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Abstract—In the era of data-driven healthcare, the amalga-
mation of blockchain and Federated Learning (FL) introduces a
paradigm shift towards secure, collaborative, and patient-centric
data-sharing. This paper pioneers the exploration of the concep-
tual framework and technical synergy of FL and blockchain for
decentralized data-sharing, aiming to strike a balance between
data utility and privacy. FL, a decentralized machine learning
paradigm, enables collaborative AI model training across mul-
tiple healthcare institutions without sharing raw patient data.
Combined with blockchain, a transparent and immutable ledger,
it establishes an ecosystem fostering trust, security, and data
integrity. The paper elucidates the technical foundations of FL
and blockchain, unravelling their roles in reshaping healthcare
data-sharing. The paper vividly illustrates the potential impact of
this fusion on patient care. The proposed approach preserves pa-
tient privacy while granting healthcare providers and researchers
access to diversified datasets, ultimately leading to more accurate
models and improved diagnoses. The findings underscore the
potential acceleration of medical research, improved treatment
outcomes, and patient empowerment through data ownership.
The synergy of FL and blockchain envisions a healthcare ecosys-
tem that prioritizes individual privacy and propels advancements
in medical science.

Index Terms—IoE, Federated learning, blockchain, data shar-
ing, decentralized data sharing, dataspace 4.0, industry 4.0,
industry 5.0.

I. INTRODUCTION

The rapid development of the Internet of Things (IoT),
cloud computing, and big data has led to Dataspace 4.0, a
digital ecosystem where massive amounts of data from various
sources are seamlessly integrated and shared among stakehold-
ers. Dataspace 4.0, funded by the European Union, aims to
establish shared principles for exchanging manufacturing data
at the EU level; Dataspace 4.0 is to pave the way for a unified
manufacturing data ecosystem and foster the formation of a
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cohesive European community focused on Dataspace 4.0 [1].
Therefore, data-sharing is essential in Dataspace 4.0 to create
a coherent European community and a unified industrial data
environment. With the advent of the sixth Generation (6G),
the capabilities of Dataspace 4.0 are expected to be further
enhanced, providing new opportunities for data-driven applica-
tions and services. Dataspace 4.0 refers to the next generation
of data management systems expected to enable the integration
and sharing of data across various industries and domains [2].
In [3] discussed how advanced technologies and the needs
set for 6G affect Industry 4.0 developments based on massive
data. The foundation of Industry 4.0 is data-sharing, which
facilitates smooth communication between entities, machines,
and processes, improving operational excellence, decision-
making, and resource usage. Furthermore, the authors of
[4] provided a vision for a 6G industrial Digital Twin (DT)
ecosystem to bridge the gaps between machines, humans,
and data infrastructure to enable numerous applications. As a
result, data-sharing is essential to achieving the full potential
of Industry 4.0 and Dataspace 4.0, not merely necessary.

The safe and ethical sharing of private patient data is a
crucial challenge when healthcare data is expanding expo-
nentially , and there is an increasing demand for data-driven
medical advancements. Healthcare institutions, researchers,
and patients need to strike a delicate balance between the
utility of aggregated medical data for scientific progress and
the paramount importance of preserving individual privacy
and data security. The challenge has spurred the emergence
of innovative technologies poised to reshape the landscape of
healthcare data-sharing. data-sharing has become an essential
component of modern society, enabling businesses, govern-
ments, and individuals to access and analyze vast amounts of
data for various purposes, such as research, decision-making,
and innovation. However, centralized data-sharing systems
have limitations, such as data privacy and security concerns
[S]interoperability issues [6], and single points of failure [7].
To address these challenges, decentralized data-sharing has
emerged as a promising alternative that distributes data across
multiple nodes or peers without needing a central authority
or intermediary. In addition, decentralized data-sharing offers
several benefits, such as increased privacy and security, im-
proved data ownership and control, and enhanced transparency
and accountability [8].

Decentralized data-sharing is an essential aspect of Datas-
pace 4.0, as it allows multiple parties to share data with-
out needing a central authority or intermediary [9], leading
to improved collaboration, increased data privacy and se-
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curity, and the potential for new business models and rev-
enue streams. Several decentralized data-sharing technologies
and techniques, such as Federated Learning (FL) [10] and
blockchain [11], have emerged as promising solutions to
address these challenges. The technologies above have been
applied in various domains, such as healthcare, finance, and the
IoT, to address specific use cases and requirements. Two such
technologies, FL. and blockchain, have garnered significant
attention for their potential to solve this conundrum. FL, a
decentralized Machine Learning (ML) approach that Google
[12] pioneered offers a novel paradigm for collaborative model
training across a network of data sources without centralizing
raw data. It inherently safeguards data privacy at its source,
a crucial factor in healthcare, where data confidentiality is
sacrosanct [13]. Initially developed as the underlying tech-
nology for cryptocurrencies like Bitcoin [14], blockchain has
transcended its financial origins to become a secure and
immutable ledger capable of ensuring data integrity and trans-
parency. Its characteristics are well-suited to address the need
for trust and accountability in data-sharing ecosystems [15].
Despite the potential benefits of decentralized data-sharing,
several challenges and limitations are associated with the
above technologies, such as scalability, interoperability, and
regulatory compliance.

In this paper, we explore the intersection between FL and
blockchain in the context of decentralized data-sharing, with
a particular focus on the healthcare sector. Our objective
is to unravel the synergies between these two technologies,
shedding light on how they can be harnessed to revolutionize
healthcare data-sharing while preserving individual privacy
and fostering collaboration. The significance of this paper
extends beyond theoretical exploration and embraces practical
implications for healthcare institutions, researchers, and, ulti-
mately, patients. The combination of blockchain technology
and FL has become a game-changer in the quickly developing
field of data-driven technologies, providing a fresh approach
to decentralized data-sharing. In the context of a decentralized
data-sharing framework, this article examines the synergies
between these two technologies, highlighting how they could
transform collaborative data-sharing while protecting individ-
ual privacy and promoting smooth collaboration.

A. Motivation and Contributions

Modern societies depend on data-sharing because it pro-
motes cooperation, spurs innovation, and increases industry
transparency [16]. Although it is essential to research, devel-
opment, and the welfare of society, the explosion in data gen-
eration—especially since the introduction of the 6G network
and the spread of the Internet of Things—brings new diffi-
culties. Once shared, centralized data-sharing solutions now
have privacy, security, and accessibility issues. To overcome
these obstacles, this paper proposes a paradigm shift toward
decentralized data-sharing by utilizing blockchain technology
and FL. The synergy of blockchain and FL strategy guaran-
tees enhanced security, privacy and a strong barrier against
unwanted access and possible data breaches. Furthermore, It
offers protection from changing cyber threats by sharing power
and leveraging blockchain’s advantages.

