visual Features on QR Code,” IEEE
Internet of Things Journal, vol. 8, no. 8, pp. 6789–6799, 2021.

[11] P.-Y. Lin, W.-C. Wu, and J.-H. Yang, “A QR Code-Based Approach
to Differentiating the Display of Augmented Reality Content, journal
= Applied Sciences,” vol. 11, no. 24, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/24/11801

[12] S. S. Madsen, A. Q. Santos, and B. N. Jørgensen, “A QR
code based framework for auto-configuration of IoT sensor net-
works in buildings,” Energy Informatics, pp. 46–volume = 4, url =
https://doi.org/10.1186/s42 162–021–00 152–w, doi = 10.1186/s42 162–
021–00 152–w, 2021.

[13] X. Tian, S. Qin, B. Jiang, Y. Gao, and X. Wang, “Fast Batch Reading
Densely Deployed QR Codes,” IEEE Transactions on Mobile Comput-
ing, vol. 22, no. 3, pp. 1507–1520, 2023.

[14] X. Yu, Z. Fan, H. Wan, Y. He, J. Du, N. Li, Z. Yuan, and
G. Xiao, “Positioning, Navigation, and Book Accessing/Returning in an
Autonomous Library Robot using Integrated Binocular Vision and QR
Code Identification Systems,” Sensors, vol. 19, no. 4, 2019. [Online].
Available: https://www.mdpi.com/1424-8220/19/4/783

[15] S.-H. Bach, P.-B. Khoi, and S.-Y. Yi, “Application of QR Code for
Localization and Navigation of Indoor Mobile Robot,” IEEE Access,
vol. 11, pp. 28 384–28 390, 2023.

[16] T. Liu, J. Kuang, W. Ge, P. Zhang, and X. Niu, “A Simple Positioning
System for Large-Scale Indoor Patrol Inspection Using Foot-Mounted
INS, QR Code Control Points, and Smartphone,” IEEE Sensors Journal,
vol. 21, no. 4, pp. 4938–4948, 2021.

[17] J. Yan, J. B. Lee, S. Zlatanova, A. A. Diakité, and H. Kim, “Navigation
network derivation for QR code-based indoor pedestrian path planning,”
Transactions in GIS, vol. 26, no. 3, pp. 1240–1255, 2022. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12912

[18] Y. Zhang, W. Zhu, and A. Rosendo, “QR Code-Based Self-Calibration
for a Fault-Tolerant Industrial Robot Arm,” IEEE Access, vol. 7, pp.
73 349–73 356, 2019.

[19] P. Mathivanan and A. Balaji Ganesh, “QR code based color image
cryptography for the secured transmission of ECG signal,” Multimedia
Tools and Applications, vol. 78, pp. 6763–6786, 2019. [Online].
Available: https://doi.org/10.1007/s11042-018-6471-x

[20] W. Wen, Y. Jian, Y. Fang, Y. Zhang, and B. Qiu, “Authenticable medical
image-sharing scheme based on embedded small shadow QR code and
blockchain framework,” Multimedia Systems, vol. 29, pp. 831–845,
2023. [Online]. Available: https://doi.org/10.1007/s00530-022-00999-3

[21] Y. Zhou, B. Hu, Y. Zhang, and W. Cai, “Implementation of Cryp-
tographic Algorithm in Dynamic QR Code Payment System and Its
Performance,” IEEE Access, vol. 9, pp. 122 362–122 372, 2021.

[22] B. A. Eren, “QR code m-payment from a customer experience
perspective,” Journal of Financial Services Marketing, 2022. [Online].
Available: https://doi.org/10.1057/s41264-022-00186-5

[23] F. A. A. Ramli, M. I. Hamzah, S. N. Wahab, and R. Shekhar,
“Modeling the Brand Equity and Usage Intention of QR-Code E-
Wallets,” FinTech, vol. 2, no. 2, pp. 205–220, 2023. [Online]. Available:
https://www.mdpi.com/2674-1032/2/2/13