Moreover, the synergy of FL and blockchain gives stake-
holders unparalleled control over data in addition to security
[17]. It creates an environment of trust and accountabil-
ity among players by protecting intellectual property rights
and promoting openness. At the vanguard of transforming
healthcare data exchange, the synergy strategy goes beyond
satisfying urgent needs. Safe, effective, patient-centered data-
sharing will speed up medical research, enhance patient care
and accelerate improvements in healthcare. Our proposed
paradigm stands out for resolving the conventional trade-off
between privacy and data-sharing. Not only does it comply
with strict regulations, but it also dramatically increases pro-
ductivity and openness in the healthcare industry. In addition
to providing a comprehensive solution, our work establishes a
new benchmark for the interchange of healthcare information.
The combination of blockchain technology and FL promises
to transform the healthcare industry by promoting scientific
breakthroughs, enhancing patient care, and guaranteeing legal
compliance.

data-sharing is pivotal in shaping modern societies, offering
myriad benefits that span individuals, organizations, and the
broader community [16]. It fosters collaboration, drives effi-
ciencies and fosters innovation across various sectors. data-
sharing enhances transparency and accountability, acting as a
bulwark against corruption and building trust among stake-
holders [18]. It also streamlines resource utilization, leading
to significant cost savings and productivity gains. In public
services, data-sharing catalyzes research and development,
particularly in critical areas like healthcare, environmental
conservation, and societal well-being. However, the landscape
of data-sharing is not without its complexities. With the
proliferation of the IoT and the advent of the 6G network, there
has been an exponential increase in data generation, presenting
both opportunities and challenges. data-sharing in this context
raises significant privacy, security, and interoperability con-
cerns, necessitating a careful balance between innovation and
risk mitigation. Centralized data-sharing models, traditionally
prevalent, are increasingly seen as inadequate due to their
inherent privacy and security limitations, reliance on singular
management entities, and accessibility challenges. This paper
argues for a shift towards decentralized data-sharing, utilizing
FL and blockchain technology. Such a decentralized approach
leverages distributed computing for efficiency and scalability
while harnessing blockchain’s strengths in immutability and
security. This method promises enhanced security and privacy,
mitigating risks like unauthorized access and data breaches.
It also empowers stakeholders by granting greater control
over data, fostering transparency, and safeguarding intellectual
property rights. Additionally, it promotes interoperability and
seamless data exchange, thereby reducing fragmentation and
improving collaboration.

Our work is at the forefront of reshaping healthcare data-
sharing by exploring the synergistic potential of FL and
blockchain technologies. Our approach addresses the critical
needs of secure, efficient, and patient-centric healthcare data-
sharing in a world increasingly driven by data. We propose
an innovative framework that enables healthcare institutions,
researchers, and patients to share data securely and efficiently.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2024.3367249

This approach not only enhances patient care and accelerates
medical research but also promises greater accuracy in diag-
noses, personalized treatment options, and rapid advancements
in medical science. The primary driving force behind our work
is the need to bridge the gap between collaborative healthcare
research and the imperative to protect patient data privacy.
Our proposed decentralized data-sharing model effectively
resolves the traditional trade-off between sharing and privacy.
It aligns with stringent regulatory requirements while boosting
efficiency, transparency, and trust in the healthcare sector.
The main contributions of this paper are encapsulated in the
development of a groundbreaking, patient-centric framework
for healthcare data-sharing in the 6G era, integrating FL
and blockchain technologies. This integration is poised to
revolutionize the healthcare landscape, fostering advancements
in research, improving patient care, and ensuring regulatory
compliance, all while maintaining a steadfast focus on patient
privacy. We offer a comprehensive solution to decentralized
data-sharing, setting a new standard in healthcare information
exchange.

1) Innovative Integration of Technologies: We propose
a novel framework combining FL and blockchain for
healthcare data-sharing. This synergy addresses complex
challenges related to data security and efficient sharing,
ensuring a patient-centric approach.

2) Privacy-Preserving data-sharing Model: Our work in-
troduces a privacy-preserving framework for healthcare
data-sharing. By amalgamating FL’s capability to train
models without exposing raw data and blockchain’s
strength in maintaining data integrity, we ensure patient
information’s confidentiality and immutability.

3) Empowerment of Patients in data-sharing: The pro-
posed model enhances patient empowerment by allowing
them to maintain control over their healthcare data.
Blockchain technology enables patients to participate in
medical research while actively preserving data owner-
ship.

4) Healthcare Use Case Application: We demonstrate
the practical applicability of our framework through a
healthcare use case. This approach leads to more accu-
rate medical models, personalized treatment options, and
improved patient care, revolutionizing healthcare.

5) Bridging the Privacy-Utility Gap in Healthcare: Our
framework addresses the critical balance between col-
laborative healthcare research and patient data privacy,
aligning with stringent regulatory standards and enhanc-
ing transparency and trust in healthcare data-sharing.

B. Related work

Industry 4.0 is characterized by integrating several cutting-
edge technologies, such as the Industrial IoT, Artificial In-
telligence (AI) - including augmented intelligence, big data
analytics, ML, and Deep Learning (DL) - and edge-fog cloud
computing. These technologies are driving the next phase of
digital transformation [29]-[31]. However, unlocking the full
potential of IIoT requires cross-company collaboration, such
as multi-party computation, pooled analyses, data-sharing,

and data exchanging within a network of collaborators or
organizations, which is essential to overcome the significant
fragmentation of data. Integrating FL, blockchain technology,
and healthcare data-sharing has been an increasing interest
and research area. Numerous studies have examined the
technologies individually and in conjunction to address the
pressing challenges of healthcare data privacy, security, and
collaborative research.

FL in Healthcare: FL allows multiple parties to train
an ML model collaboratively without sharing raw data. In
[32] proposed an FL-based approach for decentralized data-
sharing in the IIoT. The authors showed that their approach
achieved better accuracy and reduced communication overhead
compared to traditional centralized learning. However, FL still
faces challenges such as the privacy-utility tradeoff and com-
munication efficiency [33]. The combination of homomorphic
encryption and FL enables privacy-preserving healthcare data
analysis, demonstrating the feasibility of collaborative model
training without exposing sensitive patient data [13]. The chal-
lenges, methods, and prospects, including their applications in
the healthcare domain, are discussed in [34]-[36]. Moreover,
FL is a privacy-preserving paradigm in healthcare, emphasiz-
ing its potential in medical research and the development of
diagnostic models [37].

Blockchain in Healthcare: Blockchain is a decentralized
and tamper-proof ledger that records transactions and stores
data securely and transparently. Blockchain has been proposed
as a potential solution for decentralized data-sharing due to
its ability to provide data immutability, auditability, and trans-
parency. In [38] proposed a blockchain-based decentralized
data-sharing framework that addressed data privacy and secu-
rity concerns. Blockchain’s relevance in healthcare has been
extensively investigated. The authors of [39] examined the
patient-centric blockchain model in healthcare, highlighting its
capacity for secure and transparent health data management
and sharing. In [40] provided a comprehensive review of
blockchain’s role in healthcare privacy and data security, fo-
cusing on its applications in patient records, clinical trials, and
supply chain management. Additionally, the authors of [41]
explored secure multi-party computations using blockchain,
with implications for privacy-preserving distributed prediction
in healthcare analytics.

Integration of FL and Blockchain: While significant
progress has been made in investigating FL. and blockchain
individually in healthcare, a notable gap in research explor-
ing their synergistic potential exists. This paper represents a
pioneering effort to integrate these technologies specifically
for decentralized healthcare data-sharing. Our integration aims
to harness the advantages of both approaches, such as FL’s
data privacy preservation and blockchain’s data integrity, to
address the challenges faced by traditional healthcare data-
sharing methods.

II. OVERVIEW
A. Decentralized data-sharing

Decentralized data-sharing refers to distributing data across
a network of independent participants rather than relying on
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TABLE 1
BENEFITS OF DECENTRALIZED DATA-SHARING IN DIFFERENT INDUSTRIES WITHIN THE CONTEXT OF INDUSTRY 4.0

managed inventory

Ref. highlighte Applications Domains
[19] (2020) Decentralized tourism destinations recommendation system Tourism Blockchain, data-sharing
[20](2020) Improving interorganizational information sharing for vendor | Supply chain management Blockchain, vendor-managed inventory

[21] (2019)

Building a secure biomedical data-sharing decentralized app

Biomedical research Blockchain, data-sharing

[22] (2022)
munication

Decentralized congestion control methods for vehicular com-

Vehicular networks Blockchain, congestion control

[23]1(2021)
works

Decentralized trusted data-sharing management on IoVEC net-

Internet of Vehicle Edge
Computing

Blockchain, data-sharing

[24] (2020)
ing

Decentralized data-sharing infrastructure for off-grid network-

Off-grid networking Blockchain, data-sharing

[25] (2019)

Framework of data-sharing system with decentralized network

General data-sharing Blockchain, data-sharing

[26] (2017) P2P platform for decentralized

Logistics Peer-to-peer, decentralized logistics

[27] (2022) Decentralized network secured data-sharing

General data-sharing Blockchain, data-sharing

[28] (2020) Unlocking the potential of Al in assisted reproduction

Assisted reproduction Blockchain, Al, data-sharing

a centralized authority to manage and control access to the
data. In a decentralized data-sharing system, each participant
has a copy of the data and is responsible for maintaining and
updating their copy. In addition, participants share data with
other participants, either directly or through a P2P network,
and access data shared by other participants. Decentralized
data-sharing is designed with security and privacy in mind
to protect against data breaches and unauthorized access
to sensitive information. Decentralized data-sharing involves
encryption, access controls, and other security measures to
protect the data [42].

Decentralized data-sharing represents a groundbreaking de-
parture from traditional data-sharing approaches, offering
many compelling advantages. Primarily, it fortifies data se-
curity through its distributed structure, rendering it resistant
to targeted cyber-attacks or data breaches [43] [44]. Unlike
centralized systems, where all data resides in a single location
vulnerable to hacking [45], decentralized data-sharing scatters
data across a network of nodes, bolstering protection measures
with encryption and access controls. Each node possesses a
private key [46], ensuring only intended recipients can access
shared data, even if the network is compromised. Furthermore,
consensus algorithms verify data accuracy [47], fortifying
security and control over data access. Secondly, decentralized
data-sharing empowers individuals with heightened data pri-
vacy control. It eliminates the need for a central authority
to manage data access, permitting individuals to grant access
exclusively to trusted parties. Within this framework, data is
distributed across nodes, safeguarded by cryptography. Each
entity holds a private key for data encryption and decryp-
tion, assuring data privacy and thwarting unauthorized access.
This approach significantly augments personal data privacy
and control, aligning with contemporary demands for robust
privacy measures [48].

Additionally, decentralized data-sharing improves interop-
erability across diverse systems and organizations. It achieves
this by embracing open standards and protocols that streamline
data-sharing among distinct platforms and applications. The
result is reduced inefficiencies, redundancies, and delays in
data exchange, facilitating seamless collaboration and resource

optimization. Moreover, this decentralized approach enhances
transparency by allowing all parties to access and validate
shared data, cultivating trust and collaborative potential. De-
centralized data-sharing systems use encryption to protect the
data from unauthorized access or tampering. Each node in
the network has a private key used to encrypt and decrypt
data, ensuring that only the intended recipient can access
the data to prevent unauthorized access to the data and can
provide a greater level of security for the data. Therefore,
decentralized data-sharing improves resilience by creating a
distributed network of nodes that continue to operate even if
some nodes fail or are compromised and by using encryption
to protect the data from unauthorized access or tampering,
leading to a reduction of the risks associated with data-
sharing and enable organizations to work more effectively and
efficiently [49].

B. Blockchain

Blockchain technology is a formidable decentralized and
distributed data-sharing solution renowned for its robust secu-
rity and transparency features. Functioning as a ledger system,
it organizes data into immutable and chronological blocks,
authenticated through consensus mechanisms among a net-
work of nodes, ensuring its accuracy and timeliness [50]. The
successful implementation of a blockchain-based decentralized
data-sharing system hinges on several key considerations. It
must accommodate substantial data volumes and transactions,
necessitating high scalability and performance. Robust security
measures, including encryption and tamper-proofing, are vital
to data integrity and confidentiality. Additionally, the versa-
tility to support various applications and use cases, spanning
financial transactions, supply chain management, and digital
identity verification, is paramount [51]. Blockchain’s essential
attributes position it as a pivotal player in the evolution of
data-sharing systems, such as Dataspace 4.0 and 6G, offering
a pathway to highly secure, efficient, and transparent decen-
tralized data-sharing platforms [52].

Blockchain technology’s prowess extends to enhancing in-
teroperability in decentralized data-sharing, offering a uni-
fied framework for secure and effective interaction among
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TABLE I
COMPARING CENTRALIZED AND DECENTRALIZED DATA-SHARING

Items Centralization Decentralization

Data control Controlled by a single organization or authority | Distributed across multiple nodes

Security Centralized control creates security risks Distributed network of nodes improves resilience

Privacy Centralized control creates privacy concerns Encryption, and smart contracts enhance privacy

Interoperability | Limited interoperability Improved interoperability with the use of decentralized standards and protocols
Transparency Limited transparency and accountability Tamper-proof and transparent record of data-sharing activities
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Fig. 1. Decentralized data-sharing using blockchain

diverse systems and organizations. Blockchain-based systems
facilitate secure data exchange while preserving data integrity
using common data structures and cryptographic algorithms.
Transparency, another hallmark feature of blockchain, ensures
all participants maintain a shared, comprehensive view of
data and its historical changes. It achieves this through a
distributed ledger, creating an immutable, transparent record
of all data transactions. This heightened transparency fosters
trust among parties, promotes accountability, and ensures com-
pliance. Furthermore, blockchain’s resilience factor is crucial
in decentralized data-sharing by guaranteeing data availability
despite system failures or network disruptions. Advanced
consensus mechanisms bolster this resilience, rendering the
system less susceptible to malicious attacks or data breaches
[53]. Blockchain’s multifaceted potential is vividly evident
in various industries, including supply chain management,
healthcare, and financial services. It offers secure and trans-
parent data recording and sharing capabilities, enhances effi-
ciency, accountability, and transparency, and presents novel
solutions to industry-specific challenges. While blockchain
holds immense promise, it is essential to acknowledge and
address challenges, such as scalability, energy consumption,
and regulatory frameworks, to fully harness its potential for
decentralized data-sharing across a spectrum of applications
[54].

Every node in a decentralized blockchain network has a
copy of the ledger. A new transaction is announced to the
network whenever one is proposed. The transaction is then
independently verified by nodes using pre-established proto-
cols and regulations. The consensus process’s primary goal
is to reach a consensus over the ledger’s current status. This
keeps any one node from intentionally or mistakenly changing
the blockchain by requiring all nodes to verify and concur on

the sequence and legitimacy of transactions. Every node in
the network is equal and cooperates to keep the blockchain
current. These nodes divide up the transaction processing,
including consensus-building and validation. Blockchain’s de-
centralization guarantees that no single entity controls the
network. Rather, a democratic consensus is reached among
nodes through the consensus process. To enhance security
and resilience, no single organization can dictate changes
to the blockchain. Blockchain technology’s core feature is
the distribution of processing among the network of nodes.
It guarantees that the system is resilient to attacks, strong,
and able to unite different people when trust is lacking.
In conclusion, blockchain’s distributed bulk processing site
highlights the decentralized character of consensus processes
across the nodes. This decentralized processing enhances the
blockchain’s security, transparency, and reliability.