[24] J.-W. Lee, J.-Y. Jeong, J.-J. Kim, H.-S. Park, and S. Chae, “A Note
on the Design of Waste Management System Using QR Code for
Radioactive Waste,” Sustainability, vol. 14, no. 15, 2022. [Online].
Available: https://www.mdpi.com/2071-1050/14/15/9265

[25] E. Borandag, “A Blockchain-Based Recycling Platform Using Image
Processing, QR Codes, and IoT System,” Sustainability, vol. 15, no. 7,
2023. [Online]. Available: https://www.mdpi.com/2071-1050/15/7/6116

[26] J.-S. Kim, C.-Y. Yi, and Y.-J. Park, “Image Processing and QR
Code Application Method for Construction Safety Management,”
Applied Sciences, vol. 11, no. 10, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/10/4400

[27] M. Alajmi, I. Elashry, H. S. El-Sayed, and O. S. Farag Allah, “Steganog-
raphy of Encrypted Messages Inside Valid QR Codes,” IEEE Access,
vol. 8, pp. 27 861–27 873, 2020.

[28] J. Liu, J. Han, K. Fu, J. Jia, D. Zhu, and G. Zhai, “Application of QR
Code Watermarking and Encryption in the Protection of Data Privacy of
Intelligent Mouth-Opening Trainer,” IEEE Internet of Things Journal,
vol. 10, no. 12, pp. 10 510–10 518, 2023.

[29] H. A. M. Wahsheh and F. L. Luccio, “Security and Privacy of QR
Code Applications: A Comprehensive Study, General Guidelines and
Solutions,” Information, vol. 11, no. 4, 2020. [Online]. Available:
https://www.mdpi.com/2078-2489/11/4/217

[30] S. N. Abdul Rabu, H. Hussin, and B. Bervell, “QR code utilization
in a large classroom: Higher education students’ initial perceptions,”
Education and Information Technologies, vol. 24, pp. 359–384, 2019.
[Online]. Available: https://doi.org/10.1007/s10639-018-9779-2

[31] S. Kuru Gönen and G. Zeybek, “Using QR code enhanced
authentic texts in EFL extensive reading: a qualitative study on
student perceptions,” Education and Information Technologies, vol. 27,
pp. 2039–2057, 2022. [Online]. Available: https://doi.org/10.1007/
s10639-021-10695-w

[32] S. Bhatia and A. S. Albarrak, “A Blockchain-Driven Food Supply Chain
Management Using QR Code and XAI-Faster RCNN Architecture,”
Sustainability, vol. 15, no. 3, 2023. [Online]. Available: https:
//www.mdpi.com/2071-1050/15/3/2579

[33] M. Usama and U. Yaman, “Embedding Information into or onto
Additively Manufactured Parts: A Review of QR Codes, Steganography
and Watermarking Methods,” Materials, vol. 15, no. 7, 2022. [Online].
Available: https://www.mdpi.com/1996-1944/15/7/2596

[34] Y. Dong, Z. Fu, S. Stankovski, S. Wang, and X. Li, “Nutritional Quality
and Safety Traceability System for China’s Leafy Vegetable Supply
Chain Based on Fault Tree Analysis and QR Code,” IEEE Access, vol. 8,
pp. 161 261–161 275, 2020.

[35] F. Pasquaré Mariotto, F. L. Bonali, A. Tibaldi, E. De Beni, N. Corti,
E. Russo, L. Fallati, M. Cantarero, and M. Neri, “A New Way
to Explore Volcanic Areas: QR-Code-Based Virtual Geotrail at Mt.
Etna Volcano, Italy,” Land, vol. 11, no. 3, 2022. [Online]. Available:
https://www.mdpi.com/2073-445X/11/3/377

[36] T. Wang, H. Zheng, C. You, and J. Ju, “A Texture-Hidden Anti-
Counterfeiting QR Code and Authentication Method,” Sensors, vol. 23,
no. 2, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/
2/795

[37] Y. Yan, Z. Zou, H. Xie, Y. Gao, and L. Zheng, “An IoT-Based Anti-
Counterfeiting System Using Visual Features on QR Code,” IEEE
Internet of Things Journal, vol. 8, no. 8, pp. 6789–6799, 2021.