C. Federated Learning

FL presents an innovative approach to ML that prioritizes
collaborative model training while preserving data privacy and
security [55]. In this decentralized paradigm, each partici-
pating entity retains its data on its local device or network,
eliminating the need to transmit sensitive information to a
centralized repository. FL operates by having each participant
train an ML model using their local data and sending model
updates to a central server, reflecting the parameter differences
post-training. The server aggregates these updates from all
participants, typically through algorithms like averaging or
median computation. The central server then returns an up-
dated global model to each participant. This iterative process
of local training, update transmission, and model retrieval
continues until the global model reaches an acceptable level of
accuracy or satisfies other predetermined criteria. The inherent
structure of FL facilitates participation from multiple parties
in the ML process without necessitating the sharing of raw
data. Utilizing a standardized ML model across all participants
ensures consistent application, ultimately leading to a more
accurate global model. However, the effectiveness of FL relies
heavily on a robust communication infrastructure for efficient
model exchange between participants and the central server.
Weak infrastructure or connectivity can delay model updates
and compromise learning processes [56].

FL significantly augments data security and privacy by
retaining sensitive information locally, thereby reducing the
risk of data breaches during transmission [56]. Since raw data
remains on local devices, potential attackers face formidable
challenges accessing sensitive information. Compromising
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multiple devices to reconstruct a complete dataset is consider-
ably more complex than targeting a single centralized server.
Moreover, FL’s design ensures only model updates, typically
aggregated and abstracted information, are transmitted to the
central server. These updates do not reveal the raw data from
which they were derived, further fortifying data privacy [57].
Regarding privacy preservation, FL guarantees that user data
remains private by avoiding central server sharing. Data re-
mains confined to each user’s device, rendering it inaccessible
to third parties, including entities engaged in the learning
process. FL incorporates privacy-enhancing techniques like
differential privacy, introducing statistical noise into data or
model updates, rendering re-identifying individuals based on
shared information exceedingly tricky. This feature is precious
in sectors governed by strict data privacy regulations, such as
healthcare, finance, and telecommunications [58].

Furthermore, transparency plays a pivotal role in establish-
ing trust among collaborating parties. Participants can verify
that sensitive data remains unexposed during model-building
[59]. In terms of resilience, FL enhances system robustness
through various means. For instance, it ensures efficient data
utilization even in environments with limited network con-
nectivity [60]. Most computations occur on edge devices (i.e.,
locally), requiring only intermittent network access to transmit
aggregated model updates. Additionally, FL is designed to
handle device failures and data corruption robustly. Should a
device go offline or experience data corruption, the FL process
continues with minimal disruption, as it relies on numerous
other devices that persist in their local computations. This
redundancy significantly enhances the reliability of FL. models,
ensuring their functionality even in adverse circumstances
[61]. For instance, there are three nodes (Node 1, Node
2, and Node 3) in the decentralized infrastructure layer, as
shown in Fig. 2. Each node has its own instance of the
FL framework, represented by the FL Framework layer. The
nodes communicate with each other through the decentralized
infrastructure to collaborate on training an ML model using
their local data while ensuring data privacy and security
through FL techniques.

In Fig.2, the FL framework ensures that most processing
happens in a distributed manner by distributing computational
workloads across participating nodes. Every node in the net-
work performs part of the total calculation. Using its local
dataset, each participating node trains its model independently.
Therefore, it eliminates the need to send raw data to a
central server by processing it locally on the node’s device.
Following local model training, the nodes only send the model
updates—not the raw data—to a central server. Usually, these
updates show the modifications or enhancements made to the
models during local training. The central server combines
these changes to create a global model. FL's decentralized
architecture briefly contributes to a safe, private, and coopera-
tive ML environment by distributing processing duties across
nodes and ensuring that crucial operations like model training
occur locally.

(=
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Decentralized infrastructure

Federated learning
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Fig. 2. Decentralized data-sharing using FL

III. COMBINATION OF FL AND BLOCKCHAIN FOR
DECENTRALIZED DATA-SHARING

The combination of FL and blockchain presents a robust
solution for decentralized data-sharing. FL enables secure,
local model training across multiple parties without central-
izing data, enhancing privacy and reducing network load.
Blockchain complements this by providing a secure, transpar-
ent ledger for recording transactions and maintaining data in-
tegrity. Together, they create a powerful platform that enhances
security, privacy, interoperability, and transparency in data-
sharing in healthcare [62]. Our approach uniquely addresses
end-to-end data security, from local model training to secure
data storage and sharing, promising substantial improvements
in the efficiency and trustworthiness of collaborative data-
sharing.

Enhanced Security: The combination of blockchain and
FL ensures that data is encrypted, hashed, and distributed
across a network of nodes, making it difficult for hackers to
compromise the system. FL can enhance security by allowing
local model training on the user’s device without transferring
data to a central server.

Improved Privacy: By using blockchain to store data in
an encrypted and distributed manner, users can retain control
over their data and decide who can access it. FL can also
improve privacy by allowing local model training on user
devices without centralized data collection.

Improved Interoperability: Blockchain and FL can en-
able interoperability between different systems and platforms,
allowing seamless data-sharing across different networks.
FL can also improve interoperability by aggregating locally
trained models across different devices and platforms.

Greater Transparency: The use of blockchain can pro-
vide greater transparency in data-sharing by providing an
immutable record of all transactions. The combination can
further enhance transparency by enabling users to verify the
authenticity of data and model outputs. FL. can also improve
transparency by allowing for the inspection of locally trained
models by independent auditors.

Improved Resilience: The combination of blockchain and
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DECENCALIZED DATA-SHARING WHEN BLOCKCHAIN MEETS FL

TABLE III

Aspect

FL

Blockchain

Combination

Enhanced Se-
curity and Pri-
vacy

FL enables data to be trained locally, reduc-
ing the risk of data exposure during trans-
mission. However, FL does not inherently
address data security during transmission.

Blockchain provides tamper-proof and en-
crypted data storage, ensuring the security
and privacy of shared data.

FL with blockchain ensures end-to-end se-
curity, from data training to storage and
sharing.

and Standard-
ization

devices and platforms for model training.

cols and smart contracts for data access.

Data FL focuses on model updates and con- | Blockchain’s immutable and transparent | Combining FL’s model updates with
Integrity and | sensus, ensuring that the shared model is | ledger guarantees the integrity of shared | blockchain’s data record, both models and
Transparency accurate and reliable. data. data can be verified for authenticity.

Interoperability | FL promotes collaboration across diverse | Blockchain establishes standardized proto- | Combining both ensures interoperable

data-sharing mechanisms and a common
data usage framework.

agreements.

Decentralized FL allows data owners to retain control | Blockchain’s decentralized consensus em- | Combining FL and blockchain extends this

Governance over their data and contribute to model | powers participants to collectively agree on | control to model updates and data access.
training. data-sharing terms.

Resilience FL’s distributed nature ensures system re- | Blockchain’s redundant data storage en- | Combining both mitigates risks associated

and Fault | silience against participant failures. hances resilience. with individual participant failures.

Tolerance

Efficient Col- | FL facilitates collaborative model develop- | Blockchain’s transparent and automated | FL and blockchain enhance efficient and

laboration ment. smart contracts streamline data-sharing | trustworthy collaboration.

Data Moneti-
zation and In-

FL enables data owners to contribute to
model training and earn incentives.

Blockchain’s tokenization and incentive
mechanisms extend these rewards to data-

The combination encourages active data
contribution.

centives

sharing.

™ -
1. 1YV

Consumer

Blockchain Data provider

606 | I B

Consensus and Validation P2P network

E d
Model training

Model training

2
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!

Model training

&

Mining and rewards

Data analytics

Industry4.0 resources

Fig. 3. Combination of FL, blockchain for decentralized data-sharing

FL can ensure that data and models are distributed across
a decentralized network of nodes, making the system more
resilient to failures and attacks. FL can also improve resilience
by allowing local model training on user devices, reducing the
reliance on centralized servers. Using blockchain in conjunc-
tion with FL can provide increased security and privacy, while
also ensuring a transparent and fair training process. However,
it may also require additional computational resources and
coordination between parties and may not always be necessary
or practical depending on the specific use case. Table IV
compares FL with and without blockchain for decentralized
data-sharing.

Fig. 3 shows the combination of FL and blockchain for
decentralized data-sharing. Data sources represent data sources
that can be used in Dataspace 4.0. These can include sensors,
devices, databases, and other sources. At the same time, FL
represents the ML algorithms used for training models on
distributed data. FL allows models to be trained without the
need for centralized data storage. Data labelling and model
training represent the processes of labelling data and training
ML models on the labelled data. This process can be done in
a decentralized manner using FL. Blockchain consensus and
validation of transactions represent the use of blockchain for
consensus and validation of transactions in the Dataspace 4.0.
Blockchain provides a decentralized mechanism for validating
and verifying data transactions.

Decentralized Data Management represents using the Inter-
Planetary File System (IPFS) for decentralized data manage-
ment. IPFS allows data to be stored and accessed decentral-
ized without relying on a central server. Mining Mechanism
and Rewards represent the mechanism for mining data and
rewarding data contributors. The rewards can be in the form
of tokens or other incentives. Data analytics and reporting
represent data analytics and tools to analyze and visualize data
in Dataspace 4.0. These tools can be used to gain insights and
make data-driven decisions. Data Governance represents using
smart contracts for data governance in Dataspace 4.0. Smart
contracts can be used to enforce rules and regulations for data-
sharing and access. Data consumers and smart data providers
represent the users of Dataspace 4.0 who consume and provide
data.

Nodes representing patients, researchers, and healthcare
organizations must be put up to create a local, decentralized
network for sharing medical data. By starting a blockchain,
the nodes create a visible and safe ledger. Smart contracts
are used to automate governance and guarantee compliance.
Patients voluntarily supply personal health data, academics
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TABLE IV
ADVANTAGES OF USING FL. AND BLOCKCHAIN FOR DECENTRALIZED DATA-SHARING

Feature FL FL with Blockchain

Data privacy | Data is kept private by each party, but may be vulnerable | Data is kept private by each party and is secured by the tamper-proof nature
to attacks during transmission of the blockchain

Security Requires trust between parties, and may be vulnerable | Provides a secure and transparent record of the training process, making it
to attacks or malicious behavior more resistant to attacks or malicious behavior

Scalability Can scale to large datasets, but may be limited by the | Can scale to large datasets, but may be limited by the computational
communication bandwidth and computational resources | resources required to perform blockchain transactions
of each party

Cost Lower cost compared to centralized training, but may | Higher cost due to the computational resources required for blockchain
still require significant resources and coordination be- | transactions, but may provide increased security and transparency that
tween parties justifies the cost

Accuracy Can produce high accuracy if each party has represen- | Can produce high accuracy if each party has representative data, and the
tative data, but may be affected by data heterogeneity | blockchain can provide a mechanism for identifying and addressing data
or class imbalance heterogeneity or class imbalance

offer analytical models, and healthcare facilities contribute
datasets. Nodes validate transactions using consensus proce-
dures, keeping an accurate record. The network encourages
cooperation by enabling a range of inputs without centralizing
unprocessed data. By creating a safe and effective environment
for healthcare data-sharing, participants get access to a larger
pool of data for research, improved privacy management, and
transparent governance.

By distributing blockchain nodes across medical facilities,
researchers, and patients, a distributed ledger is created to
integrate blockchain technology into the local decentralized
network. For automated governance, smart contracts enforce
compliance with pre-established guidelines. By reaching a
consensus on the ledger’s current state, consensus mecha-
nisms—Ilike Proof of Authority or Proof of Stake—validate
transactions and preserve data integrity. Blockchain improves
security by guaranteeing data confidentiality and limiting un-
wanted access. Offering an unchangeable and auditable record
of transactions encourages openness and builds participant
confidence. Data immutability is a significant advantage as
it offers a solid basis for healthcare data exchange inside the
local network since it cannot be changed once data is stored
on the blockchain.

An essential component of the infrastructure of the local
network is the use of IPFS for decentralized data management.
Instead of depending on a single server, IPFS functions as
a distributed file system where data is saved among several
nodes. It functions as a peer-to-peer network, enabling direct
data storage and retrieval for any member of the healthcare
ecosystem. Using a content-addressed architecture, IPFS en-
sures data integrity and minimizes redundancy by assigning a
unique hash to each piece of data depending on its content.
Because the data is spread across several nodes, IPFS has im-
proved resilience, making the system resistant to failures. By
enabling direct data retrieval from other network users, IPFS
improves data accessibility and encourages a decentralized and
effective method.

The community that the local decentralized network in
healthcare serves benefits greatly. First, it allows hospitals,
researchers, and patients to safely and effectively share med-
ical data, improving patient care. The cooperative method
improves the precision of medical diagnosis and available

treatments. Second, the network expedites medical research
by giving interested parties access to a large and varied
dataset while protecting personal privacy [63]. It encourages
advancements in medical research and the creation of more re-
alistic models. With its robust consensus processes, blockchain
guarantees data security and privacy when integrated, while
IPES increases accessibility by decentralizing data storage
and retrieval. In conclusion, cooperative data-sharing on a
local decentralized network advances healthcare, and IPFS and
blockchain are essential for guaranteeing security, privacy, and
accessibility for all parties involved [64].

IV. DECENTRALIZED DATA-SHARING IN HEALTHCARE:
USE CASE

Our methodology presents a decentralized approach in an
era dominated by centralized data repositories. Let H represent
the set of hospitals, where each hospital h € H maintains
its independent dataset. Integrating FL. and blockchain in our
framework presents a powerful combination. FL facilitates
the initial stages of data preprocessing and distribution be-
tween entities like Hospital A and Hospital B. Meanwhile,
blockchain serves as the decentralized ledger, ensuring subse-
quent data transactions’ transparency, security, and immutabil-
ity. By leveraging the strengths of both paradigms, we enhance
the privacy, security, and efficiency of decentralized data-
sharing.