[38] M. Xu, H. Su, Y. Li, X. Li, J. Liao, J. Niu, P. Lv, and B. Zhou, “Stylized
Aesthetic QR Code,” IEEE Transactions on Multimedia, vol. 21, no. 8,
pp. 1960–1970, 2019.

[39] S.-H. Hung, C.-Y. Yao, Y.-J. Fang, P. Tan, R.-R. Lee, A. Sheffer, and H.-
K. Chu, “Micrography QR Codes,” IEEE Transactions on Visualization
and Computer Graphics, vol. 26, no. 9, pp. 2834–2847, 2020.

[40] M.-J. Tsai and S.-L. Peng, “QR code beautification by instance
segmentation (IS-QR),” Digital Signal Processing, vol. 133, p.
103887, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1051200422005048

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/s11036-016-0772-y
https://doi.org/10.1145/1670252.1670305
https://www.iso.org/standard/62021.html
https://www.mdpi.com/2076-3417/11/24/11801
https://www.mdpi.com/1424-8220/19/4/783
https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12912
https://doi.org/10.1007/s11042-018-6471-x
https://doi.org/10.1007/s00530-022-00999-3
https://doi.org/10.1057/s41264-022-00186-5
https://www.mdpi.com/2674-1032/2/2/13
https://www.mdpi.com/2071-1050/14/15/9265
https://www.mdpi.com/2071-1050/15/7/6116
https://www.mdpi.com/2076-3417/11/10/4400
https://www.mdpi.com/2078-2489/11/4/217
https://doi.org/10.1007/s10639-018-9779-2
https://doi.org/10.1007/s10639-021-10695-w
https://doi.org/10.1007/s10639-021-10695-w
https://www.mdpi.com/2071-1050/15/3/2579
https://www.mdpi.com/2071-1050/15/3/2579
https://www.mdpi.com/1996-1944/15/7/2596
https://www.mdpi.com/2073-445X/11/3/377
https://www.mdpi.com/1424-8220/23/2/795
https://www.mdpi.com/1424-8220/23/2/795
https://www.sciencedirect.com/science/article/pii/S1051200422005048
https://www.sciencedirect.com/science/article/pii/S1051200422005048

[41] M.-J. Tsai, H.-Y. Wu, and D.-T. Lin, “Auto ROI mask R-CNN model
for QR code beautification (ARM-QR),” Multimedia Systems, 2023.
[Online]. Available: https://doi.org/10.1007/s00530-022-01046-x

[42] J. Sun, K. Shrestha, H. Park, P. Yadav, S. Parajuli, S. Lee,
S. Shrestha, G. R. Koirala, Y. Kim, K. A. Marotrao, B. B.
Maskey, O. C. Olaoluwa, J. Park, H. Jang, N. Lim, Y. Jung, and
G. Cho, “Bridging R2R Printed Wireless 1 Bit-Code Generator with
an Electrophoretic QR Code Acting as WORM for NFC Carrier
Enabled Authentication Label,” Advanced Materials Technologies,
vol. 5, no. 2, p. 1900935, 2020. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900935

[43] R. Chen, W. Li, K. Lan, J. Xiao, L. Wang, and X. Lu, “Fast Adaptive
Binarization of QR Code Images for Automatic Sorting in Logistics
Systems,” Electronics, vol. 12, no. 2, 2023. [Online]. Available:
https://www.mdpi.com/2079-9292/12/2/286

[44] G. Papp, M. Hoffmann, and I. Papp, “Embedding QR Code onto
Triangulated Meshes using Horizon Based Ambient Occlusion,”
Computer Graphics Forum, vol. 41, no. 1, pp. 29–45, 2022. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14394

[45] H.-C. Liu, T.-R. Chou, C.-S. Lu, and H.-C. Wang, “Improving
readability by modifying graphic QR code microstructure,” Electronics
Letters, vol. 57, no. 23, pp. 879–881, 2021. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ell2.12301

[46] R. Chen, Z. Zheng, J. Pan, Y. Yu, H. Zhao, and J. Ren, “Fast Blind
Deblurring of QR Code Images Based on Adaptive Scale Control,”
Mobile Networks and Applications, vol. 26, pp. 2472–2487, 2021.
[Online]. Available: https://doi.org/10.1007/s11036-021-01780-y

[47] R. Chen, Z. Zheng, Y. Yu, H. Zhao, J. Ren, and H.-Z. Tan, “Fast
Restoration for Out-of-Focus Blurred Images of QR Code With Edge
Prior Information via Image Sensing,” IEEE Sensors Journal, vol. 21,
no. 16, pp. 18 222–18 236, 2021.