The processing in our BCFL system is highly distributed
across multiple nodes. Each node operates autonomously
within the decentralized infrastructure, conducting compu-
tations using its local data. This design is foundational to
the Federated Learning framework we have implemented.
It allows for a resilient and reliable process, as each node
independently contributes to the overarching machine learning
model without centralising data, thus preserving privacy and
minimizing the risk of data corruption or loss. For instance,
our framework involves multiple nodes collaborating through a
decentralized network to train a machine learning model. The
local computations at each node mean that even if one device
goes offline or experiences data corruption, the FL process
experiences minimal disruption. This not only enhances the
reliability of the FL models but also ensures their functionality
even in adverse circumstances. In essence, the bulk of the
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TABLE V
BENEFITS OF DECENTRALIZED DATA-SHARING IN DIFFERENT INDUSTRIES WITHIN THE CONTEXT OF INDUSTRY 4.0

Technology Security Privacy Interoperability Transparency Resilience
FL Encryption of data dur- | Data kept on local de- | Compatibility with dif- | Limited transparency | Resilient to system fail-
ing transmission and | vices ferent data formats due to decentralized | ures
storage nature
Blockchain Immutable data storage | Decentralized control | Ability to work across | Publicly verifiable | Resilient to tampering
and verification different systems transactions and attacks
Synergy Multiple layers of en- | Data kept on local de- | Compatibility with dif- | Publicly verifiable | Resilient to tampering,
of FL and | cryption and verifica- | vices ferent data formats transactions attacks, and system fail-
blockchain tion ures

processing in our BCFL system occurs distributedly. Each
node in the network takes on a portion of the computational
load, with local data being processed at the edge, close to
the data sources. The FL framework ensures that processing
occurs locally at each node, particularly the computationally
intensive model training tasks. This distributed processing
approach is crucial for maintaining the system’s integrity, en-
suring data privacy, and enabling collaborative model training
across various nodes. The local processing at the nodes is
complemented by the blockchain, which provides a secure
and transparent way to record and validate the model updates
contributed by each node.

Node 1 Node 2

Node n
Federated Learning Federated Learning

Hospital A Hospital B

Decentralized
Network

Iris Dataset Attributes
. @ 5

Encrypted datah 4~

(D Nodes in the network

Unauthorized
third-party
Hospital C

<—— Transactions are added to the BC
<«—— Data flow [ Data or processes

Attempted access Q External entity

Fig. 4. Decentralized data-sharing in healthcare use case

A. FL for Data Preprocessing and Distribution

In our approach, FL plays a pivotal role in the initial stages.
Hospitals A and B utilize FL for data preprocessing while
ensuring the raw dataset remains securely within their respec-
tive premises. Through FL, both hospitals, despite retaining
the actual data locally, collaboratively develop a model using
shared insights and updates. The goal here is to benefit from
the data available across both entities, and by the time any
information gets ready for the blockchain, it is not the raw
data but its processed encrypted attributes. The overall flow
can be described as:

1) Hospital A and Hospital B each start with their local
datasets.

2) A FL cycle is initiated, where both hospitals collaborate
to preprocess the data.

3) The processed data, now in a standardized format, is in-
tegrated into the blockchain for subsequent decentralized
transactions.

It’s worth noting that by utilizing FL at this stage, the integrity
and privacy of the hospital data is maintained. Only aggregated
updates are exchanged, ensuring data privacy.

B. Sharing Iris Dataset

The Iris dataset, a widely used dataset in ML and data
analysis was employed as the primary dataset for this research.
This dataset consists of 150 samples from three species of Iris
flowers (Iris setosa, Iris virginica, and Iris versicolor). Four
features were measured from each sample: the lengths and
the widths of the sepals and petals. Given its rich history
in data analysis and ML, the Iris dataset served as an ideal
foundation for demonstrating the feasibility and effectiveness
of our decentralized data-sharing mechanism.

1) Data Representation in Federated Learning: FL ensures
that the participating nodes, like hospitals, retain their local
data without exposing the raw dataset to others. However,
essential attributes or insights derived from the data might
undergo encryption and be shared for collaborative learn-
ing. These shared attributes, rather than the actual data, get
recorded on the blockchain, ensuring transparency, security,
and consistency.

2) Data Representation in Blockchain: While the actual
datasets, like the Iris dataset, do not leave the respective
hospitals, specific data attributes are processed and then
encrypted for sharing on the blockchain. Specifically, the
attributes of the Iris dataset — sepal length, sepal width,
and petal length—are encrypted using the recipient’s public
key. Additionally, the species label acts as metadata, which
is not encrypted, allowing for querying based on species
without requiring decryption. The complexity in these sections
is centred around data attribute encryption and decryption. The
encryption process used for the Iris dataset attributes, like sepal
length and width, is based on public-key cryptography. The
time complexity for such operations typically depends on the
critical size and the algorithm used, often being polynomial
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concerning the key length.

T = {encrypt(s, pk), encrypt(s,, pk), W
encrypt(pi, pk), encrypt(pw, pk), species}
where:
e 5; is the sepal length.
Sy 1s the sepal width.
p; is the petal length.
e Dy, is the petal width.

3) Data Retrieval and Analysis: To retrieve specific data
attributes from the blockchain, we implement Algorithm 1.
The retrieval algorithm’s complexity depends on the filtered
data’s size and the decryption process’s efficiency. If n rep-
resents the number of transactions and d the decryption time,
the total time complexity would be O(n*d), assuming the filter
operation’s complexity is less than or equal to O(n). After

Algorithm 1 Data Attributes Retrieval
1: function RETRIEVEDATA(species, sk)
2: filtered_data < filter_by_species(species)
3 decrypted_data « []
4 for T in filtered_data do
5: append(decrypted_data, decrypt(T, sk))
6
7

end forreturn decrypted_data
: end function

retrieving the data, standard data analysis or ML techniques
can be applied to the decrypted dataset.

4) Data Structure: Blockchain: Each hospital’s blockchain
can be represented as a sequence of blocks:

b} 2

where bg is the genesis block and b,, is the latest block. Each
block b; contains:

b; = {T, h(b;—1),nonce} (3)

B= {b07b17b27"

where:

o T is the transaction data.

o h(b;_1) is a cryptographic hash of the previous block.

e nonce is a variable adjusted during the proof-of-work
process.

The blockchain structure comprises a sequence of blocks,
each linking to its predecessor through a hash. The complexity
of adding a new block involves calculating the hash and
performing the proof-of-work, which has a complexity of
O(2%) on average, where k is the number of bits required
by the difficulty target D.

C. Data Transaction

Given a message M, the encrypted message F for a
recipient with public key pk is:

E = encrypt(M, pk) “4)
The signature S using the sender’s private key sk is:

S = sign(M, sk) 5)

v Assigned hash for the block: 8d59df74150242faafaaba4d1632cée3le4e470c175c2c90c168ecbas500fc3e

Initializing Hospital A (ID: HOSP0O1, IP: 121.237.68.17.

Hospital A's Encoded Public Key: LSOtLS1CRUdJTiBSUGEQUFVCTELDIEtFWS®tLSOtCk1JISUJIDZO. ..

Hospital A's Encoded Private Key: LSOtLS1CRUdJTiBSUBEQUFJJVKFURSBLRVKtLSOtLQPNSULFcV...
Assigned hash for the block: 8d59df74150242faafaaba4d1632cée3le4e470c175c2c90c168ecbas500fc3e

Initializing Hospital B (ID: HOSP0®2, IP: 141.161.176.18

Hospital B's Encoded Public Key: LSOtLS1CRUdJTiBSUBEQUFVCTELDIEtFWSOtLSOtCk1JISUJIDZO. ..

Hospital B's Encoded Private Key: LSOtLS1CRUdJTiBSUBEQUFJJVKFURSBLRVKtLSOtLQPNSULFcX. ..

Fig. 5. Nodes Initialization.