[48] H. Eugênio Gonçalves, L. Xavier Medeiros, and A. Coutinho Mateus,
“Algorithm for Locating the Vertices of a QR Code and Removing
Perspective,” IEEE Latin America Transactions, vol. 19, no. 11, pp.
1933–1940, 2021.

[49] R. Chen, H. Huang, Y. Yu, J. Ren, P. Wang, H. Zhao, and X. Lu,
“Rapid Detection of Multi-QR Codes Based on Multistage Stepwise
Discrimination and A Compressed MobileNet,” IEEE Internet of Things
Journal, pp. 1–1, 2023.

[50] A. Mohammed Ali and A. K. Farhan, “Enhancement of QR Code Ca-
pacity by Encrypted Lossless Compression Technology for Verification
of Secure E-Document,” IEEE Access, vol. 8, pp. 27 448–27 458, 2020.

[51] Y. Huang, P. Cao, and J. Li, “Research on multiplexed colour QR
code with direct readability,” Electronics Letters, vol. 58, no. 8,
pp. 309–311, 2022. [Online]. Available: https://ietresearch.onlinelibrary.
wiley.com/doi/abs/10.1049/ell2.12433

[52] B. Kang, J. Jia, W. Gao, and N. Zhang, “Research on Improved Character
Encoding Methods Based on QR Code,” Chinese Journal of Electronics,
vol. 28, no. 6, pp. 1170–1176, 2019. [Online]. Available: https:
//ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cje.2019.07.005

[53] S. Liu, Z. Fu, and B. Yu, “Rich QR Codes With Three-Layer Information
Using Hamming Code,” IEEE Access, vol. 7, pp. 78 640–78 651, 2019.

[54] T. Yuan, Y. Wang, K. Xu, R. R. Martin, and S.-M. Hu, “Two-Layer
QR Codes,” IEEE Transactions on Image Processing, vol. 28, no. 9, pp.
4413–4428, 2019.

[55] G.-J. Chou and R.-Z. Wang, “The Nested QR Code,” IEEE Signal
Processing Letters, vol. 27, pp. 1230–1234, 2020.

[56] Y. Xu, Z. Liu, R. Liu, M. Luo, Q. Wang, L. Cao, and S. Ye,
“Inkjet-printed pH-sensitive QR code labels for real-time food freshness
monitoring,” Journal of Materials Science, vol. 56, pp. 18 453–18 462,
2021. [Online]. Available: https://doi.org/10.1007/s10853-021-06477-x

[57] L. Song, W. Liu, X. Zou, H. Huo, P. Guo, Y. Yu, and C. Wen, “Research
on a Traceability Process of Sand Core Information by Printing QR
Code on Sand Core Surface in the Casting Production Process,”
International Journal of Metalcasting, vol. 15, pp. 1476–1482, 2021.
[Online]. Available: https://doi.org/10.1007/s40962-021-00572-0

[58] H. Peng, P. Liu, L. Lu, A. Sharf, L. Liu, D. Lischinski, and
B. Chen, “Fabricable Unobtrusive 3D-QR-Codes with Directional
Light,” Computer Graphics Forum, vol. 39, no. 5, pp. 15–27, 2020.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.
14065

[59] J.-S. Pan, T. Liu, B. Yan, H.-M. Yang, and S.-C. Chu, “Using
color QR codes for QR code secret sharing,” Multimedia Tools and
Applications, vol. 81, pp. 15 545–15 563, 2022. [Online]. Available:
https://doi.org/10.1007/s11042-022-12423-z

[60] P.-C. Huang, C.-C. Chang, Y.-H. Li, and Y. Liu, “Efficient QR Code
Secret Embedding Mechanism Based on Hamming Code,” IEEE Access,
vol. 8, pp. 86 706–86 714, 2020.

[61] L. Xiong, X. Zhong, N. N. Xiong, and R. W. Liu, “QR-3S: A High
Payload QR Code Secret Sharing System for Industrial Internet of
Things in 6G Networks,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 10, pp. 7213–7222, 2021.

[62] M. Wang, X. Yang, X. Meng, Y. Wang, Y. Yin, and G. Dong,
“Multi-image encryption based on QR code and singular value
decomposition ghost imaging,” Journal of Optics, vol. 51, pp. 841–850,
2022. [Online]. Available: https://doi.org/10.1007/s12596-021-00813-9

[63] Z. Fu, Y. Cheng, S. Liu, and B. Yu, “A new two-level information
protection scheme based on visual cryptography and QR code with
multiple decryptions,” Measurement, vol. 141, pp. 267–276, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0263224119303549

[64] Y.-W. Chow, W. Susilo, J. Wang, R. Buckland, J. Baek, J. Kim,
and N. Li, “Utilizing QR codes to verify the visual fidelity of
image datasets for machine learning,” Journal of Network and
Computer Applications, vol. 173, p. 102834, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804520303040

[65] S. Scanzio, M. Rosani, M. Scamuzzi, and G. Cena, “QRscript
specification,” arXiv, pp. 1–13, Mar. 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2403.04708

[66] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” RFC 3629,
Nov. 2003. [Online]. Available: https://www.rfc-editor.org/info/rfc3629

[67] S. Scanzio, M. Rosani, M. Scamuzzi, and G. Cena, “QRtree - Decision
Tree dialect specification of QRscript,” arXiv, pp. 1–32, Mar. 2024.
[Online]. Available: https://doi.org/10.48550/arXiv.2403.04716

[68] International Organization for Standardization, “Information technology
- ISO 7-bit coded character set for information interchange,” Interna-
tional Organization for Standardization, Geneva, ISO/IEC Standard 646,
1991.

[69] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design: The Hardware/Software Interface, 5th ed. Morgan Kaufmann
Publishers, 2014, Section 2.4.2: Two’s complement representation of
numbers.

[70] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, 2019.

[71] S. Scanzio, M. Rosani, and M. Scamuzzi, “QRtree software,” GitHub,
Mar. 2024. [Online]. Available: https://github.com/eQR-code/QRtree

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3385542

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1007/s00530-022-01046-x
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900935
https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201900935
https://www.mdpi.com/2079-9292/12/2/286
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14394
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ell2.12301
https://doi.org/10.1007/s11036-021-01780-y
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ell2.12433
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ell2.12433
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cje.2019.07.005
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/cje.2019.07.005
https://doi.org/10.1007/s10853-021-06477-x
https://doi.org/10.1007/s40962-021-00572-0
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14065
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14065
https://doi.org/10.1007/s11042-022-12423-z
https://doi.org/10.1007/s12596-021-00813-9
https://www.sciencedirect.com/science/article/pii/S0263224119303549
https://www.sciencedirect.com/science/article/pii/S0263224119303549
https://www.sciencedirect.com/science/article/pii/S1084804520303040
https://doi.org/10.48550/arXiv.2403.04708
https://www.rfc-editor.org/info/rfc3629
https://doi.org/10.48550/arXiv.2403.04716
https://github.com/eQR-code/QRtree

	Introduction
	QR codes
	Technology
	State-of-the-Art
	Application contexts
	Research trends

	QRscript and eQR codes
	Generation and execution chain
	QRscript and eQR codes specification
	Dialect
	Exponential encoding
	URL
	Security
	Continuation
	Padding

	QRtree dialect
	QRtree structure
	Data types
	QRtree header
	Code
	Intermediate representation
	eQRtreebytecode

	Application example
	eQR code Generation
	eQR code Execution
	Comparison

	Conclusions
	References