Algorithm 2 Data Transaction
1: procedure SENDDATA(M, pk,ccipient, Sksender)
2: E «+ encrypt(M, kaeCipient)
3: S <« sign(M, sksender)
4: transmit(#,.S) > Send encrypted data and signature
5: end procedure

The data transaction process involves encryption and signing
operations. Both operations are considered polynomial time
complexity based on the key sizes used for encryption and
signing. The transmission complexity depends on network
factors and is typically considered O(1) in the context of
algorithmic analysis.

Hospital A is initiating the transaction...

Data encrypted...

Generated Signature:
818518belal578b4a202bhde6b2014d2f430ac07dc2013144399e3481F2434dcdbf6fa384b15a7c81216d28a5d1elbe]
9a2af1b5626cf2e9789b8e908bddbaabed8308e006510ch37aadce. 3 24bd23c16e237
7688e649f9e5a62c99875114785bc28bd6599fa7237b32aaaf90e865¢c278ace54e143ecd9608c7dc1b5ch4aac3b4a7dos
9c487b69be0d7’ fd85c07efld49elfcf3ll fafa49efabbflb’ 324717fa74826¢
New block generation...

Hospital B is verifying the sender's signature...

Signature verified...

Data decrypted. ..
Assigned hash for the block: abbf47f9780769c91f25a87a99134262cabbael44e541 02b.
Block mined with hash: 8803f771dd92b1366b28a4f1175233d60F2e0d1727F581aa2890d52480¢85d7F
Hospital B added the data to its blockchain...

The transaction was successful, Hospital B received the data from Hospital A.

laae9

Fig. 6. Transactions between Hospitals.

D. Consensus Mechanism: Proof-of-Work

The proof-of-work consensus mechanism aims to find a
nonce such that:

(T, h(b;—1),nonce) < D (6)

where:

e D represents the target difficulty.
o h is the hashing function.

Proof-of-work is inherently designed to be computationally
intensive. The complexity is not fixed and is adjusted by the
difficulty target D. The average time complexity of finding a
valid nonce is proportional to the difficulty target, which is
typically exponential concerning the number of leading zeros
required in the hash output.
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Algorithm 3 Proof-of-Work
1: procedure MINEBLOCK(T, h(b;—1), D)

2: nonce < 0

3: while h (T, h(b;—1),nonce) > D do
4: nonce <— nonce + 1

5: end whilereturn nonce

6: end procedure

E. Authorization Mechanism

Let the centralized registry R be a set of tuples:
R= {(ldlvpkl)v(ldvakZ)a7(Zdn1pkn)} (7)

where:

e 1d; is the unique identifier of hospital h;.

o pk; is the public key of hospital h;.
The authorization check function, isAuthorized(pk), verifies if
a given public key exists in the registry R.

Algorithm 4 Authorization Check
1: function ISAUTHORIZED(pk)
2: if 3(id, pk) € R then return True
3: elsereturn False
4: end if
5: end function

The authorization check involves searching through a reg-
istry for a matching public key. If the registry is unsorted and
has n entries, this operation has a worst-case time complexity
of O(n). If the registry is sorted or hashed, the time complexity
could be reduced to O(log n) or even O(1), respectively.

Hospital B is sending a request for data...

Hospital A is verifying the requester...

Hospital A verified the requester and is granting access...

Hospital A is initiating the transaction...

Data encrypted...

Generated Signature:

8080dadf9bb1085135a1ec8b01253881bdb1180407acece2f45e85e da4633d9750e 1544d5a110F1d1a321477d5
8c7108060F73ce767e91 5b0 73d1F49b00104754b9781a283bdb69ca?1 fhseda30Beb3 fab1F6d740¢
380763505adbd3017ebf854dbFbbcde3bal768197185a209T68af751d 6c2b44T68b 422927142 F4b941Fdear1134boT Fha7549edch95c0a880E
7b07calaf510e24b72f f2af8e70f 382 7ecl

Hospital B is verifying the sender's signature...

signature verified...

Data decrypted...
Assigned hash for the block: 555a: 75 1a9f61e26c8

Block mined with hash: 0088dcfb8983d25e01499c5941F481d0dd313989032b1db49cd0dIb157165054

Hospital B added the data to its blockchain...

Hospital A granting access to Hospital B for the requested data.

Data: {'data’: b’'plg\xcetL\xbB03\xec\xb6\x82>631\xd1\x87\xdb\xe{\xB2xW\xce \x8B\XB1\xe2\x83 \xea\xFeM\xF4\xcd! \xF1\xdd\
\xB6a\xbOB\XF3\x14\xcb\XB1\X7F\xbF\xchzP\XB4F\x95\xB6\xbeB- \x82\xeb\x12\x02y T\xcOd\x83\x15\xee \xa5 \xDL\XFDA\XEFAXF6_\x
-63\xaa, \xd4CQ\XTFAXI3\XcT\ ' cAXFFB\t\xadE, E\x9e\xaaeP\xFa\x16\xFO\xc5Ie\x84x#U\xaB\x81\r\x998;
\xeB\xB6U\xa3+\xad\xca\x0e\x90\x12\xcazi\x02N\x1bJ :81\xc7" \xfb-@\xaa\x1b#\xcb\xd3M\xda\xccT\x9bC1~D\xbd$\xe5\xd3R\xdd\
(\X11\xb3\x1bc\x85\xdBF\xa4He\xb32Y\x16" HI\xe1\xB2\x93\x98\xdO\Xc3\xBI\x87-bL\ " \xca\xde\x98\xe3\xFc\xb3F\ xda\x7F2\xB¢

Fig. 7. Requests for data access between Hospitals.

F. Adversarial Simulation: Hospital C

For our research, we introduced a malicious third-party
entity termed Hospital C. This entity was not part of the
authorized hospital’s list and acted as an adversary, simulating
various attack vectors to compromise the system’s security.

« Replay Attack: Hospital C eavesdrops on the transactions
between Hospital A and Hospital B. It tries to resend in-
tercepted transactions, aiming to re-insert data or initiate
unauthorized data requests.

« Identity Masquerade: Hospital C attempts to masquerade
as Hospital A or Hospital B by forging signatures or
manipulating its IP address.

o Man-in-the-Middle Attack: Hospital C places itself be-
tween Hospital A and Hospital B, intercepting and po-
tentially altering the data being exchanged.

Algorithm 5 Potential Attack Methods
1: function REPLAYTRANSACTION(interceptedTransaction)
send(interceptedTransaction)
end function

function MASQUERADE(fakelD, transactionData)
fakeSignature <— forgeSignature(transactionData)
send(transactionData, fakeSignature, fakeID)
end function

Nk

8: function INTERCEPTANDALTER (transaction)

9: interceptedData <— transaction.data
10 alteredData <— modify(interceptedData)
11: forward(alteredData)

12: end function

G. Defense Mechanisms

Against the backdrop of these simulated attacks, our
blockchain implementation showcased several defense mech-
anisms:

o Nonce and Hash Verification: Every block contains a
nonce value, ensuring the block’s hash matches a particu-
lar pattern. Replay attacks get detected as the blockchain
verifies the nonce and hash values, and a reused nonce
value indicates a replay attempt.

« Digital Signatures and IP Verification: Our system uses
RSA-based digital signatures to verify the authenticity
of transactions. The digital signature verification will fail
if Hospital C tries to masquerade as Hospital A or B.
Additionally, IP address checks were implemented to add
an extra layer of verification, further thwarting identity
masquerade attempts.

« End-to-End Encryption: Data exchanged between hospi-
tals is encrypted using the recipient’s public key. This
ensures that even if Hospital C intercepts the data in a
man-in-the-middle attack, it cannot decrypt or modify it
without the corresponding private key.

Through these defense mechanisms, our decentralized data-
sharing blockchain system demonstrated resilience against the
common threats posed by adversarial entities.

H. Evaluation

Evaluation of the effectiveness of the defense mechanisms
against poisoning attacks conducted by the adversarial entity
is as follows:

« Replay Attack: The defence mechanism includes nonce

and hash verification within the blockchain. When Hos-
pital C attempts to resend intercepted transactions, the
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Fig. 8. Attacks Success rates.

system checks for nonce values. A reused nonce indicates
a replay attempt, which the blockchain is designed to
detect. The graph in Fig.8 shows a low success rate for
replay attacks, remaining consistently low across multiple
attempts. This indicates the system’s effective detection
and prevention of replay attempts attributed to the robust
verification process.

o Identity Masquerade: The system uses RSA-based digital
signatures and IP verification to ensure the authenticity of
transactions. Hospital C’s attempts to forge signatures or
manipulate its IP address will likely be unsuccessful due
to these stringent checks. The graph in Fig.8 corroborates
this: the success rate for identity masquerade attacks
is also low and does not show a significant increase
with more attempts. This reflects the strength of the
digital signature verification and IP checks in preventing
unauthorized entity masquerading.

« Man-in-the-Middle Attack: With end-to-end encryption, it
cannot decrypt or alter the information even if Hospital
C intercepts the data without the corresponding private
key. The graph in Fig.8 suggests that man-in-the-middle
attacks have a slightly higher success rate than the
other two types but remain relatively low. This slight
increase could be due to the complexity of detecting
and preventing active interception compared to the more
straightforward detection of replay and identity attacks.
Nonetheless, the encryption mechanism is a solid barrier,
preventing Hospital C from gaining meaningful access to
the data.

The overall low success rates across all attack types illus-
trate the robustness of the defence mechanisms. The nonce
and hash checks, digital signature and IP verification, and
end-to-end encryption collectively contribute to the resilience
of the blockchain system, effectively mitigating the risk of
poisoning attacks. This analysis, supported by the empirical
data shown in Fig.8, demonstrates that the defence strategies
are sufficiently robust, and the system can be considered secure
against the simulated adversarial actions.

V. CHALLENGES, OPPORTUNITIES AND FUTURE
DIRECTIONS

A. Challenges

Decentralized data-sharing presents several technical chal-
lenges that must be addressed to ensure its effectiveness and
security. Some of these challenges include:

Interoperability: Different decentralized data-sharing sys-
tems may use different protocols and standards, making
sharing data across different systems difficult. This requires
standardization and interoperability between systems.

Scalability: Decentralized data-sharing systems must be de-
signed to handle large amounts of data and many participants.
This requires efficient data storage and retrieval mechanisms
and distributed processing capabilities.

Consensus: Decentralized data-sharing systems rely on
consensus mechanisms to ensure that all participants agree on
the validity of shared data. This requires robust consensus al-
gorithms to handle malicious attacks and ensure data integrity.

Security: Decentralized data-sharing systems must be de-
signed to protect data from unauthorized access, tampering,
and corruption. This requires robust authentication, encryption,
and effective mechanisms for detecting and mitigating attacks.

Privacy: Decentralized data-sharing systems must pro-
tect the privacy of participants’ data and sensitive personal
and financial data. This requires effective mechanisms for
anonymizing and protecting data and ensuring participants
have control over the data.

Data quality: Decentralized data-sharing systems must
ensure the accuracy and reliability of shared data, especially
in cases where data is collected from multiple sources. This
requires effective data validation and verification mechanisms
to resolve conflicts between data sources.

B. Opportunities

Firstly, it enables businesses and organizations to access
a broader range of data, leading to more comprehensive
insights and improved decision-making. This can lead to the
development of new products and services and enhance the
competitiveness of companies. Secondly, decentralized data-
sharing promotes collaboration among participants, allowing
them to work together to solve complex problems and develop
new solutions. This can lead to new business models, part-
nerships, and ecosystems. Thirdly, decentralized data-sharing
can facilitate the development of new technologies and appli-
cations, such as blockchain and edge computing, which can
further enhance the capabilities of Dataspace 4.0. Fourthly, it
can lead to increased transparency and accountability, which is
particularly important in healthcare and finance, where privacy
and security are crucial. Finally, decentralized data-sharing
can give individuals more control over their data, increasing
privacy and security. This can lead to the development of new
services that provide individuals with more control over their
personal information.

The combination of BCFL for decentralized data-sharing
presents a unique and promising use case in healthcare,
particularly for remote monitoring applications.
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1) Remote patient monitoring (RPM): It involves tracking
patient health data outside of traditional clinical settings.
This could include monitoring vital signs, blood sugar
levels, heart rate, or other relevant health metrics through
wearable devices or home-based equipment [65].

2) Collaborative Research and Treatment Optimization:
BCFL can facilitate collaborative research among dif-
ferent healthcare entities while maintaining data privacy.
This collaboration can lead to more comprehensive health
models, benefiting treatment optimization [66].

3) Regulatory Compliance and Consent Management:
Healthcare is a highly regulated sector, and BCFL can
aid in complying with regulations like HIPAA, GDPR,
and others, concerning patient data protection [67].

C. Future directions

Advancing decentralized data-sharing requires multifaceted
research efforts. Technical challenges, including data integra-
tion, interoperability, and security, demand the development
of tailored algorithms and architectures. Legal and regulatory
dimensions necessitate the exploration of frameworks safe-
guarding privacy amid data-sharing. Investigating the potential
of decentralized data-sharing in industries like healthcare
and finance involves identifying domain-specific use cases.
Additionally, emerging technologies, such as blockchain and
edge computing, require scrutiny for their performance in
decentralized contexts. Lastly, developing business models
and ecosystems with incentives for collaboration is vital.
Looking ahead, a focus on practical applications, exempli-
fied through case studies in healthcare partnerships, aims to
validate methodologies, address concerns about centralized
control, and enhance flexibility for global applicability. The
commitment to refining and verifying these approaches in
real-world healthcare underscores a dedicated thrust for the
evolution of decentralised data-sharing.

VI. CONCLUSION

This paper has introduced a groundbreaking exploration of
the conceptual framework and technical synergy between FL
and blockchain, signalling a paradigm shift towards secure,
collaborative, and patient-centric decentralized data-sharing in
the data-driven healthcare era. The combination of FL’s de-
centralized machine learning paradigm and blockchain’s trans-
parent and immutable ledger creates an ecosystem fostering
trust, security, and data integrity. While a specific real-world
healthcare use case is not presented, the paper vividly outlines
the potential impact of this fusion on patient care, emphasizing
the preservation of patient privacy alongside granting health-
care providers and researchers access to diverse datasets. The
proposed approach promises to accelerate medical research,
improve treatment outcomes, and empower patients through
data ownership. The synergy of FL and blockchain envisions a
healthcare ecosystem that prioritizes individual privacy, fosters
advancements in medical science, and sets the stage for a
transformative shift in healthcare data-sharing. This innovative
approach addresses the challenges of balancing data utility
and privacy and opens avenues for more accurate models,

leading to enhanced diagnoses and ultimately contributing to
the evolution of a patient-centric and collaborative healthcare
landscape.
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